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Abstract. We define and demonstrate a procedure for quick assessment of site-specific lifetime fatigue loads using simplified

load mapping functions (surrogate models), trained by means of a database with high-fidelity load simulations. The per-

formance of five surrogate models is assessed by comparing site-specific lifetime fatigue load predictions at ten sites using

an aeroelastic model of the DTU 10MW reference wind turbine. The surrogate methods are polynomial-chaos expansion,

quadratic response surface, universal Kriging, importance sampling, and nearest-neighbor interpolation. Practical bounds for5

the database and calibration are defined via nine environmental variables, and their relative effects on the fatigue loads are

evaluated by means of Sobol sensitivity indices. Of the surrogate-model methods, polynomial-chaos expansion provides an ac-

curate and robust performance in prediction of the different site-specific loads. Although the Kriging approach showed slightly

better accuracy, it also demanded more computational resources.

Copyright statement. This article is subject to copyright.10

1 Introduction

Before installing a wind turbine at a particular site, it needs to be ensured that the wind turbine structure is sufficiently robust

to withstand the environmentally-induced loads during its entire lifetime. As the design of serially-produced wind turbines

is typically based on a specific set of wind conditions, i.e. a site class defined in the IEC (2005) standard, any site where

the conditions are more benign than the reference conditions is considered feasible. However, often one or more site-specific15

parameters will be outside this envelope – and disqualify the site as infeasible, unless it is shown that the design load limits

are not going to be violated under site-specific conditions. Such a demonstration requires carrying out simulations over a full

design load basis, which adds a significant burden to the site assessment process.

Various methods and procedures have been attempted for simplified load assessment for wind energy applications. Kashef

and Winterstein (1999) , Manuel et al. (2001) use probabilistic expansions based on statistical moments. Simple multivariate20

regression models of first order are employed by Mouzakis et al. (1999), Stewart (2014), while in Toft et al. (2016) a second-

order response surface is used. Another response surface approach using artificial neural networks is described in Müller et al.
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(2017). Polynomial chaos expansion (PCE) is employed by Ganesh and Gupta (2013) for blade load prediction, albeit on a

very simple structural representation. Teixeira et al. (2017) use a Kriging surrogate model to map the load variations with

respect to offshore environmental conditions. Other relevant studies use some of the methodologies which represent specific

analysis steps shown in the present work. These include Hübler et al. (2017) where variance-based sensitivity analysis is

employed, Yang et al. (2015) where Kriging is used to enable efficient implementation of reliability-based design optimization,5

and Murcia et al. (2018) where polynomial chaos expansions are used to carry out uncertainty propagation. In the latter, the

model training sample is generated using a Monte Carlo simulation with a quasi-random sequence, a technique which is also

employed in Müller and Cheng (2018) and Graf et al. (2016). An alternative to the surrogate modelling approach discussed

in this paper could be the load set reduction, as described in e.g. Häfele et al. (2018); Zwick and Muskulus (2016) which

also reduces the number of simulations required. This approach however still requires carrying out high-fidelity simulations10

which leads to using more time for simulation set-up, computations and post-processing, while with a surrogate model the

lifetime equivalent load computation takes typically less than a minute on a regular personal computer. The studies most in

line with the scope of the present paper are those by Müller et al. (2017), Teixeira et al. (2017) and Toft et al. (2016). The

former two employ advanced surrogate modelling techniques (artificial neural networks and Kriging respectively), however

the experimental designs are relatively small and with limited range of variation for some of the variables, and the discussion15

does not focus on the practical problem of computing lifetime-equivalent site-specific loads. The computation of site-specific

lifetime-equivalent design loads is the main focus in Toft et al. (2016), however with a limited number of variables, and using a

low-order quadratic response surface. The vast majority of the studies employ a single surrogate modelling approach, meaning

that it has not been possible to directly compare the performance of different approaches.

In the present work, we analyze, refine and expand the existing simplified load assessment methods, and provide a structured20

approach for practical implementation of a surrogate modelling approach for site feasibility assessment. The study aims at

fulfilling the following four specific goals:

– define a simplified load assessment procedure which can take into account all the relevant external parameters required

for full characterization of the wind fields used in load simulations;

– define feasible ranges of variation of the wind-related parameters, dependent on wind turbine rotor size;25

– demonstrate how different surrogate modelling approaches can be successfully employed in the problem, and compare

their performance; and

– obtain estimates of the statistical uncertainty and parameter sensitivities.

The scope of the present study is loads generated under normal power production, which encompasses design load cases

(DLC) 1.2 and 1.3 from the IEC 61400-1 standard (IEC, 2005). These load cases are the main contributors to the fatigue limit30

state (DLC1.2) and often the blade extreme design loads (DLC1.3) (Dimitrov et al., 2017; Bak et al., 2013). The methodology

used can easily be applied to other load cases governed by wind conditions with a probabilistic description. Loads generated

during fault conditions (e.g. grid drops) or under deterministic wind conditions (e.g. operational gusts without turbulence) will
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in general not be (wind climate) site-specific. The loads analysis is based on the DTU 10MW reference wind turbine (Bak

et al., 2013) simulated using the Hawc2 software (Larsen and Hansen, 2012).

2 Definition of the surrogate load modelling procedure

2.1 Schematic description

Figure 1 shows a schematic overview of the procedure for site-specific load assessment using simplified load mapping functions5

(here referred to in general as surrogate models). The main advantage of this procedure is that the computationally expensive

high-fidelity simulations are only carried out once, during the model training process (top of Figure 1). In the model deployment

process (bottom of Figure 1), only the coefficients of the trained surrogate models are used, and a site-specific load evaluation

typically takes less than a minute on a standard personal computer.
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Figure 1. Schematic overview of the site-specific load analysis procedure

2.2 Definition of variable space10

The turbulent wind field serving as input to aeroelastic load simulations can be fully characterized statistically by the following

variables:

◦ mean wind field across the rotor plane as described by the

- average wind speed at hub height, U ,

- vertical wind shear exponent, α,15

- wind veer (change of mean flow direction with height, ∆ϕ);

◦ turbulence described via
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- variance of wind fluctuations, σ2
u,

- turbulence probability density function (e.g. Gaussian),

- turbulence spectrum defined by the Mann (1994) model with parameters

· turbulence length scale L,

· anisotropy factor Γ,5

· turbulence dissipation parameter αε2/3;

◦ air density ρ;

◦ mean wind inflow direction relative to the turbine in terms of

- vertical inflow (tilt) angle ϕ̄v and

- horizontal inflow (yaw) angle ϕ̄h.10

All the quantities referred to above are considered in terms of 10-minute average values. All variables, except the variables

defining mean inflow direction, are probabilistic and site-dependent in nature. The mean inflow direction variables represent

a combination of deterministic factors (i.e. terrain inclination or yaw direction bias in the turbine) and random fluctuations

due to e.g. large-scale turbulence structures or variations in atmospheric stability. Mean wind speed, turbulence and wind

shear are well known to affect loads and are considered in the IEC 61400-1 standard. In Kelly et al. (2014) a conditional15

relation describing the joint probability of wind speed, turbulence and wind shear was defined. The effect of implementing this

wind shear distribution in load simulations was assessed in Dimitrov et al. (2015), showing that wind shear has importance

especially for blade deflection. The Mann model parameters L and Γ were also shown to have a noticeable influence on

wind turbine loads (Dimitrov et al., 2017). By definition, for a given combination of L and Γ the αε2/3 parameter from the

Mann model is directly proportional to σ2
uL
−2/3 (Mann, 1994; Kelly, 2018), and can therefore be omitted from the analysis.20

The probability density function (pdf) typically used to synthesize time series of velocity components from the Mann-model

spectra is Gaussian. For a slightly smaller turbine, the NREL 5MW turbine, the assumption of Gaussian turbulence has been

shown to not impact the fatigue loads (Berg et al., 2016). The final list of inflow-related parameters thus reads (see Table 1 for

details)

{U,σu,α,L,∆ϕ,Γ, ϕ̄h, ϕ̄v,ρ}.25

The loads experienced by a wind turbine are a function of the wind-derived factors described above, and of the structural

properties and control system of the wind turbine. Therefore, a load characterization database taking only wind-related factors

into account is going to be turbine-specific.

The variables describing the wind field often have a significant correlation between them, and any site-specific load or power

assessment has to take this into account using an appropriate description of the joint distribution of input variables. At the same30

time, most probabilistic models require inputs in terms of a set of independent and identically distributed (i.i.d) variables.
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The mapping from the space of i.i.d variables to joint distribution of physical variables requires applying an isoprobabilistic

transformation as e.g. the Nataf transform (Liu and Der Kiureghian, 1986), and the Rosenblatt transformation (Rosenblatt,

1952). In the present case, it is most convenient to apply the Rosenblatt transformation, because it allows more complex

conditional dependencies than the Nataf transformation which implies linear correlation. The Rosenblatt transformation maps

a vector of n dependent variables X into a vector of independent components Y based on conditional relations:5

X→Y =



F1(X1)
...

Fk|1,...,k−1(Xk|X1, . . . ,Xk−1)
...

Fn|1,...,n−1(Xn|X1, . . . ,Xn−1)


. (1)

Further mapping of Y to a standard normal space vector U is sometimes applied, i.e.

Y→U =


Φ−1(Y1)

. . .

Φ−1(Yn)

 . (2)

For the currently considered set of variables, the Rosenblatt transformation can be applied in the order defined in Table 1 - i.e.,

the wind speed is considered independent of other variables, the turbulence is dependent on the wind speed, the wind shear is10

conditional on both wind speed and turbulence, etc. For any variable in the sequence, it is not necessary that it is dependent on

all higher-order variables (it may only be conditional on a few of them or even none), but it is required that it is independent

from lower-order variables.

2.3 Defining the ranges of input variables

The choice for ranges of variation of the input variables needs to ensure a balance between two objectives: a) covering as wide15

a range of potential sites as possible, while b) ensuring that the load simulations produce valid results. To ensure validity of

load simulations, the major assumptions behind the generation of the wind field and computation of aerodynamic forces should

not be violated, and the instantaneous wind field should have physically meaningful values.

For the case of building a high-fidelity load database, all variables given in Table 1 except the wind speed are uniform, and

only the distribution bounds are conditional on other variables as specified by the 2nd and 3rd columns of the table. The bounds20

of several variables are conditional on the wind speed, and as shown on Figure 2 they are wider at low wind speeds, meaning

that more sample points are needed to cover the space evenly. This dictates that the choice of distribution for the wind speed

should provide more samples at low wind speeds. In the present study we have selected a Beta distribution, but other choices

as e.g. a truncated Weibull are also feasible.

The turbulence intensity, Iu = σu/U, upper limit can be written as the IEC-prescribed form (ed. 3, sub-class A) with25

Iref,A=18%, plus a constant (representing the larger expected range of TI, to span different sites) and a term that encom-

passes low-windspeed sites and regimes which have higher turbulent intensities. This form is basically equivalent to σu,IEC +
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Table 1. Bounds of variation of the variables considered. All values are defined as statistics over 10-minute reference period.

Variable Lower bounds Upper bounds Distribution

U U ≥ 4m/s U ≤ 25m/s Beta

σu σu ≥ 0.025 ·U(m/s) σu ≤ 0.18
(

6.8 + 0.75U + 3
(
10
U

)2)
(m/s) Uniform

α α≥ αref,LB − 0.23
(
Umax
U

)(
1−

(
0.4log R

z

)2)
α≤ αref,UB + 0.4

(
R
z

)(
Umax
U

)
Uniform

L L≥max{7.5m, (15m) ·
∣∣α∣∣−2/3} L≤ 275m Uniform

Γ Γ≥ 1 Γ≤ 5 Uniform

∆ϕh ∆ϕh ≥−0.1D
(

5
U

)
∆ϕh ≤min{60◦ sin |φ|, 1.0D

(
5
U

)2} Uniform

ϕ̄h ϕ̄h ≥−10◦ ϕ̄h ≤ 10◦ Uniform

ϕ̄v ϕ̄v ≥−10◦ ϕ̄v ≤ 10◦ Uniform

ρ ρ≥ 1.1kg/m3 ρ≤ 1.35kg/m3 Uniform

Where

- R is the rotor radius, D the rotor diameter;

- αref,LB = 0.15,αref,UB = 0.22 are reference wind shear exponents at 15m/s wind speed;

- Umax = 25m/s is the upper bound of the wind speed;

- φ is the reference latitude (here chosen as 50◦).

Iref,AUcut-in[1 + (Ucut-out/U)] with {Ucut-in,Ucut-out}={4,25}m/s. The bounds for turbulence intensity as function of mean wind

speed are shown on Figure 2. The limits on shear exponent were chosen following the derivations and findings of Kelly et al.

(2014) for P (α|U), expanding on the established σα(U) form to allow for a reasonably wide and inclusive range of expected

cases, and also accounting for rotor size per height above ground. This includes an upper bound which allows for enhanced

shear due e.g. to lower-level jets and terrain-induced shear; the lower bound also includes the R/z dependence, but does not5

expand the space to the point that it includes jet-induced negative shear (these are generally found only in the top portion of

the rotor). The condition L>max{7.5m,(15m)|α|−2/3} arises from consideration of the relationship between L,α,σu, and

ε; small shear tends to correlate with larger motions (as in convective well-mixed conditions), as L' zIu/α (Kelly, 2018).

The minimum scale (7.5 m) and proportionality constant (15 m) are set to allow a wide range of conditions (though most sites

will likely have a scaling factor larger than 15 m). The maximum Mann-model length scale is chosen based on the limits10

of where the model can be fitted to measured spectra; this is dictated also by the limits of stationarity in the atmospheric

boundary layer (and applicability of Taylor’s hypothesis). The range of Γ is also dictated by the minimum expected over

non-complex terrain within reasonable use of the turbulence model (smaller Γ might occur for spectra fitted at low heights

over hills, but such spectra should be modelled in a different way, as in e.g. Mann (2000)). The range of veer is limited in

a way analogous to shear exponent, i.e. it has a basic 1/U dependence; this range also depends upon the rotor size, just as15

(dU/dz)|rotor = αD/U (Kelly and van der Laan, 2018). The limits for ∆ϕh above peak follow from the limits on α, while for
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unstable conditions (∆ϕh <∆ϕh,peak, e.g. all ∆ϕh < 0) then the veer limit follows a semi-empirical form based on observed

extremes of ∂ϕh/∂z. For the remaining variables, ϕ̄h, ϕ̄v , and ρ, the bounds are chosen arbitrarily such that they are wide

enough to encompass the values typically used in a design load basis.

2.4 Sampling procedure

Building a large database with high-fidelity load simulations covering the entire variable space is a central task in the present5

study as such a database can serve several purposes:

1) be directly used as a site assessment tool by probability-weighting the relative contribution of each point to the design

loads;

2) serve as an input for calibrating simplified models, i.e., surrogate models and response surfaces.

Characterizing the load behaviour of a wind turbine over a range of input conditions requires an experimental design covering10

the range of variation of all variables with sufficient resolution. In the case of having more than 3-4 dimensions, a full factorial

design with multiple levels quickly becomes impractical due to the exponential increase in the number of design points as

function of number of dimensions. Therefore, in the present study we resort to a Monte Carlo (MC) simulation as the main

approach for covering the joint distribution of wind conditions. For assuring better and faster convergence, we use the low-

discrepancy Halton sequence in a quasi-Monte Carlo approach (Caflisch, 1998). While a crude Monte Carlo integration has a15

convergence rate proportional to the square root of the number of samples N , i.e., the mean error ε̄∝N−0.5, the convergence

rate for a quasi-Monte Carlo with a low-discrepancy sequence results in ε̄∝N−λ, 0.5≤ λ≤ 1. For low number of dimensions

and smooth functions, the quasi-Monte Carlo sequences show a significantly improved performance over the Monte Carlo,

e.g. λ→ 1, however for multiple dimensions and discontinuous functions the advantage over crude Monte Carlo is reduced

(Morokoff and Caflisch, 1995). Nevertheless, even for the full 9-dimensional problem discussed here, it is expected that λ≈ 0.620

(Morokoff and Caflisch, 1995), which still means about an order of magnitude advantage, e.g., 104 quasi-Monte Carlo samples

should result in about the same error as 105 crude Monte Carlo samples. A disadvantage of the quasi-random sequences is

that their properties typically deteriorate in high-dimensional problems, where periodicity and correlation between points in

different dimensions may appear (Morokoff and Caflisch, 1995). However, such behaviour typically occurs when more than

20-25 dimensions are used. In the present problem the dimensionality is limited by the computational requirements of the25

surrogate models and the aeroelastic simulations used to train them. Therefore the behaviour of quasi-random sequences in

high dimensions does not have implications for the present study. The Halton sequence is applied by taking consequentially all

points in the quasi-random series without omission and without repetitions, starting from the second point. The first point in

the sequence is discarded as it contains zeros (i.e., the lower bounds of the interval [0,1]) in all dimensions, which corresponds

to zero joint probability for the input variables X.30
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Figure 2. Sample distributions obtained using 1024 low-discrepancy points within a 6-dimensional variable space {U,Iu,α,∆φh,L,Γ}.

Here U is Beta-distributed, while the other variables are uniformly distributed within their ranges. Solid lines show the sampling space

bounds which are curved due to conditional dependencies. Blue shading shows the site-specific variable distribution for the NKE reference

site (site 0, c.f. Table 5/Section 6.1).

2.5 Database specification

A large-scale generic load database is generated in order to serve as a training data set for the load mapping functions. The

point sampling is done using a Halton low-discrepancy sequence within the 9-dimensional variable space defined in section

2.4 (Figure 2 shows the bounds for the first 6 variables). The database setup is the following:

– Up to 104 quasi-random MC sample points in the interval [0,1) are generated, following a low-discrepancy sequence for5

obtaining evenly distributed points within the parametric space.

– The physical values of the stochastic variables for all quasi-MC samples are obtained by applying a Rosenblatt transfor-

mation using the conditional distribution bounds given in Table 1 and using uniform distribution density, except for the

wind speed for which a Beta distribution is used.

8



– For each sample point, eight simulations, with 3800s duration each, are carried out. The first 200s of the simulations are

discarded in order to eliminate simulation run-in time transients, and the output is 3600s (1h) of load time series from

each simulation.

– The Mann model simulation parameters (L, Γ, αε2/3) which determine the turbulence intensity are tuned to match the

required 10-minute turbulence statistics (1 h statistics are slightly different due to longer sampling time).5

– Each 1h time-series is split into six 10-minute series, which on average will have the required statistics. This leads to a

total of 48 10-minute time series for each quasi-MC sample point.

– Simulation conditions are kept stationary over each 1 h simulation period.

– The DTU 10MW reference wind turbine model (Bak et al., 2013), with the basic DTU Wind Energy controller (Hansen

and Henriksen, 2013), is used in the Hawc2 aeroelastic software (Larsen and Hansen, 2012).10

By choosing to run 1h simulations followed by splitting up of the time series instead of directly simulating 10-minute

periods, we want to capture some of the low-frequency fluctuations generated by the Mann model turbulence, especially at

larger turbulence length scales. When we generate a longer turbulence box, it includes more of these low-frequency variations,

which in fact introduce some degree of non-stationarity when looking at 10-minute windows.

3 Post-processing and analysis15

3.1 Time series postprocessing and cycle counting

The main quantities of interest from the load simulation output are the short-term (10-minute) fatigue damage-equivalent loads

(DEL), and the 10-minute extremes (minimum or maximum, depending on the load type). For each load simulation, four

statistics (mean, standard deviation, minimum and maximum values) are calculated for each load channel. For several selected

load channels, the 1 Hz DEL for a reference period Tref are estimated using the expression20

Seq =

[∑ niS
m
i

Nref

]1/m
(3)

where Nref = f ·Tref is a reference number of cycles (Nref = 600 for obtaining 1 Hz-equivalent DEL over a 10 min period), Si

are load range cycles estimated using a rainflow counting algorithm (Rychlik, 1987), and ni are the number of cycles observed

in a given range. For a specific material with fatigue properties characterized by an S-N curve of the form K =N ·Sm (where

K is the material-specific Wöhler constant), the fatigue damage D accumulated over one reference period equals25

D(Tref) =
Nref

K
Smeq . (4)
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3.2 Definition of lifetime damage-equivalent loads

Obtaining site-specific lifetime fatigue loads from a discrete set of simulations requires integrating the short-term damage

contributions over the long-term joint distribution of input conditions. The lifetime damage-equivalent fatigue load is defined

as

Seq,lifetime =

 ∫
X∈R9

[Seq(X)]
m
f(X)dX

1/m

(5)5

where f(X) is the joint distribution of the multidimensional vector of input variables X. With the above definition, Seq,lifetime is a

function of the expected value of the short-term equivalent loads conditional on the distribution of environmental variables. The

integration in eq. (5) is typically performed numerically over a finite number of realizations drawn from the joint distribution

of the input variables, e.g. by setting up a look-up table or carrying out a Monte Carlo simulation. Thus the continuous problem

is transformed into a discrete one:10

Seq,lifetime =

[
N∑
i=1

[Seq(xi)]
mp(xi)

]1/m
, (6)

where xi, i= 1 . . .N , is the ith realization of X out of N total realizations, and p(xi) is the relative, discretized probability of

xi, which is derived by weighting the joint pdf values of X so that they satisfy the condition
∑N
i=1 p(xi) = 1. For a standard

Monte Carlo simulation, each realization is considered to be equally likely, and p(xi) = 1/N .

3.3 Uncertainty estimation and confidence intervals15

With the present problem of evaluating the uncertainty in aeroelastic simulations, for any specific combination of environmental

conditions, xi, there will be uncertainty in the resulting damage-equivalent loads, Seq(xi). Part of this uncertainty is statistical

by nature and is caused by realization-to-realization variations in the turbulent wind fields used as input to the load simulations.

This uncertainty is normally taken into account by carrying out load simulations with multiple realizations (seeds) of turbulence

inputs. Confidence intervals reflecting such an uncertainty can be determined in a straightforward way using the bootstrapping20

technique (Efron, 1979). Its main advantage is robustness and no necessity for assuming a statistical distribution of the uncertain

variable. With this approach, each function realization is given an integer index, e.g., from 1 to N for N function realizations.

Then, a "bootstrap" sample is created by generating random integers from 1 to N , and, for each random integer, assigning

the original sample point with the corresponding index, as part of the new bootstrap sample. Since the generation of random

integers allows number repetitions, the bootstrap sample will in most cases differ from the original sample. To obtain a measure25

of the uncertainty in the original sample, a large number of bootstrap samples are drawn, and the resultant quantity of interest

(e.g. the lifetime fatigue load) is computed for each of them. Then, the empirical distribution of the set of outcomes is used

to define the confidence intervals. If M bootstrap samples have been drawn, and R is the set of outcomes ranked by value in

ascending order, then the (confidence interval) bounds for a confidence level c` are{
CI−Seq,lifetime

(c`), CI
+
Seq,lifetime

(c`)
}

=
{
R[c`M/2], R[(1−c`/2)M ]

}
(7)30
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where the square brackets [x] indicate the integer part of x, and R[x] means the value in R with rank equal to [x]. In the present

study, bootstrapping is applied by generating independent bootstrap samples each with size equal to the entire data set. Both

the sample points and the turbulence seed numbers are shuffled, meaning that the resulting confidence intervals should account

for both the statistical uncertainty due to finite number of samples, and the uncertainty due to seed-to-seed variation. Note that

these two uncertainty types are the only ones assumed, for the confidence intervals; reducing the CI by creating a large number5

of model realizations does not eliminate other model uncertainties, nor does it remove uncertainties in the input variables.

4 Load mapping functions

In this section we present five different approaches which can be used to map loads from a high-fidelity database to integrated

site-specific design loads:

1) Importance sampling,10

2) Nearest-neighbor interpolation,

3) Polynomial chaos expansion,

4) Universal Kriging, and

5) Quadratic response surface.

The first two methodologies carry out a direct numerical integration over the high-fidelity database presented in Section 2.5,15

while the latter three are machine learning models which are trained using the same database. Despite the different nature of

the functions, they serve the same purpose and for brevity we will refer to all of them as "surrogate models".

4.1 Importance Sampling

Figure 2 showed the distributions of the first 6 input variables from our high-fidelity database (Section 2.5), along with the

site-specific distributions for reference site 0 (c.f. Table 5 for site list).20

One of the simplest and most straightforward (but not necessarily most precise) ways of carrying out the integrations needed

to obtain predicted statistics is to use Importance Sampling (‘IS’), where probability weights are applied on each of the database

sample points (Ditlevsen and Madsen, 1996). The IS method and various modifications of it are commonly used in wind energy-

related applications (e.g. Choe et al., 2015; Graf et al., 2018). In the classical definition of IS, the integration (importance

sampling) function for determining the expected value of a function g(X) is given by25

E[g(X)] =
1

N

N∑
i=1

g(X)
f(Xi)

h(Xi)
, (8)

where in our application

• i= 1 . . .N is the sample point number;
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• Xi = [x1,i,x2,i, . . . ,x9,i] is a 9-component vector array specifying the values of the 9 environmental variables consid-

ered at sample point i;

• f(Xi) = f(x1,i) ·f(x2,i
∣∣x1,i) · . . . ·f(x9,i

∣∣x8,i, . . . ,x1,i) is the joint pdf of sample point i according to the site-specific

probability distribution; and

• h(Xi) = h(x1,i) ·h(x2,i
∣∣h1,i) · . . . ·h(x9,i

∣∣x8,i, . . . ,x1,i) is the joint pdf of sample point i according to the generic5

probability distribution used to generate the database for the 9 variables.

Based on the above, it is clear that only points in the database which also have a high probability of occurrence in the site-

specific distribution will have a significant contribution to the lifetime load estimate. This could be considered as a non-standard

application of the IS approach, because typically the IS sample distribution is chosen to maximize the probability density of

the integrand. In the present case, this objective can be satisfied only approximately, and only in cases where the number of10

IS samples is smaller than the total number of database samples (NIS <N ). Under these conditions, the importance sampling

weights (f(Xi)/h(Xi) from Eq. 8) can be evaluated for all points in the database. However, the approach adopted in the

present paper is to include only the NIS points with the highest weights (as shown in Section 6.2).

4.2 Multi-dimensional interpolation

Estimating an expected function value with a true multi-dimensional interpolation from the high-fidelity database would re-15

quire finding a set of neighboring points which form a convex polygon. For problem dimensions higher than 3, this is quite

challenging due to the non-structured sample distribution. However, it is much easier to find a more crude approximation by

simply finding the database point closest to the function evaluation point in a nearest-neighbor approach. This is similar to the

table look-up technique often used with structured grids; the denser the distribution of the sample points is, the closer will the

results be to an actual Monte Carlo simulation. Finding the nearest neighbor to a function evaluation point requires determining20

the distances between this point and the rest of the points in the sample space. This is done most consistently in a normalized

space, i.e. where the input variables have equal scaling. The cdf (cumulative distribution function) of the variables is an exam-

ple of such a space, as all cdf’s have the same range of (0,1). Thus, the normalized distance between a new evaluation point

and an existing sample is computed as the vector norm of the (e.g. 9-dimensional vector) differences between the marginal cdf

for the two points:25

|x|=
√
DTD (9)

where D = Y− Ŷ is the difference between the current evaluation point Y and the existing sample points in the reference

database, Ŷ. The vector YT = [F1(X1),F2(X2

∣∣X1), . . . ,Fn(Xn

∣∣X1, . . . ,Xn−1)] consists of the marginal cdf functions of the

input variables X as obtained using a Rosenblatt transformation.

Since some of the input variables may have significantly bigger influence on the result than other variables, it may be useful30

to weight the cdf of different variables according to their importance (e.g. by making the weights proportional to the variable

sensitivity indices; see Section 4.6).
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4.3 Polynomial chaos expansion

Polynomial Chaos Expansion (PCE) is a popular method for approximating a stochastic function of multiple random variables

using an orthogonal polynomial basis. For the present problem, using a Wiener-Askey Generalized PCE (Xiu and Karniadakis,

2002) employing Legendre polynomials is considered most suitable for any (scaled) variable ξ ∈ [−1,1]. Because Legendre

polynomials Pn(ξ) are orthogonal with respect to a uniform probability measure, the PCE can conveniently be applied to the5

cumulative distribution functions of the variables X which are defined in the interval [0,1]. Then

ξi = 2F (Xi)− 1, (10)

where F (Xi) is the cumulative distribution function of a variableXi ∈X, i= 1, . . . ,M . The Legendre polynomial coefficients

can be generated using the recurrence relation

(n+ 1)Pn+1(ξ) = (2n+ 1)ξPn(ξ)−nPn−1(ξ) (11)10

where the first two entries, P0(ξ) = 1 and P1(ξ) = ξ, serve for initialization. The aim of using PCE is to represent a scalar

quantity S = g(X) in terms of a truncated sequence S̃(X) + ε, where ε is a zero-mean residual term. With this definition, the

multivariate generalized PCE of dimension M and maximum degree p is given by

S̃(ξ) =

Np−1∑
j=0

SjΨγ,j(ξ); (12)

here Ψγ are multivariate orthogonal polynomials composed of the product of univariate polynomials having (nonnegative15

integer) orders defined by the vector γ = [γ1, . . . ,γM ], with the total of orders being constrained by the degree:
∑M
i=1 γi ≤ p.

The unknown coefficients Sj ∈ S = [S1, . . . ,SNp] need to be determined, and ξ = [ξ1, . . . ξM ] are functions of X as defined in

eq. (10). Training the PCE model amounts to determining the vector of coefficients, S. For a more detailed explanation of the

training process, as well as the basic PCE theory, the reader is referred to Appendix A (and further to Xiu and Karniadakis,

2002; Sudret, 2008, for yet more detail).20

4.4 Universal Kriging with polynomial chaos basis functions

Kriging (Sacks et al., 1989; Santher et al., 2003) is a stochastic interpolation technique which assumes the interpolated variable

follows a Gaussian process. A Kriging model is described (Sacks et al., 1989) by

Y (X) = f(X)
T
β +Z(X), (13)

where for N evaluation samples and an M -dimensional problem, X represents an M ×N matrix of input variables and Y (X)25

is the output vector. The term f(X)
T
β is the mean value of the Gaussian process (a.k.a. the "trend") represented as a set of basis

functions f(X) = [f1(X), . . . ,fP (X)] and regression coefficients β = [β1, . . . ,βP ], whereas Z(X) is a zero-mean stationary

Gaussian process. The (joint) probability distribution of the Gaussian process is characterized by its covariance; for two distinct
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‘points’ X and W in the sample domain the covariance is defined as

V (W,X) = σ2R(W,X,θ), (14)

where σ2 is the overall process variance which is assumed to be constant, and R(W,X,θ) is the correlation between Z(X)

and Z(W). The hyperparameters θ define the correlation behavior, in terms of e.g. correlation length scale(s). Since the mean

and variance of the Gaussian field can be expressed as functions of θ (this is shown in details in Appendix A), the calibration5

of the Kriging model amounts to determining the trend coefficients and obtaining an optimal solution for θ.

The functional form of the mean field f(X)
T
β is identical to the generalized PCE defined in eq. (A8), meaning that the PCE

is a possible candidate model for the mean in a Kriging interpolation. We adopt this approach and define the Kriging mean as a

PCE with properties as described in section 4.3. A suitable approach for tuning the Gaussian field statistics is to find the values

of β, σ2 and θ which maximize the likelihood of the training set variables Y, i.e. minimize the model error in a least-squares10

sense (Lataniotis et al., 2015). This is described in Appendix A.

The main practical difference between regression- or expansion-type models such as regular PCE and the Kriging approach

is how the training sample is used in the model: in pure regression-based approaches the training sample is used to only calibrate

the regression coefficients, while in Kriging (and in other interpolation techniques) the training sample is retained and used in

every new model evaluation. As a result the Kriging model may have an advantage in accuracy, since the model error tends15

to zero in the vicinity of the training points; however, this comes at the expense of an increase in the computational demands

for new model evaluations. For a Kriging model, a gain in accuracy over the model represented by the trend function will only

materialize in problems where there is a noticeable correlation between the residual values at different training points. In a

situation where the model error is independent from point to point (as e.g. in the case when the error is only due to seed-to-seed

variations in turbulence) the inferred correlation length will tend to zero and the Kriging estimator will be represented by the20

trend function alone.

4.5 Quadratic response surface

A quadratic-polynomial response surface (RS) method based on Central Composite Design (CCD) is a reduced-order model

which, among other applications, has been used for wind turbine load prediction (Toft et al., 2016). The procedure involves

fitting a quadratic polynomial regression (‘response surface’) to a normalized space of i.i.d. variables, which are derived from25

the physical variables using an isoprobabilistic transformation—such as the Rosenblatt transformation given in eq. (1) and (2).

The design points used for calibrating the response surface in k dimensions form a combination of a central point, axial points

a distance of
√
k in each dimension, and a 2k ‘factorial design’ set where there are two levels (points) per variable dimension

located at unit distance from the origin; this is shown in Figure 3 for the case of k = 2 variables (dimensions). Due to the

structured design grid required, it is not possible to use this approach with the sample points from the high-fidelity database30

described in section 2; therefore we implement the procedure using an additional set of simulations. The low order of the

response surface also prohibits full characterization of the highly nonlinear turbine response as function of mean wind speed

using a single response surface. Therefore, multiple response surfaces are calibrated for wind speeds from 4 to 25 m s−1 in
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Figure 3. Example of a rotatable Central Composite Design (CCD) in a 2-dimensional standard normal space [u1,u2]. The CCD consists of

a central point, a 2k ‘factorial design’ with 2 levels and k = 2 dimensions, and axial points at distance u=
√

2, meaning that all the outer

points lie on a circle.

1 m s−1 steps. This approach may in principle be extended to include additional variables such as turbulence (σu), however

doing so will reduce the practicality of the procedure as it will require multi-dimensional interpolation between large number

of models and the uncertainty may increase. However, due to the exponential increase of the number of design points with

increasing problem dimension, it is not practical to fit response surface covering all 9 variables considered. Instead, we choose

to replace three of the variables with relatively low importance (yaw, tilt, and air density) with their mean values. The result is5

a 6-dimensional problem consisting of 22 different 5-dimensional response surfaces, which require 22 · (1 + 2 · 5 + 25) = 946

design points in total. Analogous to the high-fidelity database, 8h of simulations are carried out for characterizing each design

point. The polynomial coefficients of the response surface are then defined using least-squares regression with the same closed-

form solution defined by eq. (A8). For any sample point p in the central composite design, the corresponding row in the design

matrix is defined as10

Ψp =
[
{1}, {U1, . . .Un}, {U2

1 , . . .U
2
n}, {Ui ·Uj , i=1 . . .n, j=1 . . .(i−1)}

]
(15)

where U are standard normal variables derived from the physical variables X by an isoprobabilistic transformation.

15



4.6 Sensitivity indices

We use the global Sobol indices, (Sobol, 2001), for evaluating the sensitivity of the response with respect to input variables.

Having trained a surrogate model, the total Sobol indices can be computed efficiently by carrying out a Monte Carlo simulation

on the surrogate. For number of dimensions equal to M (e.g. M = 9 in the present study) and for N (quasi) Monte-Carlo

samples the required experimental design represents an N × 2M matrix. This is divided into two N ×M matrices, A and5

B. Then, for each dimension i, i= 1 . . .M , a third matrix ABi is created by taking the ith column of ABi equal to the ith

column from B, and all other columns taken from A. The load surrogate is then evaluated for all three matrices, resulting in

three model estimates: f(A), f(B), and f(ABi). By repeating this for i= 1 . . .M , simulation-based Sobol’ sensitivity indices

can be estimated as

SUi =
1

N

N∑
j=1

f(B)j (f(ABi)j − f(B)j) (16)10

where j = 1 . . .N is the row index in the design matrices A, B, and ABi (Saltelli et al., 2008). For the problem discussed in

the present study, it was sufficient to use approximately 500 MC samples per variable dimension in order to compute the total

Sobol indices.

4.7 Model reduction

For any polynomial-based regression model which includes dependence between variables, the problem grows steeply in15

size when the number of dimensions, M , and the maximum polynomial order, p, increase. In such situations, it may be

desirable to limit the number of active coefficients by carrying out a Least Absolute Shrinkage and Selection Operator (LASSO)

regression (Tibshirani, 1996), which regularizes the regression by penalizing the sum of the absolute value of regression

coefficients. For a PCE model, the objective function using a LASSO regularization is

S = min


∣∣∣∣∣∣∣

1

2Ne

Ne∑
i=1

g(ξ(i))−
Np−1∑
j=0

SjΨγ,j(ξ
(i))

2

+λ

Np−1∑
j=0

∣∣Sj∣∣
∣∣∣∣∣∣∣
 (17)20

where λ is a positive regularization parameter; larger values of λ increase the penalty and reduce the absolute sum of the regres-

sion coefficients, while λ= 0 is equivalent to ordinary least-squares regression. In the present study, the LASSO regularization

is used on the PCE-based models to reduce the number of coefficients.

One useful corollary of the orthogonality in the PCE polynomial basis is that the contribution of each individual term to the

total variance of the expansion (i.e. the individual Sobol indices) can be easily computed based on the coefficient values (see25

Appendix A). This property can be used for eliminating polynomials which do not contribute significantly to the variance of

the output, thus achieving a sparse, more computationally efficient reduced model. By combining the variance truncation and

the LASSO regression technique in eq. (17), a model reduction of an order of magnitude or more can be achieved. For example,

for the 9-dimensional PCE of order 6 discussed in Section 5.3, using LASSO regularization parameter λ= 1 and retaining the
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polynomials which have a total variance contribution of 99.5%, resulted in a reduction of the number of polynomials from

5005 to about 200.

5 Model training and performance

5.1 Model convergence

We assess the convergence of PCE by calculating the normalized root-mean-square error (NRMSE) between a set of observed5

quantities (i.e. damage-equivalent loads from simulations) y = g(X(i)), i= 1 . . .N , and the PCE predictions, ỹ = S̃(X(i)), i=

1 . . .N , over the same set of N sample points X(i) from the training sample defined in Section 2:

εNRMS =
1

E[y]

√∑N
i=1(ỹi− yi)2

N
(18)

where E[y] is the expected value of the observed variable. Figure 4 shows the NRMSE for a non-truncated PCE of order 6

and with 6 dimensions, as function of the number of samples used to train the PCE, and the hours of load simulations (i.e.10

number of seeds) used for each sample point. The NRMSE shown on Figure 4 is calculated based on a set of 500 quasi-MC

points sampled from the joint pdf of reference site 0, and represents the difference in blade root flapwise DEL observed in

each of the 500 points vs. the DEL predicted by a PC expansion trained on a selection of points from the high-fidelity database

described in Section 2. Each of the quasi-MC samples is the mean from 48 turbulent 10-minute simulations. To mimic the seed-

to-seed uncertainty, each of the PCE predictions is also evaluated as the mean of 48 normally distributed random realizations,15

with mean and standard deviation prescribed by the PCE model for mean and standard deviation of the blade flapwise DEL

respectively.

Figure 4 illustrates a general tendency that using a few thousand training samples leads to convergence of the values of

the PC coefficients, and the remaining uncertainty is due to seed-to-seed variations and due to the order of the PCE being

lower than what is required for providing an exact solution at each sample point. Using longer simulations per sample point20

does not lead to further reduction in the statistical uncertainty due to seed-to-seed variations - with 4000 training samples, the

NRMSE for 1h simulation per sample is almost identical to the error with 8h simulation per sample. The explanation for this

observation is that the seed-to-seed variation introduces an uncertainty not only between different simulations within the same

sampling point, but also between different sampling points. This uncertainty materializes as an additional variance which is

not explained by the smooth PCE surface. Further increase in the number of training points or simulation length will only25

reduce this statistical uncertainty, but will not contribute significantly to changes in the model predictions as the flexibility of

the model is limited by the maximum polynomial order. Therefore, the model performance achieved under these conditions

can be considered near to the best possible for the given PCE order and number of dimensions. However, it should be noted

that the number of training points required for such convergence will differ according to the order and dimension of the PCE,

and higher order and more dimensions will require more than the approximately 3000 points which seem sufficient for a PCE30

of order 6 and dimension 6, as shown on Figure 4.
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Figure 4. Convergence of a PCE of dimension 6 and order 6, as function of number of collocation points and hours of simulation per

collocation point. The z-axis represents the NRMSE obtained from the difference between 500 site-specific quasi-MC samples of blade root

flapwise DEL for reference site 0, and the corresponding predictions from PCE.

The IS procedure has relatively slow convergence compared to e.g. a quasi-MC simulation. Figure 5 shows an example of

the convergence of an IS integration for reference site 0, based on computing the target (site-specific) distribution weights for

all 104 points in a reference high-fidelity database. The confidence intervals are obtained by bootstrapping.

5.2 One-to-one comparison and mean squared error

Since the prediction of lifetime fatigue loads is the main purpose of the present study, the performance of the load prediction5

methods with respect to estimating the lifetime DEL is the main criterion for evaluation. However, the lifetime DEL as an

integrated quantity will efficiently identify model bias but may not reveal the magnitude of some uncertainties which result in

zero-mean error. As an additional means of comparison we calculate the normalized root-mean square error (NRMSE), defined

in eq. (18) resulting from a point-by-point comparison of load predictions from a reduced-order model against actual reference

values. The reference values are the results from the site-specific aeroelastic load simulations for reference site 0. At each10

sample point, the reference value yi represents the mean DEL from all turbulence seeds simulated with these conditions. The

values of the NRMSE for site 0 for Kriging, RS, and PCE-based load predictions are listed in Table 2. In addition, Figure 6
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Figure 5. Convergence of an importance sampling (IS) calculation of the blade root moment from the hi-fi database, towards site-specific

lifetime fatigue loads for reference site 0 ( table 5).

presents a one-to-one comparison where for a set of 200 sample points the load estimates from the site-specific MC simulations

are compared against the corresponding surrogate model predictions in terms of y−y plots.

Table 2. Normalised root mean square error characterizing the difference between aeroelastic simulations and reduced-order models. Load

channel abbreviations are the following: TB: tower base; TT: tower top; MS: main shaft; BR: blade root. Loading directions consist of Mx:

fore-aft (flapwise) bending, My: side-side (edgewise) bending, and Mz: torsion.

NORMALIZED RMS ERROR - SITE 0

Load channels

Prediction model TB Mx TB My TT Mx TT My TT Mz MS Mz BR Mx BR My

Quadratic RS 0.0452 0.1404 0.1981 0.2612 0.0644 0.2280 0.1504 0.0098

PC expansion 0.0362 0.0955 0.1019 0.2089 0.0362 0.1530 0.0620 0.0084

Kriging 0.0334 0.0706 0.0837 0.1761 0.0368 0.1072 0.0519 0.0083
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Figure 6. y−y plots comparing the blade root flapwise 1Hz damage-equivalent load predictions for three load surrogate models - quadratic

Response Surface, Polynomial Chaos expansion, and Kriging model, compared against site-specific Monte Carlo simulation. The x-axis

represents the loads obtained using site-specific Monte Carlo simulations for reference site 0, and the y-axis represents the mean 1Hz-

equivalent load estimated for the same sample points using a surrogate model. All values are normalized with the maximum equivalent load

attained from the site-specific Monte Carlo simulation.

The RMS error analysis reveals a slightly different picture. In contrast to the lifetime DEL where the Kriging, PCE and RS

methods showed very similar results, the RMS error of the quadratic RS is for some channels about twice the RMS error of the

other two approaches.

5.3 Variable sensitivities

As described earlier in Section 4.6, we consider variable sensitivities (i.e. the influence of input variables on the variance of5

the outcome) in terms of Sobol indices. By definition the Sobol indices will be dependent on the variance of input variables,

meaning that for one and the same model, the Sobol indices will be varying under different (site-specific) input variable

distributions. Taking this into account, we evaluate the Sobol indices for the two types of joint variable distributions used in

this study - 1) a site-specific distribution, and 2) the joint distribution used to generate the database with high-fidelity load

simulations. The total Sobol indices for the high-fidelity load database variable range are computed directly from the PCE10

fitted to the database by evaluating the variance contributions from the expansion coefficients (see Appendix A) and are listed

in Table 3. The indices for the site-specific distribution corresponding to reference site 0 are computed using the Monte-Carlo

based method described in Section 4.6 as direct PCE indices are not available for this sample distribution. The resulting total

Sobol indices for the 6 variables available at site 0 are listed in Table 4. The two tables show similar results - the mean wind

speed and the turbulence are the most important factors affecting both fatigue and extreme loads. Other two variables which15

show a smaller but still noticeable influence are the wind shear α, and the Mann model turbulence length scale L. The effect of

wind shear is pronounced mainly for blade root loads which can be explained by the rotation of the blades which, if subjected
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to wind shear, will experience cyclic changes in wind velocity. The effect of Mann model Γ, veer, yaw, tilt, and air density

within the chosen variable ranges seems to be minimal, especially for fatigue loads.

Table 3. PCE-based Sobol sensitivity indices for the high-fidelity load database variable ranges.

FATIGUE LOAD SENSITIVITY INDICES

Variables

Load channel U σu α L Γ ∆ϕh ϕ̄h ϕ̄v ρ

Tower base fore-aft moment Mx 0.42 0.65 0.01 0.03 0.02 0.01 0.00 0.00 0.01

Tower base side-side moment My 0.62 0.42 0.05 0.04 0.04 0.02 0.02 0.02 0.02

Blade root flapwise moment Mx 0.20 0.64 0.19 0.02 0.01 0.00 0.01 0.00 0.02

Blade root edgewise moment My 0.22 0.54 0.25 0.05 0.03 0.01 0.01 0.03 0.01

Tower top yaw moment Mz 0.14 0.85 0.00 0.02 0.01 0.00 0.00 0.00 0.01

Main shaft torsion Mz 0.48 0.53 0.01 0.06 0.01 0.01 0.01 0.01 0.01

Table 4. Site-specific Sobol sensitivity indices derived for Site 0 using Monte Carlo simulation from a PCE.

FATIGUE LOAD SENSITIVITY INDICES

Variables

Load channel U σu α L Γ

Tower base fore-aft moment Mx 0.08 1.32 0.07 0.18 0.09

Tower base side-side moment My 0.90 0.09 0.07 0.23 0.13

Blade root flapwise moment Mx 0.42 0.38 0.05 0.01 0.01

Blade root edgewise moment My 0.43 0.18 0.26 0.22 0.11

Tower top yaw moment Mz 0.23 0.53 0.01 0.08 0.01

Main shaft torsion Mz 0.47 0.36 0.06 0.03 0.07

6 Site-specific calculations

6.1 Reference sites

The low-fidelity site-specific load calculation methods presented in this study are validated against a set of reference site-5

specific load calculations on a number of different virtual sites, based on real-world measurement data which cover most of

the variable domain included within the high-fidelity database. In order to show a realistic example of situations where a

site-specific load estimation is necessary, the majority of the virtual sites chosen are characterized with conditions that slightly

exceed the standard conditions specified by a certain type-certification class. Exceptions are site 0, which has the most measured

variables available and is therefore chosen as a primary reference site, and the virtual “sites” representing standard IEC class10
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conditions. The IEC classes are included as test sites as they are described by only one independent variable (mean wind

speed). They are useful test conditions as it may be challenging to correctly predict loads as function of only one variable using

a model based on up to 9 random variables. The list of test sites is given in Table 5.

Table 5. Reference virtual sites used for validation of the site-specific load estimation methods.

Site No. Location Terrain Specific condition Variables included MC sample size

0 Denmark Flat agricultural - U,σu,α,L,Γ,∆ϕ 492

1 Denmark Flat agricultural IIIC exceedance U,σu,α 823

2 Denmark Forested IIIB exceedance U,σu,α 884

3 Denmark Forested IA exceedance U,σu,α 949

4 Denmark Forested IIA exceedance U,σu,α 871

5 Colorado, USA Mountain foothills Low-wind U,σu,α 657

6 Colorado, USA Mountain foothills Low-wind U,σu,α 853

IEC IA, NTM - - Standard reference class U 22

IEC IIB, NTM - - Standard reference class U 22

IEC IIIC, NTM - - Standard reference class U 22

IEC IIB, ETM - - Standard reference class U 22

Site 0 (also also referred to herein as the reference site) is located at the Nørrekær Enge wind farm in Northern Denmark (Bor-

raccino et al., 2017), over flat, open agricultural terrain. Site 1 is a flat-terrain, near-coastal site at the the National Centre for5

Wind Turbines at Høvsøre, Denmark (Peña et al., 2016). Sites 2 to 4 are based on the wind conditions measured at the Østerild

Wind Turbine Test Field which is located in a large forest plantation in North-western Denmark (Hansen et al., 2014). Due

to the forested surroundings of the site, the flow conditions are more complex than those in Nørrekær Enge and Høvsøre. By

applying different filtering according to wind direction, three virtual site climates are generated and considered as sites 2–4.

Sites 5 and 6 are located at NREL’s National Wind Technology Center (NWTC), near the base of the Rocky Mountain10

foothills just south of Boulder, Colorado (Clifton et al., 2013). Similar to Østerild, directional filtering is applied to the NTWC

data to split it into two virtual sites—accounting for the different conditions and wind climates from the two ranges of directions

considered.

For each site, the joint distributions of all variables are defined in terms of conditional dependencies, and generating simu-

lations of site-specific conditions is carried out using the Rosenblatt transformation, eq. (1). The conditional dependencies are15

described in terms of functional relationships between the governing variable and the distribution parameters of the dependent

variable, e.g. the mean and standard deviation of the turbulence are modelled as linearly dependent on the wind speed as rec-

ommended by the IEC 61400-1 (ed. 3, 2005) standard. The wind shear exponent is dependent on the mean wind speed and on

22



the turbulence, and the distribution parameters of α are defined by the relationship (Kelly et al., 2014; Dimitrov et al., 2015)

µα|Ic,u = αref +
Ic,ref− Ic(U)

Ic(U) · cα
σα = 1/U

(19)

where µα and σα are the mean and standard deviation of α, respectively; Ic(U) = (σu/U |F (σu) =Q) is a characteristic

turbulence intensity based on a turbulence quantile Q, as a function of the wind speed U . Here Ic,ref = Ic(U = 15m s−1) is the

reference characteristic turbulence intensity at U = 15m s−1 and αref = α|(Ic = Ic,ref,U = 15m s−1) is a reference wind shear5

exponent, with αc being an empirically determined constant. Since the turbulence quantities Ic(u) and Ic,ref are defined by the

conditional relationship between wind speed and turbulence, the only site-specific parameters required for characterizing the

wind shear are αref and cα. For each of the physical sites, the wind speed, turbulence and wind shear distribution parameters

are defined based on anemometer measurements at the sites. The results are listed in Table 6. In addition, high-frequency 3D

sonic measurements were available at site 0 for the entire measurement period, which allowed for estimating Mann turbulence10

model parameters using the approach described in (Dimitrov et al., 2017).

Table 6. Parameters defining the conditional distribution relationships used in computing joint distributions of the environmental conditions

for the test sites/conditions.

Site Weibull A Weibull K µσu relationship σσu relationship αref cα

0 9.44 3.36 0.106U − 0.0973 0.0041U + 0.194 0.142 4

1 8.24 1.78 0.109U + 0.0624 0.021U + 0.154 0.188 4

2 8.51 2.35 0.148U − 0.248 0.0061U + 0.330 0.294 4

3 10.25 2.47 0.149U − 0.185 0.0021U + 0.329 0.230 4

4 9.03 2.43 0.175U − 0.497 0.009U + 0.298 0.407 4

5 6.12 1.46 0.0637U + 0.915 −0.0113U + 0.807 0.108 4

6 9.03 1.80 0.0972U + 0.437 0.0014U + 0.377 0.121 4

7 (IEC IA, NTM) 11.28 2 0.12U + 0.608 0U + 0.224 0.2 0

8 (IEC IIB, NTM) 9.59 2 0.105U + 0.532 0U + 0.196 0.2 0

9 (IEC IIIC, NTM) 8.46 2 0.09U + 0.456 0U + 0.168 0.2 0

With this procedure, 1000 quasi-Monte Carlo samples of the environmental conditions at each site are generated from the

respective joint distribution. All realizations where the wind speed is between the DTU 10MW wind turbine cut-in and cut-

out wind speed are fed as input to load simulations. The actual number of load simulations for each site are given in Table

6. Similarly to the load database simulations, 8 simulations with 1h duration are carried out at each site-specific MC sample15

point. The resulting reference lifetime equivalent loads are then defined by applying eq. (6) on the Monte Carlo simulations

using equal weights p(Xi) = 1/N , while the uncertainty in the lifetime loads is estimated using bootstrapping on the entire

MC sample.
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6.2 Lifetime fatigue loads

The lifetime damage-equivalent (DEL) loads are computed for all reference sites in Table 5, using the five load surrogate

models defined above: 1) quadratic response surface; 2) polynomial chaos expansion, 3) importance sampling, 4) nearest-

neighbor interpolation; and 5) Kriging with the mean defined by polynomial chaos basis functions. Methods 2–5 are based on

data from the high-fidelity load database described in Section 2. In addition to the surrogate model computations, a full MC5

reference simulation is carried out for each validation site. The load predictions with the Monte Carlo approach are obtained

by carrying out Hawc2 aeroelastic simulations on the same DTU 10MW reference wind turbine model used for training the

load surrogate models. A total of NMC = 1000 quasi-MC samples are drawn from the joint distribution of environmental input

variables characterizing each site, and 8h of aeroelastic simulations are carried out for each of the quasi-MC samples where

the wind speed is between cut-in and cut-out. An exception are the IEC-based sites, where the standard IEC procedure is10

followed and loads are evaluated for 22 wind speeds from cut-in to cut-out in 1m/s steps. For each site, the full Monte Carlo

simulation is then used as a reference to test the performance of the other five methods. The load predictions from the PCE,

Kriging, the quadratic RS and the nearest-neighbor interpolation procedures all use a quasi-MC simulation of the respective

model with the same sample set of environmental inputs used in the reference MC simulations. The load predictions with

Importance Sampling are based on the probability-weighted contributions from the samples in a high-fidelity load database.15

For each site-specific distribution, the database samples are ordered according to their weights, and only a number of points,

NIS, with the highest weights are used in the estimation. For the sake of easier comparison between different methods, it is

chosen that NIS =NMC. Based on computations from PCE with different number of dimensions and different maximum order,

it was observed that expansions of order 4 or 5 may not be sufficiently accurate for some response channels. This is illustrated

in Figure 7 where the prediction of main shaft torsion loads using order 4 and order 6 PC expansion are compared against other20

methods, and the order 4 calculation shows a significant bias. Therefore, the PC expansion used for reporting the results in

this section is based on the same 6-dimensional variable input used with the quadratic response surface, and has a maximum

order of 6. For evaluating confidence intervals from the reduced-order models (Kriging, PCE and quadratic response surface),

two reduced-order models of each type are calibrated - one for the mean values, and the other for the standard deviations.

This allows generating a number of realizations for each sampled combination of input variables, and subsequently computing25

confidence intervals by bootstrapping (eq. (7)). In this way, the bootstrapping is done simultaneously for a random sample of

the input variables and the random seed-to-seed variations within each sample. As a result, the obtained confidence interval

reflects the combination of seed-to-seed uncertainty and the uncertainty due to finite number of samples from the distribution of

the input variables. This approach also allows consistency with the Importance Sampling and Nearest-Neighbor interpolation

techniques, where the same bootstrapping approach is used. Since the lifetime fatigue load is in essence an integrated quantity30

subject to the law of large numbers, the uncertainty in computations based on a random sample of size N will be proportional

to 1/
√
N . Comparing uncertainties and confidence intervals as defined in Section 3.3 will therefore only be meaningful when

approximately the same number of samples is used for all calculation methods. This approach is used for generating Figures 8

and 9, where the performance of all site-specific load estimation methods is compared for reference site 0, for 8 load channels
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Figure 7. Comparison of predictions of the lifetime damage-equivalent loads for six different estimation approaches. All values are nor-

malized with respect to the mean estimate from a site-specific Monte Carlo simulation, and the error bars represent the bounds of the 95%

confidence intervals. Results from two PCEs are shown: the blue bar corresponds to the output of a 4th order PCE, while the black bar

corresponds to a 6th order PCE.

in total, with number of samples as listed in Table 8. Figure 8 shows results for tower base and tower top fore-aft and side-

side bending moments, and Figure 9 displays the tower top yaw moment, the main shaft torsion, and blade root flapwise and

edgewise bending moments.

The results for Site 0 show that for all methods the prediction of blade root and tower top loads is more accurate than

the prediction of tower base loads. Also, overall the predictions from the reduced models — the quadratic RS and the PCE,5

as well as from the Kriging model, are more robust than the IS and nearest-neighbor (NN) interpolation techniques. Similar

performance is observed for most other validation sites. The summarized site-specific results for all surrogate-based load

estimation methods are shown in Table 7. In order to compute these values, the load estimates for each site and load channel

are normalized to the results obtained with the direct site-specific Monte Carlo simulations. The values given in Table 7 are

averaged over all reference sites. The results for individual sites and load channels are depicted as bar plots in Figures 10 and10

11, for tower load and rotor load channels respectively. The largest observed errors amount to ≈ 9% with Kriging, ≈ 10% for

the PCE, ≈ 10% for the quadratic RS, ≈ 24% for IS, and ∼ 15–17% for NN-interpolation. Noticeably, the low wind speed,

high turbulence site 5 seems as the most difficult for prediction—for most load prediction methods this is the site where the

largest error is found. All models except the Kriging also show relatively large errors for the IEC class-based sites. That can

be attributed to significantly smaller number of samples used for the IEC-based sites (22 samples where only the wind speed15
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Figure 8. Comparison of predictions of the lifetime damage-equivalent loads for six different estimation approaches. All values are normal-

ized with respect to the mean estimate from a site-specific Monte Carlo simulation.

is varied in 1m/s steps from 4 to 25m/s). As mentioned above, the statistical uncertainty in the estimation of the lifetime DEL

will diminish with increasing number of samples. In addition to this effect, as discussed in section 4.1, the uncertainty of the

IS model can increase when the site-specific distribution has fewer dimensions than the model because fewer points from the

high-fidelity database will have high probabilities with respect to the site-specific distribution. It can be expected that this effect

is strongest for the IEC class-based sites, as for them only a single variable — the wind speed — is considered stochastic.5

Another important aspect to consider when comparing the performance of the surrogate models is the model execution speed,

and whether there is a tradeoff between speed and accuracy. A comparison of the model evaluation times for the site-specific

lifetime load computation for site 0 is given in Table 8. Noticeably the Kriging model requires significantly longer execution

time than other approaches, which is mainly due to the requirement of populating a cross-correlation matrix.
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Figure 9. Comparison of predictions of the lifetime damage-equivalent loads for six different estimation approaches. All values are normal-

ized with respect to the mean estimate from a site-specific Monte Carlo simulation.

7 Discussion and conclusions

7.1 Discussion

The previous sections of this paper described a procedure for estimating site-specific lifetime damage-equivalent loads, us-

ing several simplified model techniques applied to ten different sites and conditions. Based on the site-specific lifetime DEL

comparisons, for quick site-specific load estimation the three models based on machine learning showed to be most viable (suf-5

ficiently accurate over the majority of the sampling space): polynomial chaos expansion, Kriging, and the quadratic response

surface. When estimating lifetime DEL, these methods showed approximately equal levels of uncertainty. However, in the one-

to-one comparisons the quadratic RS model showed larger error, especially for sample points corresponding to more extreme

combinations of environmental conditions. This is due to the lower order and the relatively small number of calibration points

of the quadratic RS, which means that the model accuracy decreases in the sampling space away from the calibration points,10
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Figure 10. Predictions of lifetime damage-equivalent tower loads for five different estimation approaches and four load channels for the

different sites (0–6) and IEC conditions (virtual sites 7–9). All values are normalized with respect to the mean estimate from a site-specific

Monte Carlo simulation. The abbreviations refer to: PCE: Polynomial Chaos Expansion; RS: quadratic Response Surface; IS: Importance

Sampling; NN: Nearest-neighbor Interpolation; KM: Universal Kriging Model.
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Figure 11. Predictions of lifetime damage-equivalent loads (yaw, shaft torsion, blade-root) for five different estimation approaches and four

load channels. All values are normalized with respect to the mean estimate from a site-specific Monte Carlo simulation. The abbreviations

refer to: PCE: Polynomial Chaos Expansion; RS: quadratic Response Surface; IS: Importance Sampling; NN: Nearest-neighbor Interpolation;

KM: Universal Kriging Model.
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Table 7. Lifetime-equivalent load predictions normalized with respect to Monte Carlo simulations and averaged over 10 reference sites.

Load channel abbreviations are the following: TB: tower base; TT: tower top; MS: main shaft; BR: blade root. Loading directions consist of

Mx: fore-aft (flapwise) bending; My: side-side (edgewise) bending; and Mz: torsion.

Load channels

TB Mx TB My TT Mx TT My TT Mz MS Mz BR Mx BR My

POLYNOMIAL CHAOS EXPANSION

Mean 0.966 0.934 0.978 1.000 0.991 1.018 1.003 0.999

Std.Dev 0.030 0.014 0.019 0.019 0.018 0.026 0.014 0.002

UNIVERSAL KRIGING

Mean 0.972 0.965 0.989 0.998 0.992 0.993 1.008 1.000

Std.Dev 0.033 0.028 0.018 0.019 0.020 0.027 0.015 0.002

QUADRATIC RESPONSE SURFACE

Mean 1.034 0.980 0.966 1.032 1.014 1.075 1.021 0.996

Std.Dev 0.029 0.027 0.017 0.015 0.012 0.028 0.012 0.003

IMPORTANCE SAMPLING

Mean 0.859 0.878 0.862 1.102 0.932 1.251 1.100 0.992

Std.Dev 0.101 0.088 0.067 0.075 0.063 0.088 0.086 0.007

NEAREST-NEIGHBOR INTERPOLATION

Mean 0.951 0.993 0.951 0.989 0.972 1.066 1.001 0.994

Std.Dev 0.081 0.057 0.045 0.064 0.052 0.070 0.044 0.005

Table 8. Model execution times for the lifetime damage-equivalent fatigue load computations for site 0

Surrogate model Training set size Evaluation set size Evaluation time

MC - 492 22.7s

PCE 10000 492 8.2s

RS 946 492 2.2s

IS 10000 492 4.6s

NN 10000 492 4.4s

Kriging 2048 492 217.6s

especially if there is any extrapolation. This inaccuracy is reflected in the NRMSE-error from one-to-one comparisons, but is

less obvious in the lifetime fatigue load computations which average out errors with zero mean. The universal Kriging model

demonstrated the smallest overall uncertainty, both in sample-to-sample comparisons and in lifetime DEL computations. This

is to be expected, since the Kriging employs a well-performing model (the PCE) and combines it with an interpolation scheme

that subsequently reduces the uncertainty even further. However, in most cases the observed improvement over a pure PCE5
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is not significant. This indicates that the sources of the remaining uncertainty are outside the models—e.g. the seed-to-seed

turbulence variations: the models being calibrated with turbulence realizations different from the ones used to compute the

reference site-specific loads. As a result the trend function (the β term in Eq. 13) is the primary contribution to the Kriging

estimator, and the influence of the Gaussian-field interpolation is minimal. A drawback of the Kriging model with respect to

the other techniques is the larger computational demands due to the need of computing correlation matrices and the use of the5

training sample for each new evaluation.

For all site-specific load assessment methods discussed, the estimations are trustworthy only within the bounds of the variable

space used for model calibration—extrapolation is either not possible, or may lead to unpredictable results. It is therefore

important to ensure that the site-specific distributions used for load assessment are not outside the bounds of validity of the

load estimation model.10

The variable bounds presented in this paper are based on a certain degree of consideration of atmospheric physics employed

in the relationships between wind speed, turbulence, wind shear, wind veer and turbulence length scale. The primary scope is

to encompass the ranges of conditions relevant for fatigue load analysis, and the currently suggested variable bounds include

all normal-turbulence (NTM) classes. However, for some other calculations it may be more practical to choose other bound

definitions: e.g. for the extreme turbulence models prescribed by the IEC 61400-1, the currently suggested bounds do not15

include ETM class A.

For the more advanced methods like PCE and Kriging, there is a practical limitation of the number of training points to be

used in a single-computer setup. For a PCE the practical limit is mainly subject to memory availability when assembling and

inverting the information matrix, and for a PCE of order 6 and with 9 dimensions this limit is on the order of 1–2·104 points

on a typical desktop computer (as of 2018). For Kriging, the computing time also plays a role: although a similar number of20

training points could be stored in memory as for the PCE, the computational time is much longer, and the practical limit of

training points for most applications is less than for the PCE. However, as it was shown in Sections 4.3 and 6, a training sample

of 104 points or even half of that should be sufficient for most applications in site-specific load prediction.

Considering the overall merits of the load prediction methods analyzed, the PCE provided an accurate and robust perfor-

mance. The Kriging approach showed slightly better accuracy but at the expense of increased computational demands. Taking25

this together with the other useful properties of the PCE, such as orthogonality facilitating creation of sparse models through

variance-based sensitivity analysis, we consider the PCE as the most useful method overall.

In addition to the load-mapping approaches presented in this paper, Artificial Neural Networks (ANNs) are interesting

alternative candidates. ANN (see Goodfellow et al., 2016) are machine learning models that have gained popularity due to

their flexibility and history of successful application to many different problems. It is very likely that a sufficiently large Neural30

Network model can provide similar output quality and performance as the methods described in the present study. This is

therefore a matter worth of future research. However, the PCE-based models may sometimes have a practical advantage over

ANNs, due to the "white-box" features—such as being able to track separate contributions to variance (and uncertainty), as

well as the possibility of obtaining analytical derivatives, which is important for applications to optimization problems.
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The results from the site validations showed that for the majority of sites and load channels, the simplified load assessment

techniques can predict the site-specific lifetime fatigue loads to within about 5% accuracy. However, it should be noted that

this accuracy is relative to full-fidelity load simulations, and not necessarily to the actual site conditions, where additional

uncertainties (e.g. uncertainty in the site conditions or the turbine operating strategy) can lead to even larger errors. The

procedures demonstrated in this study are thus very suitable for carrying out quick site feasibility assessments; the latter can5

help to decide in a timely fashion whether to discard a given site as unfeasible, or to make additional high-fidelity computations

or more measurements of site conditions. The same procedure, but with additional variables (e.g. 3 variables for wake-induced

effects as in (Galinos et al., 2016)) may also be useful as objective function or constraint in farm optimization problems.

7.2 Summary and conclusions

In the present work we defined and demonstrated a procedure for quick assessment of site-specific lifetime fatigue loads using10

load surrogate models calibrated by means of a database with high-fidelity load simulations. The performance of polynomial

chaos expansion, quadratic response surface, universal Kriging, importance sampling, and nearest-neighbor interpolation in

predicting site-specific lifetime fatigue loads was assessed by training the surrogate models on a database with aeroelastic

load simulations of the DTU 10MW reference wind turbine. Practical bounds of variation were defined for nine environmental

variables and their effect on the lifetime fatigue loads was studied. The study led to the following main conclusions:15

- The variable sensitivity analysis showed that mean wind speed and turbulence (standard deviation of wind speed fluc-

tuations) are the factors having the highest influence on fatigue loads. The wind shear and the Mann turbulence length

scale were also found to have an appreciable influence, with the effect of wind shear being more pronounced for rotating

components such as blades. Within the studied ranges of variation, the Mann turbulence parameter Γ, wind veer, yaw

angle, tilt angle, and air density, were found to have small or negligible effect on the loads.20

- The best performing models had errors of less than 5% for most sites and load channels, which is in the same order of

magnitude as the variations due to realization-to-realization uncertainty.

- A universal Kriging model employing polynomial chaos expansion as a trend function achieved the most accurate pre-

dictions, but also required the longest computing times.

- A polynomial chaos expansion with Legendre basis polynomials was concluded to be the approach with best overall25

performance.

- The procedures demonstrated in this study are well suited for carrying out quick site feasibility assessments conditional

on a specific wind turbine model.
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Appendix A: Reduced-order models: background and theory

A1 Polynomial chaos expansion

Polynomial Chaos Expansion (PCE) is a popular method for approximating stochastic functions of multiple random variables,

using an orthogonal polynomial basis. In the classical definition of PCE (Ghanem and Spanos, 1991) the input random vari-

ables X are defined on (−∞,∞), with Hermite polynomials typically used as the polynomial basis.1 Choosing a polynomial25

basis which is orthogonal to a non-Gaussian probability measure turns the PCE problem into the so-called Wiener-Askey or

Generalized chaos, (Xiu and Karniadakis, 2002). For the present problem, a Generalized PCE using Legendre polynomials is

considered most suitable as the Legendre polynomials Pn(ξ) are orthogonal with respect to a uniform probability measure in

the interval ξ = [−1,1], which means that the PCE can conveniently be applied on the cumulative distribution functions of the

1 In the classical definition of the PC decomposition used in e.g. spectral stochastic finite element methods (Ghanem and Spanos, 1991), the input random

variables are normally distributed (Gaussian), which means that the Hermite polynomials are a suitable Hilbertian basis—since the Hermite polynomials are

orthogonal with respect to the Gaussian probability measure. In this case, the properties of the Hermite polynomials dictate that the random variables X are

defined on (−∞,∞).
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variables X which are defined in the interval [0,1] so that

ξi = 2F (Xi)− 1, (A1)

where F (Xi) is the cumulative distribution function of a variable Xi ∈X, i= 1, . . . ,M . With this definition, the PCE repre-

sents a model applied to a set of transformed variables which due to the applied transformation are independent and identically

distributed (‘i.i.d.’). Note that eq. (10) and the evaluation of the cumulative distribution in general does not account for de-5

pendence between variables - this has to be addressed by applying an appropriate transformation. In the present case where

the joint probability distribution of input variables is defined in terms of conditional dependencies, it is convenient to apply

the Rosenblatt transformation as defined in eq. (1). For the current implementation of PCE, only eq. (1) is required since the

expansion is based on the Legendre polynomials, however the transformation to standard normal space in eq. (2) is used for

other procedures, e.g. the quadratic response surface model discussed later.10

Using the notation defined by Sudret (2008), we consider the family of univariate Legendre polynomials Pn(ξ). A multivari-

ate, generalized PCE with M dimensions and maximum polynomial degree p is defined as the product of univariate Legendre

polynomials where the maximum degree is less than or equal to p. The univariate polynomial family for dimension i can be

defined as

Pαi(ξ), where i= 1, . . . ,M, αi ∈ N,
M∑
i=1

αi ≤ p. (A2)15

The multivariate polynomial of dimension M is then defined as

Ψα =

M∏
i=1

Pαi(ξi) (A3)

With the above, each multivariate polynomial is built as the product of M univariate polynomial terms, and α vector stores

the orders for each univariate polynomial term. The total number of polynomials of this type is (Sudret, 2008):

Np =

 (M + p)

p

 (M + p)!

M !p!
(A4)20

The aim of using PCE is to represent a scalar quantity S = g(ξ(X)) in terms of a truncated sequence S̃(ξ(X)) + ε where ε

is a zero-mean residual term. With this definition, the multivariate generalized PCE of dimension M and maximum degree p

is given by

S̃(ξ) =

Np−1∑
j=0

SjΨα,j(ξ) (A5)

where Sj ∈ S = [S1, . . . ,SNp] are unknown coefficients which need to be determined, and ξ = [ξ1, . . . ξM ] are functions of X25

as defined in eq. (10). The most straightforward way of determining S is minimizing the variance of the residual ε using a

least-squares regression approach:

S = min

 1

Ne

∣∣∣∣∣∣∣
Ne∑
i=1

g(ξ(i))−
Np−1∑
j=0

SjΨα,j(ξ
(i))

2
∣∣∣∣∣∣∣
 (A6)
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where Np is the number of polynomial coefficients in the PCE and Ne is the number of sampling points in the experimental

design. For this purpose, a design experiment has to be set up and the so-called design matrix Ψ needs to be constructed:

Ψij = Ψα,j(ξ
(i)); i= 1, . . . ,Ne, j = 1, . . . ,Np. (A7)

Plugging the definition of Ψ in eq. (A5), the PCE can be expressed as y = ΨS. Under the condition that the residuals ε are

(approximately) normally-distributed, the solution for S which minimizes the sum of residuals is given by5

S = (ΨTΨ)−1 ·ΨT ·y, (A8)

with y = g(ξ(i)) being a vector with the outcomes of the functional realizations obtained from the design experiment, where

i= 1 . . .Ne.

The solution of eq. (A8) requires that the so-called information matrix (ΨTΨ) is well-conditioned, which normally requires

that the number of collocation points Ne is significantly larger than the number of expansion coefficients Np. Subsequently,10

the problem grows steeply in size when M and p increase. In such situations, it may be desirable to limit the number of active

coefficients by carrying out a Least Absolute Shrinkage and Selection Operator (LASSO) regression (Tibshirani, 1996), which

regularizes the model by penalizing the sum of the absolute value of model coefficients:

S = min


∣∣∣∣∣∣∣

1

2Ne

Ne∑
i=1

g(ξ(i))−
Np−1∑
j=0

SjΨα,j(ξ
(i))

2

+λ

Np−1∑
j=0

∣∣Sj∣∣
∣∣∣∣∣∣∣
 (A9)

where λ is a positive regularization parameter; larger values of λ increase the penalty and reduce the absolute sum of the model15

coefficients, while λ= 0 is equivalent to ordinary least-squares regression.

A2 Kriging

Kriging (Sacks et al., 1989; Santher et al., 2003) is a stochastic interpolation technique which assumes the interpolated variable

follows a Gaussian process. A Kriging metamodel is described (Sacks et al., 1989) by

Y (X) = f(X)
T
β +Z(X), (A10)20

where X represents the input variables, and Y (X) is the output. The term f(X)
T
β is the mean value of the Gaussian

process (a.k.a. the "trend") represented as a set of basis functions f(X) = [f1(X), . . . ,fP (X)] and regression coefficients

β = [β1, . . . ,βP ]; Z(X) is a stationary, zero-mean Gaussian process. The probability distribution of the Gaussian process is

characterized by its covariance, which for two distinct points in the domain, x and w is

V (w,x) = σ2R(w,x,θ) (A11)25

where σ2 is the overall process variance which is assumed to be constant, and R(w,x,θ) is the correlation between Z(x)

and Z(w). The hyperparameters θ define the correlation behavior, in terms of e.g. a correlation length. Given a set of points
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X = [x1,x2, . . .xN ] where the true function values y = Y (X) are known, the aim is to obtain a model prediction at a new

point, x′. Based on Gaussian theory, the N known values Y (X) and the Kriging predictor Ŷ (x′) will be jointly Gaussian

distributed: Y (x′)

Y (X)

∼NN+1

 f(x′)Tβ

Ψβ

 ,σ2

 1 rT (x′)

r(x′) R

 (A12)

Here5

Ψ is the design matrix collecting the terms constituting the basis functions f(X),

Ψij = fj(xi) for i= 1 . . .N and j = 1 . . .P

where N is the number of samples and P is the total number of terms output from the basis functions - which may be

different than the number of dimensions M as a basis function (e.g. a higher-order polynomial) can return more than one

term per variable;10

r(x′) is the vector of cross-correlations between the prediction point x′ and the known points X; and

R is the correlation matrix of the known points,

Rij =R(xi,xj ,θ) for i, j = 1, . . . ,N.

It follows that the model prediction Ŷ (x′) will have the following mean and variance (Santher et al., 2003):

µŶ (x′) = f(x′)Tβ + r(x′)TR−1(y−Ψβ)

σ2
Ŷ

(x′) = σ2(1− r(x′)TR−1r(x′) +u(x′)T [ΨTR−1Ψ)−1u(x′)].
(A13)15

where u(x′) = ΨTR−1r(x′)− f(x′). Using the predictor functions above requires determining the regression coefficients (β),

the field variance (σ2), and the correlation hyperparameters (θ). A suitable approach is to find the values of β, σ2 and θ which

maximize the likelihood of y, (Lataniotis et al., 2015):

L(y|β,σ2,θ) =
det(R)−1/2

(2πσ2)N/2
exp

[
− 1

2σ2
(y−Ψβ)TR−1(y−Ψβ)

]
. (A14)

Here the hyperparameters, θ, appear within the correlation matrix R. Having set up the design matrix Ψ, the expansion20

coefficients β can be determined with the least-squares approach, by solving the equation d(− logL)/dβ = 0 for β:

β = β(θ) = (ΨTR−1Ψ)−1ΨTR−1y. (A15)

Similarly, by solving d(− logL)/dσ2 = 0 for σ2, the field variance is obtained as

σ2 = σ2(θ) =
1

N
(y−Ψβ)TR−1(y−Ψβ). (A16)
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From eq. (A15) and (A16) it follows that β and σ2 can be expressed as functions of θ. Therefore, calibrating the Kriging model

amounts to finding the values of θ which maximize the likelihood. By combining eqns. A14–A16 this leads to the optimization

problem

θ = argmin
θ

(
1

2
log(det(R)) +

N

2
log(2πσ2) +

N

2

)
. (A17)

For a problem with M dimensions, we assume that the correlation between sample points can be modelled using an5

anisotropic separable correlation function ((Sacks et al., 1989; Lataniotis et al., 2015), which assumes a different correlation

parameter for each dimension. The total correlation is expressed as the product of the individual one-dimensional correlation

functions,

R(x,x′,θ) =

M∏
i=1

R(xi,x
′
i,θi). (A18)

The one-dimensional correlation functions are assumed to follow an exponential relation to the distance h= (xi−x′i) between10

points,

R(h,θ) = exp

(
−|h|
θ

)
. (A19)

One of the possibilities for tuning the performance of a Kriging model is selecting different trend functions. If the trend function

is replaced by a constant (i.e. the mean of the field) the resulting model is referred to as simple Kriging. A linear trend is denoted

as ordinary Kriging, while with any other more advanced function the model is called universal Kriging. In universal Kriging,15

the functional form of the mean field f(x)
T
β is identical to the generalized PCE defined in eq. (A8), meaning that the PCE is

a possible candidate model for the mean in a Kriging interpolation. We adopt this approach and define the Kriging mean as a

PCE with properties as described in section 4.3.

The main practical difference between regression- or expansion-type models such as regular PCE and the Kriging approach

is in the way the training sample is used in the model: in the pure regression-based approaches the training sample is used to20

only calibrate the regression coefficients, while in Kriging as in other interpolation techniques the training sample is retained

and used in every new model evaluation. As a result the Kriging model may have an advantage in accuracy since the model

error tends to zero in the vicinity of the training points; however this comes at the expense of an increase in the computational

demands for new model evaluations. The extra computational burden is mainly the time necessary to assemble r(x′), the

matrix of cross-correlations between the prediction points and the training sample, and the time to multiply r(x′) with other25

equation terms. Thus, while for a PCE the model evaluation time t(N) for a sample of size N would follow t(N) =O(N), for

a Kriging model t(N) =O(N2). For a Kriging model, a gain in accuracy over the model represented by the trend function will

only materialize in problems where there is a noticeable correlation between the residual values at different training points. In a

situation where the model error is independent from point to point (as e.g. in the case when the error is only due to seed-to-seed

variations in turbulence) the inferred correlation length will tend to zero and the Kriging estimator will be represented by the30

trend function alone.
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A3 Sobol indices from the PCE

One useful corollary of the orthogonality in the PCE polynomial basis is that the total variance of the expansion can be

expressed as the sum of the contributions from individual terms (Sudret, 2008),

Var
[
S̃(ξ)

]
= Var

Np−1∑
j=0

SjΨγ,j(ξ)

=

Np−1∑
j=1

S2
jE
[
Ψ2
γ,j(ξ)

]
. (A20)

Each of the terms in the sum in eq. (A20) represents the contribution of the variables contained in the respective multivariate5

polynomials Ψγ,j where j = 0 . . .Np− 1. This property can be used for eliminating polynomials which do not contribute

significantly to the variance of the output, thus achieving a sparse, more computationally efficient reduced model. By combining

the variance truncation and the LASSO regression technique in eq. (17), a model reduction of an order of magnitude or more

can be achieved. For example, for a 9-dimensional PCE of order 6, using LASSO regularization parameter λ= 1 and retaining

the polynomials which have a total variance contribution of 99.5%, resulted in a reduction of the number of polynomials from10

5005 to about 200.

Denoting by Fi1,...,is the set of all polynomials dependent upon a specific combination of input variables {i1, . . . , is} (and

only on them), the sum of variance contributions over Fi1,...,is normalized by the total variance represents the PCE-based

Sobol index with respect to variable set Fi1,...,is (Sudret, 2008):

SUi1,...,is =

 ∑
j∈Fi1,...,is

S2
jE
[
Ψ2
j (ξ)

] ·(Var
[
S̃(ξ)

])−1
. (A21)15

Based on eq. (A21) it is also straightforward to obtain the total Sobol indices for a given variable γ by summing all SUi1,...,is
where γ ∈ (i1, . . . , is). Note that since each variable appears in multiple cross-terms in the expansion, the contributions of some

polynomial coefficients are included multiple times in the total Sobol indices, meaning that the sum of the total indices will

typically exceed 1.

The Sobol indices estimated using the above procedure represent the relative contribution to the model variance from vari-20

ables following the joint input distribution used to calibrate the PCE. In the present case, this distribution would span the

uniform variable space of the high-fidelity database defined in Section 2, and the indices will correspond to the load variation

within the entire variable ranges as defined in Table 1.
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