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Abstract.

In wind energy, the the effect of turbulence upon turbines is typically simulated using wind ‘input’ time-series based on

turbulence spectra. The velocity components’ spectra are characterized by the amplitude of turbulent fluctuations, as well

as the length scale corresponding to the dominant eddies. Following the IEC standard, turbine loads calculations commonly

involve use of the Mann spectral-tensor model to generate timeseries of the turbulent three-dimensional velocity field. In5

practice, this spectral-tensor model is employed by adjusting its three parameters: the dominant turbulence length scale LMM

(peak length scale of an undistorted isotropic velocity spectrum), the rate of dissipation of turbulent kinetic energy ε, and the

turbulent eddy-lifetime (anisotropy) parameter Γ. Deviation from ‘ideal’ neutral sheared turbulence—i.e. for non-zero heat flux

and/or heights above the surface layer—is, in effect, captured by setting these parameters according to observations.

Previously, site-specific {LMM,ε,Γ}were obtainable through fits to measured three-dimensional velocity component spectra10

recorded with sample rates resolving the inertial range of turbulence (& 1Hz); however, this is not feasible in most industrial

wind energy projects, which lack multi-dimensional sonic anemometers and employ loggers that record measurements av-

eraged over intervals of minutes. Here a form is derived for the shear dependence implied by the eddy-lifetime prescription

within the Mann spectral-tensor model, which leads to derivation of useful forms of the turbulence length scale. Subsequently

it is shown how LMM can be calculated from commonly-measured site-specific atmospheric parameters, namely mean wind15

shear (dU/dz) and standard deviation of streamwise fluctuations (σu). The derived LMM can be obtained from standard (10-

minute average) cup anemometer measurements, in contrast with an earlier form based on friction velocity.

The new form is tested across several different conditions and sites, and is found to be more robust and accurate than

estimates relying on friction velocity observations. Assumptions behind the derivations are also tested, giving new insight

into rapid-distortion theory and eddy-lifetime modelling—and application—within the atmospheric boundary layer. The work20

herein further shows that distributions of turbulence length scale, obtained using the new form with typical measurements,

compare well with distributions P (LMM) obtained by fitting to spectra from research-grade sonic anemometer measurements

for the various flow regimes and sites analyzed. The new form is thus motivated by and amenable to site-specific probabilistic

loads characterization.
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1 Introduction

Of the atmospheric parameters which are generally input into (or required by) wind turbine loads calculation codes, several

stand out, due to their prominence in load contributions: the ‘mean’ wind speed U , the standard deviation of streamwise

turbulent velocity σu, the shear dU/dz or shear exponent α, and the characteristic turbulence length scale L corresponding

to the most energetic turbulent motions (e.g. Wyngaard, 2010). Dimitrov et al. (2015) explored the importance of shear (α);5

Dimitrov et al. (2017) found that both fatigue and extreme turbine loads can be sensitive to L in addition to the dominant

influences of mean wind speed U and streamwise turbulence ‘strength’ σu.1 These are also consistent with the earlier finding

of Sathe et al. (2013) that stability could affect fatigue loads through α and σu.

Within the context of obtaining site-dependent statistics of the most crucial load-driving parameters (U,σu,α,L) from con-

ventional industrial wind measurements, this work focuses on the one parameter which has thus far been most difficult to10

measure: the turbulence length scale L. The turbulence length scale corresponds to the ‘energy-containing sub-range’ of tur-

bulent velocity fluctuations associated with the peak of the streamwise velocity spectrum, which contribute most to turbulent

kinetic energy (and σu)—and which can dominate the turbulence contribution to wind turbine loads. Measurements used in

wind energy are usually stored as 10-minute statistics (average and standard deviation of wind speed and direction), so one

cannot obtain turbulence spectra from them, nor can one calculate integral time or length scale from such observations.15

Because of its widespread use in the wind industry and its inclusion in the IEC 61400–1, Edition 3 (2005) standard on

design requirements for wind turbines, here we consider the spectral turbulence model of Mann (1994), and L as prescribed

for this model. Within the ‘Mann-model,’ which uses rapid-distortion theory (‘RDT’) to account for shear-induced distortion

of isotropic turbulence (see e.g. Savill, 1987; Pope, 2000), there is also a prescription for the scale-dependent time over which

turbulent eddies of a given size are distorted. This time-scale is key to proper representation of atmospheric turbulence and20

reproduction of component spectra via RDT. However, the eddy-lifetime was not directly derived, but rather cleverly prescribed,

by Mann (1994). Concurrent to and independent of the work herein, de Mare and Mann (2016) also derived some relations

to create a model for time-varying eddy lifetime. The present article provides direct derivation of the eddy lifetime, which

results in a relation between the three (spectral) parameters of the Mann model and measureable quantities. More importantly,

the derivations here include connection of the turbulence length scale to routinely available quantities from typical 10-minute25

industrial wind records. The turbulence length scale is in fact that corresponding to the von Kármán (1948) spectral form, and

thus the relation here is applicable to other turbulence models used in wind engineering, such as those relying on the Kaimal

et al. (1972) spectrum.

After deriving the eddy lifetime and giving subsequent expressions for the turbulence length scale, this article proceeds to

validation of the underlying assumptions. Constraints implied by fitting the Mann-model to measured spectra in non-neutral30

conditions, given eddy-lifetime and mixing-length relations, are also tested. This includes dependence of predicted velocity

variance on model anisotropy parameter (Γ), as well as implications in the surface-layer and connection to previous findings in

boundary-layer meteorology. Finally, the length-scale obtained from conventional 10-minute wind measurements via the new

1To a lesser extent there has also been found some sensitivity to the Mann-model anisotropy parameter Γ).
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expression is compared to the length scale found from fits of Mann-model output to measured component spectra; this is done

using data from multiple sites, representing several types of site conditions.

2 Theory

Relation of the turbulence length (spectral ‘peak’) scale to measureable statistics is possible through the eddy-lifetime form of

Mann (1994), where the latter is defined in terms of the isotropic von Kármán spectrum that is distorted using RDT.5

2.1 Eddy lifetime

A number of forms exist to estimate eddy lifetime τe, though these can be generally expressed as the ratio of a length scale

(taken as the reciprocal of wavenumber, k−1) to a velocity scale which follows from some integrated form of the (scalar)

kinetic energy spectrum E(k):

τe ∼ k−p−1

 ∞∫
k

κ−2pE(κ)dκ

−1/2

, (1)10

where the characteristic velocity scale can be generically described by

kp

 ∞∫
k

κ−2pE(κ)dκ

1/2

.

Comparing to the ‘coherence-destroying diffusion time’ of Comte-Bellot and Corrsin (1971) and to the reciprocal of eddy-

damping rates from Lesieur (1990), for use with rapid-distortion theory Mann (1994) chose an eddy lifetime that depends on

eddy size (wavenumber) according to

τM ∝ k−1

 ∞∫
k

E(κ)dκ

−1/2

; (2)

i.e., equivalent to p= 0 in terms of (1). The choice (2) for eddy lifetime was found to behave more reasonably than both the15

Comte-Bellot and Corrsin (1971) ‘diffusion time’ (where p= 1)2, as well as the timescale [k3E(k)]−1/2 (which in the inertial

range is equivalent to p=−1)3 implicit in eddy-damped quasi-normal Markovian [EDQNM] models (Andre and Lesieur,

1977; Lesieur, 1990); both of the latter lifetime models do not (reliably) integrate to give finite σ2
u.

Mann (1994) re-writes τM as

τM (k) =
Γ

dU/dz

(kLMM)−2/3√
2F1

(
1
3 ,

17
6 ; 4

3 ; −1
(kLMM)2

) , (3)20

2 The Mann (1994) expression is also equivalent (or at least proportional) to the ‘convection time’ of Comte-Bellot and Corrsin (1971).
3 The reciprocal of eddy-damping rate, [k3E(k)]−1/2, is equal in the inertial range to (1) with p=−1 since E(κ)→ κ−5/3 there. This expression is

also similar to the ‘rotation time’ or ‘strain time’ given by Comte-Bellot and Corrsin (1971), but it should be noted that such expressions integrate from 0 to k,

i.e. over eddies larger than 1/k.
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where 2F1 is Gauss’ hypergeometric function (Abramowitz and Stegun, 1972)4 and LMM is the turbulence length scale associ-

ated with the peak of the turbulent kinetic energy spectrum E(k) as in (2). The eddy lifetime definition (3) is used in practical

implementation of the spectral tensor model (e.g. Mann, 2000), and it notably defines a parameter of this model: the eddy

lifetime factor Γ, also known as the anisotropy factor. The Mann (1994) spectral-tensor model employs rapid distortion the-

ory (‘RDT’), whereby the shear dU/dz distorts turbulence from an isotropic state, based on an initial turbulent kinetic energy5

spectrum of the von Kármán form

EvK(k) = αε2/3L
5/3
MM

(kLMM)4

[1 + (kLMM)2]17/6
(4)

where α= 1.7 (von Kármán, 1948). This in effect defines the length scale LMM through the peak of the initial spectrum.5 Using

(4) in the proportionality expression (2) produces

τM |E→EvK
=

cτ k
−2/3√

3
2αε

2/3
2F1

(
1
3 ,

17
6 ; 4

3 ; −1
(kLMM)2

) , (5)10

where we have introduced the proportionality constant cτ to write the result of integrating the proportionality relation (2)

as an equation. Now τM can be seen to depend upon k, LMM, and ε. The eddy-lifetime can be reduced and clarified via

2F1

{
1
3 ,

17
6 ; 4

3 ,(−kLMM)−2
}
' [1 + 3.07(kLMM)−2]−1/3 to give the more transparent von Kármán-like form6

τM (k;LMM,ε)'
0.82cτ√
αε2/3

k−2/3

[
1 +

3.07

(kLMM)2

]1/6

. (6)

Since (3) and (5) are equal, we have an expression relating the Mann-model parameters to the shear dU/dz:15

Γ =
cτ√
3α/2

dU

dz
L

2/3
MMε

−1/3. (7)

The expression (7) can be made yet more useful to relate the turbulent length scale to measureable parameters, as shown in

section 2.2.

2.1.1 Eddy lifetime and equilibrium

The parameters {ε,Γ,LMM} are site-dependent, and in practice have been obtained from measurements through fits of the20

model output to observed spectra (Mann, 2000), relying on (at least three of) F11, F13, F33, and F22 (e.g. Sathe et al., 2013;

Dimitrov et al., 2017). The model starts with an (undistorted) isotropic incompressible turbulence spectral tensor

Φij(k)
∣∣∣
0

=
δijk

2− kikj
4πk4

E(k) (8)

4The hypergeometric function 2F1

[
1
3
, 17

6
; 4

3
;−(kLMM)−2

]
approaches 1 for kLMM� 1 (the inertial range), and simplifies to aHG(kLMM)2/3 for

kLMM� 1, where aHG ≡ (3
√
π/4)fΓ(4/3)/fΓ(17/6)' 0.69 and fΓ(x) is the Euler-gamma function.

5The peak of the von Kármán isotropic TKE spectrum EvK(k) occurs at kLMM =
√

12/5, i.e. LMM ' 1.55/kpeak.
6Note

√
2/3' 0.82, and 3.07 = a−3

HG; c.f. footnote 4. In (6), αε2/3 is kept together for comparison with (4), and because αε2/3 is commonly used as

an input to the spectral-tensor model instead of ε (e.g. Mann et al., 2002; IEC 61400–1, Edition 3, 2005).
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where E(k) is taken to be EvK(k) shown in (4), then the Φij are distorted—i.e. the rapid-distortion equations are solved—per

(three-dimensional) wavenumber over a time τM (k) via rapid-distortion theory [‘RDT’].

The rapid-distortion equations do not explicitly solve for production of normal stresses (which sum to twice the turbulent

kinetic energy) nor shear stress, though they do include terms that perturb the stresses7 to account for the (anisotropic) effect of

a constant shear dU/dz. Further, the RDT discussed here does not include dissipation (Mann, 1994; Pope, 2000); instead, in the5

spectral-tensor model the dissipation rate of turbulent kinetic energy ε is a parameter giving the amplitude of the undistorted

(initial) spectrum via (4). In practice ε is obtained via fits of pre-calculated Mann-model output to measured spectra. So

ε in effect gives the inertial-range amplitudes of the distorted velocity component spectra, which have been distorted for a

time τM (k). From (3) one sees that the parameter Γ serves as a factor that determines the amount of distortion and associated

anisotropy: increasing Γ corresponds to longer distortion time τM and thus more anisotropy, with Γ = 0 corresponding to10

isotropy (zero distortion of the initial isotropic Φij). The separation between the peaks of the different component spectra

increases with Γ; the spectral peak of F33 is at higher wavenumbers (smaller scales) than the F22 peak, which is at higher

wavenmumbers than the peak of F11 (Mann, 1994).

A stationary equilibrium result is achieved via the eddy-lifetime prescription together with rapid-distortion of the isotropic

spectral tensor—with τM and (initial) inertial-range amplitudes depending on ε via eqns. (3–4, 7), whereby shear-production of15

TKE is in effect balanced by dissipation. I.e., the resultant shear stress 〈uw〉 (expressible now in terms of ε) can be multiplied

by 2∂U/∂z to give the implied production rate of 〈uu〉, which with vv and ww (through Γ) gives the implied TKE production

rate, amounting to P = ε; such an equilibrium, enforced by τM , can also be inferred from de Mare and Mann (2016).

2.2 Characteristic length scale

Noting that the spectrum of a variable integrates to the variance of said variable, then invoking (8) with the isotropic von Kármán20

form (4) for E(k) and exploiting F11(k1) =
∫∫

Φ11dk2dk3, one obtains the isotropic streamwise turbulence variance

σ2
iso =2

∞∫
0

9

55
αε2/3L

5/3
MM[1 + (k1LMM)2]−5/6dk1

=0.69αε2/3L
2/3
MM

(9)

which is the undistorted streamwise variance. The factor 0.69 is the numerical value of 9
55

√
πfΓ( 1

3 )
/
fΓ( 5

6 ) and fΓ(x) is the

Euler gamma function (Abramowitz and Stegun, 1972, see also footnote 4 above). Then using (9) in (7) we get a relation for

the isotropic (undistorted) turbulence length scale implied by the lifetime-model (3),25

LMM '
(

1.5Γ

cτ

)
σiso

dU/dz
, (10)

where the leading term in parenthesis is expected to be of order 1.
7Assuming a constant mean shear dU/dz, the spectral-tensor model solves Fourier-transformed versions of rapid-distortion equations for streamwise

normal stress 〈u1u1〉 and shear stress 〈u1u3〉; multiplying these by dU/dz one obtains the corresponding production rates: P11 =−2〈u1u3〉dU/dz and

P13 =−〈u3u3〉dU/dz (Pope, 2000, Ch.11).
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2.2.1 Relation to observations

Peña et al. (2010) suggested that the Mann-model length scale is proportional to the classic mixing length `∗ ≡ u∗/(dU/dz)
multiplied by an empirical constant, i.e.

LMM = cm`∗ =
cmu*,obs

dU/dz
(11)

where they assign cm=1.7. However, we find from observations that on average cm ≈ 2.3 over flat land, i.e. 〈LMM/`∗〉= 2.35

(see next section). Combining (10)–(11) one sees that cτ decreases with the relative magnitude of measured shear stress

(as σiso/u*,obs); this is also expressed usefully through the measured ratio of streamwise fluctuation amplitude to friction

velocity:

cτ '
1.5Γ

cm

σiso

u*,obs
=

1.5Γ

σu,obs/σiso

(
σu,obs/u*,obs

cm

)
. (12)

From the above and (10) one subsequently then finds10

LMM '
σu,obs

dU/dz

(
cm

σu,obs/u*,obs

)
. (13)

For constant (σu,obs/u*,obs), (13) implies that the turbulence scale LMM can be expressed independently of Γ, given σu,obs and

dU/dz.

Caughey et al. (1979) reported the mean profile of σ2
u(z) from the seminal ‘Kansas experiment’, showing that (σu/u∗)

2
0 ≈5–

6 in the homogeneous atmospheric surface layer (their Fig. 5). The corresponding value of (σu/u∗)0 is approximately 2.3; thus,15

if cm ≈ 2.3 as well, then (12) reduces to

cτ ≈
1.5Γ

σu,obs/σiso
. (14)

Given the definition of cτ through (7), cτ is a constant; since (9) shows σiso is independent of Γ, then σu,obs ∝ Γ. Consistent

with this argument, (13) reduces to

LMM ≈
σu,obs

dU/dz
, (15)20

which is also evident inserting (14) into (10). Using (15), LMM can simply be diagnosed from typical measurements, e.g.

10-minute average cup-anemometer output, at two (or more) heights. The length LMM can also be cast in terms of variables

commonly used in wind engineering, notably the turbulence intensity Iu and shear exponent α. Invoking dU/dz = αU/z

(Kelly et al., 2014a) and defining Iobs ≡ σu,obs/U , then (15) becomes

LMM ≈ z
Iobs

α
. (16)25

2.2.2 Modelled spectra: covariances, anisotropy and Γ

The spectral Mann-model (‘MM’) distorts the isotropic von Kármán spectral tensor (Φij(k), eq. 4), per wavenumber via rapid-

distortion theory over the wavenumber-dependent eddy-lifetime τM , such that the component spectra become anisotropic at
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wavenumbers outside (lower than) the inertial range; the degree of distortion—and thus anisotropy—are consequently rep-

resented by the eddy-lifetime parameter Γ. Above we showed via mixing-length arguments that LMM is independent of Γ,

resulting in (15). Possible Γ-dependences can also be examined by considering the shear stress

〈uw〉MM =−u2
*,MM = 2

∞∫
0

F13(k1)dk1 (17)

obtained from the modelled spectral tensor component F13(k1) =
∫∫

Φ13dk2dk3, which is expected to be a function of Γ.5

Indeed Mann (1994, Figure 4) shows this to be the case, with modeled stress 〈uw〉MM/σ
2
iso varying almost linearly between

0 and −1 for 0< Γ< 5; then u2
*MM/σ

2
iso ≈ Γ/5. Subsequently from (12) one has

cτ ≈
1.5
√

5Γ

cm

u*MM

u*,obs
≈ 0.64Γ

u*,obs/σiso
(18)

for cm ≈ 2.3, in analogy with (14); thus we expect u*,obs ∝ Γ, similar to the expected behavior of σu,obs ∝ Γ following (14).

In addition to the approximate expression (18), which is based on the simplified relation u2
*MM/σ

2
iso ≈ Γ/5, it is possible to10

derive an exact relation based on the the Mann-model shear stress (17); but this is cumbersome and analytically intractable.

Though de Mare and Mann (2016) derived implicit expressions toward relating {Γ, dU/dz, LMM} to the eddy lifetime and

integral of the modelled stress spectrum (17), these must be evaluated numerically or graphically. An explicit expression

corresponding to c−1
m =`∗/LMM (like eqn. 11 here) was derived by de Mare and Mann (2016), but it depends on numerically

integrating the stress spectrum.15

As spectra fitted to Mann-model outputs correspond to distorted anisotropic turbulence, and noting the Γ-dependence of

u*MM discussed above, we expect σu,MM to also depend on Γ. From Figure 4 of Mann (1994) we find σ2
u,MM/σ

2
iso ' (1 + 0.14Γ2),

which for Γ & 2, the range corresponding to ABL observations (e.g. Sathe et al., 2013), becomes roughly σu,MM ≈ σiso(0.61 + 0.3Γ).

2.3 Ideal, neutral surface-layer implications

Within the atmospheric surface-layer (‘ASL’), in the homogeneous stationary (ideal) limit under neutral conditions, dU/dz→ u∗/(κz)20

so that (11) reduces to LMM→ cmκz ≈ 0.92z. Similarly, in this ‘log-law regime’ εASL,N = u3
∗/(κz), so that (7) becomes

ΓASL,N = cτ (3α/2)−1/2(LMM/κz)
2/3 or equivalently LMM|ASL,N = (3α/2)3/4κz[Γ/cτ ]3/2 which via (12) can be written

LMM|ASL,N =

(
3α

2

)3/4

κz

[
cmu*,obs

1.5σiso

]3/2

' 1.1κz

[
cm

σu,obs/u*,obs

σu,obs

σiso

]3/2
(19)

Thus for cm = σu,obs/u*,obs, we see that the Mann (1994) eddy-lifetime formulation (3) implies LMM→ 1.1κz(σu,obs/σiso)3/2

in the neutral ASL. Meanwhile, as noted just above, the mixing-length form (11) implies LMM→ cmκz; this is consistent25

with (19) under the condition that (σu,obs/σiso)' (cm/1.1)2/3 or roughly σu,obs ≈ 1.6σiso for cm ' 2.3.
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3 Observations and results

Since the choice of eddy lifetime form (3) leads to a shear-dependent relation (7) between the spectral-tensor model parameters,

one obtains (10) for the undistorted (isotropic) length scale, with LMM ∝σiso(dU/dz)−1; further invoking a mixing-length

argument then leads to a relation (15) for LMM in terms of quantities that are directly measureable via standard wind-industry

(one-dimensional cup) anemometers. Here we test (15) as well the assumptions leading to it, through measured wind speed,5

shear, and turbulent velocity component spectra. We also find a form for the distribution of LMM over all conditions—as would

be needed in practice to represent the turbulence length scales of flows experienced by wind turbines at a given site.

For the assumption-testing in this section, the spectra used are measured via three-dimensional sonic anemometers on the

primary meteorological mast located at the Danish National Test Site for Large Wind Turbines (Høvsøre), 1.75 km from the

western coast of Denmark (Mann et al., 2005; Peña et al., 2016). The anemometers give 20 Hz samples of all three velocity10

components and temperature8 at heights of 10, 20, 40, 60, 80, and 100 m. This allows calculation of mean speeds, directions,

and vertical shear of mean speed over individual 10-minute records; in particular we focus on heights of z =20 m and z =80 m,

as we are able to calculate shear at (across) these heights using the measurements at 10, 40, 60, and 100 m, while also using

the measured wind speed components and susbequent spectra at z = {20,80}m. The parameters {LMM,Γ, ε} are obtained via

fits of precalculated Mann-model spectra to the measured velocity-component and stress spectra F11(f), F22(f), F33(f), and15

F13(f); this is done via Taylor’s hypothesis (k1 = 2πf/U ) along with combined least-squares fits (Mann, 1994; Chougule

et al., 2017).

3.1 Testing of assumptions and predicted constraints

The implications of (12–15) included the independence of LMM and cτ from Γ, as well as e.g. the expected dependence σu,obs ∝
Γσiso. Indeed we find that LMM is independent of Γ, with no significant statistical correlation: 〈LMMΓ〉/

√
〈L2

MM〉〈Γ2〉< 0.1520

for land or sea sectors at any given height. We also confirm that σu,obs ∝ Γσiso, which is demonstrated by Figures 1–2. The

first figure displays the joint probability density P (σu,obs,σiso), where σu,obs is the streamwise turbulent variance measured

in 10-minute intervals, and σiso is calculated using (9) with LMM and ε from spectral fits corresponding to the same inter-

vals. One can see from Figure 1 that σu,obs generally follows σiso, and we find σu,obs/σiso ≈ 5/3. Such evidence corresponds

closely to the predicted constraint following (19) that σu,obs/σiso should have a value of roughly 1.6 in the neutral surface25

layer; this is reasonable in the mean, since conditions on average are essentially neutral due to the shape of the stability distri-

bution at Høvsøre (Kelly and Gryning, 2010). Figure 2 further shows that σu,obs/σiso ∝ Γ, consistent with cτ being a constant

independent of Γ following (14). The slope of the line in Fig. 2 also corresponds to the approximate Mann-model behavior

σu,MM ≈ σiso(0.61 + 0.3Γ) for Γ & 2, outlined at the end of section 2.2.2 above.

Considering wind speeds in the typical turbine operating range of 4–25 m s−1, the Høvsøre data also confirm that 〈σu/u∗〉obs ≈2.3,30

consistent with the findings of Caughey et al. (1979). Further, the data also show that 〈cm〉 ≈ 2.3, so that (13) reduces approx-

imately to (15). It is also found that the same approximate trends are seen when considering only U >7 m s−1 (not shown),

8The sonic anemometers actually give a temperature very close to the virtual temperature, i.e. the temperature including buoyant effects of water vapor.
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Figure 1. Joint distribution of isotropic (un-distorted) variance σ2
iso(ε,LMM) obtained from fits to measured spectra and observed streamwise

variance σu,obs, from height z =80 m over homogeneous land sectors at Høvsøre; dashed line corresponds to σu,obs/σiso = 5/3.
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Figure 2. Ratio of observed streamwise to isotropic fluctuation magnitude, versus Γ obtained from spectral fits, plotted as joint-PDF

P (Γ,σu,obs/σiso). Dashed (horizontal) line shows σu,obs/σiso =
√

5/3 corresponding to slope of dashed line in Fig. 1; dotted line shows

the mean linear Γ-dependence of σu,obs/σiso.

but with slightly less scatter (narrower joint distributions) away from the predicted σu,obs/σiso behaviors shown in Figures 1–2

(dashed/dotted lines) and discussed above.
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The data also show that σu/u∗ is not correlated with LMM, whether we include all speeds, or limit the wind speed range

to 7–25 m s−1 or 4–25 m s−1. Thus this ratio can be treated as a constant in (13) for a given height (or throughout the surface

layer), using (13) over a range of wind speeds.

3.2 Turbulence length-scale distributions P (LMM)

The efficacy of using (15) to estimate the spectral length scale LMM can be seen by considering Figure 3. The figure displays5

the joint-distribution of turbulence length scale at a height of z =80 m, i.e. P
(
LMM,obs,σu,obs|dU/dz|−1

)
; this is obtained

through (15) from 10-minute measurements and via fitting observed spectra. Fig. 3 is usefully interpreted as the probability-

weighted performance of (15) for predicting LMM (from σu,obs measured at z =80 m and the shear dU/dz observed over

z =60–100 m), versus the LMM obtained from fits of the spectral-tensor model to corresponding 10-minute spectra. One sees

a 1:1 relationship, particularly for the most commonly-found values of the length scale; these LMM range from ∼15–50 m.910

Compared to the scales calculated from observed spectra, there is some mis-prediction of LMM calculated by (15), but it is

relatively rare; this is shown by the low probabilities in Fig. 3 away from the well-predicted most commonly-ocurring LMM.

To demonstrate the statistical character of (15), as well as its potential for probabilistic use (e.g. as input to probabilistic

loads calculations), Figure 4 shows the probability density P (LMM). As in Fig. 3, LMM is again calculated from fits to 10-

minute spectra and also estimated by σu,obs/(dU/dz), i.e. Eq. 15. Additionally Fig. 4 displays P (LMM) for LMM calculated15

through (11), i.e. cmu∗/(dU/dz); this is done both using the value of cm =1.7 reported by Peña et al. (2010), as well as using

the approximate mean of 2.3 found to be consistent with measurements and theory in sections 3.1 and 2.2 above. From Fig. 4

one sees that for values of turbulent peak scale greater than the mode (∼20 m) up to roughly 150 m, there is a match between

the distribution of the diagnosed LMM and distributions of length scale estimated from the forms (15) based on σu,obs and (11)

based on u∗ with cm=2.3; these are roughly equivalent for this case over relatively simple homogeneous terrain. It is found that20

the Peña et al. (2010) value of cm=1.7 leads to overprediction of LMM by a factor of 2 or more at scales smaller than 10 m, and

underprediction by 50% or more at scales larger than 50 m. The u∗-based form (11) using cm = 2.3 matches the spectrally-fit

diagnosed distribution P (LMM) slightly better than the σu-based form (15), with predicted peak (mode) values of LMM being

about 3–4 m smaller than the diagnosed peak-LMM.

For the homogeneous land case in Fig. 4 the PDF of 2.3u∗,obs/(dU/dz) matches P (LMM) observed from the spectral fits25

to within 10%, over the range 10 m .LMM.75 m, and the PDF of σu,obs/(dU/dz) also matches within 10% over the range

15 m .LMM.50 m. This is consistent with the darkly-colored 1:1 patch evident in Fig. 3, and also shows that eqn. 15 (and also

eqn. 11 with cm = 2.3) is sufficient for probabilistic wind loads simulations, for two reasons. First, the well-matched range

of scales corresponds to the most commonly found LMM. Secondly, although scales smaller than ∼15 m are not rare (with an

occurence of roughly 1 in 6), they will have a diminishing effect on turbine loads. More specifically, LMM is more than 70%30

likely to fall in the 15–75 m range, i.e. P (15 m< LMM < 75 m)> 0.7, and LMM has more than 86% likelihood of occurence

9The spectral fits were done using spectral-tensor model output over the parameter ranges of 5< LMM < 500 m and 0≤ Γ≤ 5. Some spectra were poorly

fitted; since these occurred when Γ=5, cases with Γ>4.95 were excluded from the analysis here. As justification, I note that only a small fraction of the

cases (< 10%) had such Γ, and that we only consider well-fit spectra for reliable comparison of parameters.

11
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Figure 3. Joint probability density function of predicted and diagnosed (observed) turbulent length scale, from measurements at Høvsore

over the homogeneous eastern land sectors. “x-axis”: Mann-model scale LMM from spectral fits; “y-axis”: LMM estimated from direct mea-

surements of dU/dz and σu, via (15).

between 0 and 75 m, for this homogeneous land case at z = 80 m. The relatively common shorter scales correspond to weaker

turbulent fluctuations (thus loads), because on average σu,obs ∝ L2/3
MM (as implied by Fig. 1 and Eqns. 9–15). Further, turbine

loads are less influenced by fluctuations characterized by spatial scales significantly smaller than the blade lengths; thus the

12
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Figure 4. Probability density function of turbulent length scale from observations at Høvsore from the homogeneous eastern land sec-

tors. Black: Mann-model scale from fits to spectra; dotted/blue: ‘mixing-length’ formulation (`m ∝u∗/|dU/dz|) with revised constant;

dashed/gold: Peña et al. (2010) form for `m; red/long-dashed: σu/|dU/dz| form (15).

error in predicted probability for these shorter scales, and the slight underprediction of the most common LMM, should not

significantly influence probabilistic loads calculations relying on site-specific LMM obtained via measurements and (15).

While (15) is useful to estimate LMM and P (LMM) as shown above, one expects (13) to perform better, as it does not rely on

the approximation cm = σu/u∗. Indeed 〈cmu∗/σu〉 is actually 1.11 (or 1.13 if considering winds only down to 7 m s−1) due

to σu/u∗ being slightly smaller and cm slightly larger than 2.3; using these values in (13) gives estimates of LMM closer to the5

spectrally-diagnosed LMM, and within 10% of P (LMM) over a range of LMM from below 10 m to beyond 100 m. It should also

be noted that ignoring speeds below 7 m s−1 can lead to slightly smaller LMM, since these low wind speeds are more influenced

by unstable conditions. Indeed for LMM&50 m, including the lower wind speeds causes both diagnosed and predicted LMM to

increase roughly 10%; this is consistent with larger turbulent eddies being created under unstable conditions.

13



3.2.1 Estimating P (LMM) in coastal/offshore conditions

To demonstrate the (probabilistic) use of (13) or (15) for LMM in somewhat different conditions, we now consider flow from

offshore, using data from the same mast and height as above (Høvsøre, z = 80 m) but for wind directions between 240◦ and

300◦. The mast is roughly 1.75 km east of the coastline and subsequently 1.65 km east of a 16–17 m-high sand dune that

lies 100 m inland, where both are locally oriented in the N-S direction (i.e. for the range of wind directions considered). The5

dune causes enhanced/accelerated transition of the flow from an offshore (water roughness) to an over-land flow-regime (Berg

et al., 2015); this results in winds which reflect on-shore and coastal conditions at low heights (below ∼40–80 m depending on

stability) and offshore conditions at higher z.

Figure 5 displays the distribution P (LMM) of spectral-peak (Mann-model) length scales for coastal/offshore winds (from

west±30◦), again using (15) to estimate LMM along with LMM diagnosed through spectral fits. For comparison the correspond-10

ing P (LMM) for easterly winds from Fig. 4 is also included. Just as for the homogeneous land case shown in Fig. 4, one sees

in Fig. 5 that for inhomogeneous coastal conditions, again (15) gives P (LMM) basically matching the spectrally-fit obervations

for scales beyond ∼15 m; in this coastal regime the range of well-predicted LMM extends further, to ∼150 m. While one sees

that the distribution of LMM is a bit different for the (western) inhomogeneous coastal case than for the (eastern) homogeneous

land case, the simple expression (15) functions similarly for both flow regimes, with the arguments presented in above in15

section 3.2 again applying here. The u∗-based Eq. 11 also behaves similarly (not shown) as in the homogeneous land case of

Fig. 4, i.e. with gross overpredictions at small scales and underpredictions at large scales. One difference between the coastal

and land cases is that for small LMM, (15) overestimates the distribution P (LMM) a bit more for the coastal regime than for

the homogeneous land regime (LMM < 20 m); as explained above for the land case, an overprediction at the smallest is not

expected to significantly impact loads calculations, due to the relatively small length scales involved.20

3.2.2 Estimation of P (LMM) in more complex conditions

To further show the behavior of LMM and the utility of (15) at a site with more complex conditions, we examine data from the

inhomogeneous forested Danish National Test Centre for Large Wind Turbines site near Østerild in Denmark (see e.g. Hansen

et al., 2014, for details). Here sonic anemometer data is available at a heights of 10 m and 44 m, with concurrent data from three

lidars at z ={45, 80, 140, 200, 300} m. In this study we consider data from the site’s ‘western LIDAR,’10 to measure winds that25

flow over the forest more than 70% of the time, where the canopy height is 10–20 m (Hansen et al., 2014; Sogachev et al.,

2017). The analysis here uses one year (May 2010–May 2011) of wind speeds U ≥ 5 m s−1 from the LIDAR at 45 m and 80 m

heights along with the ‘fast’ (20 Hz) data from the sonic anemometer at 44 m. The shear dU/dz is measured across 45–80 m; the

spectra and subsequent turbulence/Mann-model parameters {LMM,Γ,ε}, as well as and measured quantities {σu,obs,u∗,obs}, are

obtained from the sonic anemometer. The measurements are significantly higher than twice the forest canopy height, and thus30

10The ‘western LIDAR’ at Østerild is located∼1 km west of the northern-most turbines but less than 100 m east of a forest patch and and 5–20 km from the

North Sea coastline in the prevailing (W–NW) wind directions (Hansen et al., 2014).

14



P(LMM) land/E

P(σu /|dU/dz|) land/E

P(LMM) sea/W

P(σu /|dU/dz|) sea/W

�� �� �� ��� ���
��×��-�

��×��-�
�����

�����

�����

������ ����� (�)

�
�
�

�������� ���� �=�-���/�

Figure 5. Probability density of turbulence length scale LMM from observations at Høvsore over both the homogeneous land (eastern) sectors

and inhomogeneous coastal (western) sectors. Black: LMM from fits to spectra over land; red/long-dashed: new simplified form (15) over

land; purple: LMM from fits to spectra from offshore; cyan/dot-dashed: new simplified form (15) from offshore.

above the roughness sublayer (Garratt, 1980; Raupach et al., 1980) and amenable to similarity and mixing-length theory (e.g.

Sogachev and Kelly, 2016) as well as Mann-model use (Chougule et al., 2015).

Just as Figure 4 showed for flow over homogeneous land at Høvsøre in section 3, here Figure 6 displays the probability

density of turbulence (Mann-model) length scale LMM observed via spectral fits at z =44 m for Østerild, along with predictions

based on both (11) via u*,obs and (15) via σu,obs.5

As in the cases above (homogeneous land and inhomogeneous coastal), the new form (15) predicts the distribution rather

well, particularly for scales between ∼10–100 m—despite the shape of P (LMM) being different due to the trees. For the forest

case of Fig. 6 the σu-based form captures both the peak (most likely LMM) and magnitude of P (LMM), while the u∗-based

form grossly underpredicts LMM, moreso than for the previous cases. The latter is likely due to u*,obs being predominantly

affected by the canopy (via larger effective roughness) moreso than σu,obs, which tends to be more characteristic of the entire10

ABL (Wyngaard, 2010). There is, however a curious minor peak (with a probability ∼1% as large as the main peak) around

scales of ∼300±50 m in the length-scale distribution obtained from spectral fits shown in Fig. 6; this is not captured by either
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Figure 6. Probability density function of turbulent length scale from observations at Østerild from the western mast/lidar. Black: Mann-

model scale from fits to spectra; dotted-blue: ‘mixing-length’ formulation (`m ∝u∗/|dU/dz|) with revised constant; red: new form (15),

σu/|dU/dz|.

the u∗-based form (11) nor σu-based formulations (13,15). Although this peak falls spectrally at small wavenumbers that are

more difficult to capture when spectrally fitting the Mann model, it actually corresponds to the distance to the next upwind

edge of the forest (orchard segment) in the predominant wind directions.

4 Discussion

Towards concluding, we first revisit the motivation for (and thus context of) this work: [1] to ‘close’ the Mann (1994)5

eddy-lifetime (τM ) formulation as implemented in rapid-distortion theory—allowing relation between Mann-model param-

eters (LMM,ε,Γ) and the shear (dU/dz) taken to distort the modeled turbulence; [2] connect the parameters of the Mann

(1994) spectral turbulence and eddy-lifetime models with atmospheric statistics, both in theory and in practice; [3] provide a

formulation for the turbulence length scale LMM in terms of quantities commonly-measured in wind energy; [4] demonstrate

that the ‘measureable’ form developed for LMM is robust and amenable to use in (probabilistic) wind turbine loads calculations.10
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These four motivating goals have basically been realized, as shown in the previsous sections, and this work has a number of

implications.

4.1 Implications and Application

A previously suggested form (11) for LMM, based on friction velocity u∗ and (10-minute) mean wind shear dU/dz (Peña et al.,

2010), was confirmed here to be sensitive to its proportionality constant cm. But this constant can vary from site to site (and5

possibly with height), and the published value of cm = 1.7 (Peña et al., 2010) leads to significant error in prediction of LMM

for the different conditions (land and sea directions) at Høvsøre and at the forested site of Østerild. Finding cm from sonic

anemometer observations via LMM from fits to spectra and friction velocity measurements, (11) may perform slightly better

over uniform flat terrain compared to the σu-based form (15); but this can be considered a site-dependent fit in itself, as was

the case when using a diagnosed value of cm = 2.3 for the homogeneous flat land sectors at Høvsøre. However, obtaining cm10

is generally not possible in industrial practice; where it can be obtained, it relies on LMM—which is the quantity desired—

thus negating the purpose of (11). While u∗ can also in principle be estimated from wind speeds taken at multiple heights by

cup anemometers, this too is difficult in practice: one must account for stability, not to mention the need for measurements

at multiple heights in the surface layer (or worse, the limited validity of similarity theory above the ASL). Furthermore, it is

expected that cm is a function of the (local) surface roughness, as demonstrated by the different results found over the forested15

Østerild site. Thus the form (15) is preferable, since it requires only the commonly-measured quantities σu and dU/dz. This

simple form also gave good estimates of P (LMM) in the forested case—without the need for tuning, whereas the u∗-based

form (11) requires a re-calculation of its coefficient cm for such cases.

Since (13) gave yet better performance than both its simplified form (15) and the u∗-based relation (11), one might suggest its

use. But (13) requires cm/(σu/u∗), where cm is difficult to obtain, as discussed in the previous paragraph. However, although20

cm might vary from site to site (or perhaps with height), it was found that the ratio cm/(σu/u∗) did not vary appreciably—

consistent with the good performance of the simplified form (15), which assumes cm ≈ σu/u∗, across sites and regimes.

One interesting implication of the testing of assumptions then follows from the finding that 〈σu/u∗〉obs ≈2.3, consistent

in the surface-layer with Caughey et al. (1979). Examining the joint behavior of σu/u∗ and the stability parameter (inverse

Obukhov length) L−1, the sonic anemometer data available at multiple heights in this study shows no correlation between25

these two quantities. The dimensionless profiles σ2
u(z)/u2

∗0 and u2
∗(z)/u

2
∗0 shown by Caughey et al. (1979) also imply

σ2
u(z)

u2
∗(z)

≈ (2.3)2, (20)

with the ratio converging to a constant above the surface layer (z & 0.1h, where the atmospheric boundary-layer depth h

typically ranges from ∼200 m in stable conditions to 1 km or more in convective conditions). The flat-terrain Høvsøre data in

fact show the mean value 〈σu/u∗〉obs to be independent of z. If one knew how cm varied with height (and stability), then one30

could also use (20) and (13) from measurements at one height range, to estimate LMM at higher z (for a given stability range).

Over flat terrain, on average the peak spectral scale for streamwise fluctuations (λu) grows with z (Caughey et al., 1979; Peltier
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et al., 1996)11, so if we take LMM ∝ λu then with (20) one expects the ratio cm/(σu/u∗) to increase with z as well. Thus

from (13) the Mann-model length scale LMM will increase with height relative to the mixing-length `∗ ≡ u∗/(dU/dz), so at

higher z one would expect the general form (13) to be yet more accurate than its approximate form (15); though this is not

likely for wind turbine rotor heights, except in very stable conditions (Kelly et al., 2014b; Liu and Liang, 2010). Unfortunately

the sonic-anemometer measurements available for this study did not include heights well beyond the surface-layer, so such5

variation was difficult to detect.

It is also notable that Figure 3 appears to imply the relative error (e.g. in %) in estimating LMM with (15) grows for less

common values of LMM, particularly very large scales (and also at very small scales if including U <7m/s, not shown). Thus

(15) is recommended first for estimation of P (LMM). However, the error at large scales is in part dependent on the limited (10-

minute) sample lengths and the fitting routine, as there are very few points to fit at the lowest frequencies. Use of 30-minute10

samples can reduce such scatter, and modification of the fitting algorithms may also improve estimations of the larger scales.

Ongoing work includes wind-speed dependent prediction of LMM, particularly the conditional statistics P (LMM|U). Further

concurrent work also entails systematic accounting for the rotor size (shear distance) relative to height (i.e. ∆z/z) within

the distribution of length scales; following Kelly and Gryning (2010) and Kelly et al. (2014a) a semi-empirical derivation

of P (LMM) including ∆z/z has been obtained, but demands more data for validation and publication. Understanding of the15

latter facilitates ‘vertical extrapolation’ of LMM and measured turbulence and shear statistics, as well as accounting for the

effect of rotor size or shear measurement span.

5 Conclusions

• The eddy lifetime of Mann (1994), which is part of commonly used turbulence modelling for wind turbine design load

cases (e.g. IEC 61400–1, Edition 3, 2005), leads to a relation for turbulence (spectral-peak) length scale LMM of

LMM '
cm

(σu,obs/u*,obs)

σu
dU/dz

,

where cm and σu,obs/u*,obs are essentially constants for a given height z, and cm/(σu,obs/u*,obs) is found to fall between

1–1.11 for the three flow regimes analyzed.20

• Theory and measurements support the assumption that cm/(σu,obs/u*,obs)≈1, roughly constant for different atmospheric

flow regimes; the turbulence length scale can consequently be approximated by

LMM '
σu

dU/dz
.

Thus typical 10-minute mean cup anemometer measurements can be used to estimate LMM.

• LMM is affected by atmospheric stability; this effect is contained within σu and dU/dz.
11The peak length scale also grows with boundary-layer depth h in convective conditions and thus with increasingly negative inverse Obukhov

length L−1 (e.g. Peltier et al., 1996). But over all stability conditions, which are dominated by neutral conditions (Kelly and Gryning, 2010), and over

an expected distribution of h at a given site, the basic growth of λu with z is consistent with Peltier et al. (1996) reporting λu ∝ z for neutral conditions.
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• In terms of the classic mixing-length form u∗/|dU/dz|, the turbulence length scale LMM in the spectral-tensor model is

observed to be larger (by ca. 30–40%) than previously reported by Peña et al. (2010).
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