
1 Introduction

Of the atmospheric parameters which are generally input into (or required by) wind turbine loads calculation codes, several

stand out, due to their prominence in load contributions: the ‘mean’ wind speed U , the standard deviation of streamwise

turbulent velocity σu, the shear exponent α (calculated from wind speeds at multiple heights, e.g.Kelly et al., 2014a), and the

characteristic turbulence length scale L corresponding to the most energetic turbulent motions (e.g. Wyngaard, 2010). Dimitrov5

et al. (2015) explored the importance of shear (α); Dimitrov et al. (2017) found that both fatigue and extreme turbine loads can

be sensitive to, L in addition to the dominant influences of mean wind speed U and streamwise turbulence ‘strength’ σu. These

are also consistent with the earlier finding of Sathe et al. (2013) that stability could affect fatigue loads through α and σu.

Within the context of obtaining site-dependent statistics of the most relevant load-driving parameters (U,σu,α,L) from

conventional industrial wind measurements, this work focuses on the one parameter which has thus far been most difficult10

to measure: the turbulence length scale L. The turbulence length scale corresponds to the ‘energy-containing sub-range’ of

turbulent velocity fluctuations associated with the peak of the streamwise velocity spectrum, which contribute most to turbulent

kinetic energy (and σu)—and which can dominate the turbulence contribution to wind turbine loads. Measurements used in

wind energy are usually stored as 10-minute statistics (average and standard deviation of wind speed and direction), so one

cannot obtain turbulence spectra from them, nor can one calculate integral time or length scale from such observations.15

Because of its widespread use in the wind industry and its inclusion in the IEC 61400–1, Edition 3 (2005) standard on

design requirements for wind turbines, here we consider the spectral turbulence model of Mann (1994), and L as prescribed

for this model. Within the ‘Mann-model,’ which uses rapid-distortion theory (‘RDT’) to account for shear-induced distortion

of isotropic turbulence (see e.g. Savill, 1987; Pope, 2000), there is also a prescription for the scale-dependent time over which

turbulent eddies of a given size are distorted. This time-scale is key to proper representation of atmospheric turbulence and20

reproduction of component spectra via RDT. However, the eddy-lifetime was not directly derived, but rather cleverly prescribed,

by Mann (1994). Concurrent to and independent of the work herein, de Mare and Mann (2016) also derived some relations

to create a model for time-varying eddy lifetime. The present article provides direct derivation of the eddy lifetime, which

results in a relation between the three (spectral) parameters of the Mann model and measureable quantities. More importantly,

the derivations here include connection of the turbulence length scale to routinely available quantities from typical 10-minute25

industrial wind records. The turbulence length scale is in fact that corresponding to the von Kármán (1948) spectral form, and

thus the relation here is applicable to other turbulence models used in wind engineering, such as those relying on the Kaimal

et al. (1972) spectrum.

After deriving the eddy lifetime and giving subsequent expressions for the turbulence length scale, this article proceeds to

validation of the underlying assumptions. Constraints implied by fitting the Mann-model to measured spectra in non-neutral30

conditions, given eddy-lifetime and mixing-length relations, are also tested. This includes dependence of predicted velocity

variance on model anisotropy parameter (Γ), as well as implications in the surface-layer and connection to previous findings in

boundary-layer meteorology. Finally, the length-scale obtained from conventional 10-minute wind measurements via the new
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expression is compared to the length scale found from fits of Mann-model output to measured component spectra; this is done

using data from multiple sites, representing several types of site conditions.

2 Theory

Relation of the turbulence length (spectral ‘peak’) scale to measureable statistics is possible through the eddy-lifetime form of

Mann (1994), where the latter is defined in terms of the isotropic von Kármán spectrum that is distorted using RDT.5

2.1 Eddy lifetime

A number of forms exist to estimate eddy lifetime τe, though these can be generally expressed as the ratio of a length scale

(taken as the reciprocal of wavenumber, k−1) to a velocity scale which follows from some integrated form of the (scalar)

kinetic energy spectrum E(k):

τe ∼ k−p−1

 ∞∫
k

κ−2pE(κ)dκ

−1/2

, (1)10

where the characteristic velocity scale can be generically described by

kp

 ∞∫
k

κ−2pE(κ)dκ

1/2

.

Comparing to the ‘coherence-destroying diffusion time’ of Comte-Bellot and Corrsin (1971) and to the reciprocal of eddy-

damping rates from Lesieur (1990), for use with rapid-distortion theory Mann (1994) chose an eddy lifetime that depends on

eddy size (wavenumber) according to

τM ∝ k−1

 ∞∫
k

E(κ)dκ

−1/2

; (2)

i.e., equivalent to p= 0 in terms of (1). The choice (2) for eddy lifetime was found to behave more reasonably than both the15

Comte-Bellot and Corrsin (1971) ‘diffusion time’ (where p= 1)1, as well as the timescale [k3E(k)]−1/2 (which in the inertial

range is equivalent to p=−1)2 implicit in eddy-damped quasi-normal Markovian [EDQNM] models (Andre and Lesieur,

1977; Lesieur, 1990); both of the latter lifetime models do not (reliably) integrate to give finite σ2
u.

Mann (1994) re-writes τM as

τM (k) =
Γ

dU/dz

(kLMM)−2/3√
2F1

(
1
3 ,

17
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) , (3)20

1 The Mann (1994) expression is also equivalent (or at least proportional) to the ‘convection time’ of Comte-Bellot and Corrsin (1971).
2 The reciprocal of eddy-damping rate, [k3E(k)]−1/2, is equal in the inertial range to (1) with p=−1 since E(κ)→ κ−5/3 there. This expression is

also similar to the ‘rotation time’ or ‘strain time’ given by Comte-Bellot and Corrsin (1971), but it should be noted that such expressions integrate from 0 to k,

i.e. over eddies larger than 1/k.
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