
Author’s reply (AC2) to reviewer #1’s comments (RC1)

First I (the author) would like to thank the anonymous reviewer (#1) for con-
structive criticism, towards improvement and clear dissemination.

I’ll include the reviewer’s comments as I respond point-by point, starting with
the summary and proceeding through the comments.
The reviewer’s comments are indented/italic, including their original numbers.

“Summary:
This paper presents a derivation of the turbulent length scale as
a function of standard deviation and wind profile using the Mann
model (Mann, 1994) and also closely following the derivations pro-
vided in de Mare and Mann (2016). This reviewer believes that the
manuscript has potential to be published, but first several clarifica-
tions are needed. Please see the full list of my comments below.”

I would argue that the derivations in this paper do not ‘follow’ those in de Mare
& Mann (2016). While the new expression (5) can be compared to an analo-
gous one in de Mare & Mann, most of the expressions I derived don’t have
any correspondence or equivalent in de Mare & Mann—e.g. the simple practical
(and perhaps most important) expression LMM ' σu/(dU/dz). I should add
that the derivations in this work were done in 2015–16 (except the new generic
vonKarman-simplification in eq.7); i.e. the work was done independently and
concurrently in a different project than de Mare & Mann (2016).

1. “After Eq. (3) define LMM as the turbulent length scale in Mann-
model. You described all other parameters except for LMM .”

This error due to editing is now corrected in the revision.

2. “Although this reviewer is not a native English speaker, I would
suggest that the authors uses less parentheses and footnotes if possi-
ble. For instance, the last sentence in Section 2.1.1 (around Line 20
on Page 4) contains many commas and a semicolon and parentheses
that makes it difficult to understand. Similar examples can be found
elsewhere in the manuscript.”

I have attempted to use footnotes in such a way as to preserve the flow of the
main text, so that details are available to the interested reader while minimally
interrupting the flow.

However, as reviewer #1 points out, there are some relatively convoluted sen-
tences. I have worked to clean up/clarify these in the revision.
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3. “Sometimes you are using Figure and sometimes Fig. for figures
(in Section 3.1 and later). Please be consistent.”

I intentionally use ‘Fig.’ in some passages to avoid overusing the word ‘Figure’
in places where more references to figures occur. Checking the WES manuscript
guidelines, this appears to be ok (I’d prefer to leave it, unless WES objects per
their English style preferences).

4. “Font size in your figures is very large. I am not sure if this will
be handled in the production stages if the manuscript gets accepted,
but if not, you should decrease the font size.”

Such ‘big’ figures were made for scaling to 1-column width (half of current size)
in the final publication.

5. “Please specify the frequency of the occurrence of wind speeds
above 7 m s−1 at the Høvsøre mast. Why 7 m s−1 and not, for in-
stance, 5 m s−1?”

As written/mentioned, this was done with consideration of loads in a concurrent
project—given the relatively infrequent occurence, lower impact on loads, higher
difficulty fitting spectra in that regime, and larger spread of results.

Considering winds above cut-in, P (U > 7 m s−1) for the period analyzed is 66%
for the land case and 81% for the offshore case.

I updated the analysis to be for the range 4–25 m/s (where U >7m/s is noted
for its slight difference) and re-made the plots.

The conditional dependence of LMM on wind speed is beyond the scope of this
paper, but is the subject of ongoing work.

6. “Section 4.1 (Implications and Applications) should not be a part
of the concluding section. Conclusions should conclude the study and
not elaborate on the applications of the result. Please move Implica-
tions and Applications prior to Conclusions and remove the subsec-
tion title Summary of conclusions (Section 4.2). It is not typical to
have subsections in conclusions.”

I revise based on your suggestions.

7. “To this reviewer, current Section 4.1 is a typical discussion
section and not implications and applications. I suggest the author
renames this section to discussion.”
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I updated to make this part of the discussion section.

8. “The author concludes (e.g., Line 21 on Page 17) that LMM is
influenced by atmospheric stability but the analyses in this study are
not conducted for unstable, stable and neutral conditions separately.
Nothing has been said about the fluxes of sensible heat, Richardson
number, Obukhov length, etc.
9. Related to my previous comment, the paper by Pena Diaz et
al. (2010) clearly lists the stability classes that were investigated (Ta-
ble I in that article), so it would be useful to see similar analysis in
this paper.”

Responding to points 8–9 together: explicit stability considerations are beyond
the scope of the current article. Part of the point of this paper is that for
application to loads, where one is concerned most with {σu, U, α, LMM}, which
are affected by stability, one then needs to get LMM (the other 3 are easily
obtained). We are not concerned here with stability itself—as the turbines are
not directly affected by stability, as (re-)stated in the article and references cited.

However, in parallel work (in preparation for publication) and in related recent
articles with Chougule et al (cited) we/I have examined treatment of stability.

Again, this is the subject of another paper, particularly because stability does
not have a direct affect—but acts through σu, U, α(dU/dz) and LMM .

10. “Please clarify the purpose of Section 2.2.2 (Modelled spectra:
Covariances, anisotropy and Γ) and Section 2.3 (Ideal, neutral and
surface-layer implications). All figures referee [sic] to Eq. (15) and
the expressions prior to that equation. I dont see how these sections
contribute to the manuscript.”

Section 2.2.2 shows the theoretical self-consistency of the derived τM and model,
with regard to u∗ (i.e. shear stress) and σu and w.r.t. the mixing-length relation.
Along the way, §2.2.2 also gives practical/understandable expressions for how
Mann-model σu and u∗ depend on Γ.

Section 2.3 shows the surface-layer limit of the derived LMM ; previously it was
assumed that the Mann-model is basically designed to work in this limit. Fur-
ther, §2.3 derives the expected asymptotic (neutral/equilibrium) relation con-
necting observed σu and the model-constraining σiso.

11. “Please discuss the reasons why the peak in the Mann model in
Figure 6 is not captured by the other two models? This peak, although
at small wavenumbers, is very prominent and should be explained.
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Please discuss.”

As discussed in the text, this minor peak is not prominent (‘probability well
under 1%’). Note Fig. 6 is plotted in log-log coordinates, and these larger LMM

in the minor bump are less than 1/1000 times likely than the values occurring
around the major peak. I should adjust ‘under 1%’ to become ‘under 0.1%’.

This minor peak is likely not captured because information related to its cause
is not carried through dU/dz, but rather within horizontal gradients—which
implicitly affect the fit parameters including LMM . I did not wish to speculate,
without more detailed measurements; this kind of advective artifact is not triv-
ial do pick apart, given the conditions and the difficulty of fitting spectra to the
Mann-model when the observed spectral-peaks are at smaller wavenumbers.

12. “What is the sampling frequency of the lidar data? The peak in
Figure 6 seem not to appear in Figure 5, so is it possible that the
lidar measurements contain some bias or some filtering was applied
(or something else)?”

As mentioned above this peak is rather rare and corresponds to the distances to
a forest edge. The LIDAR are not the cause, as the peak comes from the sonic
anemometer; using data from the sonics only (over smaller vertical extent), the
same trend (no peak) arises as when using the LIDAR. Further, the LIDAR and
sonic data at 45/44 m are giving values almost identical to each other.

13. “Please specify the source for Eq. (6).”

Equation 6 follows from τM integrated explicitly using the vonKarman spec-
trum: eq.3 is equal to eq.5. I now add mention of (3) and (5) being equal in the
text preceeding (6), to avoid confusion.

14. “I recommend that the author writes the alternative equation for
LMM in Line 27, Page 5 as a numerated equation and not an in-
line expression [i.e., Eq. (16)] since some researchers might prefer
the usage of turbulence intensity and shear exponent over standard
deviation and wind profile (or maybe they already have the data in
the form of I and α).”

Amusingly in an earlier working draft I had actually done this, but removed it,
thinking I had too many equations. But I agree and will switch back to having
a separate numbered equation for LMM ' zIobs/α.
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Author’s reply (AC4) to reviewer #2’s comments (RC2)

The author (MK) would like to thank reviewer #2 for the compliments and
constructive suggestions.

Here I will respond to the points raised by the reviewer, copying their points
(from their annotation of the draft manuscript) inside quotes using italic font,
and including page/line numbers:

1. p.1, lines 14–17 “This looks very useful during the design phase of a wind-
farm, particularly offshore.”

Thanks; I hope it’s useful, and look forward to get more offshore mea-
surements, at ‘taller’ heights, to further verify the model—as I extend it
conditionally per wind speed.

2. p.2, lines 6–8 “While LMM is certainly one of the central Mann model
parameter, anisotropy parameter Γ is also quite important. In the IEC
standard, it is recommended to use Γ = 3.9, but its value also varies un-
der different stability conditions. Therefore, I suggest to tone down the
‘the most relevant’ to ’critical’, so that Γ is not forgotten :-) ”

As mentioned and referenced in the text, Dimitrov and others found
that LMM is more relevant than Γ for modern horizontal-axis turbines
(and control systems) analyzed; e.g. Sobol coefficients for Γ have been
found to be much smaller than those for LMM. But there is a (small)
possibility that in some circumstance (turbine and/or control system con-
figuration) for some component load that the sensitivity to Γ could be
higher than for the turbulence length scale. The variation in Γ is also
mentioned, to avoid ‘forgetting’ it as well—the text reads “most relevant
load–driving parameters”, and this includes Γ.
But I change ‘relevant’ to ‘crucial,’ inspired by the reviewer’s suggestion.

3. p.2, line 20 (equation 1) “Please add a reference to this equation.”

There is no reference for this equation; rather it is a generic finding
of the author, which corresponds to/relates all of the different forms of
τ found in the literature (and referenced). (Such an expression could be
useful in the future for e.g. fractal turbulence considerations.)

4. Figures 1–2 (p.8,10) “Please add a legend indicating magnitude of joint
probabilities, which I guess is hidden in the color intensity.”

Done.

5. p.12, lines 7–10 “Is Eq. (13) then recommended to use instead of Eq. (15),
by using the ratio in the bracket to be 1.11/1.13?”

The value of 1.11 (or 1.13) corresponds to deviation from 〈cmu∗/σu〉 = 1
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for an average including all recorded speeds between 4–25 m/s (or 7–
25 m/s). If one wished to consider speeds only above 7 m/s at this
site, then once could perhaps approximate the growth of this factor by
the ratio 1.13/1.11—but this is found thus far only for this site and
wind speed ranges. Later text (following this sentence) explains more
about 〈cmu∗/σu〉.

6. p.17, line 19 (second bullet-point in summary of conclusions/§4.2) “On
page 12 in the last paragraph, it seems that argument is made in favour
of the ratio >1. Therefore, I suggest clarifying this in relation to those
statements.”

Note the ratio is ‘≈1’ in the statement/second bullet point; the state-
ment goes on to say that LMM can then be approximated by σu/(dU/dz).
I have added a sentence to the end of the previous bullet-point, noting that
this ratio can be 1–1.11 (or re-directing a reader of only the conclusion to
check out the details).

Author’s reply (AC3) to comments by A. Peña (SC1)

“Thanks for a very interesting paper. It is indeed extremely con-
venient to have a parametrization for the Mann length scale that
is based on commonly measured parameters. Here three short com-
ments on your manuscript:”

Thanks; I’m hoping to provide something which is theoretically and empirically
sound, and convenient to use in wind applications.

“1. My previous work both in the citations and in the references
should be Peña, A and not Peña Diaz, A. I think you have two
references (and the corresponding citations) with that issue.”

Ok, I’ll update my BibTeX entries that include your name.

“2. In Peña et al. (2010) we did not explicitly suggest a parametriza-
tion for the Mann length scale but we relate it to the length scale of
the wind profile as you point out. Your work suggests LMM ≈ σu/(dU/dz)
which roughly means that LMM ≈ z in the surface layer (if the ap-
proximation σu ≈ u∗/κ is used), whereas our relation LMM ≈ 1.7`
roughly means LMM ≈ 0.68z. The latter is also in accordance with
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the work of Chougule et al. (2014) from measurements at Høvsøre
and at Ryningsnäs.”

First, this is only approached in the neutral surface layer (ASL).
Secondly, for σu/u∗ ≈ 2.3 (as shown in sections 2–3, and also found for the
data sets in the neutral ASL), then LMM |nASL ≈ 2.3z/κ ' 0.92z as given at
the beginning of section 2.3.

Chougule et al. (2014, e.g. Fig. 5) actually shows agreement with LMM ∼ z in
the ASL (z = 20m) at Høvsøre (though their analysis is only for U between 7–
8 m/s). At Ryningsnäs, when accounting for the displacement height (d ' 13m)
then their results are again consistent with the above, with LMM ≈ z−d or
actually slightly larger (though affected by roughness-sublayer effects above the
forest there).

“3. So what is the reason for the differences between Peña et al. (2010)/Chougule
et al. (2014) and your results? Could it be the way the velocity spec-
tra was analyzed (you seem to extract the Mann parameters from
each individual 10-min record whereas Peña et al. (2010)/Chougule
et al. (2014) ensemble average spectra for different turbulence con-
ditions)? What is the uncertainty of the fit when performed on each
10-min case?”

As noted in my response to point 2 above, in the neutral surface layer there are
not significant differences.

Overall, the increase of LMM in unstable conditions is significantly larger than
the decrease in stable conditions, as also implied e.g. in Sathe et al. (2012). The
vertical range and extent to which 〈LMM 〉 ∼ z in all conditions depends on
the (relative) widths of the stable- and unstable sides of the stability distribu-
tion P (1/L) as well as the distribution of ASL depth.
As for the uncertainty on spectrally-fit LMM , this is beyond the scope of the cur-
rent article—though I do note that the fit was improved markedly by rejecting
Γ > 4.95 (which corresponds to the fit using the highest Γ of the lookup-table of
Mann-model outputs), and such rejection roughly appeared to eliminate poten-
tial bias in LMM ; the latter is included as a footnote in section 3.2. Continuing
work includes checking such fitting uncertainty/variability, as well as analysis
per wind speed bin.
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From standard wind measurements to spectral characterization:
turbulence length scale and distribution
Mark Kelly1
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Abstract.

In wind energy, the the effect of turbulence upon turbines is typically simulated using wind ‘input’ time-series based on

turbulence spectra. The velocity components’ spectra are characterized by the amplitude of turbulent fluctuations, as well

as the length scale corresponding to the dominant eddies. Following the IEC standard, turbine loads calculations commonly

involve use of the Mann spectral-tensor model to generate timeseries of the turbulent three-dimensional velocity field. In5

practice, this spectral-tensor model is employed by adjusting its three parameters: the dominant turbulence length scale LMM

(peak length scale of an undistorted isotropic velocity spectrum), the rate of dissipation of turbulent kinetic energy ε, and the

turbulent eddy-lifetime (anisotropy) parameter Γ. Deviation from ‘ideal’ neutral sheared turbulence—i.e. for non-zero heat flux

and/or heights above the surface layer—is, in effect, captured by setting these parameters according to observations.

Previously, site-specific {LMM,ε,Γ}were obtainable through fits to measured three-dimensional velocity component spectra10

recorded with sample rates resolving the inertial range of turbulence (& 1Hz); however, this is not feasible in most industrial

wind energy projects, which lack multi-dimensional sonic anemometers and employ loggers that record measurements av-

eraged over intervals of minutes. Here a form is derived for the shear dependence implied by the eddy-lifetime prescription

within the Mann spectral-tensor model, which leads to derivation of useful forms of the turbulence length scale. Subsequently

it is shown how LMM can be calculated from commonly-measured site-specific atmospheric parameters, namely mean wind15

shear (dU/dz) and standard deviation of streamwise fluctuations (σu). The derived LMM can be obtained from standard (10-

minute average) cup anemometer measurements, in contrast with an earlier form based on friction velocity.

The new form is tested across several different conditions and sites, and is found to be more robust and accurate than

estimates relying on friction velocity observations. Assumptions behind the derivations are also tested, giving new insight

into rapid-distortion theory and eddy-lifetime modelling—and application—within the atmospheric boundary layer. The work20

herein further shows that distributions of turbulence length scale, obtained using the new form with typical measurements,

compare well with distributions P (LMM) obtained by fitting to spectra from research-grade sonic anemometer measurements

for the various flow regimes and sites analyzed. The new form is thus motivated by and amenable to site-specific probabilistic

loads characterization.
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1 Introduction

Of the atmospheric parameters which are generally input into (or required by) wind turbine loads calculation codes, several

stand out, due to their prominence in load contributions. These are
:
:
:
the ‘mean’ wind speed U , the standard deviation of

streamwise turbulent velocity σu, the shear
::::::
dU/dz

::
or

:::::
shear exponent α (calculated from wind speeds at multiple heights, e.g.

Kelly et al. (2014a) , and the characteristic turbulence length scale
::
L corresponding to the most energetic turbulent motions (e.g.5

Wyngaard, 2010).
::::::::::::::::::
Dimitrov et al. (2015)

::::::::
explored

::
the

::::::::::
importance

::
of

:::::
shear

::::
(α);

::::::::::::::::::
Dimitrov et al. (2017)

:::::
found

::::
that

::::
both

::::::
fatigue

:::
and

:::::::
extreme

::::::
turbine

:::::
loads

:::
can

:::
be

:::::::
sensitive

::
to

::
L

::
in

:::::::
addition

::
to

:::
the

::::::::
dominant

:::::::::
influences

::
of

:::::
mean

:::::
wind

:::::
speed

::
U

:::
and

::::::::::
streamwise

::::::::
turbulence

:::::::::
‘strength’

:::
σu.1

:::::
These

:::
are

::::
also

::::::::
consistent

:::::
with

:::
the

:::::
earlier

:::::::
finding

::
of

::::::::::::::::
Sathe et al. (2013)

:::
that

:::::::
stability

::::::
could

:::::
affect

::::::
fatigue

::::
loads

:::::::
through

::
α

:::
and

:::
σu.

:

Within the context of obtaining site-dependent statistics of the most relevant
::::::
crucial load-driving parametersfrom typical10

or standard
::::::::::
(U,σu,α,L)

:::::
from

:::::::::::
conventional

::::::::
industrial

:
wind measurements, we focus upon the relevant parameter which is

:::
this

:::::
work

::::::
focuses

:::
on

:::
the

::::
one

:::::::::
parameter

:::::
which

::::
has

::::
thus

::
far

:::::
been

:
most difficult to mesaure: the ‘Mann-model length scale’

LMM (Mann, 1994); i.e., the
::::::::
measure:

:::
the

:::::::::
turbulence

:::::
length

:::::
scale

::
L.

::::
The

:
turbulence length scale , which corresponds to the

‘energy-containing sub-range’ of turbulence which contributes
:::::::
turbulent

:::::::
velocity

::::::::::
fluctuations

:::::::::
associated

::::
with

:::
the

::::
peak

:::
of

:::
the

:::::::::
streamwise

:::::::
velocity

:::::::::
spectrum,

:::::
which

:::::::::
contribute

:
most to turbulent velocity fluctuations (andalso turbine loads

::::::
kinetic

::::::
energy15

::::
(and

::
σu)

:::::
—and

::::::
which

:::
can

::::::::
dominate

:::
the

::::::::::
turbulence

::::::::::
contribution

::
to

:::::
wind

::::::
turbine

::::::
loads.

::::::::::::
Measurements

:::::
used

::
in

:::::
wind

::::::
energy

::
are

:::::::
usually

:::::
stored

:::
as

::::::::
10-minute

::::::::
statistics

:::::::
(average

::::
and

:::::::
standard

::::::::
deviation

::
of

:::::
wind

:::::
speed

::::
and

::::::::
direction),

:::
so

:::
one

::::::
cannot

::::::
obtain

::::::::
turbulence

:::::::
spectra

::::
from

:::::
them,

:::
nor

:::
can

::::
one

:::::::
calculate

:::::::
integral

::::
time

::
or

::::::
length

::::
scale

:::::
from

::::
such

::::::::::
observations.

Independent derivation of some
:::::::
Because

::
of

::
its

::::::::::
widespread

:::
use

::
in

:::
the

::::
wind

:::::::
industry

:::
and

::
its

::::::::
inclusion

::
in

:::
the

:::::::::::::::::::::::::
IEC 61400–1, Edition 3 (2005)

:::::::
standard

::
on

::::::
design

:::::::::::
requirements

:::
for

::::
wind

::::::::
turbines,

::::
here

:::
we

:::::::
consider

:::
the

:::::::
spectral

:::::::::
turbulence

:::::
model

:::
of

:::::::::::
Mann (1994),

::::
and

::
L

::
as20

::::::::
prescribed

:::
for

::::
this

::::::
model.

::::::
Within

:::
the

::::::::::::
‘Mann-model,’

::::::
which

::::
uses

:::::::::::::
rapid-distortion

:::::
theory

:::::::
(‘RDT’)

::
to
:::::::
account

:::
for

::::::::::::
shear-induced

::::::::
distortion

::
of

::::::::
isotropic

:::::::::
turbulence

:::::::::::::::::::::::
Savill (1987); Savill (2000),

:::::
there

::
is

::::
also

:
a
:::::::::::
prescription

:::
for

:::
the

:::::::::::::
scale-dependent

:::::
time

::::
over

:::::
which

::::::::
turbulent

:::::
eddies

::
of

::
a
:::::
given

:::
size

:::
are

::::::::
distorted.

:::::
This

::::::::
time-scale

::
is
::::
key

::
to

:::::
proper

::::::::::::
representation

::
of
:::::::::::

atmospheric
:::::::::
turbulence

:::
and

:::::::::::
reproduction

::
of

::::::::::
component

::::::
spectra

:::
via

:::::
RDT.

:::::::::
However,

:::
the eddy-lifetime relations has also been done concurrently by

de Mare and Mann (2016), towards creation of
:::
was

::::
not

:::::::
directly

:::::::
derived,

::::
but

:::::
rather

:::::::
cleverly

::::::::::
prescribed,

:::
by

::::::::::::
Mann (1994).25

:::::::::
Concurrent

::
to

::::
and

::::::::::
independent

::
of
::::

the
::::
work

::::::
herein,

::::::::::::::::::::::
de Mare and Mann (2016)

::::
also

:::::::
derived

::::
some

::::::::
relations

::
to

::::::
create a model

for time-varying eddy lifetime.
:::
The

::::::
present

::::::
article

:::::::
provides

:::::
direct

:::::::::
derivation

::
of

:::
the

:::::
eddy

:::::::
lifetime,

::::::
which

:::::
results

:::
in

:
a
:::::::
relation

:::::::
between

:::
the

:::::
three

::::::::
(spectral)

:::::::::
parameters

:::
of

:::
the

:::::
Mann

::::::
model

::::
and

::::::::::
measureable

:::::::::
quantities.

::::::
More

::::::::::
importantly,

:::
the

::::::::::
derivations

:::
here

:::::::
include

:::::::::
connection

::
of

:::
the

:::::::::
turbulence

::::::
length

::::
scale

::
to

::::::::
routinely

::::::::
available

::::::::
quantities

::::
from

::::::
typical

:::::::::
10-minute

::::::::
industrial

:::::
wind

::::::
records.

::::
The

:::::::::
turbulence

:::::
length

:::::
scale

::
is

::
in

:::
fact

:::
that

::::::::::::
corresponding

::
to
:::
the

:::::::::::::::::
von Kármán (1948)

::::::
spectral

:::::
form,

:::
and

::::
thus

:::
the

:::::::
relation30

:::
here

:::
is

:::::::::
applicable

::
to

:::::
other

:::::::::
turbulence

::::::
models

:::::
used

::
in

:::::
wind

:::::::::::
engineering,

::::
such

::
as
:::::

those
:::::::

relying
:::
on

:::
the

:::::::::::::::::
Kaimal et al. (1972)

::::::::
spectrum.

1
::
To

:
a
::::
lesser

::::
extent

::::
there

::
has

:::
also

:::
been

:::::
found

:::
some

:::::::
sensitivity

::
to

::
the

:::::::::
Mann-model

:::::::
anisotropy

:::::::
parameter

::
Γ).

:
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Dimitrov et al. (2017) found that both fatigue and extreme turbine loads can be sensitive to LMM (as well as
:::::
After

:::::::
deriving

::
the

:::::
eddy

:::::::
lifetime

::::
and

::::::
giving

:::::::::
subsequent

::::::::::
expressions

:::
for

::::
the

:::::::::
turbulence

::::::
length

:::::
scale,

::::
this

:::::
article

::::::::
proceeds

:::
to

::::::::
validation

:::
of

::
the

::::::::::
underlying

:::::::::::
assumptions.

::::::::::
Constraints

:::::::
implied

::
by

::::::
fitting

:::
the

:::::::::::
Mann-model

::
to

:::::::::
measured

::::::
spectra

::
in

::::::::::
non-neutral

::::::::::
conditions,

::::
given

::::::::::::
eddy-lifetime

:::
and

::::::::::::
mixing-length

::::::::
relations,

:::
are

::::
also

::::::
tested.

::::
This

:::::::
includes

::::::::::
dependence

:::
of

::::::::
predicted

:::::::
velocity

:::::::
variance

:::
on

:::::
model

:::::::::
anisotropy

:::::::::
parameter

:
(Γ), in addition to

::
as

::::
well

::
as

::::::::::
implications

:::
in the dominant influences of mean wind speed U and5

streamwise turbulence ‘strength’ σu. This is also consistent with the earlier finding of Sathe et al. (2013) , whom found that

stability could affect fatigue loads
:::::::::::
surface-layer

:::
and

:::::::::
connection

::
to

:::::::
previous

:::::::
findings

::
in

:::::::::::::
boundary-layer

::::::::::
meteorology.

:::::::
Finally,

:::
the

::::::::::
length-scale

:::::::
obtained

::::
from

:::::::::::
conventional

:::::::::
10-minute

::::
wind

::::::::::::
measurements

:::
via

:::
the

::::
new

:::::::::
expression

::
is

::::::::
compared

::
to

:::
the

:::::
length

:::::
scale

:::::
found

::::
from

:::
fits

::
of

:::::::::::
Mann-model

:::::
output

::
to

::::::::
measured

::::::::::
component

::::::
spectra;

::::
this

::
is

::::
done

:::::
using

:::
data

:::::
from

:::::::
multiple

::::
sites,

:::::::::::
representing

::::::
several

::::
types

::
of
::::
site

:::::::::
conditions.

:
10

2 Theory

:::::::
Relation

::
of

:::
the

:::::::::
turbulence

:::::
length

::::::::
(spectral

::::::
‘peak’)

::::
scale

::
to
:::::::::::
measureable

:::::::
statistics

::
is
:::::::
possible

:::::::
through

:::
the

:::::::::::
eddy-lifetime

:::::
form

::
of

:::::::::::
Mann (1994),

:::::
where

:::
the

:::::
latter

::
is

::::::
defined

::
in

:::::
terms

::
of

:::
the

::::::::
isotropic

::::::::::
von Kármán

::::::::
spectrum

::::
that

:
is
::::::::
distorted

:::::
using

:::::
RDT.

2.1 Eddy lifetime

A number of forms exist to estimate eddy lifetime τe, though these can be generally expressed as the ratio of a length scale15

(taken as the reciprocal of wavenumber, k−1) to a velocity scale which follows from some integrated form of the (scalar)

kinetic energy spectrum E(k):

τe ∼ k−p−1

 ∞∫
k

κ−2pE(κ)dκ

−1/2

, (1)

where the characteristic velocity scale can be generically described by

kp

 ∞∫
k

κ−2pE(κ)dκ

1/2

.

Comparing to the ‘coherence-destroying diffusion time’ of Comte-Bellot and Corrsin (1971) and to the reciprocal of eddy-

damping rates from Lesieur (1990), for use with rapid-distortion theory Mann (1994) chose an eddy lifetime that depends on20

eddy size (wavenumber) according to

τM ∝ k−1

 ∞∫
k

E(κ)dκ

−1/2

; (2)

i.e., equivalent to p= 0 in terms of (1). The choice (2) for eddy lifetime was found to behave more reasonably than both the

Comte-Bellot and Corrsin (1971) ‘diffusion time’ (where p= 1)2, as well as the timescale [k3E(k)]−1/2 (which in the inertial
2 The Mann (1994) expression is also equivalent (or at least proportional) to the ‘convection time’ of Comte-Bellot and Corrsin (1971).
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range is equivalent to p=−1)3 implicit in eddy-damped quasi-normal Markovian [EDQNM] models (Andre and Lesieur,

1977; Lesieur, 1990); both of the latter lifetime models do not (reliably) integrate to give finite σ2
u.

Mann (1994) re-writes τM as

τM (k) =
Γ

dU/dz

(kLMM)−2/3√
2F1

(
1
3 ,

17
6 ; 4

3 ; −1
(kLMM)2

) , (3)

where 2F1 is Gauss’ hypergeometric function (Abramowitz and Stegun, 1972)4
:::
and

::::
LMM:::

is
:::
the

:::::::::
turbulence

::::::
length

:::::
scale5

::::::::
associated

:::::
with

:::
the

::::
peak

:::
of

:::
the

::::::::
turbulent

::::::
kinetic

::::::
energy

::::::::
spectrum

:::::
E(k)

::
as
:::

in
:::
(2). The eddy lifetime definition (3) is used

in practical implementation of the spectral tensor model (e.g. Mann, 2000), and it notably defines a parameter of this model:

the eddy lifetime scaling parameter
::::
factor

:
Γ, also known as the anisotropy factor. The Mann (1994) spectral-tensor model

employs rapid distortion theory (‘RDT’)with an
:
,
:::::::
whereby

:::
the

:::::
shear

::::::
dU/dz

::::::
distorts

:::::::::
turbulence

:::::
from

::
an

::::::::
isotropic

:::::
state,

:::::
based

::
on

::
an

:
initial turbulent kinetic energy spectrum of the isotropic von Kármán form

::::::::::
von Kármán

::::
form

:
10

EvK(k) = αε2/3L
5/3
MM

(kLMM)4

[1 + (kLMM)2]17/6
, (4)

with
::::
where α= 1.7 (von Kármán, 1948).

::::
This

::
in

:::::
effect

::::::
defines

:::
the

:::::
length

:::::
scale

::::
LMM:::::::

through
:::
the

::::
peak

::
of

:::
the

::::::
initial

::::::::
spectrum.5

Using (4) in the proportionality expression (2) produces

τM |E→EvK
=

cτ k
−2/3√

3
2αε

2/3
2F1

(
1
3 ,

17
6 ; 4

3 ; −1
(kLMM)2

) , (5)

where we have introduced the coefficient
::::::::::::
proportionality

:::::::
constant cτ to equate

::::
write

:::
the

:::::
result

::
of

:::::::::
integrating

:::
the

:::::::::::::
proportionality15

::::::
relation

:
(2) with (3)

::
as

:::
an

:::::::
equation. Then we have an expression relating the Mann-model parameters to the shear dU/dz:

Γ =
cτ√
3α/2

dU

dz
L

2/3
MMε

−1/3.

Now τM can be seen to depend upon k,LMM, and ε. The eddy-lifetime can be reduced and clarified via 2F1

{
1
3 ,

17
6 ; 4

3 ,(−kLMM)−2
}
'

[1 + 3.07(kLMM)−2]−1/3 to give the more understandable
:::::::::
transparent von Kármán-like form6

τM (k;LMM,ε)'
0.82cτ√
αε2/3

k−2/3

[
1 +

3.07

(kLMM)2

]1/6

. (6)20

3 The reciprocal of eddy-damping rate, [k3E(k)]−1/2, is equal in the inertial range to (1) with p=−1 since E(κ)→ κ−5/3 there. This expression is

also similar to the ‘rotation time’ or ‘strain time’ given by Comte-Bellot and Corrsin (1971), but it should be noted that such expressions integrate from 0 to k,

i.e. over eddies larger than 1/k.
4The hypergeometric function 2F1

[
1
3
, 17

6
; 4

3
;−(kLMM)−2

]
approaches 1 for kLMM� 1 (the inertial range), and simplifies to aHG(kLMM)2/3 for

kLMM� 1, where aHG ≡ (3
√
π/4)fΓ(4/3)/fΓ(17/6)' 0.69 and fΓ(x) is the Euler-gamma function.

5
::
The

::::
peak

::
of

::
the

::::::::
von Kármán

::::::
isotropic

::::
TKE

::::::
spectrum

:::::
EvK(k)

:::::
occurs

::
at

::::::::::::
kLMM =

√
12/5,

::
i.e.

::::::::::::::
LMM ' 1.55/kpeak.

6Note
√

2/3' 0.82, and 3.07 = a−3
HG; c.f. footnote 4. In (6), αε2/3 is kept together for comparison with (4), and because αε2/3 is commonly used as

an input to the spectral-tensor model instead of ε (e.g. Mann et al., 2002; IEC 61400–1, Edition 3, 2005).
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::::
Since

:::
(3)

::::
and

::
(5)

:::
are

::::::
equal,

:::
we

::::
have

::
an

:::::::::
expression

:::::::
relating

:::
the

:::::::::::
Mann-model

:::::::::
parameters

::
to

:::
the

:::::
shear

::::::
dU/dz:

:

Γ =
cτ√
3α/2

dU

dz
L

2/3
MMε

−1/3.

::::::::::::::::::::::

(7)

The expression (7) can be made yet more useful to relate the turbulent length scale to measureable parameters, as shown in

section 2.2.

2.1.1 Eddy lifetime and equilibrium5

The parameters {ε,Γ,LMM} are site-dependent, and in practice have been obtained from measurements through fits of the

model output to observed spectra (Mann, 2000), relying on (at least three of) F11, F13, F33, and F22 (e.g. Sathe et al., 2013;

Dimitrov et al., 2017). The model starts with an (undistorted) isotropic incompressible turbulence spectral tensor

Φij(k)
∣∣∣0 =

δijk
2− kikj
4πk4

E(k) (8)

where E(k) is taken to be EvK(k) following
::::::
shown

::
in (4), then the Φij are distorted—i.e. the rapid-distortion equations are10

solved—per (three-dimensional) wavenumber over a time τM (k) via rapid-distortion theory [‘RDT’].

The rapid-distortion equations discussed here do not explicitly solve for production of normal stresses (which sum to twice

the turbulent kinetic energy) nor shear stress, though they do include (Fourier-transformed) terms for perturbing isotropic
:::::
terms

:::
that

::::::
perturb

:::
the

:
stresses7 to account for the anisotropic

::::::::::
(anisotropic) effect of a constant shear dU/dz; however, RDT

:
.
:::::::
Further,

::
the

:::::
RDT

::::::::
discussed

::::
here

:
does not include dissipation (e.g. Pope (2000)). Instead

:::::::::::::::::::::::
(Mann, 1994; Mann, 2000);

::::::
instead, in the15

spectral-tensor model the dissipation rate
:
of

::::::::
turbulent

::::::
kinetic

::::::
energy ε is a parameter giving the amplitude of the undistorted

(initial) spectrum via (4); ε .
:
can also be

::
In

:::::::
practice

:
ε
::
is obtained via fits of precalculated

:::::::::::
pre-calculated

:
Mann-model output to

measured (distorted) spectra,
::::::
spectra. so

::
So ε effectively

::
in

:::::
effect gives the inertial-range amplitudes of the distorted velocity

component spectra, which have been distorted for a time τM (k). The
::::
From

:::
(3)

:::
one

::::
sees

:::
that

:::
the

:
parameter Γ serves as a factor

that determines the amount of distortion and associated anisotropy—and thus
:::::::::
anisotropy:

:::::::::
increasing

::
Γ

::::::::::
corresponds

::
to

::::::
longer20

::::::::
distortion

::::
time

:::
τM :::

and
::::
thus

:::::
more

:::::::::
anisotropy,

::::
with

:::::
Γ = 0

::::::::::::
corresponding

::
to

:::::::
isotropy

::::
(zero

:::::::::
distortion

::
of

:::
the

:::::
initial

:::::::
isotropic

:::::
Φij).

:::
The

:
separation between the peaks of the different component spectra (the ww-spectrum peak

:::::::
increases

::::
with

:::
Γ;

:::
the

:::::::
spectral

::::
peak

::
of

:::
F33:is at higher wavenumbers than vv-peak

::::::
(smaller

::::::
scales)

::::
than

:::
the

:::
F22::::

peak, which is at higher k1 than the uu spectral

peak ); increasing Γ (Mann, 1994) corresponds to more anisotropy.
:::::::::::::
wavenmumbers

::::
than

:::
the

::::
peak

::
of

::::
F11 ::::::::::::

(Mann, 1994). Thus

a
:
A

:
stationary equilibrium result is achieved via the eddy-lifetime prescription together with rapid-distortion of an isotropic25

spectrum—with
:::
the

:::::::
isotropic

:::::::
spectral

:::::::::::
tensor—with

:::
τM::::

and
::::::
(initial)

:
inertial-range amplitudes and also τM both depending on

ε (via eqns. 3 and 7)—whereby
:::::
(3–4,

::
7),

::::::::
whereby shear-production of TKE is in effect balanced by dissipation. The

:::
I.e.,

:::
the

resultant shear stress 〈uw〉 (expressible now in terms of ε) can be multiplied by 2∂U/∂z to give the implied production rate

7Assuming a constant mean shear dU/dz, the spectral-tensor model solves (Fourier-transformed versions of ) rapid-distortion equations for streamwise

normal stress 〈u1u1〉 and shear stress 〈u1u3〉; multiplying these by dU/dz one obtains the corresponding production rates: P11 =−2〈u1u3〉dU/dz and

P13 =−〈u3u3〉dU/dz (Pope, 2000, Ch.11).
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of 〈uu〉, which with vv and ww (through Γ) gives the implied TKE production rate, amounting to P = ε; such an equilibrium,

enforced by τM , can also be inferred from de Mare and Mann (2016).

2.2 Characteristic length scale

Noting that the spectrum of a variable integrates to the variance of said variable, then invoking (8) with the isotropic von Kármán

form (4) for E(k) and exploiting F11(k1) =
∫∫

Φ11dk2dk3, one obtains the isotropic streamwise turbulence variance5

σ2
iso =2

∞∫
0

9

55
αε2/3L

5/3
MM[1 + (k1LMM)2]−5/6dk1

=0.69αε2/3L
2/3
MM

(9)

which is the undistorted streamwise variance. The factor 0.69 is the numerical value of 9
55

√
πfΓ( 1

3 )
/
fΓ( 5

6 ) and fΓ(x) is the

Euler gamma function (Abramowitz and Stegun, 1972, see also footnote 4 above). Then using (9) in (7) we get a relation for

the isotropic (undistorted) turbulence length scale implied by the lifetime-model (3),

LMM '
(

1.5Γ

cτ

)
σiso

dU/dz
, (10)10

where the leading term in parenthesis is expected to be of order 1.

2.2.1 Relation to observations

Peña et al. (2010) suggested that the Mann-model length scale is proportional to the classic mixing length `∗ ≡ u∗/(dU/dz)
multiplied by an empirical constant, i.e.

LMM = cm`∗ =
cmu*,obs

dU/dz
(11)15

where they assign cm=1.7. However, we find from observations that on average cm ≈ 2.3 over flat land, i.e. 〈LMM/`∗〉= 2.3

(see next section). Combining (10)–(11) one sees that cτ decreases with the relative magnitude of measured shear stress

(as σiso/u*,obs); this is also expressed usefully through the measured ratio of streamwise fluctuation amplitude to friction

velocity:

cτ '
1.5Γ

cm

σiso

u*,obs
=

1.5Γ

σu,obs/σiso

(
σu,obs/u*,obs

cm

)
. (12)20

From the above and (10) one subsequently then finds

LMM '
σu,obs

dU/dz

(
cm

σu,obs/u*,obs

)
. (13)

For constant (σu,obs/u*,obs), (13) implies that the turbulence scale LMM can be expressed independently of Γ, given σu,obs and

dU/dz.
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Caughey et al. (1979) reported the mean profile of σ2
u(z) from the seminal ‘Kansas experiment’, showing that (σu/u∗)

2
0 ≈5–

6 in the homogeneous atmospheric surface layer (their Fig. 5). The corresponding value of (σu/u∗)0 is approximately 2.3; thus,

if cm ≈ 2.3 as well, then (12) reduces to

cτ ≈
1.5Γ

σu,obs/σiso
. (14)

Given the definition of cτ through (7), cτ is a constant; since (9) shows σiso is independent of Γ, then σu,obs ∝ Γ. Consistent5

with this argument, (13) reduces to

LMM ≈
σu,obs

dU/dz
., (15)

:::::
which

::
is

::::
also

::::::
evident

::::::::
inserting

::::
(14)

::::
into

:::::
(10). Using (15), LMM can simply be diagnosed from typical measurements, e.g.

10-minute average cup-anemometer output, at two (or more) heights. The length LMM can also be cast in terms of variables

commonly used in wind engineering, notably the turbulence intensity Iu and shear exponent α. Invoking dU/dz = αU/z10

(Kelly et al., 2014a) and defining Iobs ≡ σu,obs/U , then (15) becomes LMM ≈ zIobs/α.

LMM ≈ z
Iobs

α
.

:::::::::::

(16)

2.2.2 Modelled spectra: covariances, anisotropy and Γ

The spectral Mann-model (‘MM’) distorts the isotropic von Kármán spectral tensor (Φij(k), eq. 4), per wavenumber via rapid-

distortion theory over the wavenumber-dependent eddy-lifetime τM , such that the component spectra become anisotropic at15

wavenumbers outside (lower than) the inertial range; the degree of distortion—and thus anisotropy—are consequently rep-

resented by the eddy-lifetime parameter Γ. Above we showed via mixing-length arguments that LMM is independent of Γ,

resulting in (15). Possible Γ-dependences can also be examined by considering the shear stress

〈uw〉MM =−u2
*,MM = 2

∞∫
0

F13(k1)dk1 (17)

obtained from the modelled spectral tensor component F13(k1) =
∫∫

Φ13dk2dk3, which is expected to be a function of Γ.20

Indeed Mann (1994, Figure 4) shows this to be the case, with modeled stress 〈uw〉MM/σ
2
iso varying almost linearly between

0 and −1 for 0< Γ< 5; then u2
*MM/σ

2
iso ≈ Γ/5. Subsequently from (12) one has

cτ ≈
1.5
√

5Γ

cm

u*MM

u*,obs
≈ 0.64Γ

u*,obs/σiso
(18)

for cm ≈ 2.3, in analogy with (14); thus we expect u*,obs ∝ Γ, similar to the expected behavior of σu,obs ∝ Γ following (14).

In addition to the approximate expression (18), which is based on the simplified relation u2
*MM/σ

2
iso ≈ Γ/5, it is possible to25

derive an exact relation based on the the Mann-model shear stress (17); but this is cumbersome and analytically intractable.

Though de Mare and Mann (2016) derived implicit expressions toward relating {Γ, dU/dz, LMM} to the eddy lifetime and

integral of the modelled stress spectrum (17), these must be evaluated numerically or graphically. An explicit expression

7



corresponding to c−1
m =`∗/LMM (like eqn. 11 here) was derived by de Mare and Mann (2016), but it depends on numerically

integrating the stress spectrum.

As spectra fitted to Mann-model outputs correspond to distorted anisotropic turbulence, and noting the Γ-dependence of

u*MM discussed above, we expect σu,MM to also depend on Γ. From Figure 4 of Mann (1994) we find σ2
u,MM/σ

2
iso ' (1 + 0.14Γ2),

which for Γ & 2, the range corresponding to ABL observations (e.g. Sathe et al., 2013), becomes roughly σu,MM ≈ σiso(0.61 + 0.3Γ).5

2.3 Ideal, neutral surface-layer implications

Within the atmospheric surface-layer (‘ASL’), in the homogeneous stationary (ideal) limit under neutral conditions, dU/dz→ u∗/(κz)

so that (11) reduces to LMM→ cmκz ≈ 0.92z. Similarly, in this ‘log-law regime’ εASL,N = u3
∗/(κz), so that (7) becomes

ΓASL,N = cτ (3α/2)−1/2(LMM/κz)
2/3 or equivalently LMM|ASL,N = (3α/2)3/4κz[Γ/cτ ]3/2 which via (12) can be written

LMM|ASL,N =

(
3α

2

)3/4

κz

[
cmu*,obs

1.5σiso

]3/2

' 1.1κz

[
cm

σu,obs/u*,obs

σu,obs

σiso

]3/2
(19)10

Thus for cm = σu,obs/u*,obs, we see that the Mann (1994) eddy-lifetime formulation (3) implies LMM→ 1.1κz(σu,obs/σiso)3/2

in the neutral ASL. Meanwhile, as noted just above, the mixing-length form (11) implies LMM→ cmκz; this is consistent

with (19) under the condition that (σu,obs/σiso)' (cm/1.1)2/3 or roughly σu,obs ≈ 1.6σiso for cm ' 2.3.

3 Observations and results

Since the choice of eddy lifetime form (3) leads to a shear-dependent relation (7) between the spectral-tensor model parameters,15

one obtains (10) for the undistorted (isotropic) length scale, with LMM ∝σiso(dU/dz)−1; further invoking a mixing-length

argument then leads to a relation (15) for LMM in terms of quantities that are directly measureable via standard wind-industry

(one-dimensional cup) anemometers. Here we test (15) as well the assumptions leading to it, through measured wind speed,

shear, and turbulent velocity component spectra. We also find a form for the distribution of LMM over all conditions—as would

be needed in practice to represent the turbulence length scales of flows experienced by wind turbines at a given site.20

The spectra
::
For

:::
the

::::::::::::::::
assumption-testing

::
in

:::
this

:::::::
section,

:::
the

::::::
spectra

::::
used

:
are measured via three-dimensional sonic anemome-

ters on the primary meteorological mast located at the Danish National Test Site for Large Wind Turbines (Høvsøre), 1.75 km

from the western coast of Denmark (Mann et al., 2005; Peña et al., 2016). The anemometers give 20 Hz samples of all three

velocity components and temperature8 at heights of 10, 20, 40, 60, 80, and 100 m. This allows calculation of mean speeds,

directions, and vertical shear of mean speed over individual 10-minute records; in particular we focus on heights of z =20 m25

and z =80 m, as we are able to calculate shear at (across) these heights using the measurements at 10, 40, 60, and 100 m, while

also using the measured wind speed components and susbequent spectra at z = {20,80}m. The parameters {LMM,Γ, ε} are

obtained via fits of precalculated Mann-model spectra to the measured velocity-component and stress spectra F11(f), F22(f),

8The sonic anemometers actually give a temperature very close to the virtual temperature, i.e. the temperature including buoyant effects of water vapor.
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F33(f), and F13(f); this is done via Taylor’s hypothesis (k1 = 2πf/U ) and chi-squared
::::
along

::::
with

:::::::::
combined

:::::::::::
least-squares

fits (Mann, 1994; Chougule et al., 2017).

3.1 Testing of assumptions and predicted constraints

The implications of (12–15) included the independence of LMM and cτ from Γ, as well as e.g. the expected dependence σu,obs ∝
Γσiso. Indeed we find that LMM is independent of Γ, with no significant statistical correlation: 〈LMMΓ〉/

√
〈L2

MM〉〈Γ2〉< 0.155

for land or sea sectors at any given height. We also confirm that σu,obs ∝ Γσiso, which is demonstrated by Figures 1–2. The first

figure displays the joint probability density P (σu,obs,σiso), where σu,obs is the streamwise turbulent variance measured in 10-

minute intervals, and σiso is calculated using (9) with LMM and ε from spectral fits corresponding to the same intervals. One can

see from Fig.
:::::
Figure 1 that σu,obs generally follows σiso, and we find σ2

u,obs ≈ 3σ2
iso::::::::::::::
σu,obs/σiso ≈ 5/3; that is σu,obs/σiso ≈ 1.7.

Such evidence corresponds closely to the predicted constraint following (19) that σu,obs/σiso should have a value of roughly 1.610

in the neutral surface layer; this is reasonable in the mean, since conditions on average are essentially neutral due to the shape

of the stability distribution at Høvsøre (Kelly and Gryning, 2010). Figure 2 further shows that σu,obs/σiso ∝ Γ, consistent with

cτ being a constant independent of Γ following (14). The slope of the line in Fig. 2 also corresponds to the behavior implied

by the approximate Mann-model behavior σu,MM ≈ σiso(0.61 + 0.3Γ) for Γ & 2, outlined at the end of section 2.2.2 above.

Considering only wind speeds above 7 m s−1 (i.e. ignoring low speeds that have little impact on turbine loads),
::::::::::
Considering15

::::
wind

::::::
speeds

::
in

:::
the

::::::
typical

::::::
turbine

::::::::
operating

:::::
range

::
of

::::::::::
4–25 m s−1,

:
the Høvsøre data also confirm that 〈σu/u∗〉obs ≈2.3, consis-

tent with the findings of Caughey et al. (1979). Further, for these significant wind speeds, the data also show that 〈cm〉 ≈ 2.3,

so that (13) reduces approximately to (15). Figures 1–2 were made considering U >7 m s−1, though they are essentially the

same when including speeds down to
:
It
::

is
:::::

also
:::::
found

::::
that

:::
the

:::::
same

:::::::::::
approximate

:::::
trends

::::
are

::::
seen

:::::
when

::::::::::
considering

:::::
only

4
:::::
U >7 m s−1(with slightly more scatter

::::
(not

:::::::
shown),

:::
but

:::::
with

::::::
slightly

::::
less

::::::
scatter

:::::::::
(narrower

::::
joint

:::::::::::
distributions)

:
away from20

the main trends shown ). For the remainder of the figures, we continue to consider U >7 m s−1.
::::::::
predicted

:::::::::
σu,obs/σiso ::::::::

behaviors

:::::
shown

::
in

::::::::::
Figures 1–2

:::::::::::::
(dashed/dotted

::::
lines)

::::
and

::::::::
discussed

::::::
above.

The data also show that σu/u∗ is not correlated with LMM, whether we include all speeds, or limit the wind speed range

to 7–25 m s−1 or 4–25 m s−1. Thus this ratio can be treated as a constant in (13) for a given height (or throughout the surface

layer), using (13) over a range of wind speeds.25

3.2 Turbulence length-scale distributions P (LMM)

The efficacy of using (15) to estimate the spectral length scale LMM can be seen by considering Figure 3. The figure displays

the joint-distribution of turbulence length scale at a height of z =80 m, i.e. P
(
LMM,obs,σu,obs|dU/dz|−1

)
; this is obtained

through (15) from 10-minute measurements and via fitting observed spectra. Fig. 3 is usefully interpreted as the probability-

weighted performance of (15) for predicting LMM (from σu,obs measured at z =80 m and the shear dU/dz observed over30

z =60–100 m), versus the LMM obtained from fits of the spectral-tensor model to corresponding 10-minute spectra. One sees

9
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Figure 1. Joint distribution of isotropic (un-distorted) variance σ2
iso(ε,LMM) obtained from fits to measured spectra and observed stream-

wise variance σu,obs, from height z =80 m over homogeneous land sectors at Høvsøre; dashed line indicates a slope of 3.
:::::::::
corresponds

:
to
::::::::::::::
σu,obs/σiso = 5/3.
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Figure 2. Ratio of observed streamwise to isotropic fluctuation magnitude, versus Γ obtained from spectral fits, plotted as joint-PDF

P (Γ,σu,obs/σiso). Dashed (horizontal) line shows σu,obs/σiso =
√

3
:::::::::::::::
σu,obs/σiso =

√
5/3 corresponding to slope of dashed line in Fig. 1;

dotted line shows the mean linear Γ-dependence of σu,obs/σiso.
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a 1:1 relationship, particularly for the most commonly-found values of the length scale; these LMM range from ∼15–50 m.9

Compared to the scales calculated from observed spectra, there is some mis-prediction of LMM calculated by (15), but it is

relatively rare; this is shown by the low probabilities in Fig. 3 away from the well-predicted most commonly-ocurring LMM.

To demonstrate the statistical character of (15), as well as its potential for probabilistic use (e.g. as input to probabilistic

loads calculations), Figure 4 shows the probability density P (LMM). As in Fig. 3, LMM is again calculated from fits to 10-5

minute spectra and also estimated by σu,obs/(dU/dz), i.e. Eq. 15. Additionally Fig. 4 displays P (LMM) for LMM calculated

through (11), i.e. cmu∗/(dU/dz); this is done both using the value of cm =1.7 reported by Peña et al. (2010), as well as using

the approximate mean of 2.3 found to be consistent with measurements and theory in sections 3.1 and 2.2 above. From Fig. 4

one sees that for values of turbulent peak scale greater than the mode (∼20 m) up to roughly 150 m, there is a match between

the distribution of the diagnosed LMM and distributions of length scale estimated from the forms (15) based on σu,obs and (11)10

based on u∗ with cm=2.3; these are roughly equivalent for this case over relatively simple homogeneous terrain. It is found that

the Peña et al. (2010) value of cm=1.7 leads to overprediction of LMM by a factor of 2 or more at scales smaller than 10 m, and

underprediction by 50% or more at scales larger than 50 m. The u∗-based form (11) using cm = 2.3 matches the spectrally-fit

diagnosed distribution P (LMM) slightly better than the σu-based form (15), with predicted peak (mode) values of LMM being

about 3–4 m smaller than the diagnosed peak-LMM.15

For the homogeneous land case in Fig. 4 the PDF of 2.3u∗,obs/(dU/dz) matches P (LMM) observed from the spectral fits

to within 10%, over the range 10 m .LMM.75 m, and the PDF of σu,obs/(dU/dz) also matches within 10% over the range

15 m .LMM.50 m. This is consistent with the darkly-colored 1:1 patch evident in Fig. 3, and also shows that eqn. 15 (and also

eqn. 11 with cm = 2.3) is sufficient for probabilistic wind loads simulations, for two reasons. First, the well-matched range

of scales corresponds to the most commonly found LMM. Secondly, although scales smaller than ∼15 m are not rare (with an20

occurence of roughly 1 in 6), they will have a diminishing effect on turbine loads. More specifically, LMM is more than 70%

likely to fall in the 15–75 m range, i.e. P (15 m< LMM < 75 m)> 0.7, and LMM has more than 86% likelihood of occurence

between 0 and 75 m, for this homogeneous land case at z = 80 m. The relatively common shorter scales correspond to weaker

turbulent fluctuations (thus loads), because on average σu,obs ∝ L2/3
MM (as implied by Fig. 1 and Eqns. 9–15). Further, turbine

loads are less influenced by fluctuations characterized by spatial scales significantly smaller than the blade lengths; thus the25

error in predicted probability for these shorter scales, and the slight underprediction of the most common LMM, should not

significantly influence probabilistic loads calculations relying on site-specific LMM obtained via measurements and (15).

While (15) is useful to estimate LMM and P (LMM) as shown above, one expects (13) to perform better, as it does not rely

on the approximation cm = σu/u∗. Indeed 〈cmu∗/σu〉 is actually 1.13 (or 1.11
:::
1.11

:::
(or

::::
1.13

:
if considering winds down to

::::
only

:::::
down

::
to 4

:
7 m s−1) due to σu/u∗ being slightly smaller and cm slightly larger than 2.3; using these values in (13) gives30

estimates of LMM closer to the spectrally-diagnosed LMM, and within 10% of P (LMM) over a range of LMM from below 10 m to

beyond 100 m. It should also be noted that also including speeds from 7 m s−1 down to 4 m s−1
:::::::
ignoring

::::::
speeds

:::::
below

:::::::
7 m s−1

9The spectral fits were done using spectral-tensor model output over the parameter ranges of 5< LMM < 500 m and 0≤ Γ≤ 5. Some spectra were poorly

fitted; since these occurred when Γ=5, cases with Γ>4.95 were excluded from the analysis here. As justification, I note that only a small fraction of the

cases (< 10%) had such Γ, and that we only consider well-fit spectra for reliable comparison of parameters.
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Figure 3. Joint probability density function of predicted and diagnosed (observed) turbulent length scale, from measurements at Høvsore

over the homogeneous eastern land sectors. “x-axis”: Mann-model scale LMM from spectral fits; “y-axis”: LMM estimated from direct mea-

surements of dU/dz and σu, via (15).

can lead to slightly larger
::::::
smaller

:
LMM, since these low wind speeds are more influenced by unstable conditions. Indeed for

LMM&50 m, including the lower wind speeds caused
:::::
causes both diagnosed and predicted LMM to increase roughly 10%; this

is consistent with larger turbulent eddies being created under unstable conditions.
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Figure 4. Probability density function of turbulent length scale from observations at Høvsore from the homogeneous eastern land sec-

tors. Black: Mann-model scale from fits to spectra; dotted/blue: ‘mixing-length’ formulation (`m ∝u∗/|dU/dz|) with revised constant;

dashed/gold: Peña et al. (2010) form for `m; red/long-dashed: σu/|dU/dz| form (15).

3.2.1 Estimating P (LMM) in coastal/offshore conditions

To demonstrate the (probabilistic) use of (13) or (15) for LMM in somewhat different conditions, we now consider flow from

offshore, using data from the same mast and height as above (Høvsøre, z = 80 m) but for wind directions between 240◦ and

300◦. The mast is roughly 1.75 km east of the coastline and subsequently 1.65 km east of a 16–17 m-high sand dune that

lies 100 m inland, where both are locally oriented in the N-S direction (i.e. for the range of wind directions considered). The5

dune causes enhanced/accelerated transition of the flow from an offshore (water roughness) to an over-land flow-regime (Berg

et al., 2015); this results in winds which reflect on-shore and coastal conditions at low heights (below ∼40–80 m depending on

stability) and offshore conditions at higher z.
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Figure 5. Probability density of turbulence length scale LMM from observations at Høvsore over both the homogeneous land (eastern) sectors

and inhomogeneous coastal (western) sectors. Black: LMM from fits to spectra over land; red/long-dashed: new simplified form (15) over

land; purple: LMM from fits to spectra from offshore; cyan/long-dashed
::::::::
dot-dashed: new simplified form (15) from offshore.

Figure 5 displays the distribution P (LMM) of spectral-peak (Mann-model) length scales for coastal/offshore winds (from

west±30◦), again using (15) to estimate LMM along with LMM diagnosed through spectral fits. For comparison the correspond-

ing P (LMM) for easterly winds from Fig. 4 is also included. Just as for the homogeneous land case shown in Fig. 4, one sees

in Fig. 5 that for inhomogeneous coastal conditions, again (15) gives P (LMM) basically matching the spectrally-fit obervations

for scales beyond ∼15 m; in this coastal regime the range of well-predicted LMM extends further, to ∼150 m. While one sees5

that the distribution of LMM is a bit different for the (western) inhomogeneous coastal case than for the (eastern) homogeneous

land case, the simple expression (15) functions similarly for both flow regimes, with the arguments presented in above in

section 3.2 again applying here. The u∗-based Eq. 11 also behaves similarly (not shown) as in the homogeneous land case of

Fig. 4, i.e. with gross overpredictions at small scales and underpredictions at large scales. One difference between the coastal

and land cases is that for small LMM, (15) overestimates the distribution P (LMM) a bit more for the coastal regime than for10

the homogeneous land regime (LMM < 20 m); as explained above for the land case, an overprediction at the smallest is not

expected to significantly impact loads calculations, due to the relatively small length scales involved.
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3.2.2 Estimation of P (LMM) in more complex conditions

To further show the behavior of LMM and the utility of (15) at a site with more complex conditions, we examine data from the

inhomogeneous forested Danish National Test Centre for Large Wind Turbines site near Østerild in Denmark (see e.g. Hansen

et al., 2014, for details). Here sonic anemometer data is available at a heights of 10 m and 44 m, with concurrent data from three

lidars at z ={45, 80, 140, 200, 300} m. In this study we consider data from the site’s ‘western LIDAR,’10 to measure winds that5

flow over the forest more than 70% of the time, where the canopy height is 10–20 m (Hansen et al., 2014; Sogachev et al.,

2017). The analysis here uses one year (May 2010–May 2011) of wind speeds U ≥ 5 m s−1 from the LIDAR at 45 m and 80 m

heights along with the ‘fast’ (20 Hz) data from the sonic anemometer at 44 m. The shear dU/dz is measured across 45–80 m; the

spectra and subsequent turbulence/Mann-model parameters {LMM,Γ,ε}, as well as and measured quantities {σu,obs,u∗,obs}, are

obtained from the sonic anemometer. The measurements are significantly higher than twice the forest canopy height, and thus10

above the roughness sublayer (Garratt, 1980; Raupach et al., 1980) and amenable to similarity and mixing-length theory (e.g.

Sogachev and Kelly, 2016) as well as Mann-model use (Chougule et al., 2015).

Just as Figure 4 showed for flow over homogeneous land at Høvsøre in section 3, here Figure 6 displays the probability

density of turbulence (Mann-model) length scale LMM observed via spectral fits at z =44 m for Østerild, along with predictions

based on both (11) via u*,obs and (15) via σu,obs.15

As in the cases above (homogeneous land and inhomogeneous coastal), the new form (15) predicts the distribution rather

well, particularly for scales between ∼10–100 m—despite the shape of P (LMM) being different due to the trees. For the forest

case of Fig. 6 the σu-based form captures both the peak (most likely LMM) and magnitude of P (LMM), while the u∗-based form

grossly underpredicts LMM, moreso than for the previous cases. The latter is likely due to u*,obs being
::::::::::::
predominantly affected

by the canopy (via its larger effective roughness) moreso than σu,obs, which tends to be more characteristic of the entire ABL20

:::::::::::::::
(Wyngaard, 2010) . There is, however a curious minor peak (with a probabilitywell under

:::
∼1% ) for around

::
as

::::
large

:::
as

:::
the

::::
main

:::::
peak)

::::::
around

::::::
scales

::
of ∼300±50 m in the length-scale distribution obtained from spectral fits shown in Fig. 6, which

:
;

:::
this is not captured by either formulation

:::
the

:::::::
u∗-based

:::::
form

::::
(11)

:::
nor

::::::::
σu-based

:::::::::::
formulations

::::::
(13,15). Although this peak falls

spectrally at small wavenumbers (frequency divided by mean wind speed) that are more difficult to capture when spectrally

fitting the Mann model, it indeed
::::::
actually

:
corresponds to the distance to the next upwind edge of the forest (orchard segment)25

in the predominant wind directions.

Probability density function of turbulent length scale from observations at Østerild from the western mast/lidar. Black: Mann-model

scale from fits to spectra; dotted-blue: ‘mixing-length’ formulation (`m ∝u∗/|dU/dz|) with revised constant; red: new form (15),

σu/|dU/dz|.
10The ‘western LIDAR’ at Østerild is located∼1 km west of the northern-most turbines but less than 100 m east of a forest patch and and 5–20 km from the

North Sea coastline in the prevailing (W–NW) wind directions (Hansen et al., 2014).
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Figure 6.
::::::::
Probability

::::::
density

::::::
function

::
of

:::::::
turbulent

:::::
length

::::
scale

:::
from

::::::::::
observations

::
at

:
Ø
:::::
sterild

::::
from

::
the

::::::
western

::::::::
mast/lidar.

:::::
Black:

::::::::::
Mann-model

::::
scale

::::
from

:::
fits

::
to
:::::::

spectra;
::::::::::

dotted-blue:
::::::::::::
‘mixing-length’

:::::::::
formulation

::::::::::::::::
(`m ∝u∗/|dU/dz|) ::::

with
::::::
revised

:::::::
constant;

::::
red:

::::
new

::::
form

:::::
(15),

::::::::::
σu/|dU/dz|.

4
:::::::::
Discussion

Towards concluding, we first revisit the motivation for (and thus context of) this work: [1] to ‘close’ the Mann (1994)

eddy-lifetime (τM ) formulation as implemented in rapid-distortion theory—allowing relation between Mann-model param-

eters (LMM,ε,Γ) and the shear (dU/dz) taken to distort the modeled turbulence; [2] connect the parameters of the Mann

(1994) spectral turbulence and eddy-lifetime models with atmospheric statistics, both in theory and in practice; [3] provide a5

formulation for the turbulence length scale LMM in terms of quantities commonly-measured in wind energy; [4] demonstrate

that the ‘measureable’ form developed for LMM is robust and amenable to use in (probabilistic) wind turbine loads calculations.

These four motivating goals have basically been realized, as shown in the previsous sections, and this work has a number of

implications.
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4.1 Implications and Application

A previously suggested form (11) for LMM, based on friction velocity u∗ and (10-minute) mean wind shear dU/dz (Peña et al.,

2010), was confirmed here to be sensitive to its proportionality constant cm. But this constant can vary from site to site (and

possibly with height), and the published value of cm = 1.7 (Peña et al., 2010) leads to significant error in prediction of LMM

for the different conditions (land and sea directions) at Høvsøre and at the forested site of Østerild. Finding cm from sonic5

anemometer observations via LMM from fits to spectra and friction velocity measurements, (11) may perform slightly better

over uniform flat terrain compared to the σu-based form (15); but this can be considered a site-dependent fit in itself, as was

the case when using a diagnosed value of cm = 2.3 for the homogeneous flat land sectors at Høvsøre. However, obtaining cm

is generally not possible in industrial practice; where it can be obtained, it relies on LMM—which is the quantity desired—

thus negating the purpose of (11). While u∗ can also in principle be estimated from wind speeds taken at multiple heights by10

cup anemometers, this too is difficult in practice: one must account for stability, not to mention the need for measurements

at multiple heights in the surface layer (or worse, the limited validity of similarity theory above the ASL). Furthermore, it is

expected that cm is a function of the (local) surface roughness, as demonstrated by the different results found over the forested

Østerild site. Thus the form (15) is preferable, since it requires only the commonly-measured quantities σu and dU/dz. This

simple form also gave good estimates of P (LMM) in the forested case—without the need for tuning, whereas the u∗-based15

form (11) requires a re-calculation of its coefficient cm for such cases.

Since (13) gave yet better performance than both its simplified form (15) and the u∗-based relation (11), one might suggest its

use. But (13) requires cm/(σu/u∗), where cm is difficult to obtain, as discussed in the previous paragraph. However, although

cm might vary from site to site (or perhaps with height), it was found that the ratio cm/(σu/u∗) did not vary appreciably—

consistent with the good performance of the simplified form (15), which assumes cm ≈ σu/u∗, across sites and regimes.20

One interesting implication of the testing of assumptions then follows from the finding that 〈σu/u∗〉obs ≈2.3, consistent

in the surface-layer with Caughey et al. (1979). Examining the joint behavior of σu/u∗ and the stability parameter (inverse

Obukhov length) L−1, the sonic anemometer data available at multiple heights in this study shows no correlation between

these two quantities. The dimensionless profiles σ2
u(z)/u2

∗:::::::::
σ2
u(z)/u2

∗0:and u2
∗(z)/u

2
∗0 of

:::::
shown

:::
by

:
Caughey et al. (1979) also

imply25

σ2
u(z)

u2
∗(z)

≈ (2.3)2, (20)

with the ratio particularly converging to a constant above the surface layer (z/h & 0.1, where h is
:::::::
z & 0.1h,

:::::
where

:
the atmo-

spheric boundary-layer depth
:
h
::::::::
typically

::::::
ranges

::::
from

:::::::
∼200 m

::
in

:::::
stable

:::::::::
conditions

::
to

:::::
1 km

::
or

:::::
more

::
in

:::::::::
convective

:::::::::
conditions).

The flat-terrain Høvsøre data in fact show the mean value 〈σu/u∗〉obs to be independent of z. If one knew the height-dependent

behavior of
:::
how

:
cm:::::

varied
::::
with

::::::
height

::::
(and

::::::::
stability), then one could also use (20) and (13) from measurements at one height30

range, to estimate LMM at higher z. Since the the
::::
(for

:
a
:::::
given

:::::::
stability

::::::
range).

:::::
Over

:::
flat

::::::
terrain,

:::
on

:::::::
average

:::
the peak spectral

scale for streamwise fluctuations (λu) grows with z (Caughey et al., 1979; Peltier et al., 1996)11,
:
so

:
if we take LMM ∝ λu then

11The peak length scale also grows with boundary-layer depth h in convective conditions and in general with decreasing (increasingly negative )
::
thus

::::
with

::::::::
increasingly

::::::
negative inverse Obukhov length L−1 (e.g. Peltier et al., 1996). But over all stability conditions, which are dominated by neutral conditions
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with (20) one expects the ratio cm/(σu/u∗) to increase with z as well. Thus from (13) the Mann-model length scale LMM will

increase with height relative to the mixing-length `∗ ≡ u∗/(dU/dz), so at higher z one would expect the general form (13) to

be yet more accurate than its approximate form (15); though this is not likely for wind turbine rotor heights, except in very

stable conditions (Kelly et al., 2014b; Liu and Liang, 2010). Unfortunately the sonic-anemometer measurements available for

this study did not include heights well beyond the surface-layer, so such variation was difficult to detect.5

It is also notable that Figure 3 appears to imply the relative error (e.g. in %) in estimating LMM with (15) grows for less

common values of LMM, particularly very large scales (and also at very small scales if including U <7m/s, not shown). Thus

(15) is recommended first for estimation of P (LMM). However, the error at large scales is in part dependent on the limited (10-

minute) sample lengths and the fitting routine, as there are very few points to fit at the lowest frequencies. Use of 30-minute

samples can reduce such scatter, and modification of the fitting algorithms may also improve estimations of the larger scales.10

Ongoing work includes wind-speed dependent prediction of LMM, particularly the conditional statistics P (LMM|U). Further

concurrent work also entails systematic accounting for the rotor size (shear distance) relative to height (i.e. ∆z/z) within

the distribution of length scales; following Kelly and Gryning (2010) and Kelly et al. (2014a) a semi-empirical derivation

of P (LMM) including ∆z/z has been obtained, but demands more data for validation and publication. Understanding of the

latter facilitates ‘vertical extrapolation’ of LMM and measured turbulence and shear statistics, as well as accounting for the15

effect of rotor size or shear measurement span.

4.2 Summary of conclusions

5 Conclusions

• The eddy lifetime of Mann (1994), which is part of commonly used turbulence modelling for wind turbine design load

cases (e.g. IEC 61400–1, Edition 3, 2005), leads to a relation for turbulence (spectral-peak) length scale LMM of

LMM '
cm

(σu,obs/u*,obs)

σu
dU/dz

,

where cm and σu,obs/u*,obs are essentially constants for a given height z
:
,
:::
and

:::::::::::::::
cm/(σu,obs/u*,obs)::

is
:::::
found

::
to
::::
fall

:::::::
between

::::::
1–1.11

::
for

:::
the

:::::
three

::::
flow

:::::::
regimes

:::::::
analyzed.20

• Theory and measurements support the assumption that cm/(σu,obs/u*,obs)≈1, roughly constant for different atmospheric

flow regimes; the turbulence length scale can thus be approximated as
:::::::::::
consequently

::
be

::::::::::::
approximated

::
by

:

LMM '
σu

dU/dz
;.

thus
::::
Thus typical 10-minute mean cup anemometer measurements can be used to estimate LMM.

• LMM is affected by atmospheric stability; this effect is contained within σu and dU/dz.

(Kelly and Gryning, 2010), and over an expected distribution of h at a given site, the basic growth of λu with z is consistent with Peltier et al. (1996) reporting

λu ∝ z for neutral conditions.
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• In terms of the classic mixing-length form u∗/|dU/dz|, the turbulence length scale LMM in the spectral-tensor model is

observed to be larger (by ca. 30–40%) than previously reported by Peña et al. (2010).
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