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Abstract  

Wind power forecasting is gaining international significance as more regions promote policies to increase the use of 

renewable energy. Wind ramps, large variations in wind power production during a period of minutes to hours, challenge 

utilities and electrical balancing authorities. A sudden decrease in wind energy production must be balanced by other power 15 

generators to meet energy demands, while a sharp increase in unexpected production results in excess power that may not be 

used in the power grid, leading to a loss of potential profits. In this study, we compare different methods to generate 

probabilistic ramp forecasts from the High Resolution Rapid Refresh (HRRR) numerical weather prediction model with up 

to twelve hours of lead time at two tall-tower locations in the United States. We validate model performance using 21 

months of 80-m wind speed observations from towers in Boulder, Colorado and near the Columbia River Gorge in eastern 20 

Oregon.  

We employ four statistical post-processing methods, three of which are not currently used in the literature for wind 

forecasting. These procedures correct biases in the model and generate short-term wind speed scenarios which are then 

converted to power scenarios. This probabilistic enhancement of HRRR point forecasts provides valuable uncertainty 

information of ramp events and improves the skill of predicting ramp events over the raw forecasts. We compute Brier skill 25 

scores for each method at predicting up- and down- ramps to determine which method provides the best prediction. We find 

that the Standard Schaake Shuffle method yields the highest skill at predicting ramp events for these datasets, especially for 

up-ramp events at the Oregon site. Increased skill for ramp prediction is limited at the Boulder, CO site using any of the 

multivariate methods, because of the poor initial forecasts in this area of complex terrain. These statistical methods can be 

implemented by wind farm operators to generate a range of possible wind speed and power scenarios to aid and optimize 30 

decisions before ramp events occur. 

 



  

 
2 

 

1 Introduction  

Global wind-energy installation reached 486 GW in 2016; the total installed generation capacity in the US alone 

reached > 82 GW by the end of 2016 and has experienced a rapid rise since then (GWEC, 2017). Increased interest in 35 

alternatives to fossil-fuel-based energy to mitigate greenhouse gas emissions as outlined in the international Paris Agreement 

(UNFCCC, 2015) has propelled the global wind-energy sector even further. Because of increased interest and deployment of 

wind energy in the US and worldwide, accurate wind speed and power forecasts are becoming increasingly important for 

successful power-grid operation. In particular, the prediction of specific wind situations such as power ramps is key to 

effective operation and control of wind farms (Kuik et al., 2016). 40 

Power ramp events are challenging to forecast because these abrupt and large increases or decreases in wind speed - 

and thus power - happen on time scales of minutes to hours making it difficult for wind farm operators and the power grid to 

respond. Up-ramps, or sharp increases in wind-farm power can lead to an overload of electricity generation. Sometimes the 

additional electricity is sold to nearby utility companies, but frequently wind farms must curtail, or stop power production if 

there is not enough time to make the sale. Conversely, down-ramps, or sharp decreases in power production over short time 45 

periods, also have serious implications for the power grid. If power generation from the wind farm does not meet contractual 

expectations, then power must be generated by another source to “balance the load” and avoid brownouts and blackouts. 

Additionally, the wind farm owners may have to pay costly fees for not meeting their quota.  

Improving the accuracy of ramp forecasts can help avoid the situations described above. The overall effects of 

ramps on the grid can be reduced in several ways. The development of a geographically aggregated power grid which 50 

connects many wind farms and diverse renewable sources such as solar, hydro, and nuclear power (Budischak et al., 2013) 

can help minimize the effects of sudden gusts and lulls of wind speed on the power grid. Additionally, optimized wind farm 

locations and layouts (St. Martin et al., 2015) could reduce fluctuation on the grid caused by individual wind farms. Directly 

improving ramp forecasts is also a viable option to reduce stress on the power grid and make wind energy even more 

reliable. Increased reliability may be realized in the form of decision-making. A wind farm operator may make conservative 55 

estimates of how much power their wind turbines can generate during times with an elevated probability of a down-ramp 

event. In practice, a persistence forecast of wind speed and power generation over a 1-h or 30-min time interval is commonly 

used (Milligan et al., 2003). Persistence forecasts are generally reasonable on these time scales, because local weather 

conditions usually do not change drastically during these lengths of times except during certain weather events, such as 

fronts, convective outflow, etc. that often cause ramps. However, persistence forecasts are poor at predicting ramps; a ramp 60 

identified in the previous 30 min to an hour can change magnitude or even sign (i.e., up- or down-ramp) in a short period and 

therefore lead to large forecast errors. In recent years, there has been a growing interest in information regarding the 

uncertainty of wind power forecasts to make energy decisions (Nielsen et al., 2006b). Typical single (i.e., point) forecasts 

cannot provide this necessary uncertainty information, but probabilistic forecasts can.  
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Considerable effort over the last decade has been made to improve short-term wind and power forecasts (Wilczak et 65 

al., 2014). To improve beyond the use of persistence of a point forecast, some of these methods include the use of predictive 

distributions broken into quantiles for each lead time to quantify uncertainty. These methods neglect the serial correlation 

among forecast lead times (Bremnes, 2006), a characteristic needed for time-dependent events such as the evolution of 

ramps. Other methods construct the serial dependence across forecast lead times, but achieve the original quantiles (i.e., 

margins) from non-parametric forecast distributions (Pinson et al., 2009; Pinson and Girard, 2012). Another method includes 70 

the direct use of an ensemble of forecasts produced by perturbing the initial conditions of a numerical weather prediction 

(NWP) model, which does not require the generation of predictive distributions and their serial correlation across lead times 

through statistical means. However, the ensembles themselves are under-dispersive and lack small-scale variability in time 

and space so that not all possible scenarios are captured (Nielsen et al., 2006a; Bossavy et al., 2013). Others have used 

analogs of past forecasts based on weighted atmospheric predictors to quantify forecast uncertainty (Delle Monache et al., 75 

2013; Junk et al., 2015). The statistical post-processing techniques that we employ allow us to generate a full predictive 

cumulative distribution function (CDF) from which we can derive a variety of probabilistic forecast quantities such as 

prediction intervals or the probability of exceeding a given threshold.  

In the research to be discussed here, we will correct biases in wind speed point forecasts produced by the HRRR 

NWP model using univariate post-processing techniques and parametric distributions. We will then test four multivariate 80 

statistical post-processing methods to generate forecast scenarios of wind speed, representing the prediction uncertainty for a 

12-h forecast horizon. We then compare the skills of the methods at predicting up- and down-ramp events. Three of the four 

methods, (the standard Schaake Shuffle (StSS), Minimum Divergence Schaake Shuffle (MDSS), and the enhanced version 

of MDSS (MDSS+)) are not currently discussed within the wind-forecasting literature and are offered as new forecasting 

tools for short-term ramp events. The fourth method, the Gaussian copula, has been assessed for short-term wind and power 85 

forecasting, so we use this method as a benchmark of performance for the new methods. For all of our analyses, we 

physically compute wind power production via a turbine power curve, which relates the power that would be generated by a 

turbine to wind speed through the turbine rotor layer as well as turbine-specific characteristics.  

The wind speed observations from tall meteorological towers and forecasts from the HRRR model used in this 

study are discussed in Sect. 2. Up- and down-ramp events are formally defined in Sect. 3.1. Univariate post-processing of the 90 

raw HRRR forecasts is described in Sect. 3.2. The multivariate methods for generating probabilistic forecast scenarios are 

discussed in Sect. 3.3. In Sect. 4, we evaluate the performance of each probabilistic forecast method and the raw HRRR 

forecasts focusing on the prediction of up- and down-ramp events. Specifically, we compare the relative frequency of up- 

and down-ramp events produced from each forecast. We also provide Brier skill scores to compare each multivariate method 

and to show the performance relative to climatology. In Sect. 5, we offer concluding remarks, uses for the probabilistic 95 

methods in the wind-energy sector, and advice for operational implementation.  
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2 Data  

2.1 Wind measurements from tall meteorological towers  

We use wind speed and direction measurements from two meteorological towers. The first tower is the 135-m M5 tower 100 

located south of Boulder, Colorado and ≈	5 km east of the Colorado Front Range at the US Department of Energy’s (DOE) 

National Wind Technology Centre (NWTC) (Clifton et al., 2013). Wind speed and direction measurements from the M5 

tower were collected at 80 m and 87 m above ground level (a.g.l), respectively, from a cup anemometer and wind vane. The 

instruments were mounted on tower booms aligned at 278°, the prevailing wind direction at the NWTC based on a 15-yr 

climatology (Clifton et al., 2013). We remove wind speed measurements that are associated with wind directions between 105 

75° −135° to ensure that the measurements are not contaminated from the flow passing through and around the tower or 

waked by a nearby wind turbine before reaching the instrument sensors. We also remove data flagged by quality-control 

methods such as testing for constant values during a measurement interval (which indicates icing events during cold 

months), and checking for standard deviation values < 0.01% of the mean (which indicates instrument malfunction) among 

other measures described by Clifton et al. (2013) and St. Martin et al. (2016). After filtering, 81% of the data were retained. 110 

The M5 tower data that we use are measured at a 20-Hz rate and averaged over ten minutes for the period from 31 August 

2012 to 28 February 2017. 

The second tower is an 80-m tall proprietary tower located near the Columbia River Gorge, which divides the 

southern boundary of Washington and the northern boundary of Oregon. Herein, we refer to this tower as the Pacific 

Northwest (PNW) tower. The wind speed and direction measurements are collected from a heated cup anemometer and wind 115 

vane at 79 m and 76 m a.g.l, respectively over a 1-min averaged period. We perform quality-control measures on the data to 

remove suspect data using similar quality-control processes as for the M5 tower. We also remove unrealistic wind speed 

values, such as negative numbers, and remove data associated with waked flow from the PNW tower or nearby turbines. 

After filtering, 73% of the data were retained. Data from the PNW tower were made available as part of the DOE-funded 

second Wind Forecast Improvement Project (WFIPII) that took place from fall 2015 to spring 2017 (A2E, 2017). We use 120 

data from this tower for all available dates between 18 March 2015	−	06 March 2017.  

 

2.2 Wind forecasts from HRRR system 

Deterministic forecast data are obtained from the second experimental version of NOAA’s real-time, High-Resolution Rapid 

Refresh assimilation and model forecast system (HRRRv2). The HRRRv2 domain covers the contiguous US at 3-km 125 

horizontal resolution. HRRRv2 is updated hourly with initial conditions from the 13-km Rapid Refresh model and 

observations via data assimilation. Detailed model physics for HRRRv2 is discussed by Benjamin et al. (2015). The 

available dates for this version of the HRRR are from 01 January 2015	– 28 September 2016. Forecast verification is 
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performed on this period of interest which overlaps with the observation availability. For comparison of the 80-m wind 

speed forecasts to the tower observations, the HRRR forecast values at each tower location are from the nearest model grid 130 

cell to the tower latitude and longitude (Figure 1, map for the PNW tower is not shown for proprietary reasons). The closest 

model grid points are 1.65 km and 1.49 km away from the M5 and PNW tower, respectively. The topography at the closest 

grid points is representative of the terrain at each of the tower sites. Since the HRRRv2 forecasts are output hourly, we apply 

our analyses to the observations that occur at the top of the hour to match the forecast availability. The HRRR output is 

instantaneous at every hour, but because it represents a 3-km grid cell, comparing this output to the averaged observations is 135 

preferred. For the observations and model output, we only analyse dates that have a continuous 12-h segment of data from 

the 00Z and 12Z forecast initialization times to encompass an entire day. These criteria yield ≈	80–150 continuous 12-h 

forecast segments that overlap with available observations for each initialization time and tower location. The criteria also 

yield ≈ 300–400 continuous 12-h segments of observations for each initialization time and tower location that will be used 

for forecast verification and the multivariate methods discussed in Sect. 3.3.  140 
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Figure 1 Model elevation (color contour) surrounding the M5 tower (white triangle). The fifty closest model grid points (dots) are 
overlaid. The white dot shows the closest model grid point to the M5 tower.   

3 Methods 145 

3.1 Ramp definition  

Wind power ramps are large changes in power production over short time periods. Despite the significant influence of ramp 

events on the electric grid and a clear need for accurate forecasts of these events, there is not a commonly accepted method 

to define and identify them. Ramp definitions vary in the literature (Kamath, 2010, 2011; Pinson and Girard, 2012; Bossavy 

et al., 2013; Bianco et al., 2016) regarding the threshold of power change and the duration over which that change occurs. 150 

Variations also exist regarding which data points in a given window of time should be used when calculating the change in 
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power, and lastly whether to use power time series directly when defining ramps or instead use a filtered time series 

(Bossavy et al. 2013). Commonalities in the literature include the need to define ramp magnitude, duration, and sign (i.e., up- 

or down-ramp).  

This lack of a standard definition is primarily because what is considered an important ramp event depends on the 155 

needs of the wind farm operator or grid-system manager at any given time or location. Here, we employ a combination of the 

Minimum-maximum method used by Pinson and Girard (their eqn. 8, 2012) and that employed in the Ramp Tool & Metric 

created by Bianco et al. (2016) to generate separate ramp time series for up-ramps and down-ramps. Up-ramps and down-

ramps are considered separately, because they have different impacts on the power grid and lead to different decisions. Up-

ramps may result in a swap of conventional energy sources for cleaner wind power while a down-ramp may result in the 160 

opposite and can have more detrimental effects on the grid during periods of high electricity demand.  

Before identifying power ramps, wind speed observations and forecasts must be converted to power. A conversion 

from wind speed to power in this study is achieved via the International Electrotechnical Commission (IEC) turbine power 

curve for Class 2 turbines (IEC, 2007). This power curve is for wind turbines with a cut-in wind speed > 3 m s-1, rated power 

≥ 16 m s-1, and a cut-out wind speed > 25 m s-1. Using the resulting power time series, we create binary time series of up- 165 

and down-ramp events into ones (ramp occurred) and zeros (no ramp occurred). We do this by first dividing the power time 

series into 𝑁)*+ sliding time windows of length h and then finding the largest positive and negative power differences that 

exists within each window, ∆𝑝./0 and ∆𝑝.*+, respectively. If the largest positive power difference equals or exceeds the 

defined power change threshold 𝜉, then the up-ramp time series is given a value of 1 for that time window. Conversely, if the 

largest negative power difference is less than or equal to – 𝜉, then a 1 is assigned to the down-ramp time series for that time 170 

window. If the above respective criterion is not met, then a 0 is assigned for that time window. The window then slides one 

hour forward in time and the process is repeated until there are 𝑁)*+ binary values for both the up-ramp and down-ramp time 

series. We allow up-ramps and down-ramps to happen within the same time window, so that there could be a value of 1 

assigned for the same time window in both the up- and down-ramp time series. This allowance is reasonable, because for 

some longer window-lengths, up-ramps and down-ramps could both occur and are equally important to forecast. If a small 175 

up-ramp (down-ramp) interrupts an overall large down-ramp (up-ramp), the ramp will still be classified as a down-ramp (up-

ramp) as long as the large ramp meets the power threshold criteria. An example of the identification of up- and down-ramps 

according to these methods appears in Figure 2. While more complex ramp definitions are available, the chosen criteria for 

up- and down-ramps reflect the common intuition about ramps including threshold 𝜉 and window length h to customize the 

definition to specific needs. As determined later, this ramp definition can be employed in a probabilistic framework and will 180 

be used to compare the different approaches to scenario generation.  
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Figure 2. Ramp identification at the M5 tower location for an observed power time series at 00Z on 03 March 2016 for a window 
size h = 3 h and change in power threshold 𝝃 = 𝟔𝟎% of turbine power capacity. Three consecutive time windows are shown as the 185 
grey rectangles in a, b, and c. The identified ramps in those time windows are highlighted in red (up-ramps with ≥ 𝟔𝟎% power 
change) and blue (down-ramps with ≤ 	−𝟔𝟎% power change). The change in power capacity associated with each ramp is written 
in the white textboxes within the grey time windows. The total number of up- and down-ramps identified within all 3-h sliding 
time windows is 2 and 6, respectively.  
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3.2 Deterministic to probabilistic forecasts: univariate post-processing  190 

To improve the skill of the raw HRRR forecasts at predicting ramp events, we employ statistical post-processing techniques 

to enhance the HRRR forecasts through the addition of uncertainty information. These methods convert the deterministic 

(single value) raw HRRR forecast into probabilistic forecasts by creating a set of forecast scenarios of wind speed that 

represent the forecast uncertainty. Wind speed scenarios are converted to power scenarios and then probabilities of ramp 

events are derived. The first step to generating scenarios is to perform univariate post-processing on the HRRR forecasts at 195 

each individual lead time.  

We first determine a predictive distribution model for each tower and forecast initialization time which accurately 

predicts future observations for each forecast lead time. We employ ordinary-least-squares regression on the observed wind 

speed data during which the HRRR forecasts are also available (01 January 2015	– 28 September 2016). To make use of the 

≈ 21 months during which both the HRRR forecasts and observations are available, we cross-validate these data. We leave 200 

one month out for verification and fit the statistical models used to determine the parameters of the predictive distributions 

with the remaining 20 months of data (training period). We repeat this process so that 21 months of forecasts and 

independent verifying observations are obtained for each month, forecast initialization, lead time, and tower location. We 

find the mean and standard deviation of the predictive distributions by inserting verifying forecasts into the fitted regression 

model. Before performing the regression, we apply a power transform (not to be confused with wind speed-to-power 205 

conversion) with power exponent 𝑃  to the forecasts 𝑥 = 𝑥<  and observations 𝑦 = 𝑦<  to address the increase of forecast 

uncertainty with wind speed (i.e., heteroscedasticity in the dataset). Heteroscedasticity in the data is visible as more spread in 

the data points at higher wind speeds than at lower wind speeds in Figure 3a. We select power exponents for the 

transformations that produce slope coefficients nearest to zero from a second regression of the absolute residuals from the 

first regression on the transformed forecasts. The exponent is 0.66 (0.75) for both forecasts and observations at each 210 

initialization time and all lead times at the NREL M5 (PNW) tower.  

After applying a power transform to the data, we remove the seasonal cycle for each location, initialization time, 

and lead time by normalizing the transformed forecasts and observations by the corresponding seasonal cycle. The seasonal 

cycle model takes on the form, 

 215 

𝑠(𝑇) = 𝑎C + 𝑎E sin 2𝜋𝑇 +	𝑎J cos 2𝜋𝑇          (1) 

 

and the model coefficients 𝑎C, 𝑎E, and 𝑎J are determined by fitting the seasonal cycle model to the transformed forecasts for 

every forecast date in the form of fractional day of the year 𝑇. We fit the seasonal cycle model solely on the transformed 

forecasts, because there are more forecasts than observations available during the period of interest. Therefore, the same 220 

seasonal cycle coefficients are used to derive the seasonal cycle for the transformed forecasts and observations.  
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The transformation and removal of the seasonal cycle makes the relationship between the transformed forecasts and 

transformed observations more homoscedastic (i.e., more consistent forecast variability for all wind speeds in Figure 3b). 

The idea of removing seasonal characteristics from forecast and observation data to be able to fit a statistical model with data 

across different seasons has previously been used by e.g. Dabernig et al. (2017). This homogenization of the data allows us 225 

to use a relatively simple regression model and still account for the different sources of heteroscedasticity. Alternatively, 

heteroscedasticity could be addressed by a more complex, non-homogeneous regression model (Thorarinsdottir and 

Gneiting, 2010 or Scheuerer and Möller, 2015), but in the present context the approach of data transformation combined 

with standard linear regression seems equally appropriate.  An inverse transformation of the observations, forecasts, and 

regression lines reveal the complexity of the regression line we would have had to use if we had not transformed the data 230 

before applying regression analysis (Figure 3c). The slight curvature in the standard deviation lines in Figure 3c shows the 

dependence of error variance on wind speed magnitude (i.e., heteroscedasticity); the black dots are closer to the red 

regression line at lower wind speeds than at higher wind speeds. The scatter in the red and black regression dots in Figure 3c 

illustrates how the annual cycle influences the regression; depending on the time of year, the transformation value can be 

different because of the annual cycle.  235 

 We test three candidate predictive distribution models for the transformed wind speed: truncated normal, truncated 

logistic, and gamma distributions where the truncated distributions exclude negative values. These distributions, given the 

same mean and standard deviation, vary in the shape of their peaks and size of their tails. Their means and standard 

deviations are determined by the above linear regression. For the truncated normal and truncated logistic model we use, for 

simplicity, the means and standard deviations of the respective untruncated distributions; for 80 m wind speeds this 240 

approximation seems justified because observations are sufficiently far away from zero for the truncation to be negligible 

(see Fig. 3b). Probability integral transforms (PITs) of each predictive cumulative distribution function (CDF, 𝐹*) and its 

verifying observation 𝑦*  are calculated for each candidate distribution as 𝑑*: = 𝐹* 𝑦* , and provide an assessment of which 

distribution yields the best calibration (Dawid, 1984; Gneiting et al., 2007). Histograms of the PITs which include all 

verification days and lead times show that the gamma and truncated logistic distributions are well-calibrated to the observed 245 

transformed wind speeds at the NREL M5 and PNW towers, respectively for 00Z (Figure 4) and 12Z (not shown) 

initialization times. The good calibration is qualitatively demonstrated by the mostly uniform histograms in Figure 4. For a 

more quantitative assessment of calibration, we compute the continuous ranked probability score (CRPS). The CRPS is a 

proper scoring rule that is often used to evaluate the quality of a probabilistic forecast by summarizing the sharpness and 

calibration of the forecast distribution (Gneiting et al., 2005; Gneiting and Raftery, 2007). A proper score is one that 250 

produces the highest reward (i.e., lowest CRPS score) by using the true probability distribution (Gneiting and Raftery, 2007). 

For a given pair of predictive CDF 𝐹 and verifying observation 𝑦, the CRPS is defined as 
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CRPS(𝐹, 𝑦) = 𝐹 𝜉 − 𝑯(𝜉 − 𝑦) J𝑑𝜉,V
WV           (2)  

 255 

where 𝐹 𝜉  is the probability that the forecast will not exceed threshold 𝜉 and 𝑯	is a Heaviside step function which attains 

the value 1 when its argument is ≥ 0, and 0 otherwise. A low CRPS value suggests a predictive distribution model can 

accurately represent future observations. We calculate the CRPS for each candidate predictive distribution using the closed-

form expressions for the CRPS of a truncated normal (Gneiting et al., 2006) and the truncated logistic and gamma 

distributions (Scheuerer and Möller, 2015). Based on the CRPSs, averaged over all lead times for each tower and 260 

initialization (Table 1), and the PIT histograms, we choose to proceed with the gamma (truncated logistic) distribution model 

for the NREL M5 (PNW) transformed observations.  

 

 
Figure 3. Scatter-plots of (a) observations (Obs) versus forecasts (Fcst), (b) unit-less transformed observations versus transformed 265 
forecasts, and (c) the back-transformation of the observations versus the back-transformed forecasts from the NREL M5 tower at 
an 00Z initialization and a two-hour forecast lead time. The exponent P used in the power transformation is shown in (b). The 
least-squares linear regression trends (solid red line in (b) and red dots in (c)) and lines representing one standard deviation (solid 
black line in (b) and black dots in (c)) from the regression lines are displayed for the transformed and back-transformed data.  

 270 
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Figure 4 Histograms of the probability integral transform (PIT) using the predictive truncated normal, truncated logistic, or 
gamma distribution models at 00Z for the M5 tower (blue) and PNW tower (green). The horizontal black line depicts the count 
that each of the twenty bins would have if the histogram was perfectly uniform.   275 

Table 1. Average CRPS (in m s-1) for the 00Z and 12Z calibrated probabilistic forecasts obtained using the truncated normal (𝓝𝟎), 
truncated logistic (𝓛𝟎), and gamma (𝓖) predictive distribution models. The arrow represents the direction for good scores and the 
best scores are shown in bold. 

 NREL M5 PNW      ↓ 

𝒩C      00Z 

           12Z 

0.203 

0.234 

0.137 

0.157 

ℒC       00Z 

           12Z 

0.203 

0.235 

0.136 

0.156 

𝒢         00Z 

           12Z 

0.202 

0.233 

0.137 

0.158 
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3.3 Generation of forecast scenarios: multivariate post-processing 280 

We obtain probabilistic forecasts of univariate statistically post-processed wind speeds for each verification day, forecast 

initialization, and lead time for both towers by using the truncated logistic or gamma distribution models as discussed in 

Sect. 3.2. These marginal distributions provide prediction uncertainty information for each lead time on a given day and 

initialization time, but they do not provide information about the serial dependence of the distributions across multiple lead 

times. Ramp events are changes in power over a short period of time; to identify ramps and the uncertainty associated with 285 

them, we need to generate scenarios of wind speed which represent that serial dependence and that can then be converted to 

scenarios of wind power. We model serial dependence of the individual lead-time predictive distributions to construct 

forecast scenarios of wind speed which are then converted to power. We utilize four methods to define the interdependence 

structure and generate the scenarios. The Gaussian copula, standard Schaake Shuffle (StSS), MDSS, and MDSS+ methods 

are discussed below.  290 

3.3.1 Gaussian copula  

We first generate scenarios of wind speed following the Gaussian copula method (Pinson et al., 2009; Pinson and Girard, 

2012). The Gaussian copula approach first converts the transformed wind speeds (Sect. 3.2) from the chosen forecast 

distribution (here, we use truncated logistic or gamma) into a uniform marginal probability distribution and then converts the 

uniform values into standard Gaussian-space using a combination of CDFs 𝐹𝒟 and inverse CDFs 𝐹𝒟WE, where 𝒟 is either a 295 

gamma 𝒢 𝜆, 𝑟 , truncated logistic ℒC(𝜇, 𝜎) , or Gaussian 𝒩(0,1)  distribution. A flow diagram of the Gaussian copula 

procedure starting with a marginal gamma distribution is shown in Figure 5 and described below. An empirical covariance 

matrix of the Gaussian values is constructed to estimate the covariance between the Gaussian values from all pairs of lead 

time. This covariance matrix provides information necessary to transition from marginal distributions for each lead time to 

multivariate distributions, which inform how the Gaussian values link across multiple lead times. Given the limited amount 300 

of training data and gaps in the range of dates for which observations are available, we do not attempt to estimate a time-

varying correlation model. Instead, we follow Pinson and Girard (2012) and use a fixed exponential correlation model 

(ECM), 

 

𝐸𝐶𝑀 𝑋iE, 𝑋iJ = exp − imWin
o

,        (3)  305 

 

where 𝑋iE and 𝑋iJ are the Gaussian random variables at lead time 𝑘E	and 𝑘J, respectively, and 𝜈 is the range parameter 

which controls the extent of correlation of transformed wind speed across lead times. An appropriate value for 𝜈 is selected 

empirically so that the resultant ECM for a given value of 𝜈 most resembles the decay of the empirical covariance values 

(Appendix A). A correlation matrix based on the ECM and the estimated value of 𝜈 is then set up and employed to randomly 310 
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generate scenarios of multivariate Gaussian-distributed values. Those Gaussian-distributed scenarios are then converted to 

scenarios with uniform margins by taking the CDF of a standard Gaussian distribution evaluated at the Gaussian-distributed 

values. An inverse CDF of the forecast marginal distribution (here, we use truncated logistic or gamma) of the uniform 

values yields the final result of transformed wind speed scenarios with marginal distributions as determined in Sect 3.2. For 

this study, we generate 1000 Gaussian copula scenarios of transformed wind speed. We then convert the transformed 315 

scenarios into scenarios of un-transformed wind speeds by reversing the transformation performed in Sect. 3.2. A conversion 

from wind speed to power scenarios is achieved via the International Electrotechnical Commission (IEC) turbine power 

curve for Class 2 turbines (IEC, 2007) before ramps are identified.   

 

 320 

 
Figure 5 Flow diagram of how the Gaussian copula method is used to generate 𝒏	number of wind speed scenarios from a 
multivariate Gamma distribution. Downward-pointing arrows show the result of the top processes. The diagonal-pointing arrows 
illustrate the next step in the method. The original wind speeds do not have to be transformed, but for this study, we begin this 
method using transformed wind speeds from a univariate Gamma distribution and result in 𝒏	number of scenarios of transformed 325 
wind speeds from a multivariate Gamma distribution.  

3.3.2 Standard Schaake Shuffle  

We also generate forecast scenarios of transformed wind speed using the Schaake Shuffle method, which uses historical 

wind speed scenarios to determine serial dependence of the wind speed forecasts across forecast lead times. This method for 

generating multivariate forecasts is used widely for precipitation and temperature forecasts (Clark et al., 2004), but has not 330 

yet been applied for wind speed and power forecasts. This method generates wind speed forecast scenarios which can be 

converted to power. Alternatively, the method could be used to generate power scenarios directly if given predictive 

distributions and observations of power. Forecast scenarios are easier to visualize in wind-speed-space (transformed wind 

speed for our data) because of the strong non-linearity of the power curve, so we discuss the method starting with predictive 

distributions and observations of transformed wind speed. For a given date, we construct 50 forecasts for each forecast lead 335 

time by breaking the predictive distributions in Sect 3.2 into 50 quantiles so that the 𝜂 forecasts are simply the 𝜂 quantiles of 
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the predictive distribution. For 50 quantile forecasts, the quantile proportions range from 0.01 to 0.99 of the predictive 

distribution in increments of 0.02.  

The next step in the Schaake Shuffle method is to select an identical number of observed historical scenarios of 

transformed wind speed. The historical scenarios are selected from the 50 available dates preceding the forecast initialization 340 

date, so that the historical scenarios of transformed wind speed are from a similar season. Alternatively, dates could be 

pulled at random throughout the observed historical record. The method then ranks the 50 historical observations separately 

for each lead time and assigns the same ranking to the 50 sorted forecast quantiles (an illustration of this process for three 

historical scenarios and three forecast quantiles is shown in Figure 6b, c). The final step of the Schaake Shuffle method is to 

connect the ranked quantile forecasts across lead times to yield multivariate forecast scenarios (Figure 6d). For instance, a 345 

forecast quantile that is associated with historical scenario ‘3’ at lead time 0 will connect to all forecast quantiles that are also 

associated with historical scenarios ‘3’ at their lead time (Figure 6d). This shuffling of forecast quantiles to match the rank of 

historical scenarios yields forecast scenarios that maintain a realistic temporal interdependence and shape across lead time 

while matching the predictive marginal distribution as described in Sect. 3.2.  

Like in the Gaussian copula method, the generated scenarios of transformed wind speed forecasts from the Schaake 350 

Shuffle method can then be converted to power, if desired, to identify ramp events. Here, the selection of the historical 

scenarios used in the Schaake Shuffle was ad hoc; the method does not make a preferential selection of dates. We next 

discuss two methods which preferentially choose historical scenarios that are most similar to the 1) quantiles of the forecast 

marginals and 2) the quantiles of the forecast marginals and also the quantiles of the wind speed difference between lead 

times. We distinguish between these three methods by referring to the standard method above as the Standard Schaake 355 

Shuffle (StSS), the first preferential method which will be discussed below as the Minimum Divergence Schaake Shuffle 

(MDSS), and the enhanced preferential method also discussed below as the MDSS+.  

 

 

 360 
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Figure 6. Illustration of how the Schaake Shuffle method generates three wind speed forecast scenarios for a given date. For a 
given forecast date, three observed historical scenarios of wind speed are selected from the historical record (a). The historical 
scenarios are ranked (b) and then the same ranking is imposed onto the sorted forecast quantiles (c). The forecast quantiles are 
connected across forecast lead time according to their corresponding rank (d). In panel (b), we emphasize the ranking of the 365 
second historical scenario to show how the ranking of a historical event manifests in the shape of a forecast scenario in (d). 
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3.3.3 Minimum Divergence Schaake Shuffle (MDSS) 

The first of two methods that we use to preferentially select and generate probabilistic forecast scenarios of transformed 

wind speed is the Minimum Divergence Schaake Shuffle (MDSS) method (Scheuerer et al., 2017) . The MDSS follows the 370 

same procedures as the StSS method that impose the ranking of historical scenarios on sorted quantiles of the forecast 

distributions and that connect forecasted quantiles associated with one particular historical scenario across all lead times. 

Like for the StSS, the MDSS can also utilize historical observations from dates when no forecasts are available, an 

advantage over another variant of the Schaake Shuffle method introduced in Schefzik (2016).  The identical processes of the 

StSS and MDSS methods are shown in Figure 6. The MDSS deviates from the StSS in its selection of historical scenarios; 375 

the MDSS preferentially chooses dates such that the marginal distributions of the sampled historical scenarios are most 

similar to the quantiles of the post-processed forecast marginal distributions across all forecast lead times rather than a 

random or user-assigned selection of dates used for the StSS method. In the hydrological context discussed by Scheuerer et 

al. (2017), this preferential selection helped preserve features in the historical scenarios during the shuffling procedure 

shown in Figure 6c and d, and lead to improved multivariate probabilistic forecasts compared to StSS.  380 

 Because historical scenarios selected for the MDSS method are not limited to the most recent 𝜂 scenarios from the 

forecast initialization date as with the StSS method, the number of scenarios must be narrowed down to 𝜂 scenarios starting 

from the total number of candidate scenarios 𝑁C in the historical record, which for our dataset is ≈ 300 − 400 scenarios for 

each initialization time and tower location. This selection seeks the 𝜂 historical scenarios that yield the least divergence1 ∆iℋ 

between the CDF of the forecast marginal distribution 𝐹i
w at each lead time 𝑘, and the empirical CDF 𝐹iℋcalculated from a 385 

set ℋ of historical observation scenarios, 

 

∆iℋ= 	 𝐹iℋ 𝑥 −	𝐹i
w 𝑥

J
𝑑𝑥.		          (4) 

 

Each scenario within the set ℋ is evaluated for final selection based on whether the scenario results in a larger or smaller 390 

total divergence ∆yzyℋ = 	 ∆iℋi  when it is removed from the calculation. If the scenario results in a smaller divergence when 

it is left out of the computation, then it is not an optimal choice. Conversely, if leaving out the scenario results in a larger 

divergence, then we know that the scenario is important for minimizing the divergence and should be kept as one of the final 

𝜂 scenarios. Ideally, a set ℋ that includes all possible candidate scenarios would be reduced to size 𝜂 one-by-one, but this is 

computationally expensive. Therefore, we use a sequence of ℋ that reduces the starting number of candidate scenarios to 395 

test and eliminates more than one scenario with each iteration until 𝜂 scenarios are reached. For example, for the M5 tower 

                                                             
1 Divergence in this study means the integral of the squared difference between two CDFs and is different from the 
divergence term ∇ ∙ 𝑭 commonly used in meteorology, where ∇ is the del operator and F is a meteorological field. 
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location at initialization time 00Z, there are 𝑁C =	416 total candidate historical scenarios, but we use the sequence 350, 300, 

250, 200, 180, 150, 140, 130, 120, 100, 80, 70, 65, 60, 55, 𝜂, which reduces 𝑁C to 𝜂 = 50 historical scenarios in 15 iterations 

rather than 𝑁C − 𝜂	  iterations. Coding details of the method are given by Scheuerer et al. (2017) along with a 

computationally-efficient method for calculating the integral.  400 

3.3.4 Enhanced version of the Minimum Divergence Schaake Shuffle (MDSS+) 

Constraining the marginal distributions does not necessarily improve the representation of temporal gradients of the quantity 

of interest. If the HRRR forecasts of temporal wind speed changes have some skill, then using a predictive distribution of 

these differences explicitly in the MDSS algorithm might result in a better selection of historical dates that have similar 

temporal gradients. This formulation is the idea behind the final method we use to generate transformed wind speed 405 

scenarios. The final method is much like MDSS, but includes an additional term to explicitly capture the variation in wind 

speed between neighbouring forecast lead times. For this enhanced MDSS method, 𝜂 historical scenarios are chosen that 

yield the least divergence from both the forecast marginal distributions and the forecast distribution of the lag1-h lead time 

differences of transformed wind speed. Forecast distributions of lag 1-h lead time differences are attained in the same way as 

forecast marginal distributions (Sect. 3.2), except that now we perform a regression on lag 1-h difference of transformed 410 

wind speed. Based on PIT histograms (not shown), the best predictive distribution that represents these differences for both 

tower locations is the (non-truncated) logistic distribution. For this method, the 𝜂 historical scenarios that yield the smallest 

divergence when considering both the forecast marginal distributions and the forecast distributions of wind-speed differences 

are selected. To emphasize the temporal gradient between two neighbouring lead times, we assign more weight to the 

divergence term associated with wind speed differences. In this study, we weight the wind speed difference term as five 415 

times greater than the marginal distribution term. This method requires that the lag 1-h difference between lead times in the 

historical scenarios best-match the lag 1-h differences of the forecast and is therefore an enhanced method to the MDSS. 

3.3.5 Differences between historical observations selected by StSS, MDSS, and MDSS+ 

Marginal distributions of transformed wind speed of the historical scenarios used for each of the three Schaake shuffle 

methods (Figure 7a) and the distributions of the lag 1-h differences of those scenarios (Figure 7b) reveal that the MDSS and 420 

MDSS+ produce historical scenarios closer to the forecasted distributions than does the StSS method. Of course, the MDSS+ 

is the only multivariate method that utilizes the lag 1-h differences when selecting historical scenarios and for that reason, we 

see that the MDSS+ distributions for the lag 1-h differences (green boxes in Figure 7b) are often a slightly better match to 

the forecasted distribution (grey boxes in Figure 7b) than the regular MDSS or StSS methods (pink and blue boxes in Figure 

7b, respectively).  The MDSS+ method sometimes makes compromises in the selection of optimal scenarios for one of its 425 

two terms, because it seeks to find the historical scenarios that are an overall best match when considering both the quantiles 
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of the forecasted transformed wind speed distribution and the distribution of lag 1-hr differences of those wind speeds. Also, 

the MDSS and MDSS+ methods only have a limited set of historical dates from which they can choose scenarios, so we 

cannot expect a perfect match. Boxplots of the distributions of transformed wind speeds and the lag-1h differences of those 

wind speeds are not shown in Figure 7 for the GC method, because we wanted to point out the differences among the 430 

historical scenarios selected by each Schaake Shuffle method; the GC method does not use historical scenarios. Once the 

historical scenarios are chosen, the quantiles of the forecast marginal distributions are reordered to have the same ranking of 

the corresponding historical scenarios.  Like for the Gaussian copula and StSS methods, both the MDSS and MDSS+ 

scenarios are then transformed back into wind-speed-space and converted to power before identifying ramp events.   

 435 
Figure 7. Box plots of a) the forecast marginal distributions of transformed wind speed (grey boxes) and b) forecast lag 1-hr wind 
speed differences (grey boxes) for 00Z forecast initialization on 28 March, 2015 at the PNW tower location. Distributions of 
transformed wind speed and lag 1-hr differences in transformed wind speed from the 50 historical scenarios used by the StSS 
(blue boxes) and selected by the MDSS (pink boxes) and MDSS+ (green) methods are also shown. The box plots display the 
interquartile range (rectangle region), the median (middle line within rectangle), outliers (dots), and values outside the 440 
interquartile range but not considered an outlier (lower and upper whisker) of the distributions. Outliers are values more than 1.5 
times the interquartile range.  
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4 Results  

4.1 Verification of deterministic HRRR forecasts with observations   

To provide a reference for the performance of predicting up- and down-ramp events, we first illustrate how ramps identified 445 

from the raw HRRR forecasts compare to those identified from the observations at the M5 and PNW tower locations. The 

correlation between ramps identified with the HRRR forecasts and observations are low at both tower locations (Figure 8) 

ranging between 0.23 and 0.37. The ramp definition used for Figure 8 is different from the ramp definition discussed in Sect. 

3.1, because it shows ramps identified with wind speed instead of power. This ramp definition is only used in Figure 8 to 

show the magnitude of the change in wind speed that is observed and forecasted at each tower location during a period of 450 

three hours. Utilizing the magnitude directly - rather than a particular exceedance event - eliminates the need to set any 

particular threshold for a change in wind speed, which would be difficult to define anyway because of the nonlinear 

relationship between wind speed and the power curve. The purpose of Figure 8 is to reveal biases in the HRRR forecasts and 

differences between the two tower sites, while the analysis of power ramp events in the subsequent sections is more 

applicable for decision-making of power grid operations.  455 

At the M5 tower site, the HRRR predicts stronger wind speed ramps compared to observations; forecasted wind 

speed ramps ≥ 5 m s-1 make up 40% of the total number of up- and down-ramps while the observed ramps of the same 

magnitude only make up 33% of the total number of ramps. The HRRR generally under predicts the magnitude of wind 

speed ramps at the PNW site; observed wind speed ramps ≥ 5 m s-1 make up 18% of the total number of up- and down-

ramps while the forecasted ramps ≥ 5 m s-1 only contribute to 9% of the total number of ramps. These percentages also 460 

highlight that the M5 location has a greater percentage of observed ramps of the same magnitude than at the PNW location 

(33% vs 18%), suggesting that the wind speeds at the M5 site are more variable than at the PNW site. The M5 tower is 

located in a region of very complex terrain about 5 km east of the Colorado Front Range, which because of the atmosphere’s 

interaction with the mountainous terrain can cause large changes in wind speed over short periods of time. The PNW tower 

is also located in a region of complex terrain near the Columbia River Gorge, but the terrain is not as complex as the M5 site.  465 

The low correlation coefficients between the HRRR forecasts and observed wind speed ramps suggest that there is 

some skill in the HRRR forecasts at predicting ramps, but the skill is limited and differs between up- and down- ramps. Low 

correlation limits the extent to which statistical post-processing can improve the forecast. However, we will show that 

systematic over- and under-forecasting biases in the climatological frequency of ramp events can be reduced with statistical 

post-processing (see Figure 9). Moreover, the multivariate methods discussed in this paper can provide information about the 470 

uncertainty of the forecast via generation of many possible wind speed scenarios.  
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 475 
Figure 8. Observed (Obs.) and HRRR-forecasted (Fcst.) wind speed ramps during sliding 3-h time windows over a period of 12 
hours. Absolute values of the ramp magnitudes are shown. Wind speed ramps are plotted for every sliding 3-h time window 
starting at 00Z and for both the M5 (a, b) and PNW (c, d) tower locations. The correlation coefficient, r is displayed for each tower 
location and type of ramp.   

4.2 Verification of multivariate methods compared with HRRR forecasts   480 

We now compare the various multivariate methods used to generate scenarios of transformed wind speed. To also compare 

the different methods to the deterministic raw HRRR forecasts, we first employ an event-based metric to assess systematic 

biases with regard to the frequency of ramp events. This metric counts the number of power ramps defined as in Sect. 3.1 

identified from the scenarios generated by each method described in Sect. 3.3. The relative frequency of power ramps that 

exceed 𝜉 = 60% change in power capacity during 6 h for all days when forecasts and observations are available (Figure 9) 485 

represents a climatology of up- and down-ramps for each tower location. The number of ramps identified in each 6-h 

window of time for each of the 50 scenarios (1000 scenarios for Gaussian copula method) were averaged together and 

plotted as a single line in Figure 9. We again see a general over-forecasting bias of the number of ramp events (this time 

power ramps) produced by the raw HRRR forecasts compared to observations at the M5 tower (Figure 9c, d) and the 
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opposite behaviour of the HRRR forecasts at the PNW tower (Figure 9a, b). The HRRR forecasts especially struggled with 490 

the diurnal cycle and magnitude of the relative frequency of up- and down-ramps at the PNW location. The HRRR predicted 

the most up-ramps in the first four ramp windows (between 00Z and 9Z) and then levelled out for the remainder of the early 

morning while the observations show a minimum in up-ramps during the first four ramp windows and a maximum during 

the remaining windows, which suggests that the HRRR incorrectly captured the diurnal cycle. For the down-ramps, the 

HRRR forecasted a gradual increase in ramp events across all ramp windows, while the observations show a peak in down-495 

ramps around the fourth ramp window (≈	9Z) followed by a gradual decrease in down-ramp events during the remainder of 

the morning.  

 The method that most-closely follows the ramp climatology of the observations (black line in Figure 9) is the StSS 

method followed by the MDSS+, MDSS, and lastly the Gaussian copula method. The StSS method has an overall better 

prediction of up- and down-ramp climatology than the raw HRRR forecasts when compared to a climatology of observed 500 

ramp events.  As discussed in Sect. 3.3, the MDSS and MDSS+ methods make a preferential selection of historical scenarios 

that minimize the divergence between the post-processed forecast and past scenarios and should yield scenarios more similar 

to the current forecast than the random or assigned scenarios used in the StSS method. Despite this preferential selection, the 

MDSS and MDSS+ methods do not outperform the StSS method in predicting the climatology of relative frequency of ramp 

events for this dataset. The reasons for this result are presented in the discussion for Figure 13. Before discussing reasons for 505 

why the more complex methods do not outperform the standard Schaake Shuffle method at predicting a climatology of ramp 

events, we next examine a metric used to compare the skill of various probabilistic forecast methods to determine the 

differences in performance between the StSS and two MDSS methods.  
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 510 
Figure 9 Relative frequency of up-ramps (a, c) and down-ramps (b, d) identified with ≥ 60% change in power capacity during 
each 6-h time period (i.e., ramp windows) starting at 00Z. Relative frequencies of observed ramps (black lines) and forecasted 
ramps from the HRRR model (orange lines) are shown for the PNW (a, b) and M5 (c, d) tower locations. Relative frequencies are 
also shown for the four different multivariate methods: standard Schaake Shuffle (StSS, blue lines), Minimum Divergence 
Schaake Shuffle (MDSS, pink lines), enhanced Minimum Divergence Schaake Shuffle (MDSS+, green lines), and Gaussian Copula 515 
(GC, brown lines).   

 

The StSS, MDSS, MDSS+, and the Gaussian copula methods produce probabilistic forecasts of ramp events. To 

verify the skill of and compare among the different probabilistic methods, we compute Brier Skill scores (BSS). The Brier 

skill score quantifies the extent to which a forecast method improves the prediction of a two-categorical event compared to a 520 

reference forecast, 

 

𝐵𝑆𝑆 = 	−	
������W�����

�����
,           (5)  
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where BSfcst is the Brier score of the forecast and BSref is the Brier score of the reference forecast. The Brier score is a strictly 525 

proper score that summarizes the accuracy of a probabilistic forecast; it is defined as the squared error of the probability 

forecast of an event and the observed binary outcome (1 if the event happened, 0 if not). The events here are characterized by 

the exceedance of a particular ramp threshold 𝜉 during a ramp window size h. Climatological probabilities of occurrence of 

up- and down-ramp events with a particular 𝜉 and h are used as the reference forecast. Persistence forecasts are another 

commonly-used baseline for wind power forecasting, but because ramp events can change magnitude and even direction in a 530 

short period of time, persistence is often not a practical estimate of ramp events. Before calculating the BSfcst, we took the 

average of the binary event forecasts from all 50 scenarios (1000 scenarios for Gaussian copula method) for each method to 

create a probabilistic forecast with a value between 0 (no ramps occurred in any of the scenarios) and 1 (ramps occurred in 

all of the scenarios). Brier scores were calculated for each type of ramp (i.e., up- and down-ramps with 𝜉 = 0.20, 0.40, 0.60, 

and 0.80 and h = 3 h and 6 h). To quantify the sampling variability of the BSS induced by the limited data sample size, we 535 

first generated 100 bootstrap samples with replacement of the daily BSfcst and BSref separately for each forecast initialization 

time (i.e., 00Z and 12Z). Then, we summed the 100 BS from each initialization time together before calculating the BSS to 

reduce sampling variability.  

Box plots of the BSS for both tower locations and different types of power ramps reveal dependencies of the 

forecast skill on 𝜉, h, and tower location (Figure 10 and Figure 11). The most noticeable difference among the BSS is that 540 

the skill is generally higher for forecasts made at the PNW tower location compared to those at the M5 tower location for all 

types of ramps. Recall from Sect. 4.1 that the observed up- and down-ramps and those predicted by the HRRR had low 

correlation coefficients, which is why it is difficult to get positive skill with any of the methods at the M5 site; statistical 

post-processing can correct for systematic forecasting biases, but it cannot improve random errors which lead to low 

correlation. Conversely, at the PNW site, there are overall higher correlation values (Figure 8) compared to those at the M5 545 

site meaning that statistical post-processing will be more consequential. This behaviour results in generally positive and 

higher BSS for the PNW site than for the M5 site (Figure 10 and Figure 11). Greater positive skill is gained when we 

identify ramps in a window size of 6 h (Figure 11) instead of 3 h (Figure 10) for both the PNW and M5 sites, because timing 

errors are less consequential when the time window is larger.  

The multivariate methods do not present as much skill in forecasting down-ramps as they do in forecasting up-550 

ramps at the PNW site, except for events with small (20%) power changes during 3 h. In Figure 8, the correlation between 

observed ramps and ramps forecasted by the HRRR is greater for up-ramps (0.37) than down-ramps (0.27) at the PNW site. 

At the M5 site, the correlation between observed and HRRR-forecasted down-ramps (0.31) is larger than for up-ramps 

(0.23).  We also note greater skill for the multivariate methods at predicting down-ramps opposed to up-ramps at the M5 site, 

which combined with the relative skill of up- and down-ramps at the PNW site suggests that the quality of the initial raw 555 

forecast skill impacts the amount of skill that can be gained from the probabilistic approaches.  
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How does skill vary among the different multivariate methods? The scenarios produced with the Gaussian copula 

method result in significantly less skill than all of the other methods for the M5 tower location and marginally less skill than 

the other methods at the PNW site. The Gaussian copula utilizes an exponential correlation model that defines the temporal 

dependence of scenarios through the range parameter 𝜐, which was set to 2.5 and 1.5 for the PNW site and M5 site, 560 

respectively. Those parameters were selected based on empirical covariances, but did not yield the highest BSS. In fact, the 

average BSS from predicting up- and down-ramps using the Gaussian copula method is highly sensitive to the empirical 

range parameter used in the exponential correlation model (Table 2). For example, for the M5 location, 𝜐 = 4.5 yields the 

closest BSS values (Table 2) to those calculated for the Schaake Shuffle methods (Fig. 11) for all power thresholds and ramp 

types. This value of 𝜐 would also reduce the number of Gaussian copula ramp events that are currently over-forecasted in 565 

Fig. 9. However, based on the empirical covariances obtained for the M5 tower (Fig. A1), selecting a 𝜐 value this large did 

not seem plausible. It is possible that the assumption of an exponential correlation model (suggested by Pinson and Girard, 

2012) is not ideal for this setup, but with the limited training dataset, we felt that a parametric assumption was necessary to 

control sampling variability of the estimated covariance matrix. Even then Fig. A1 suggests that stronger correlations of the 

empirical covariances would lead to better results. Our conclusion from results in Table 2 is that selecting an appropriate 𝜐 570 

value before generating the Gaussian copula scenarios is critical but difficult to achieve with the usual statistical diagnostics. 

The Schaake Shuffle approaches do not rely on the selection of a sensitive parameter, which could make these Schaake 

Shuffle methods more preferable. Additionally, because the Gaussian copula method uses random sampling rather than 

quantile sampling, the Gaussian copula method requires many more scenarios to represent the distribution than do the 

Schaake Shuffle methods. From an operational perspective, too many scenarios (e.g., 1000 vs 50) may add unnecessary 575 

complication to the forecasting process.  

The most surprising result from the analyses is that the MDSS and MDSS+ methods are not overall significantly 

better than the StSS method despite their preferential selection of historical scenarios. The MDSS method selected historical 

scenarios of transformed wind speed that were most compatible with the marginal distributions of the forecast day and 

theoretically should provide higher BSS than the StSS method, which only could use scenarios from the 50 available 580 

historical dates prior to the forecast day. The original MDSS method used by Scheuerer et al. (2017) worked well for 

precipitation events, but does not focus on the selection of historical scenarios based on their compatibility with forecasted 

(temporal) gradients, which are crucial for the prediction of ramps. This understanding led us to include an additional term in 

the MDSS method that is based on lag 1-h differences of transformed wind speed. The modified MDSS method MDSS+, 

matches historical scenarios to not only the forecast marginal distributions but also to the forecast distributions of lag 1-h 585 

differences.  The term of lag 1-h differences ensures a better selection of historical scenarios with ramps of similar slope or 

magnitude to the forecast.  
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Figure 10 Box plots of Brier skill score (BSS) of power ramp events identified in 3-h time windows from forecast scenarios 590 
generated with the StSS (blue), MDSS (pink), MDSS+ (green), and Gaussian copula (GC, brown) methods.  BSS are shown for the 
PNW tower location (a, c, and e) and the M5 tower location (b, d, f) and for up-ramps (filled boxplots) and down-ramps (non-filled 
boxplots). Ramp events with a power threshold of 𝝃 = 20% (a and b), 40% (c and d), and 60% (e and f) change of the turbine 
power capacity are shown. The box plots display the interquartile range (rectangle region), the median (middle line within 
rectangle), outliers (dots), and values outside the interquartile range but not considered an outlier (lower and upper whisker) of 595 
the distributions. Outliers are values more than 1.5 times the interquartile range. For reference, a line (black-dashed) showing 
zero skill is plotted.  
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Figure 11 Box plots of Brier skill score (BSS) of power ramp events identified in 6-h time windows from forecast scenarios 600 
generated with the StSS (blue), MDSS (pink), MDSS+ (green), and Gaussian copula (GC, brown) methods.  BSS are shown for the 
PNW tower location (a, c, and e) and the M5 tower location (b, d, f) and for up-ramps (filled boxplots) and down-ramps (non-filled 
boxplots). Ramp events with a power threshold of 𝝃 = 40% (a and b), 60% (c and d), and 80% (e and f) change of the turbine 
power capacity are shown. The box plots display the interquartile range (rectangle region), the median (middle line within 
rectangle), outliers (dots), and values outside the interquartile range but not considered an outlier (lower and upper whisker) of 605 
the distributions. Outliers are values more than 1.5 times the interquartile range. For reference, a line (black-dashed) showing 
zero skill is plotted. 



  

 
28 

 

Table 2. Average BSS from 1000 GC scenarios of 6-h up- and down-ramp events at the M5 tower location as a function of range 
parameter 𝝂 and power threshold 𝝃. The shaded row represents the 𝝂 value that best matched the empirical covariance values 
obtained for the M5 tower (see Figure A1). 610 

 M5, 𝜉 = 40% M5, 𝜉 = 60% M5, 𝜉 = 80% 

  up-ramp  down-ramp  up-ramp  down-ramp  up-ramp  down-ramp  

𝜈 = 1 -0.201 -0.142 -0.317 -0.285 -0.395 -0.373 

𝜈 = 1.5 -0.091 -0.037 -0.166 -0.131 -0.216 -0.195 

𝜈 = 2 -0.024 0.028 -0.074 -0.038 -0.112 -0.093 

𝜈 = 2.5	 0.016 0.067 -0.021 0.016 -0.058 -0.033 

𝜈 = 3 0.039 0.090 0.012 0.052 -0.026 0.002 

𝜈 = 3.5	 0.055 0.103 0.031 0.072 -0.009 0.023 

𝜈 = 4	 0.064 0.111 0.042 0.086 0.001 0.036 

𝜈 = 4.5	 0.067 0.113 0.047 0.094 0.008 0.044 

 

 

We see that the median BSS using the MDSS+ forecast scenarios are often higher than those of the MDSS method 

and more competitive with the StSS method for all ramp types (Figure 10 and Figure 11). However, minute differences 

between the three Schaake shuffle methods are indistinguishable, because of the limited sample size which resulted in 615 

considerable overlap between the BSS boxplots.  To highlight the differences between the three Schaake Shuffle methods, 

we generated 25 years of synthetic wind speed observations and forecasts (Appendix B). These synthetic data underwent the 

same univariate post-processing steps (Sect. 3.2) as the real data before applying the different Schaake shuffle methods. The 

synthetic forecasts were purposefully generated to be better forecasts than that of the real data so that differences among the 

different Schaake Shuffle methods would be more apparent. Box plots of BSS using the synthetic data present positive skill, 620 

show considerably less variability than the real data, and highlight the differences between the MDSS and MDSS+ methods 

(Figure 12).  The inclusion of the lag 1-h differences in the MDSS+ is essential to achieve optimal and competitive skill from 

the method when compared to StSS. Recall that the lag 1-h differences are weighted five times more than the forecast 

marginal distributions in the MDSS+, meaning that the transformed-wind-speed gradient between lead times is even more 

important to match than the forecast marginal distributions.  With this additional term, the MDSS+ is as competitive as the 625 

StSS method at choosing scenarios that lead to skilful ramp forecasts.  

Why is the rather simplistic StSS method as good (even better in regards to ramp frequency biases, see Figure 9) as 

the more sophisticated MDSS+ and significantly better than the MDSS method? Some insight is gained by analysing the lag 

1-h differences of wind speed forecasts generated by the three different Schaake Shuffle techniques. We compute absolute 

lag 1-h differences of observed wind speeds and those of the historical observed wind speed scenarios selected by the StSS, 630 
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MDSS, and MDSS+ methods before shuffling. For each method, the absolute lag 1-h differences are calculated for each date 

and for each 12 pairs of lead times. For each date and paired lead time, the lag 1-h differences are then stratified according to 

the corresponding HRRR wind speed forecast. Lag 1-h differences from all dates and paired lead times associated with a 

certain range of HRRR forecasted wind speeds are then averaged together before plotting (Figure 13a). A dependency 

between the magnitudes of lag 1-h differences and HRRR wind speed forecasts emerges. The magnitude of the observed lag 635 

1-h differences increases as the HRRR forecast wind speed increases, which suggests that higher wind speeds correspond to 

larger fluctuations in wind speed. Because the StSS method does not depend on the HRRR forecast to select historical 

scenarios, the lag 1-h differences of the StSS historical scenarios are independent of the magnitude of the HRRR forecast 

wind speed. This result is demonstrated by the relatively flat StSS (blue) curve in Figure 13a. Conversely, the MDSS and 

MDSS+ methods make a preferential selection of past observations based on the current HRRR forecast wind speed. The 640 

result is that the MDSS and MDSS+ methods produce curves (pink and green lines, respectively in Figure 13a) of lag 1-h 

differences qualitatively similar to the observed curve (black line in Figure 13a).  

This better initial selection of scenarios, however, is offset by the effects of the shuffling procedure. Panel b) in 

Figure 13 shows the mean absolute lag 1-h differences after shuffling. For the StSS, the shuffling makes the lag 1-h 

differences more similar to the observed lag 1-h differences; lag 1-h differences decrease for low HRRR forecast wind 645 

speeds and increase for high HRRR forecast wind speeds during the shuffling procedure. For the MDSS and MDSS+ 

methods, shuffling always results in a slight increase of the magnitudes of lag 1-h differences (pink and green lines in Figure 

13b). This increase after shuffling the scenarios explains why the MDSS and to a lesser extent, the MDSS+ have a tendency 

to over-forecast the magnitude and frequency of wind speed ramps (see Figure 9).  

Lastly, we investigate why the shuffling procedure affects the historical StSS scenarios differently than the MDSS 650 

and MDSS+ scenarios. We conjecture that one of the reasons for this effect is the difference in spread of the scenarios used 

by each method before shuffling. We quantify the spread as the mean absolute difference between the historical scenarios. 

Since the historical StSS scenarios are chosen unconditionally, the spread of its marginal distribution (see blue line in Figure 

13c) approximates the climatological spread of actual observed wind speeds. Preferential selection performed by MDSS and 

MDSS+ significantly decreases the spread of the historical marginal distributions with the exception for high HRRR wind 655 

speed forecasts where the prediction uncertainty can exceed the climatological spread (i.e., exceed blue line). This initial 

reduction in spread, however, reduces a side effect entailed by StSS: the shuffling procedure squeezes together scenarios as 

the unconditional spread is transformed into a forecast-informed spread. By doing this, the shuffling procedure typically 

reduces the fluctuations present in the historical scenarios. Because all of the Schaake Shuffle methods discussed herein use 

the same quantiles of a particular forecast distribution, all methods have the same spread after shuffling (gray line in Figure 660 

13c). Since the MDSS and MDSS+ historical scenarios already have low spread, shuffling does not change their 

characteristics as much as it does for the StSS historical scenarios; the level of fluctuations is similar before and after 



  

 
30 

 

shuffling. In other setups, the shuffling side effect can be unwanted, but in the present setup, it seems to benefit the StSS 

method and results in the overall most accurate level of wind speed fluctuations.  

 665 

 
Figure 12 Box plots of Brier skill score (BSS) of power ramp events identified in 6-h time windows from synthetic forecast 
scenarios generated with the StSS (blue), MDSS (pink), and MDSS+ (green) methods. BSS are shown for up-ramps (filled 
boxplots) and down-ramps (non-filled boxplots). Ramp events with a power threshold of 𝝃 = 60% change of the turbine power 
capacity is shown. The box plots display the interquartile range (rectangle region), the median (middle line within rectangle), 670 
outliers (dots), and values outside the interquartile range but not considered an outlier (lower and upper whisker) of the 
distributions. Outliers are values more than 1.5 times the interquartile range. For reference, a line (black-dashed) showing zero 
skill is plotted. 
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 675 
Figure 13 Statistics of observed wind speeds (𝑼), unshuffled historical observed wind speed scenarios used by each Schaake 
Shuffle method, and the shuffled wind speed forecast scenarios stratified according to the magnitude of the HRRR wind speed 
forecasts at the respective time. Mean absolute lag 1-h wind speed differences ( 𝑼𝒌 − 𝑼𝒌�𝟏 ) of observations and historical 
scenarios before (a) and after (b) shuffling, and the marginal spread of the unshuffled (pink, blue, and green lines) and shuffled 
(gray) historical scenarios (c) are shown. The spread is quantified as the mean absolute difference between scenarios.  680 
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5 Summary and conclusion 

Wind power ramps present challenges to wind power forecasters and the electrical grid, because they cause sharp changes in 

power production in time periods of minutes to hours. Better forecasts of ramp events can lead to more reliable wind power 

generation and less strain on the power grid. Generally, wind farm operators rely on a single forecast of persistence to 685 

determine power fluctuations over the next 30 mins to an hour, which is not suitable during ramp events. Numerical weather 

prediction and statistical post-processing techniques can improve ramp forecasts by predicting rapid future fluctuations in 

wind speed and power and by providing uncertainty information to those forecasts. Because ramp events require 

simultaneous forecasts of multiple forecast lead times, multivariate statistical methods are a necessity for accurate ramp 

prediction.  690 

In this paper, we used observed 80-m wind speeds from tall meteorological towers located in Boulder, Colorado 

(M5 site) and in eastern Oregon (PNW site). We also used forecasts of 80-m wind speeds from the HRRR model to create 

probabilistic forecasts of up- and down-ramp events. With these data, we presented how to obtain probabilistic wind speed 

forecasts by first correcting biases in the forecasts and then applying one of the four multivariate methods discussed to 

generate scenarios of wind speed. We used the IEC power curve to convert scenarios of wind speed to scenarios of power 695 

before identifying ramps. Alternatively, a relationship between measured wind speed and power output from a training 

dataset could be used to bypass the use of a power curve for future wind speeds (Lange and Focken, 2006). Employing 

stochastic power curves (Jeon and Taylor, 2012) would also take the conversion uncertainty into account. Because our study 

was focused on the evaluation and comparison of multivariate statistical post-processing methods and wind speed to power 

conversion affects all methods in the same way, using a fixed power curve warrants a fair comparison. If observed power 700 

production rather than observed wind speed was used as the ‘ground truth’, an inverse (power-to-wind speed) transformation 

could be employed to reconstruct the associated wind speeds (Messner et al., 2014), and the conversion uncertainty would be 

accounted for implicitly.  

Before generating the scenarios, we removed the seasonal cycle and corrected for heteroscedasticity within the 

observations and raw HRRR forecasts by applying a power transformation. We then regressed the transformed observations 705 

on the transformed forecasts to obtain regression coefficients. The mean and standard deviation of marginal predictive 

distributions for each forecast initialization and lead time were determined by inserting future forecasts into the fitted 

regression model with these coefficients. We tested three candidate predictive distributions and found that the gamma 

distribution and the truncated logistic distributions were the best fits for the M5 and PNW tower locations in regards to wind 

speed, respectively. We determined that these predictive distribution models were suitable to represent observations based on 710 

uniform PIT histograms and low CPRS values. This approach to obtaining marginal predictive distributions is rather simple, 

but given the limited amount of data that remained after filtering, we thought that a stable parameter estimation for a more 

complex model was not warranted. A larger training dataset would allow one to account for forecast biases that vary with 
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wind direction (Eide et al., 2017), or to use an analog-based regression approach similar to the method proposed by Junk et 

al., (2015), and include analog predictor variables related to atmospheric stability.  715 

 The marginal predictive distributions provided uncertainty information for each lead time, but did not inform us 

about the interdependence structure across all lead times. To construct this interdependence, we first used the Gaussian 

copula technique following Pinson and Girard (2012), which relates the predictive distributions across all lead times by 

utilizing an exponential correlation model of Gaussian random variables. We used a random number generator to generate 

1000 scenarios of wind speed using this method.  The Gaussian copula method is based on parametric assumptions that may 720 

not be an adequate representation of the interdependence between observed wind speeds at different lead times, so we tested 

three new methods of generating scenarios of transformed wind speeds. The standard Schaake Shuffle (StSS), the minimum 

divergence Schaake Shuffle (MDSS), and the enhanced version of the MDSS (MDSS+) methods all use historical observed 

scenarios to inform how marginal predictive distributions should be connected across all lead times, which results in more 

realistic forecast scenarios.  725 

The StSS method only used an ad hoc selection of historical scenarios while the MDSS and MDSS+ made 

preferential selections of historical scenarios that best matched the forecast marginal distributions (MDSS) or matched both 

the forecast marginal distributions and the forecast distributions of the lag 1-h differences of transformed wind speed 

(MDSS+). Even with these modified version of the Schaake Shuffle, we found that the StSS method provided the highest 

Brier skill scores overall using real data. However, all of these methods provided improvements over the raw HRRR 730 

forecasts, which struggled to capture the diurnal cycle and magnitude of the relative frequency of up- and down-ramp events. 

These methods also reduced the over- and under-forecasting biases of the raw forecasts at the M5 and PNW tower locations, 

respectively. We compared the three Schaake Shuffle methods at forecasting ramp events using a dataset of 25 years of 

synthetic forecasts and observations to emphasize the differences among the multivariate methods without constraints from 

the limited real dataset. We found that the MDSS+ method had significantly higher skill compared to the MDSS and was 735 

competitive with the StSS method suggesting that inclusion of the lag 1-h wind speed differences is a key component to 

accurate forecasting of ramp events when preferentially selecting historical scenarios.   

 We were limited with how much improvement statistical post-processing could provide with the real data, because 

the correlation between the observations and HRRR forecasts of up- and down-ramps were low. However, we still achieved 

some positive skill by reducing over- and under-forecasting biases and by employing the multivariate methods to generate 740 

probabilistic forecasts for the PNW tower which had overall higher correlation coefficients than that of the M5 tower 

location. Generally, the greatest skill was achieved for the prediction of up-ramps at the PNW site for which also happened 

to be the ramp type associated with the highest correlation.  This dependence on initial forecast skill is encouraging, because 

it suggests that for sites with fewer random errors and better skill (e.g., sites over flat terrain), we may be able to achieve 

significant improvement in forecast skill using these multivariate methods. A longer record of historical scenarios would also 745 
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be advantageous, because it would increase the likelihood that forecasts would have a good match with past events for 

selection by the MDSS and MDSS+ methods. 

 We demonstrated how statistical post-processing can correct forecast biases of up- and down-ramp events 

and how multivariate statistical methods can be used to generate probabilistic forecasts of wind speed and power scenarios. 

These methods can be implemented for real-time wind-farm operations using historical observations at a particular wind 750 

farm to gain uncertainty information regarding ramp forecasts. We used the generic IEC power curve to convert wind speed 

scenarios to power scenarios, but wind power forecasters should use their own turbine-specific power curves to further 

reduce uncertainty. Additionally, these methods are applicable with other numerical weather prediction models besides the 

HRRR model. Therefore, wind power forecasters can use forecasts from their proprietary models as long as observations are 

available during the same time period for verification. The processing time for these methods is practical for real-time 755 

forecasting. Most of the processing does not even need to be run in real time. Only the multivariate methods need to be run 

in real time to generate probabilistic forecasts of ramp events. The Gaussian copula method is nearly instantaneous to 

compute, because it uses a random generator to produce scenarios. The MDSS and MDSS+ methods require the most time to 

process as they need to search through historical scenarios for the best matches to the current forecast. Nevertheless, they 

only required approximately three seconds to find 50 historical scenarios for one forecast day and initialization time. 760 

However, more time will be required to process the MDSS and MDSS+ methods for larger historical datasets.  

Enhancements to the forecasts provided by gaining uncertainty information should help with decision-making in the 

energy-sector not only for direct power generation, but also for scheduling the availability of transmission lines, energy 

reserves, and energy trading. Future research that could improve these methods includes improvement to raw forecasts via 

various methods (e.g., increased grid resolution and improved physics parameterizations), using additional predictors in the 765 

regression analysis of the univariate data (e.g., temperature and wind direction), and performing these methods for sites that 

generally yield higher quality forecasts. Overall these methods may find utility in assessing risks of other wind-speed 

dependent phenomena like wildfire propagation or pollution dispersion.  

 

Data Availability 770 

Data from the M5 meteorological tower are available at https://wind.nrel.gov/MetData/135mData/M5Twr/. Data from the 

PNW tower are available by request from Avangrid (contact Michael Zulauf, Ph.D). The HRRR forecast data are available 

from the National Oceanic and Atmospheric Administration Global Systems Division (contact Eric James or Stanley 

Benjamin). 
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Appendix A: Determination of range parameter for exponential correlation model   

The range parameter 𝜈 defines the decay of correlation of the exponential correlation model (Eq. 3) among lead times. We 

determined the range parameters for use in the Gaussian copula method (Sect. 3.3.1) by choosing values of 𝜈 that best-

aligned with the observed covariance of the Gaussian wind speeds at each tower location and forecast initialization time. We 

used 𝜈 = 2.5 (associated with the purple lines in Figure A1a and b) and 𝜈 = 1.5 (associated with the orange lines in Figure 875 

A1c and d) for the PNW and M5 tower locations, respectively. We only considered lagged-lead time correlations out to 6 h, 

because our largest ramp window size is 6 h.  

 
Figure A1. Exponential correlation models (solid lines) given different values of the range parameter 𝝂 ranging from 1 to 4 in 
increments of 0.5 as a function of lagged-lead time. Overlaid are the observed covariance values (black asterisk) of the Gaussian 880 
wind speed values. Empirical covariances and the fitted exponential correlation models are shown for the PNW (a, b) and M5 (c, 
d) tower locations for 00Z (a, c) and 12Z (b, d) forecast initialization times.  
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Appendix B: Generation of a synthetic dataset to overcome sample size limitations  

 To generate a synthetic wind speed dataset (deterministic forecasts and observations) we use again a Gaussian copula 

approach, now applied to unconditional (climatological) marginal distributions. For simplicity, we assume the same 885 

climatology at each day of the year and each time of the day. Serial dependence in the Gaussian space is modelled via AR(1) 

processes, i.e. autoregressive processes of order one, that are used to generate two dependent time series (zt
(x))t=1,..,T and 

(zt
(y))t=1,..,T  with time index ranging from 1 to T. We proceed in two steps: 

 

1. Simulate a bivariate Gaussian time series with zero mean and marginal variances equal to 1 890 

• let ρ = 0.8 be the correlation between the forecast and observation time series 

• simulate an AR(1) time series (zt
(y))t=1,..,T corresponding to the 25 years of data, using φ = e-0.5 as the autoregression 

parameter and σ2 = 1- φ2 as the variance of the driving white noise process 

• simulate another AR(1) time series (εt)t=1,..,T with the exact same specifications 

• define a third time series (zt
(x))t=1,..,T  as  zt

(x) = ρ ⋅ zt
(y) + √1-ρ2 ⋅ εt 895 

By this construction, the correlation coefficient of the time series (zt
(x))t=1,..,T and (zt

(y))t=1,..,T at each time t is ρ. 

 

2. Transform to a bivariate time series with gamma-distributed margins 

• denote by F-1
G(3,3) the inverse CDF of a gamma distribution with shape parameter 3 and scale parameter 3 

• denote by Φ the CDF of a standard Gaussian distribution 900 

• the observation time series is then defined by  yt = F-1
Γ(3,3) (Φ(zt

(y)))  t = 1,...,T 

• the forecast time series is defined by  xt = F-1
Γ(3,3) (Φ(zt

(x)))  t = 1,...,T 
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