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Abstract. We define and demonstrate a procedure for quick assessment of site-specific lifetime fatigue loads, using surrogate

models calibrated by means of a database with high-fidelity load simulations. The performance of six surrogate models is as-

sessed by comparing site-specific lifetime fatigue load predictions at ten sites. The surrogate methods include polynomial-chaos

expansion, quadratic response surface, universal Kriging, importance sampling, and nearest-neighbor interpolation. Practical

bounds for the database and calibration are defined via nine environmental variables, and their relative effects on the fatigue5

loads are evaluated by means of Sobol sensitivity indices.

Of the surrogate-model methods, polynomial-chaos expansion provided an accurate and robust performance in prediction

of the different site-specific loads. Although the Kriging approach showed slightly better accuracy, it also demanded more

computational resources. Taking into account other useful properties of the polynomial chaos expansion method within the

performance comparisons, we consider it to generally be the most useful for quick assessment of site-specific loads.10

Copyright statement. This article is subject to copyright.

1 Introduction

Before installing a wind turbine at a particular site, it needs to be ensured that the wind turbine structure is sufficiently robust

to withstand the environmentally-induced loads during its entire lifetime. As the design of serially-produced wind turbines

is typically based on a specific set of wind conditions, i.e. a site class defined in the IEC (2005) standard, any site where15

the conditions are more benign than the reference conditions is considered feasible. However, often one or more site-specific

parameters will be outside this envelope—and disqualify the site as infeasible, unless it is shown that the design load limits

are not going to be violated under site-specific conditions. Such a demonstration requires carrying out simulations over a full

design load basis, which adds a significant burden to the site assessment process.

Various methods and procedures have been attempted for simplified load assessment such as expansions based on statistical20

moments, (Kashef and Winterstein, 1999; Manuel et al., 2001), multivariate regression models of first order (Mouzakis et al.,

1999) and second order (Toft et al., 2016), and expansions using orthogonal polynomial basis (Murcia et al., 2016).
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In the present work, we analyze, refine and expand the existing simplified load assessment methods, and provide a structured

approach for practical implementation of a high-fidelity load database for site feasibility assessment. The study aims at fulfilling

the following three specific goals:

– define a simplified load assessment procedure which can take into account all the relevant external parameters required

for full characterization of the wind fields used in load simulations;5

– define feasible ranges of variation of the wind-related parameters, dependent on wind turbine rotor size; and

– obtain estimates of the statistical uncertainty and parameter sensitivities.

The scope of the present study is loads generated under normal power production, which encompasses design load cases

(DLC) 1.2 and 1.3 from the IEC 61400-1 standard (IEC, 2005). These load cases are the main contributors to the fatigue

limit state (DLC1.2) and often the blade extreme design loads (DLC1.3). The methodology used can easily be applied to other10

load cases governed by wind conditions with a probabilistic description. Loads generated during fault conditions (e.g. grid

drops) or under deterministic wind conditions (e.g. operational gusts without turbulence) will in general not be (wind climate)

site-specific.

2 High-fidelity loads database

2.1 Definition of variable space15

The turbulent wind field serving as input to aeroelastic load simulations can be fully characterized statistically by the following

variables:

◦ mean wind field across the rotor plane as described by the

- average wind speed at hub height (U ),

- vertical wind shear exponent (α),20

- wind veer (change of mean flow direction with height, ∆ϕ);

◦ turbulence described via

- variance of wind fluctuations, σ2
u,

- turbulence probability density function (e.g. Gaussian),

- turbulence spectrum defined by the Mann (1994) model with parameters25

· turbulence length scale L,

· anisotropy factor Γ,

· turbulence dissipation parameter αε2/3;
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◦ air density ρ;

◦ mean wind inflow direction relative to the turbine in terms of

- vertical inflow (tilt) angle ϕ̄v and

- horizontal inflow (yaw) angle ϕ̄h.

All of the parameters above, except the parameters defining mean inflow direction, are probabilistic and site-dependent in5

nature. The mean inflow direction parameters represent a combination of deterministic factors (i.e. terrain inclination or yaw

direction bias in the turbine) and random fluctuations due to e.g. large-scale turbulence structures or variations in atmospheric

stability. Mean wind speed, turbulence and wind shear are well known to affect loads and are considered in the IEC61400-

1 standard. In Kelly et al. (2014) a conditional relation describing the joint probability of wind speed, turbulence and wind

shear was defined. The effect of implementing this wind shear distribution in load simulations was assessed in Dimitrov et al.10

(2015), showing that wind shear has importance especially for blade deflection. The Mann model parameters L and Γ were

also shown to have a noticeable influence on wind turbine loads (Dimitrov et al., 2017). By definition, for given L and Γ the

αε2/3 parameter from the Mann model is directly proportional to σ2
uL
−2/3 (Mann, 1994; Kelly, 2018), and can therefore be

omitted from the analysis. The probability density function (pdf) typically used to synthesize time series of velocity components

from Mann-model spectra is Gaussian. For a slightly smaller turbine, the NREL 5MW turbine, the assumption of Gaussian15

turbulence has been shown to not impact the fatigue loads (Berg et al., 2016). The final list of inflow-related parameters thus

reads

{U,σu,α,L,∆ϕ,Γ, ϕ̄h, ϕ̄v,ρ}.

The loads experienced by a wind turbine are a function of the wind-derived factors described above, and of the structural

properties and control system of the wind turbine. Therefore, a load characterization database taking only wind-related factors20

into account is going to be turbine-specific.

The variables describing the wind inflow often have a significant correlation between them, and any site-specific load or

power assessment has to take this into account using an appropriate description of the joint distribution of input variables. At the

same time, most probabilistic models require inputs in terms of a set of independent and identically distributed (i.i.d) variables.

The mapping from the space of i.i.d variables to joint distribution of physical variables requires applying an isoprobabilistic25

transformation as e.g. the Nataf transform (Liu and Der Kiureghian, 1986), and the Rosenblatt transformation (Rosenblatt,

1952). In the present case, it is most convenient to apply the Rosenblatt transformation, which maps a vector of n dependent
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variables X into a vector of independent components Y based on conditional relations:

X→Y =




F1(X1)
...

Fk|1,...,k−1(Xk|X1, . . . ,Xk−1)
...

Fn|1,...,n−1(Xn|X1, . . . ,Xn−1)




. (1)

Further mapping of Y to a standard Normal space vector U is sometimes applied, i.e.

Y→U =




Φ−1(Y1)

. . .

Φ−1(Yn)


 . (2)

For the currently considered set of variables, the Rosenblatt transformation can be applied in the order defined in Table 1 - i.e.,5

the wind speed is considered independent of other variables, the turbulence is dependent on the wind speed, the wind shear is

conditional on both wind speed and turbulence, etc. For any variable in the sequence, it is not necessary that it is dependent on

all higher-order variables (it may only be conditional on a few of them or even none), but it is required that it is independent

from lower-order variables.

2.2 Defining the ranges of input variables10

The choice for ranges of variation of the input variables needs to ensure a balance between two objectives: a) covering as wide

a range of potential sites as possible, while b) ensuring that the load simulations produce valid results. To ensure validity of

load simulations, the major assumptions behind the generation of the wind field and computation of aerodynamic forces should

not be violated, and the instantaneous wind field should have physically meaningful values.

The turbulence intensity, Iu = σu/U, upper limit can be written as the IEC-prescribed form (ed. 3, sub-class A) with15

Iref,A=18%, plus a constant (representing the larger expected range of TI, to span different sites) and a term that encom-

passes low-windspeed sites and regimes which have higher turbulent intensities. This form is basically equivalent to σu,IEC +

Iref,AUcut-in[1 + (Ucut-out/U)] with {Ucut-in,Ucut-out}={3,25}m/s. The bounds for turbulence intensity as function of mean wind

speed are shown on Figure 2. The limits on shear exponent were chosen following the derivations and findings of Kelly et al.

(2014) for P (α|U), expanding on the established σα(U) form to allow for a reasonably wide and inclusive range of expected20

cases, and also accounting for rotor size per height above ground. This includes an upper bound which allows for enhanced

shear due e.g. to lower-level jets and terrain-induced shear; the lower bound also includes the R/z dependence, but does not

expand the space to the point that it includes jet-induced negative shear (these are generally found only in the top portion of

the rotor). The condition L>max{7.5m,(15m)|α|−2/3} arises from consideration of the relationship between L,α,σu, and ε;

small shear tends to correlate with larger motions (as in convective well-mixed conditions). The minimum scale (7.5 m) and25

proportionality constant (15 m) are set to allow a wide range of conditions (though most sites will likely have a scaling factor
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Table 1. Bounds of variation of the variables considered. All values are defined as statistics over 10-minute reference period.

Variable Lower bounds Upper bounds

U U ≥ 4m/s U ≤ 25m/s

σu σu ≥ 0.025 ·U(m/s) σu ≤ 0.18
(

6.8 + 0.75U + 3
(

10
U

)2)
(m/s)

α α≥ αref,LB − 0.23
(

Umax
U

)(
1−

(
0.4log R

z

)2)
α≤ αref,UB + 0.4

(
R
z

)(
Umax

U

)
L L≥max{7.5m (15m) ·

∣∣α∣∣−2/3} L≤ 275m

Γ Γ≥ 1 Γ≤ 5

∆ϕh ∆ϕh ≥−0.1D
(

5
U

)
∆ϕh ≤min{60◦ sin |φ|, 1.0D

(
5
U

)2}
ϕ̄h ϕ̄h ≥−10◦ ϕ̄h ≤ 10◦

ϕ̄v ϕ̄v ≥−10◦ ϕ̄v ≤ 10◦

ρ ρ≥ 1.1kg/m3 ρ≤ 1.35kg/m3

Where

- R is the rotor radius, D the rotor diameter;

- αref,LB = 0.15,αref,UB = 0.22 are reference wind shear exponents at 15m/s wind speed;

- Umax = 25m/s is the upper bound of the wind speed;

- φ is the reference latitude (here chosen as 50◦).

larger than 15 m). The maximum Mann-model length scale is chosen based on the limits of where the model can be fitted to

measured spectra; this is dictated also by the limits of stationarity in the atmospheric boundary layer. The range of Γ is also

dictated by the minimum expected over non-complex terrain within reasonable use of the turbulence model (smaller Γ might

occur for spectra fitted at low heights over hills, but such spectra should be modelled in a different way, as in e.g. Mann (2000)).

The range of veer is limited in a way analogous to shear exponent, i.e. it has a basic 1/U dependence; this range also depends5

upon the rotor size, just as (dU/dz)|rotor = αD/U (Kelly and van der Laan, 2018). The limits for ∆ϕh above peak follow from

the limits on α, while for unstable conditions (∆ϕh <∆ϕh,peak, e.g. all ∆ϕh < 0) then the veer limit follows a semi-empirical

form based on observed extremes of ∂ϕh/∂z.

2.3 Reference high-fidelity load database

Building a large database with high-fidelity load simulations covering the entire variable space is a central task in the present10

study as such a database can serve several purposes:

1) be directly used as a site assessment tool by probability-weighting the relative contribution of each point to the design

loads;

2) serve as an input for calibrating simplified models such as orthogonal-polynomial based expansions;

5
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Figure 1. Comparison of several simulation-based experimental design approaches. Examples show random (Monte Carlo and Latin Hyper-

cube) or pseudorandom (Halton sequence) samples of size 100 drawn from a uniform distribution within a unit hypercube.

3) be used as reference for the performance of load models calibrated by other means.

Characterizing the load behaviour of a wind turbine over a range of input conditions requires an experimental design covering

the range of variation of all variables with sufficient resolution. In the case of having more than 3-4 dimensions, a full factorial

design with multiple levels quickly becomes impractical due to the exponential increase in the number of design points as

function of number of dimensions. Therefore, in the present study we resort to a Monte Carlo (MC) simulation as the main5

approach for covering the joint distribution of wind conditions. For assuring better and faster convergence, we use the low-

discrepancy Halton sequence in a quasi-Monte Carlo approach (Caflisch, 1998). Figure 1 shows an experimental design based

on Halton sequence, compared to crude Monte Carlo and Latin Hypercube designs (Mckay et al., 2000). While a crude Monte

Carlo integration has a convergence rate proportional to the square root of the number of samples N , i.e., the mean error

ε̄∝N−0.5, the convergence rate for a pseudo-Monte Carlo with a low-discrepancy sequence results in ε̄∝N−λ, 0.5≤ λ≤10

1. For low number of dimensions and smooth functions, the pseudo-Monte Carlo sequences show a significantly improved

performance over the Monte Carlo, e.g. λ→ 1, however for multiple dimensions and discontinuous functions the advantage

over crude Monte Carlo is reduced (Morokoff and Caflisch, 1995). Nevertheless, even for the full 9-dimensional problem

discussed here, it is expected that λ≈ 0.6 (Morokoff and Caflisch, 1995), which still means about an order of magnitude

advantage, e.g., 104 pseudo-Monte Carlo samples should result in about the same error as 105 crude Monte Carlo samples.15

2.4 Database specification

A large-scale generic load database is generated using Halton low-discrepancy sample points within the 9-dimensional variable

space defined in section 2.3 (Figure 2 shows the bounds for the first 6 variables). The database setup is the following:

6
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Figure 2. Sample distributions obtained using 1024 low-discrepancy points within a 6-dimensional variable space {U,Iu,α,∆φh,L,Γ}.
Here U is Beta-distributed, while the other variables are uniformly distributed within their ranges. Blue shading shows the site-specific

variable distribution for the NKE reference site (site 0, c.f. Table 2/Section 3).

– Up to 104 pseudo-random MC sample points are generated, following a low-discrepancy sequence for obtaining evenly

distributed points within the parametric space.

– For each sample point, eight simulations, with 1h duration each, are carried out.

– The simulation parameters are tuned to match the required 10-minute statistics (1 h statistics are slightly different due to

longer sampling time).5

– Each 1h time-series can be split into six 10-minute series, which on average will have the required statistics.

– Simulation conditions are kept stationary over each 1 h simulation period.

– The DTU 10MW reference wind turbine model (Bak et al., 2013), with the basic DTU Wind Energy controller (Hansen

and Henriksen, 2013), is used in the HAWC2 aeroelastic software (Larsen and Hansen, 2012).
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2.5 Postprocessing and analysis

2.5.1 Postprocessing

The main quantities of interest from the load simulation output are the short-term fatigue damage-equivalent loads (DEL), and

the 10-minute extremes (minimum or maximum, depending on the load type). For each load simulation, four statistics (mean,

standard deviation, minimum and maximum values) are calculated for each load channel. For several selected load channels,5

the 1 Hz DEL for a reference period Tref are estimated using the expression

Seq =
[∑ niS

m
i

Nref

]1/m
(3)

where Nref = f ·Tref is a reference number of cycles (Nref = 3600 for obtaining 1 Hz-equivalent DEL over a 1 h period), Si are

load range cycles estimated using a rainflow counting algorithm (Rychlik, 1987), and ni are the number of cycles observed in

a given range. For a specific material with fatigue properties characterized by an S-N curve of the form K =N ·Sm (where10

K is the material-specific Wöhler constant), the fatigue damage D accumulated over one reference period equals

D(Tref) =
Nref

K
Smeq . (4)

2.5.2 Definition of lifetime damage-equivalent loads

Obtaining site-specific lifetime fatigue loads from a discrete set of simulations requires integrating the short-term damage

contributions over the long-term joint distribution of input conditions. The lifetime damage-equivalent fatigue load is defined15

as

Seq,lifetime =



∫

X∈R9

[Seq(X)]m f(X)dX




1/m

(5)

where f(X) is the joint distribution of the multidimensional vector of input variables X. With the above definition, Seq,lifetime is

a function of the expected value of the short-term equivalent loads conditional on the distribution of environmental variables.

The integration in (5) is typically performed numerically over a finite number of realizations drawn from the joint distribution20

of the input variables, e.g. by setting up a look-up table or carrying out a Monte Carlo simulation. Thus the continuous problem

is transformed into a discrete one:

Seq,lifetime =

[
N∑

i=1

[Seq(Xi)]mp(Xi)

]1/m

, (6)

where Xi, i= 1 . . .N , is the ith realization of X out of N total realizations, and p(Xi) is the relative, discretized probability of

Xi, which is derived by weighting the joint pdf values of X so that they satisfy the condition
∑N
i=1 p(Xi) = 1. For a standard25

Monte Carlo simulation, each realization is considered to be equally likely, and p(Xi) = 1/N .
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2.5.3 Obtaining site-specific results using Importance Sampling

Figure 2 shows the distributions of input variables from our high-fidelity database (§2.4), along with the site-specific distribu-

tions for reference site 0 (c.f. Table 2 for site list).

One of the simplest and most straightforward (but not necessarily most precise) ways of carrying out the integrations needed

to obtain predicted statistics is to use Importance Sampling (‘IS’), where probability weights are applied on each of the database5

sample points (see e.g. Ditlevsen and Madsen, 1996). The integration (importance sampling) function for determining the

expected value of a function g(x) is given by

E[g(x)] =
1
N

N∑

i=1

g(x)
f(xi)
h(xi)

, (7)

where

- i= 1 . . .N is the sample point number;10

- xi = [x1,i,x2,i, . . . ,x9,i] is a 9-component vector array specifying the values of the 9 environmental variables considered at

sample point i;

- f(xi) = f(x1,i) ·f(x2,i

∣∣x1,i) · . . . ·f(x9,i

∣∣x8,i, . . . ,x1,i) is the joint pdf of sample point i according to the site-specific prob-

ability distribution; and

- h(xi) = h(x1,i) ·h(x2,i

∣∣h1,i) · . . . ·h(x9,i

∣∣x8,i, . . . ,x1,i) is the joint pdf of sample point i according to the generic probability15

distribution used to generate the database for the 9 variables.

Based on the above, it is clear that only points in the database which also have a high probability of occurrence in the site-

specific distribution will have a significant contribution to the lifetime load estimate. Therefore, the IS procedure has relatively

slow convergence compared to e.g. a pseudo-MC simulation. Figure 3 shows an example of the convergence of an IS integration

for reference site 0, based on using a high-fidelity database with 104 points.20

2.5.4 Obtaining site-specific results using multi-dimensional interpolation

Estimating an expected function value with a true multi-dimensional interpolation from the high-fidelity database would re-

quire finding a set of neighboring points which form a convex polygon. For problem dimensions higher than 3, this is quite

challenging due to the non-structured sample distribution. However, it is much easier to find a more crude approximation by

simply finding the database point closest to the function evaluation point in a nearest-neighbor approach. This is similar to the25

table look-up technique often used with structured grids; the denser the distribution of the sample points is, the closer will the

results be to an actual Monte Carlo simulation. Finding the nearest neighbor to a function evaluation point requires determining

the distances between this point and the rest of the points in the sample space. This is done most consistently in a normalized

space, i.e. where the input variables have equal scaling. The cdf (cumulative distribution function) of the variables is an exam-

ple of such a space, as all cdf’s have the same range of (0,1). Thus, the normalized distance between a new evaluation point30

9
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Figure 3. Convergence of an importance sampling (IS) calculation of the blade root moment from the hi-fi database, towards site-specific

lifetime fatigue loads for reference site (site 0).

and an existing sample is computed as the vector norm of the (e.g. 9-dimensional vector) differences between the marginal cdf

for the two points:

|x|=
√

DTD (8)

where D = Y− Ŷ is the difference between the current evaluation point Y and the existing sample points in the reference

database, Ŷ. The vector YT = [F1(X1),F2(X2

∣∣X1), . . . ,Fn(Xn

∣∣X1, . . . ,Xn−1)] consists of the marginal cdf functions of the5

input variables X as obtained using a Rosenblatt transformation.

Since some of the input variables may have significantly bigger influence on the result than other variables, it may be useful

to weight the cdf of different variables according to their importance (e.g. by making the weights proportional to the variable

sensitivity indices; see Section 4.1.2).

2.5.5 Uncertainty estimation and confidence intervals10

With the present problem of evaluating the uncertainty in aeroelastic simulations, for any specific combination of environmental

conditions, Xi, there will be uncertainty in the resulting damage-equivalent loads, Seq(Xi). Part of this uncertainty is statistical

by nature and is caused by realization-to-realization variations in the turbulent wind fields used as input to the load simulations.

10
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This uncertainty is normally taken into account by carrying out load simulations with multiple realizations (seeds) of turbulence

inputs. Provided that enough load realizations have been generated, the seed-to-seed uncertainty can be characterized by the

sample statistics (mean and standard deviation) and with an assumption about the statistical distribution. For the damage-

equivalent loads which are non-negative by definition, a log-normal distribution is a suitable choice; then the confidence

intervals for (Seq,lifetime)m for confidence level α can be found by:5

CI+
(Seq,lifetime)m

(α) = exp(µLN + Φ(1−α/2) ·σLN )

CI−(Seq,lifetime)m(α) = exp(µLN −Φ(α/2) ·σLN ) (9)

where

µLN = log




E[(Seq,lifetime)m]√
1 +

σ2
(Seq,lifetime)

m

E[(Seq,lifetime)m]2


 ; σLN =

√√√√log

(
1 +

σ2
(Seq,lifetime)m

E[(Seq,lifetime)m]2

)

are the parameters of the log-normal distribution, and Φ denotes the standard Normal cumulative distribution function. It should10

be noted that the confidence intervals defined above are given in terms of the lifetime DEL raised to the power of the Wøhler

slope m, meaning that they actually reflect the range of variation of the lifetime fatigue damage, as visible from eq. (4). Using

the sample information, confidence intervals can also be determined in a straightforward way using the bootstrapping technique

(Efron, 1979). Its main advantage is robustness and no necessity for assuming a statistical distribution of the uncertain variable.

With this approach, each function realization is given an integer index, e.g., from 1 to N for N function realizations. Then, a15

"bootstrap" sample is created by generating random integers from 1 to N , and, for each random integer, assigning the original

sample point with the corresponding index, as part of the new bootstrap sample. Since the generation of random integers

allows number repetitions, the bootstrap sample will in most cases differ from the original sample. To obtain a measure of the

uncertainty in the original sample, a large number of bootstrap samples are drawn, and the resultant quantity of interest (e.g.

the lifetime fatigue load) is computed for each of them. Then, the empirical distribution of the set of outcomes is used to define20

the confidence intervals. If M bootstrap samples have been drawn, and R is the set of outcomes ranked by value in ascending

order, then the bounds for confidence level α equal

CI+
Seq,lifetime

(α) = R[(1−α/2)M ]

CI−Seq,lifetime(α) = R[αM/2] (10)

where the square brackets [x] indicate the integer part of x, and R[x] means the value in R with rank equal to [x].25

Note that the confidence intervals estimated with the above procedure describe only the statistical uncertainty due to the

finite number of random samples, and due to seed-to-seed variation. Narrowing them down by e.g. creating a large number of

model realizations does not eliminate other model uncertainties as well as uncertainties in the input variables.
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3 Reference sites

The site-specific load calculation methods presented in this study are validated against a set of reference site-specific load

calculations on a number of different sites which cover a wide fraction of the variable domain included within the high-fidelity

database. In order to show a realistic example of situations where a site-specific load estimation is necessary, the majority of

the sites chosen are characterized with conditions which slightly exceed the standard conditions specified by a certain type-5

certification class. Exceptions are site 0 which has the most measured variables available and is therefore chosen as a main

reference site, and the "sites" representing standard IEC class conditions. The IEC classes are included as test sites as they are

described by only one independent variable (mean wind speed). They are useful test conditions as it may be challenging to

correctly predict loads as function of only one variable using a model based on up to 9 random variables. The list of test sites

is given in Table 2.

Table 2. Reference sites used for validation of the site-specific load estimation methods.

Site No. Location Terrain Specific condition Variables included

0 Denmark Flat agricultural - U,σu,α,L,Γ,∆ϕ

1 Denmark Flat agricultural IIIC exceedance U,σu,α

2 N. Denmark Forested IIIB exceedance U,σu,α

3 N. Denmark Forested IA exceedance U,σu,α

4 N. Denmark Forested IIA exceedance U,σu,α

5 USA, Colorado Mountain foothills Low-wind U,σu,α

6 USA, Colorado Mountain foothills Low-wind U,σu,α

IEC IA, NTM - - Standard reference class U

IEC IIB, NTM - - Standard reference class U

IEC IIIC, NTM - - Standard reference class U

IEC IIB, ETM - - Standard reference class U

10

For each site, the joint distributions of all variables are defined in terms of conditional dependencies, and generating sim-

ulations of site-specific conditions is carried out using the Rosenblatt transformation, (1). The conditional dependencies are

described in terms of functional relationships between the governing variable and the distribution parameters of the dependent

variable, e.g. the mean and standard deviation of the turbulence are modelled as linearly dependent on the wind speed as recom-

mended by the IEC 61400-1 standard, while the mean wind shear is dependent on the mean wind speed and on the turbulence,15

as defined by (Kelly et al., 2014). With this procedure, Pseudo-Monte Carlo samples of the environmental conditions at each

site are generated from the respective joint distribution, and fed as input to load simulations. The resulting reference lifetime

equivalent loads are then defined as the sample means from the Monte Carlo simulations, while the uncertainty in the lifetime

loads is estimated using bootstrapping.
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3.1 Site locations

Site 0 (also also referred to herein as the reference site) is located at the Nørrekær Enge wind farm in Northern Denmark (Bor-

raccino et al., 2017), over flat, open agricultural terrain (Fig. 4). Site 1 is a flat-terrain, near-coastal site at the the National

Figure 4. Nørrekær Enge site and mast. Permissions by DTU Wind Energy.

Centre for Wind Turbines at Høvsøre, Denmark (Peña et al., 2016, and shown here in Fig. 5). Sites 2 to 4 are based on the

wind conditions measured at the Østerild Wind Turbine Test Field which is located in a large forest plantation in North-western5

Denmark (Hansen et al., 2014) (Fig. 6). Due to the forested surroundings of the site, the flow conditions are more complex

than those in Nørrekær Enge and Høvsøre. By applying different filtering according to wind direction, three imaginary site

climates are generated and considered as sites 2–4.

Sites 5 and 6 are located at NREL’s National Wind Technology Center (NWTC), near the base of the Rocky Mountain

foothills just south of Boulder, Colorado (see Fig. 8; c.f. Clifton et al., 2013). Similar to Østerild, directional filtering is applied10

to the NTWC data to split it into two virtual sites—accounting for the different conditions and wind climates from the two

ranges of directions considered.
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Figure 5. Høvsøre site and mast. Permissions by DTU Wind Energy.

4 Reduced order models

In this section we present three different reduced order models: 1) Polynomial chaos expansion, 2) Universal Kriging, and

3) Quadratic response surface. All three methodologies are to be calibrated to the database presented in Section 2.4 in order to

predict site-specific loads.

4.1 Polynomial chaos expansion5

Polynomial Chaos Expansion (PCE) is a popular method for approximating a stochastic function of multiple random variables

using an orthogonal polynomial basis. In the classical definition of PCE (Ghanem and Spanos, 1991) the input random vari-

ables X are defined on (−∞,∞), with Hermite polynomials typically used as the polynomial basis.1 Choosing a polynomial

basis which is orthogonal to a non-Gaussian probability measure turns the PCE problem into the so-called Wiener-Askey or

Generalized chaos, (Xiu and Karniadakis, 2002). For the present problem, a Generalized PCE using Legendre polynomials is10

considered most suitable as the Legendre polynomials Pn(ξ) are orthogonal with respect to a uniform probability measure in

the interval ξ = [−1,1], which means that the PCE can conveniently be applied on the cumulative distribution functions of the

1 In the classical definition of the PC decomposition used in e.g. spectral stochastic finite element methods (Ghanem and Spanos, 1991), the input random

variables are Normally distributed (Gaussian), which means that the Hermite polynomials are a suitable Hilbertian basis—since the Hermite polynomials are

orthogonal with respect to the Gaussian probability measure. In this case, the properties of the Hermite polynomials dictate that the random variables X are

defined on (−∞,∞).
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Figure 6. The fully instrumented mast at Østerild is the blue dot furthest South/Down on the map. Permissions by DTU Wind Energy.

Figure 7. Left: Cup anemometer (left) and wind vane (right) at 244 m height, Østerild test site. Permissions by DTU Wind Energy.

variables X which are defined in the interval [0,1] so that

ξi = 2F (Xi)− 1, (11)
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Figure 8. Aerial view of NWTC. Permissions by NREL.

Figure 9. Map of NWTC. Permissions by NREL.
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where F (Xi) is the cumulative distribution function of a variable Xi ∈X, i= 1, . . . ,M . With this definition, the PCE repre-

sents a model applied to a set of transformed variables which due to the applied transformation are independent and identically

distributed (‘i.i.d.’). Note that eq. (11) and the evaluation of the cumulative distribution in general does not ensure indepen-

dence - so an appropriate transformation should also account for the dependence between variables. In the present case, it is

convenient to apply the Rosenblatt transformation as defined in eq. (1). For the current implementation of PCE, only eq. (1) is5

required since the expansion is based on the Legendre polynomials, however the transformation to standard Normal space in

eq. (2) is used for other procedures, e.g. the response surface model discussed later.

Using the notation defined by Sudret (2008), we consider the family of univariate Legendre polynomials Pn(ξ). A multivari-

ate, generalized PCE with M dimensions and maximum polynomial degree p is defined as the product of univariate Legendre

polynomials where the maximum degree is less than or equal to p. The univariate polynomial family for dimension i can be10

defined as

Pαi(ξ), where i= 1, . . . ,M, αi ∈ N,
M∑

i=1

αi ≤ p(αi ≥ 0). (12)

The multivariate polynomial of dimension M is then defined as

Ψα =
M∏

i=1

Pαi(ξi) (13)

The total number of polynomials of this type is15

Np =
(M + p)!
M !p!

(14)

The aim of using PCE is to represent a scalar quantity S = g(X) in terms of a truncated sequence S̃(X) + ε where ε is a

zero-mean residual term. With this definition, the multivariate generalized PCE of dimension M and maximum degree p is

given by

S̃(ξ) =
Np−1∑

j=0

SjΨα,j(ξ) (15)20

where Sj ∈ S = [S1, . . . ,SNp] are unknown coefficients which need to be determined, and ξ = [ξ1, . . . ξM ] are functions of

X as defined in (11). The most straightforward way of determining S is minimizing the variance of the residual ε using a

least-squares regression approach:

S = min





1
Ne

∣∣∣∣∣∣∣

Ne∑

i=1


g(ξ(i))−

Np−1∑

j=0

SjΨα,j(ξ(i))




2
∣∣∣∣∣∣∣





(16)

where Np is the number of polynomial coefficients in the PCE and Ne is the number of sampling points in the experimental25

design. For this purpose, a design experiment has to be set up and the so-called design matrix Ψ needs to be constructed:

Ψij = Ψα,j(ξ(j)); i= 1, . . . ,Ne, j = 1, . . . ,Np. (17)
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Under the condition that the residuals are (approximately) Normally-distributed, the solution to equation (16) is given by

S = (ΨTΨ)−1 ·ΨT ·y, (18)

with y = g(x(i)) being a vector with the outcomes of the functional realizations obtained from the design experiment, where

i= 1 . . .Ne.

The solution of eq. (18) requires that the so-called information matrix (ΨTΨ) is well-conditioned, which normally requires5

that the number of collocation points Ne is significantly larger than the number of expansion coefficients Np. Subsequently,

the problem grows steeply in size when M and p increase. In such situations, it may be desirable to limit the number of active

coefficients by carrying out a Least Absolute Shrinkage and Selection Operator (LASSO) regression (Tibshirani, 1996), which

regularizes the regression by penalizing the sum of the absolute value of regression coefficients:

S = min





∣∣∣∣∣∣∣
1

2Ne

Ne∑

i=1


g(ξ(i))−

Np−1∑

j=0

SjΨα,j(ξ(i))




2

+λ

Np−1∑

j=0

∣∣Sj
∣∣

∣∣∣∣∣∣∣





(19)10

where λ is a positive regularization parameter; larger values of λ increase the penalty and reduce the absolute sum of the

regression coefficients, while λ= 0 is equivalent to ordinary least-squares regression.

4.1.1 Convergence of PCE

We assess the convergence of PCE by calculating the normalized root-mean-square (NRMS) error between a set of observed

quantities (i.e. damage-equivalent loads from simulations) y = g(X(i)), i= 1 . . .N , and the PCE predictions, ỹ = S̃(X(i)), i=15

1 . . .N , over the same set of N sample points X(i):

εN,RMS =
1

E[y]

√∑N
i=1(ỹi− yi)2

N
(20)

where E[y] is the expected value of the observed variable. Figure 10 shows the NRMS error for a PCE of order 6 and with

6 dimensions, as function of the number of samples used to train the PCE, and the hours of load simulations used for each

sample point. The NRMS error shown on Figure 10 is calculated based on a set of 500 pseudo-MC points sampled from the20

joint pdf of reference site 0, and represents the difference in blade root flapwise DEL observed in each of the 500 points vs. the

DEL predicted by a PC expansion trained on a selection of points from the high-fidelity database described in Section 2.

Figure 10 illustrates a general tendency that using a few thousand training samples leads to convergence of the values of the

PC coefficients, and the remaining uncertainty is due to seed-to-seed variations and due to the order of the PCE being lower

than what is required for providing an exact solution at each sample point. Using longer simulations per sample point does not25

lead to further reduction in the statistical uncertainty due to seed-to-seed variations - with 4000 training samples, the RMSE

error for 1h simulation per sample is almost identical to the error with 8h simulation per sample. The explanation for this

observation is that the seed-to-seed variation introduces an uncertainty not only between different simulations within the same

sampling point, but also between different sampling points. This uncertainty materializes as an additional variance which is
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Figure 10. Convergence of a PCE of dimension 6 and order 6, as function of number of collocation points and hours of simulation per

collocation point. The z-axis represents the NRMS error obtained from the difference between 500 site-specific pseudo-MC samples of blade

root flapwise DEL for reference site 0, and the corresponding predictions from PCE.

not explained by the smooth PCE surface. Therefore, the RMSE error achieved under these conditions can be considered near

to the smallest possible for the given PCE order and number of dimensions - and further increase in the number of training

points or simulation length will not introduce noticeable improvement. However, it should be noted that the number of training

points required for such convergence will differ according to the order and dimension of the PCE, and higher order and more

dimensions will require more than the ∼ 3000 points which seem sufficient for a PCE of order 6 and dimension 6, as shown5

on Figure 10.

4.1.2 Sensitivity indices and model reduction

One useful corollary of the orthogonality in the PCE polynomial basis is that the total variance of the expansion can be

expressed as the sum of the contributions from individual terms (Sudret, 2008):

Var
[
S̃(ξ)

]
= Var



Np−1∑

j=0

SjΨα,j(ξ)


=

Np−1∑

j=1

S2
jE
[
Ψ2
α,j(ξ)

]
(21)10
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Each of the terms in the sum in eq. (21) represents the contribution of the variables contained in the respective multivariate

polynomials Ψα,j where j = 0 . . .Np− 1. This property can be used for eliminating polynomials which do not contribute

significantly to the variance of the output, thus achieving a sparse, more computationally efficient reduced model. By combining

the variance truncation and the LASSO regression technique in eq. (19), a model reduction of an order of magnitude or more

can be achieved. For example, for a 9-dimensional PCE of order 6, using LASSO regularization parameter λ= 1 and retaining5

the polynomials which have a total variance contribution of 99.5%, resulted in a reduction of the number of polynomials from

5005 to about 200.

Denoting by Fi1,...,is the set of all polynomials dependent on a specific combination of input variables (i1, . . . , is) (and only

on them), the sum of variance contributions over Fi1,...,is normalized with the total variance represents the PCE-based Sobol’

index with respect to variable set Fi1,...,is (Sudret, 2008):10

SUi1,...,is =


 ∑

α∈Fi1,...,is

S2
αE
[
Ψ2
α(ξ)

]

 ·
(

Var
[
S̃(ξ)

])−1

. (22)

Based on eq. (22) it is also straightforward to obtain the total Sobol indices for a given variable j by summing all SUi1,...,is
where j ∈ (i1, . . . , is). Note that since each variable appears in multiple cross-terms in the expansion, the contributions of some

polynomial coefficients are included multiple times in the total Sobol’ indices, meaning that the sum of the total indices will

typically exceed 1.15

The Sobol indices estimated using the above procedure represent the relative contribution to the model variance from vari-

ables following the joint input distribution used to calibrate the PCE. In the present case, this distribution would span the

uniform variable space of the high-fidelity database defined in Section 2, and the indices will correspond to the load varia-

tion within the entire variable ranges as defined in Table 1. It may be more relevant to compute site-specific Sobol indices.

This can be carried out efficiently by a Monte Carlo simulation on the PCE. For number of dimensions equal to M and for20

N (pseudo) Monte-Carlo samples the required experimental design represents an N × 2M matrix. This is divided into two

N ×M matrices, A and B. Then, for each dimension i, i= 1 . . .M , a third matrix ABi is created by taking the ith column of

ABi equal to the ith column from B, and all other columns taken from A. The load response function, i.e. the PCE, is then

evaluated for all three matrices, resulting in three model estimates: f(A), f(B), and f(ABi). By repeating this for i= 1 . . .M ,

simulation-based Sobol’ sensitivity indices can be estimated as25

SUi =
1
N

N∑

j=1

f(B)j (f(ABi)j − f(B)j) (23)

where j = 1 . . .N is the row index in the design matrices A, B, and ABi (Saltelli et al., 2008).

4.2 Universal Kriging with polynomial chaos basis functions

Kriging (Sacks et al., 1989; Santher et al., 2003) is a stochastic interpolation technique which assumes the interpolated variable

follows a Gaussian process. A Kriging metamodel is described (Sacks et al., 1989) by30

Y (x) = βT f(x) +Z(x), (24)
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where x represents the input variables, and Y (x) is the output. The term βT f(x) is the mean value of the Gaussian pro-

cess (a.k.a. the "trend") represented as a set of basis functions f(x) = [f1(x), . . . ,fP (x)] and regression coefficients β =

[β1, . . . ,βP ]; Z(x,w) is a stationary, zero-mean Gaussian process. The probability distribution of the Gaussian process is

characterized by its covariance

V (w,x) = σ2R(w,x,θ) (25)5

where σ2 is the process variance which is assumed to be constant, and R(w,x,θ) is the correlation between Z(x) and

Z(w). The hyperparameters θ define the correlation behavior, in terms of e.g. a correlation length. Given a set of points

x = [x1,x2, . . .xN ] where the true function values y = Y (x) are known, the aim is to obtain a model prediction at a new point,

x′. Based on Gaussian theory, the known values Y (x) and the Kriging predictor Ŷ (x′) will be jointly Gaussian distributed,

and Ŷ (x′) will have the following mean and variance (Santher et al., 2003):10

µŶ (x′) = f(x′)Tβ + r(x′)TR−1(y−Ψβ)

σ2
Ŷ

(x′) = σ2(1− r(x′)TR−1r(x′) +u(x′)T [ΨTR−1Ψ)−1u(x′)].
(26)

Here

Ψ is the design matrix collecting the terms constituting the basis functions f(x),

Ψij = fj(xi) for i= 1 . . .N and j = 1 . . .P ;

r(x′) is the vector of cross-correlations between the prediction point x′ and the known points x;15

R is the correlation matrix of the known points,

Rij =R(xi,xj ,θ) for i, j = 1, . . . ,N ; and

u(x′) = ΨTR−1r(x′)− f(x′) .

Using the predictor functions above requires determining the regression coefficients (β), the field variance (σ2), and the cor-

relation hyperparameters (θ). A suitable approach is to find the values of β, σ2 and θ which maximize the likelihood of y,20

i.e. minimize the model error in a least-squares sense (Lataniotis et al., 2015):

L(y|β,σ2,θ) =
det(R)−1/2

(2πσ2)N/2
exp

[
− 1

2σ2
(y−Ψβ)TR−1(y−Ψβ)

]
. (27)

Here the hyperparameters, θ, appear within the correlation matrix R. Having set up the design matrix Ψ, the expansion

coefficients β can be determined with the least-squares approach,

β = β(θ) = (ΨTR−1Ψ)−1ΨTR−1y. (28)25

The field variance is obtained as

σ2 = σ2(θ) =
1
N

(y−Ψβ)TR−1(y−Ψβ). (29)
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From (28) and (29) it follows that β and σ2 can be expressed as functions of θ. Therefore, calibrating the Kriging model

amounts to finding the values of θ which maximize the likelihood. By combining eqns. 27–29 this leads to the optimization

problem

θ = argmin
Dθ

(
1
2

log(det(R)) +
N

2
log(2πσ2) +

N

2

)
. (30)

For a problem with M dimensions, we assume that the correlation between sample points can be modelled using an5

anisotropic separable correlation function ((Sacks et al., 1989; Lataniotis et al., 2015), which assumes a different correlation

parameter for each dimension. The total correlation is expressed as the product of the individual one-dimensional correlation

functions,

R(x,x′,θ) =
M∏

i=1

R(xi,x′i,θi). (31)

The one-dimensional correlation functions are assumed to follow an exponential relation to the distance h= (xi−x′i) between10

points,

R(h,θ) = exp
(
−|h|
θ

)
. (32)

The functional form of the mean field f(x)Tβ is identical to the generalized PCE defined in eq. (18), meaning that the PCE is

a possible candidate model for the mean in a Kriging interpolation. We adopt this approach and define the Kriging mean as a

PCE with properties as described in section 4.1.15

The main practical difference between regression- or expansion-type models such as regular PCE and the Kriging approach

is in the way the training sample is used in the model: in the pure regression-based approaches the training sample is used to

only calibrate the regression coefficients, while in Kriging as in other interpolation techniques the training sample is retained

and used in every new model evaluation. As a result the Kriging model may have an advantage in accuracy since the model

error tends to zero in the vicinity of the training points; however this comes at the expense of an increase in the computational20

demands for new model evaluations. The extra computational burden is mainly the time necessary to assemble r(x′), the

matrix of cross-correlations between the prediction points and the training sample, and the time to multiply r(x′) with other

equation terms. Thus, while for a PCE the model evaluation time t(N) for a sample of size N would follow t(N) =O(N), for

a Kriging model t(N) =O(N2). For a Kriging model, a gain in accuracy over the model represented by the trend function will

only materialize in problems where there is a noticeable correlation between the residual values at different training points. In a25

situation where the model error is independent from point to point (as e.g. in the case when the error is only due to seed-to-seed

variations in turbulence) the inferred correlation length will tend to zero and the Kriging estimator will be represented by the

trend function alone.

4.3 Quadratic response surface

A quadratic-polynomial response surface (RS) method based on Central Composite Design (CCD) is a reduced-order model30

which, among other applications, is also used for wind turbine load prediction (Toft et al., 2016). The procedure involves
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fitting a quadratic polynomial regression (a response surface) to a normalized space of i.i.d variables which are derived from

the physical variables using an isoprobabilistic transformation as the Rosenblatt transformation given in eqs. (1) and (2). The

design points used for calibrating the response surface form a combination of a central point, axial points with unit shifts in one

dimension at a time, and a 2k factorial design where k equals the number of dimensions and there are two levels per variable

dimension (Figure 11). Due to the structured design grid required, it is not possible to use this approach with the sample5

points from the high-fidelity database described in section 2. Therefore, we implement the procedure using an additional set

of simulations. Due to the low-order of the response surface, it is also not possible to fully characterize the turbine response

as function of mean wind speed using a single response surface. Therefore, multiple response surfaces are calibrated for wind

speeds from 4 to 25 m/s in 1 m/s steps. However, due to the exponential increase of the number of design points with increasing

problem dimension, it is not practical to fit response surface covering all 9 variables considered. Instead, we choose to replace10

three of the variables (yaw, tilt, and air density) with their mean values. The result is a 6-dimensional problem which requires

946 design points in total. Analogically to the high-fidelity database, 8h of simulations are carried out for characterizing each

design point. The polynomial coefficients of the response surface are then defined using least-squares regression with the same

closed-form solution defined by eq. (18). For any sample point p in the central composite design, the corresponding row in the

design matrix is defined as15

Ψp =
[
{1}, {U1, . . .Un}, {U2

1 , . . .U
2
n}, {Ui ·Uj , i=1 . . .n, j=1 . . .(i−1)}

]
(33)

where U are standard Normal variables derived from the physical variables X by an isoprobabilistic transformation.

5 Results from site-specific calculations

5.1 Lifetime fatigue loads

The lifetime damage-equivalent (DEL) loads are computed for all reference sites in Table 2, using the six methodologies defined20

above: 1) full pseudo-Monte Carlo simulation; 2) quadratic response surface; 3) polynomial chaos expansion, 4) importance

sampling, 5) nearest-neighbor interpolation; and 6) Kriging with the mean defined by polynomial chaos basis functions. Meth-

ods 3–6 are based on data from the high-fidelity load database described in Section 2. The load predictions with the Monte

Carlo approach are obtained by carrying out HAWC2 aeroelastic simulations with the DTU 10MW reference wind turbine for

each validation site. A total of approx.1000 pseudo-MC samples are drawn from the joint distribution of environmental input25

variables characterizing each site, and 8h of aeroelastic simulations are carried out for each pseudo-MC sample. An exception

are the IEC-based sites, where the standard IEC procedure is followed and loads are evaluated for 22 wind speeds from cut-in

to cut-out in 1m/s steps. For each site, the full Monte Carlo simulation is then used as a reference to test the performance of

the other five methods. The load predictions from the PCE, Kriging, the quadratic RS and the nearest-neighbor interpolation

procedures all use a pseudo-MC simulation of the respective model with inputs drawn from the site-specific distributions of30

environmental variables. The load predictions with Importance Sampling are based on the probability-weighted contributions

from all samples in a high-fidelity load database. Based on computations from PCE with different number of dimensions and
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Figure 11. Example of a rotatable Central Composite Design (CCD) in a 2-dimensional standard Normal space [u1,u2]. The CCD consists

of a central point, a 2k factorial design with 2 levels and k = 2 dimensions, and axial points at distance u=
√

2, meaning that all the outer

points lie on a circle.

different maximum order, it was observed that expansions of order 4 or 5 may not be sufficiently accurate for some response

channels. This is illustrated in Figure 12 where the prediction of main shaft torsion loads using order 4 and order 6 PC expan-

sion are compared against other methods, and the order 4 calculation shows a significant bias. Therefore, the PC expansion

used for reporting the results in this section is based on the same 6-dimensional variable input used with the quadratic response

surface, and has a maximum order of 6. For evaluating confidence intervals from the reduced-order models (Kriging, PCE and5

quadratic response surface), two reduced-order models of each type are calibrated - one for the mean values, and the other

for the standard deviations. This allows computing confidence intervals directly by eq. (9), or generating a number of realiza-

tions for each sampled combination of input variables, and subsequently computing confidence intervals by bootstrapping (eq.

(10)). In the present, we use the latter approach, because it allows bootstrapping simultaneously a random sample of the input

variables and the random seed-to-seed variations within each sample. As a result, the obtained confidence interval reflects the10

combination of seed-to-seed uncertainty and the uncertainty due to finite number of samples from the distribution of the input

variables. This approach also allows consistency with the Importance Sampling and Nearest-Neighbor interpolation techniques,

where bootstrapping is also used. Since the lifetime fatigue load is in essence an integrated quantity subject to the law of large

numbers, the uncertainty in computations based on a random sample of size N will be proportional to 1/
√
N . Comparing
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Figure 12. Comparison of predictions of the lifetime damage-equivalent loads for six different estimation approaches. All values are nor-

malized with respect to the mean estimate from a site-specific Monte Carlo simulation, and the error bars represent the bounds of the 95%

confidence intervals. Results from two PCEs are shown: the blue bar corresponds to the output of a 4th order PCE, while the black bar

corresponds to a 6th order PCE.

uncertainties and confidence intervals as defined in Section 2.5.5 will therefore only be meaningful when approximately the

same number of samples is used for all calculation methods. This approach is used for generating Figures 13 and 14, where the

performance of all site-specific load estimation methods is compared for reference site 0, for 8 load channels in total. Figure

13 shows results for tower base and tower top fore-aft and side-side bending moments, and Figure 14 displays the tower top

yaw moment, the main shaft torsion, and blade root flapwise and edgewise bending moments.5

The results for Site 0 show that for all methods the prediction of blade root and tower top loads is more accurate than the

prediction of tower base loads. Also, overall the predictions from the reduced models - the quadratic RS and the PCE, as well as

from the Kriging model, are more robust than the IS and nearest-neighbor (NN) interpolation techniques. Similar performance

is observed for most other validation sites. The full site-specific results for all load estimation methods are shown in Tables 3,

4, 5, 6, and 7, for the PCE, Kriging, quadratic RS, Importance Sampling, and NN-interpolation techniques respectively. In all10

tables, the values represent the mean estimates and are normalized to the results obtained with the direct site-specific Monte

Carlo simulations. The largest observed errors amount to≈ 9% with Kriging,≈ 10% for the PCE,≈ 10% for the quadratic RS,

≈ 24% for IS, and ∼ 15–17% for NN-interpolation. Noticeably, the low wind speed, high turbulence site 5 seems as the most

difficult for prediction—for most load prediction methods this is the site where the largest error is found. All models except the

Kriging also show relatively large errors for the IEC class-based sites. That can be attributed to significantly smaller number15
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Figure 13. Comparison of predictions of the lifetime damage-equivalent loads for six different estimation approaches. All values are nor-

malized with respect to the mean estimate from a site-specific Monte Carlo simulation.

of samples used for the ICE-based sites (22 samples where only the wind speed is varied in 1m/s steps). As mentioned above,

the statistical uncertainty in the estimation of the lifetime DEL will diminish with increasing number of samples. In addition

to this effect, as discussed in section 2.5.3, the uncertainty of the IS model can increase when the site-specific distribution has

fewer dimensions than the model. It can be expected that this effect is strongest for the IEC class-based sites, as for them only

a single variable - the wind speed - is considered stochastic.5

5.2 One-to-one comparison and mean squared error

Since the prediction of lifetime fatigue loads is the main purpose of the present study, the performance of the load prediction

methods with respect to estimating the lifetime DEL is the main criterion for evaluation. However, the lifetime DEL as an

integrated quantity will efficiently identify model bias but may not reveal the magnitude of some uncertainties which result in

zero-mean error. As an additional means of comparison we calculate the normalized root-mean square (NRMS) error, defined10
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Figure 14. Comparison of predictions of the lifetime damage-equivalent loads for six different estimation approaches. All values are nor-

malized with respect to the mean estimate from a site-specific Monte Carlo simulation.

in eq. (20) resulting from a point-by-point comparison of load predictions from a reduced-order model against actual reference

values. The reference values are the results from the site-specific aeroelastic load simulations for reference site 0. At each

sample point, the reference value yi represents the mean DEL from all turbulence seeds simulated with these conditions. The

values of the NRMS error for site 0 for Kriging, RS, and PCE-based load predictions are listed in Table 8. Figure 15 shows a

one-to-one comparison for a short sequence of sample points.5

The RMS error analysis reveals a slightly different picture. In contrast to the lifetime DEL where the Kriging, PCE and RS

methods showed very similar results, the RMS error of the quadratic RS is for some channels about twice the RMS error of the

other two approaches.
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Table 3. Lifetime damage-equivalent fatigue load predictions obtained using 6-dimensional Polynomial Chaos Expansion of order 6, relative

to predictions from site-specific Monte Carlo simulations. Load channel abbreviations are the following: TB: tower base; TT: tower top;

MS: main shaft; BR: blade root. Loading directions consist of Mx: fore-aft (flapwise) bending, My: side-side (edgewise) bending, and Mz:

torsion.

POLYNOMIAL CHAOS EXPANSION

Load channels

Site number TB Mx TB My TT Mx TT My TT Mz MS Mz BR Mx BR My

Site 0 1.009 0.955 1.001 1.008 1.000 1.002 1.019 1.002

Site 1 0.950 0.917 0.979 0.998 1.009 1.007 1.028 1.000

Site 2 0.977 0.942 0.997 1.005 1.010 1.016 1.003 1.001

Site 3 0.954 0.917 0.984 1.004 0.997 1.013 1.003 1.000

Site 4 1.002 0.957 0.999 0.994 1.003 1.009 1.001 1.001

Site 5 0.906 0.933 0.943 0.958 0.950 0.988 0.984 1.000

Site 6 0.938 0.920 0.957 0.978 0.976 0.986 1.015 0.998

IEC IA 0.972 0.936 0.972 1.013 0.984 1.050 0.990 0.996

IEC IIB 0.972 0.929 0.972 1.015 0.987 1.052 0.994 0.997

IEC IIIC 0.977 0.939 0.974 1.024 0.991 1.060 0.996 0.997

Mean 0.966 0.934 0.978 1.000 0.991 1.018 1.003 0.999

Std.Dev 0.030 0.014 0.019 0.019 0.018 0.026 0.014 0.002

5.3 Variable sensitivities

As described earlier in Section 4.1.2, we consider variable sensitivities (i.e. the influence of input variables on the variance of

the outcome) in terms of Sobol indices. By definition the Sobol indices will be dependent on the variance of input variables,

meaning that for one and the same model, the Sobol indices will be varying under different (site-specific) input variable

distributions. Taking this into account, we evaluate the Sobol indices for the two types of joint variable distributions used in5

this study - 1) a site-specific distribution, and 2) the uniform, bounded joint distribution used to generate the database with

high-fidelity load simulations. The Sobol indices for the high-fidelity load database variable range are listed in Table 9, while

the indices for the site-specific distribution corresponding to reference site 0 are listed in Table 10. The two tables show similar

results - the mean wind speed and the turbulence are the most important factors affecting both fatigue and extreme loads. Other

two variables which show a smaller but still noticeable influence are the wind shear α, and the Mann model turbulence length10

scale L. The effect of wind shear is pronounced mainly for blade root loads which can be explained by the rotation of the

blades which, if subjected to wind shear, will experience cyclic changes in wind velocity. The effect of Mann model Γ, veer,

yaw, tilt, and air density within the chosen variable ranges seems to be minimal, especially for fatigue loads.
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Table 4. Lifetime damage-equivalent fatigue load predictions obtained using the Universal Kriging approach with a 6-dimensional Poly-

nomial Chaos Expansion of order 6 used as basis functions. The results are compared against site-specific Monte Carlo simulations. Load

channel abbreviations are the following: TB: tower base; TT: tower top; MS: main shaft; BR: blade root. Loading directions consist of Mx:

fore-aft (flapwise) bending, My: side-side (edgewise) bending, and Mz: torsion.

UNIVERSAL KRIGING

Load channels

Site number TB Mx TB My TT Mx TT My TT Mz MS Mz BR Mx BR My

Site 0 1.017 1.008 1.004 0.998 0.997 0.997 1.024 1.002

Site 1 0.953 0.941 0.992 0.993 1.010 0.980 1.029 1.001

Site 2 0.984 0.981 1.007 1.003 1.013 0.984 1.011 1.002

Site 3 0.959 0.953 0.996 0.998 0.998 0.982 1.009 1.001

Site 4 1.012 1.014 1.007 1.005 1.009 0.993 1.008 1.003

Site 5 0.911 0.943 0.952 0.957 0.946 0.960 0.976 0.999

Site 6 0.938 0.929 0.967 0.979 0.979 0.964 1.015 0.999

IEC IA 0.984 0.960 0.993 1.005 0.987 1.000 0.996 0.998

IEC IIB 0.987 0.966 0.989 1.021 0.992 1.025 1.004 0.999

IEC IIIC 0.976 0.952 0.985 1.024 0.994 1.048 1.012 0.999

Mean 0.972 0.965 0.989 0.998 0.992 0.993 1.008 1.000

Std.Dev 0.033 0.028 0.018 0.019 0.020 0.027 0.015 0.002

5.4 Mean extreme loads

Fatigue loads are the main quantity of interest in the present study, however the methods discussed can also be applied to

other types of statistics as long as the load simulations carry the necessary information and cover the input variable space.

For example, the conditions specified in the extreme-turbulence load case scenario DLC1.3 in IEC61400-1 class C and B are

within the envelope of the high-fidelity database. DLC1.3 requires taking the mean of the extremes from all seeds simulated5

at a specific condition - meaning that the requirements for the reduced-order models are very similar to the case with fatigue

loads. As a demonstration for the feasibility of these calculations, Figure 16 shows prediction of the mean of extremes for the

DLC1.3 load case for IEC class IB, carried out by calibrating a PCE and a quadratic RS according to the same procedures as

already defined for the fatigue DEL.
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Table 5. Lifetime damage-equivalent fatigue load predictions obtained using 6-dimensional Quadratic Response Surface, relative to predic-

tions from site-specific Monte Carlo simulations. Load channel abbreviations are the following: TB: tower base; TT: tower top; MS: main

shaft; BR: blade root. Loading directions consist of Mx: fore-aft (flapwise) bending, My: side-side (edgewise) bending, and Mz: torsion.

QUADRATIC RESPONSE SURFACE

Load channels

Site number TB Mx TB My TT Mx TT My TT Mz MS Mz BR Mx BR My

Site 0 1.092 1.031 1.009 1.013 1.009 1.009 1.035 1.001

Site 1 1.055 0.985 0.975 1.034 1.033 1.076 1.038 0.998

Site 2 1.029 0.983 0.966 1.041 1.028 1.081 1.012 0.998

Site 3 1.007 0.967 0.961 1.036 1.015 1.074 1.018 0.997

Site 4 1.038 0.996 0.956 1.044 1.029 1.085 1.008 0.997

Site 5 0.988 0.938 0.954 1.001 1.003 1.056 1.017 0.996

Site 6 1.030 0.960 0.968 1.032 1.015 1.069 1.040 0.997

IEC IA 1.013 0.965 0.952 1.032 1.002 1.098 1.016 0.989

IEC IIB 1.026 0.969 0.955 1.040 1.002 1.102 1.012 0.995

IEC IIIC 1.059 1.010 0.963 1.050 1.006 1.103 1.015 0.998

Mean 1.034 0.980 0.966 1.032 1.014 1.075 1.021 0.996

Std.Dev 0.029 0.027 0.017 0.015 0.012 0.028 0.012 0.003

6 Discussion and conclusions

6.1 Discussion

The previous sections of this paper described the procedure for estimating site-specific lifetime damage-equivalent loads using

several simplified model techniques which were applied for ten sites. Based on the site-specific lifetime DEL comparisons,

three models showed to be viable (robust and sufficiently accurate) choices for quick site-specific load estimation: the PC5

expansion, Kriging, and the quadratic RS. When estimating lifetime DEL, these methods showed approximately equal levels of

uncertainty. However, in the one-to-one comparisons the quadratic RS model showed larger error, especially for sample points

corresponding to more extreme combinations of environmental conditions. This is due to the lower order and the relatively

small number of calibration points of the quadratic RS, which means that the model accuracy decreases in the sampling space

away from the calibration points, especially if there is any extrapolation. This inaccuracy is reflected in the RMS-error from10

one-to-one comparisons, but is less obvious in the lifetime fatigue load computations which average out errors with zero

mean. The universal Kriging model demonstrated the overall lowest uncertainty both in sample-to-sample comparisons and in

lifetime DEL computations. This is to be expected since the Kriging employs an already well-performing model (the PCE),

and combines it with an interpolation scheme which reduces the uncertainty even further. However, in most cases the observed

improvement over a pure PCE is not significant. This indicates that the sources of the remaining uncertainty are outside the15
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Table 6. Lifetime damage-equivalent fatigue load predictions obtained using Importance Sampling of points from a 6-dimensional high-

fidelity load database, relative to predictions from site-specific Monte Carlo simulations. Load channel abbreviations are the following: TB:

tower base; TT: tower top; MS: main shaft; BR: blade root. Loading directions consist of Mx: fore-aft (flapwise) bending, My: side-side

(edgewise) bending, and Mz: torsion.

IMPORTANCE SAMPLING

Load channels

Site number TB Mx TB My TT Mx TT My TT Mz MS Mz BR Mx BR My

Site 0 1.059 1.098 1.015 1.004 1.039 1.042 1.050 1.002

Site 1 0.893 0.849 0.889 1.174 0.974 1.333 1.089 0.992

Site 2 0.884 0.846 0.883 1.176 0.972 1.296 1.079 0.993

Site 3 0.914 0.867 0.884 1.166 0.958 1.315 1.069 0.990

Site 4 0.944 0.884 0.882 1.182 0.970 1.316 1.060 0.992

Site 5 0.762 0.771 0.806 1.065 0.838 1.178 0.965 0.985

Site 6 0.856 0.810 0.867 1.155 0.944 1.303 1.077 0.988

IEC IA 0.779 0.856 0.797 1.007 0.873 1.221 1.141 0.980

IEC IIB 0.753 0.864 0.797 1.032 0.874 1.238 1.199 0.993

IEC IIIC 0.746 0.932 0.802 1.064 0.875 1.268 1.277 1.001

Mean 0.859 0.878 0.862 1.102 0.932 1.251 1.100 0.992

Std.Dev 0.101 0.088 0.067 0.075 0.063 0.088 0.086 0.007

models—e.g. the seed-to-seed turbulence variations: the models being calibrated with turbulence realizations different from the

ones used to compute the reference site-specific loads. As a result the trend function has the main contribution to the Kriging

estimator and the influence of the Gaussian-field interpolation is minimal. A drawback of the Kriging model with respect to

the other techniques is the larger computational demands due to the need of computing correlation matrices and the use of the

training sample for each new evaluation.5

For all site-specific load assessment methods discussed, the estimations are trustworthy only within the bounds of the variable

space used for model calibration - extrapolation is either not possible, or may lead to unpredictable results. It is therefore

important to ensure that the site-specific distributions used for load assessment are not outside the bounds of validity of the

load estimation model.

The variable bounds presented in this paper are based on a certain degree of consideration of atmospheric physics employed10

in the relationships between wind speed, turbulence, wind shear, wind veer and turbulence length scale. The primary scope is

to encompass the ranges of conditions relevant for fatigue load analysis, and the currently suggested variable bounds include

all normal-turbulence (NTM) classes. However, in some situations it may be more practical to choose other bound definitions -

e.g. for consistency with the IEC 61400-1 definitions of the extreme turbulence models, where the currently suggested bounds

do not include ETM class A.15
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Table 7. Lifetime damage-equivalent fatigue load predictions obtained using nearest-neighbor interpolation in a 6-dimensional high-fidelity

load database, relative to predictions from site-specific Monte Carlo simulations. Load channel abbreviations are the following: TB: tower

base; TT: tower top; MS: main shaft; BR: blade root. Loading directions consist ofMx: fore-aft (flapwise) bending,My: side-side (edgewise)

bending, and Mz: torsion.

NEAREST-NEIGHBOR INTERPOLATION

Load channels

Site number TB Mx TB My TT Mx TT My TT Mz MS Mz BR Mx BR My

Site 0 1.077 1.093 1.018 1.029 1.036 1.052 1.056 1.000

Site 1 1.002 1.019 0.987 1.039 1.012 1.141 1.043 0.998

Site 2 0.993 1.022 0.987 1.013 1.019 1.080 1.032 0.998

Site 3 0.983 1.030 0.985 1.019 1.000 1.106 1.021 0.998

Site 4 1.004 1.031 0.968 1.010 1.008 1.067 1.014 0.997

Site 5 0.927 0.953 0.922 1.025 0.903 1.097 0.945 0.994

Site 6 0.981 0.985 0.960 1.063 0.992 1.166 1.037 0.997

IEC IA 0.832 0.900 0.895 0.906 0.901 1.042 0.951 0.985

IEC IIB 0.839 0.934 0.894 0.892 0.929 0.987 0.962 0.988

IEC IIIC 0.867 0.963 0.898 0.898 0.921 0.927 0.953 0.990

Mean 0.951 0.993 0.951 0.989 0.972 1.066 1.001 0.994

Std.Dev 0.081 0.057 0.045 0.064 0.052 0.070 0.044 0.005

Table 8. Root mean square error characterizing the difference between aeroelastic simulations and reduced-order models. Load channel

abbreviations are the following: TB: tower base; TT: tower top; MS: main shaft; BR: blade root. Loading directions consist of Mx: fore-aft

(flapwise) bending, My: side-side (edgewise) bending, and Mz: torsion.

NORMALIZED RMS ERROR - SITE 0

Load channels

Prediction model TB Mx TB My TT Mx TT My TT Mz MS Mz BR Mx BR My

Quadratic RS 0.0452 0.1404 0.1981 0.2612 0.0644 0.2280 0.1504 0.0098

PC expansion 0.0362 0.0955 0.1019 0.2089 0.0362 0.1530 0.0620 0.0084

Kriging 0.0334 0.0706 0.0837 0.1761 0.0368 0.1072 0.0519 0.0083

For the more advanced methods like PCE and Kriging, there is a practical limitation of the number of training points to be

used on a single-computer setup. For a PCE the practical limit is mainly subject to memory availability when assembling and

inverting the information matrix, and for a PCE of order 6 and with 9 dimensions this limit is on the order of 1–2·104 points

on a typical desktop computer. For Kriging, the computing time also plays a role: although a similar number of training points

could be stored in memory as for the PCE, the computational time is much longer and the practical limit of training points for5
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Figure 15. Sample-by-sample comparison of the 1Hz damage-equivalent load predictions, for two load prediction methods - quadratic

Response Surface, and Polynomial Chaos expansion, compared against site-specific Monte Carlo simulation. Each point on the x-axis

represents a sample point from the site-specific distribution of input variables for reference site 0, and the y-axis represents the estimated

mean 1Hz-equivalent load.

most applications is less than for the PCE. However, as it was shown in Sections 4.1 and 5, a training sample of 104 points or

even half of that should be sufficient for most applications in site-specific load prediction.

Considering the overall merits of the load prediction methods analyzed, the PCE provided an accurate and robust perfor-

mance. The Kriging approach showed slightly better accuracy but at the expense of increased computational demands. Taking

this together with the other useful properties of the PCE - e.g. the orthogonality allowing for creating sparse models or doing5

variance-based sensitivity analysis, we consider the PCE as the most useful method overall.

In addition to the surrogate models presented in this paper, Artificial Neural Networks (ANNs) are interesting alternative

candidates. ANN (see Goodfellow et al., 2016) are machine learning models which are gaining large popularity due to their

flexibility and history of successful applications in many problems. It is very likely that a deep Neural Network model can

provide similar output quality and performance than the methods described in the present study. This is therefore a matter10

worth of future research. However, the PCE-based models may have a practical advantage over ANNs due to the "white-

box" features such known variance contributions and the possibility of obtaining analytical derivatives which is important for

applications to optimization problems.

The results from the site validations showed that for the majority of sites and load channels, the simplified load assessment

techniques can predict the site-specific lifetime fatigue loads to within ≈ 5% accuracy. However, it should be noted that this15

accuracy is relative to full-fidelity load simulations, and not necessarily to the actual site conditions, where additional uncer-

tainties can lead to larger errors. The procedures demonstrated in this study are thus very suitable for carrying out quick site
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Figure 16. Comparison of predictions of the mean of extremes obtained for the extreme turbulence load case DLC1.3 for IEC turbulence

class B conditions. MC simulation (blue lines with crosses) denotes the reference values obtained with full-fidelity aeroelastic simulations.
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Table 9. PCE-based Sobol sensitivity indices for the high-fidelity load database variable ranges.

FATIGUE

Variables

Load channel U σu α L Γ ∆ϕh ϕ̄h ϕ̄v ρ

Tower base fore-aft moment Mx 0.42 0.65 0.01 0.03 0.02 0.01 0.00 0.00 0.01

Tower base side-side moment My 0.62 0.42 0.05 0.04 0.04 0.02 0.02 0.02 0.02

Blade root flapwise moment Mx 0.20 0.64 0.19 0.02 0.01 0.00 0.01 0.00 0.02

Blade root edgewise moment My 0.22 0.54 0.25 0.05 0.03 0.01 0.01 0.03 0.01

Tower top yaw moment Mz 0.14 0.85 0.00 0.02 0.01 0.00 0.00 0.00 0.01

Main shaft torsion Mz 0.48 0.53 0.01 0.06 0.01 0.01 0.01 0.01 0.01

EXTREMES

Variables

Load channel U σu α L Γ ∆ϕh ϕ̄h ϕ̄v ρ

Tower base fore-aft moment Mx 0.52 0.51 0.04 0.04 0.04 0.03 0.03 0.03 0.05

Tower base side-side moment My 0.46 0.55 0.13 0.07 0.07 0.05 0.04 0.04 0.04

Blade root flapwise moment Mx 0.59 0.38 0.07 0.04 0.03 0.02 0.02 0.02 0.04

Blade root edgewise moment My 0.65 0.46 0.10 0.07 0.08 0.06 0.06 0.06 0.06

Tower top yaw moment Mz 0.18 0.71 0.16 0.02 0.02 0.01 0.02 0.02 0.02

Main shaft torsion Mz 0.86 0.20 0.02 0.03 0.02 0.02 0.02 0.02 0.02

feasibility assessments, which can in a timely fashion aid the decision on whether to discard a given site as unfeasible, or e.g.

make additional high-fidelity computations or more measurements of site conditions. The same procedure, but with additional

variables (e.g. 3 variables for wake-induced effects as in (Galinos et al., 2016)) may also be useful as objective function or

constraint in farm optimization problems.

6.2 Conclusions5

In the present work we defined and demonstrated a procedure for quick assessment of site-specific lifetime fatigue loads

using surrogate models calibrated by means of a database with high-fidelity load simulations. The performance of polynomial

chaos expansion, quadratic response surface, universal Kriging, importance sampling, and nearest-neighbor interpolation in

predicting site-specific lifetime fatigue loads was assessed. Practical bounds of variation were defined for nine environmental

variables and their effect on the lifetime fatigue loads was studied. The study led to the following main conclusions:10

- The variable sensitivity analysis showed that mean wind speed and turbulence are the factors having the highest influence

on fatigue and extreme loads. The Mann turbulence length scale and the wind shear exponent were also found to have

an influence, and for the wind shear the effect is more pronounced for rotating components such as blades. Within the
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Table 10. Site-specific Sobol sensitivity indices derived for Site 0 using Monte Carlo simulation from a PCE.

FATIGUE

Variables

Load channel U σu α L Γ

Tower base fore-aft moment Mx 0.08 1.32 0.07 0.18 0.09

Tower base side-side moment My 0.90 0.09 0.07 0.23 0.13

Blade root flapwise moment Mx 0.42 0.38 0.05 0.01 0.01

Blade root edgewise moment My 0.43 0.18 0.26 0.22 0.11

Tower top yaw moment Mz 0.23 0.53 0.01 0.08 0.01

Main shaft torsion Mz 0.47 0.36 0.06 0.03 0.07

EXTREMES

Variables

Load channel U σu α L Γ

Tower base fore-aft moment Mx 0.68 0.44 0.03 0.02 0.01

Tower base side-side moment My 0.52 0.40 0.07 0.22 0.17

Blade root flapwise moment Mx 0.76 0.21 0.02 0.02 0.01

Blade root edgewise moment My 0.62 0.05 0.10 0.05 0.05

Tower top yaw moment Mz 0.15 0.45 0.08 0.08 0.02

Main shaft torsion Mz 0.81 0.25 0.04 0.04 0.00

studied ranges of variation, the Mann turbulence parameter Γ, wind veer, yaw angle, tilt angle, and air density, were

found to have small or negligible effect on the loads.

- The best performing models had errors of less than 5% for most sites and load channels, which is in the same order of

magnitude as the variations due to realization-to-realization uncertainty.

- A universal Kriging model with a polynomial chaos expansion used as a trend function achieved the most accurate5

predictions, but also required the longest computing times.

- A polynomial chaos expansion with Legendre basis polynomials was concluded to be the approach with best overall

performance.

- The procedures demonstrated in this study are well suited for carrying out quick site feasibility assessments with a

particular wind turbine model.10
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