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Abstract. In this experimental wind tunnel study the effects of intentional yaw misalignment on the power production and

loads of a downstream turbine are investigated for full and partial wake overlap. Power, thrust force and yaw moment are

measured on both the upstream and downstream turbine. The influence of inflow turbulence level and streamwise turbine sepa-

ration distance are analyzed for full wake overlap. For partial wake overlap the concept of downstream turbine yawing for yaw

moment mitigation is examined for different lateral offset positions.5

Results indicate that upstream turbine yaw misalignment is able to increase the combined power production of the two turbines

for both partial and full wake overlap. For aligned turbine setups the combined power is increased between 3.5% and 11%

depending on the inflow turbulence level and turbine separation distance. The increase in combined power is at the expense

of increased yaw moments on both upstream and downstream turbine. For partial wake overlap, yaw moments on the down-

stream turbine can be mitigated through upstream turbine yawing. Simultaneously, the combined power output of the turbine10

array is increased. A final test case demonstrates benefits for power and loads through downstream turbine yawing in partial

wake overlap. Yaw moments can be decreased and the power increased by intentionally yawing the downstream turbine in the

opposite direction.

1 Introduction15

In wind farms the individual wind turbines interact aerodynamically through their wakes. Besides significant power losses,

rotors exposed to upstream turbines’ wakes experience higher unsteady loading (Kim et al., 2015). The reduced power and

increased rotor loads are dependent on the downstream turbine’s lateral and streamwise location in the wake, the upstream tur-

bine’s control settings and the characteristics of the incoming wind. The inflow characteristics are governed by the atmospheric

stability, in which the turbulence level as well as the degree of shear and veer are important parameters. In combination with20

the wind farm layout, the site dependent wind statistic, such as wind speed and direction distributions, define the occurrence

for downstream turbines to be fully or partially exposed to the upstream turbine’s wake.

In order to mitigate power losses and wake induced loads on downstream turbines, different upstream turbine control strategies

have recently been suggested (Knudsen et al., 2014; Gebraad et al., 2015). These include methods to reduce the axial-induction
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of an upstream turbine and thus also mean and turbulent gradients in the wake (Annoni et al., 2016; Bartl and Sætran, 2016) as

well as wake redirection techniques (Fleming et al., 2015). The most discussed wake deflection mechanisms include individual

pitch angle control, tilt angle variation and yaw angle actuation. In a computational fluid dynamics (CFD) study Fleming et al.

(2015) compare these techniques with regards to power gains and blade out-of-plane bending loads on a two turbine setup. In-

dividual pitch control was observed to cause high structural loads. Most current turbine designs do not feature tilt mechanisms,5

while yaw actuation is concluded to be a promising technique due to its simple implementability. As all modern wind turbines

are equipped with yaw actuators, intentional yaw misalignment can be used to laterally deflect the wake flow and potentially

increase the wind farm power output.

A number of recent research focused on the wake characteristics behind a yawed wind turbine. In a combined experimental

and computational study Howland et al. (2016) measured the wake of yawed small drag disc and conducted a Large-Eddy-10

Simulation (LES) behind an actuator disc/line modeled rotor. They discussed different quantifications for wake deflection and

characterized the formation of a curled wake shape due to a counter-rotating vortex pair. A similar wake shape was found

in a LES study by Vollmer et al. (2016), who found a significant variation of wake shape and deflection depending on the

atmospheric stability. The yawed wake characteristics’ dependency on inflow turbulence and shear were investigated in an

experimental study by Bartl et al. (2018). The inflow turbulence level was observed to influence the shape and deflection of15

the wake, in contrast to a moderate shear in the inflow. Schottler et al. (2018) highlight the importance of considering non-

Gaussian distributions of velocity increments in wind farm control and layout optimizations. A ring of strongly intermittent

flow is shown to surround the mean velocity deficit locations, suggesting a much wider wake expansion as based on the mean

velocity. An extensive theoretical and experimental study on yaw wakes was performed by Bastankhah and Porté-Agel (2016).

They presented a theoretical description for the formation of the counter-rotating vortex pair in the wake and developed a so-20

phisticated analytical model for the far wake of a yawed turbine. Including inflow turbulence as an additional input parameter

makes Bastankhah and Porté-Agel’s model a favorable alternative to the wake deflection model by Jiménez et al. (2010).

Moreover, various research investigated the potential of overall wind farm power gains through intentional yaw misalignment.

An experimental study by Adaramola and Krogstad (2011) on two aligned model wind turbines (x/D = 3) demonstrated an

increase in combined efficiency with increasing upstream turbine yaw angle. For a yaw angle of 30◦, they measured an in-25

crease of 12% in combined power compared to the reference case at 0◦. For the same separation distance Schottler et al. (2016)

measured a combined power increase of about 4% for an upstream turbine yaw angle of −18◦. Their experimental study on

two aligned model turbines furthermore pointed out clear asymmetries of the downstream turbine power output with regards

to the upstream turbine yaw angle. Another experimental study on three model wind turbines was presented by Campagnolo

et al. (2016), who measured a combined power increase of 21% for an lateral offset of ∆z/D = 0.45 between the turbines.30

Comprehensive studies on yaw misalignment for optimized full wind farm control haven been presented by Fleming et al.

(2014) and Gebraad et al. (2016). They analyzed wake mitigation strategies by using both the LES code SOWFA as well as a

parametric wake model. A comprehensive full-scale study by McKay et al. (2013) investigated the connection of yaw align-

ment and power output of a downstream turbine operated in the wake of an upstream turbine. They found a power increase for

downstream turbines, which independently misaligned their yaw angle from the main wind direction when operated in a partial35
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wake.

Most of these studies focus on the possibilities for power optimization through yaw control; however, the discussion of in-

creased structural loads is often left open. Yet, yaw misalignment of an undisturbed turbine was observed to create increased

unsteady loading on the yawed rotor. In a simulation by Kragh and Hansen (2014) these loads are quantified for different

inflow conditions. It is furthermore shown that load variations due to wind shear can potentially be alleviated by yaw misalign-5

ment. Load characteristics on a yawed model turbine rotor were compared to various computational approaches by Schepers

et al. (2014). The so-called Mexnext project revealed modeling deficiencies while shedding light on complex unsteady flow

phenomena during yaw. In a recent paper by Damiani et al. (2018) damage equivalent loads and extreme loads under yaw mis-

alignment are measured and predicted for a fully instrumented wind turbine. They observed rather complex, inflow-dependent

load distributions for yaw angle offsets. In a computational setup of ten aligned turbines Andersen et al. (2017) investigated10

the influence of inflow conditions and turbine spacing on yaw moments of downstream turbines operated in the wake. The

study shows up unexpected load peaks for every second or third downstream turbine in below-rated operating conditions. A

way to utilize measured rotor loads such as yaw moments to estimate rotor yaw misalignment, inflow shear or partial wake

rotor operation is investigated by Schreiber et al. (2016). Using a computational framework of a wake model, BEM model for

power and loads and a gradient-based optimizer van Dijk et al. (2017) investigated the effects of yaw misalignment on power15

production and loads in full and partial wake overlap. They found that upstream turbine yaw-misalignment is able to increase

the total power production of their modeled wind farm, while reducing the loads in partial wake overlap.

The objective of the present study is to analyze potentials of yaw control for the often contradicting goals of combined power

gains and load mitigation. Balancing the benefits of power gains and costs of increased rotor loads is of utmost importance

for the design of cost-effective wind farm control strategies. For this purpose the parameters turbine separation distance x/D,20

lateral turbine offset ∆z/D and turbine yaw settings γT1 and γT2 are systematically varied in this wind tunnel experiment.

Aside from power output and rotor thrust, the yaw moments acting on the individual rotors are measured. Yaw moments are

a representation of the imbalance of the forces acting on a rotor blade during the course of one rotation. High values of yaw

moments thus indicate increased unsteady blade loading at a frequency of the corresponding the rotational speed. Special focus

is given to the concept of downstream turbine yawing in partial wake situations for the purpose of load reduction and combined25

power gains. Together with the inflow-dependent wake flow measurements on the same experimental setup presented in Bartl

et al. (2018), this study completes the link between detailed wake flow characteristics and power, yaw moments and thrust

forces on a turbine operated in the wake.

2 Experimental setup

2.1 Wind turbine models30

Two wind turbine models of the exactly same rotor geometry were used for this study. The rotor was designed based on the

NREL S826 aifoil and has a total diameter of D = 0.894m. The tower and nacelle structure of the upstream turbine (T1) is

slightly slimmer than that of the downstream turbine (T2), in order to minimize the effect on the wake flow behind the yawed
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upstream turbine. The maximum power point of both turbines is reached at a tip speed ratio of λT1 = λT2 = 6.0 in undisturbed

inflow. In this experiment T2 is controlled to its optimum power point, which strongly varies for different positions and up-

stream turbine operational parameters. The exact geometry and detailed performance curves of T1 are described in Bartl et al.

(2018), while T2’s characteristics can be found in Bartl and Sætran (2017). In contrast to most other turbines, the investigated

model turbines rotate counter-clockwise.5

The experiments were performed in the closed-loop wind tunnel at the Norwegian University of Science and Technology

(NTNU) in Trondheim, Norway. The tunnel’s cross-section measures 2.71m in width, 1.81m in height and 11.15m in length.

The turbine models are operated at a blade tip Reynolds numbers of approximately Retip ≈ 105.

Moreover, about 12.8% of the wind tunnel’s cross sectional area are blocked by the turbines’ rotor swept area. The wind tunnel

width measures about three times the turbine’s rotor diameter, which leaves sufficient space for lateral wake deflection and10

offset positions for T2. However, a speed-up of the flow in freestream areas around the rotors is observed due to blockage

effects as described in detail in Bartl et al. (2018). The impact of the wind tunnel blockage on the wake expansion behind the

same model turbine rotor has furthermore been investigated in a computational study by Sarlak et al. (2016). For high blockage

ratios, correction models e.g. by Sørensen et al. (2006) or Ryi et al. (2015) for the power output are available. In this study,

however, no correction models have been applied, in order not to add another dimension of modeling uncertainty to the results.15

2.2 Inflow conditions

The influence of different inflow turbulence levels is investigated in this study. For this purpose the turbines are exposed to

an inflow of low turbulence intensity TIA = 0.23% (Inflow A) as well as high turbulence intensity TIB = 10.0% (Inflow B).

Inflow B is generated by a static grid at the wind tunnel inlet (x/D =−2) and is measured to amount TIB = 10.0% at the20

location of the upstream turbine (x/D = 0). The grid-generated turbulence decays with increasing downstream distance to

about TIB = 5.5% at x/D = 3 and to TIB = 4.0% at x/D = 6. The profiles of streamwise mean velocity and turbulence

intensity measured in the empty wind tunnel for different downstream positions are presented in Bartl et al. (2018). Inflow

A is assessed to be uniform within ±0.8% over the rotor swept area. A velocity variation of ±2.5% is measured at x/D = 0

for Inflow B, as the footprint of the grid’s single bars are still detectable. At x/D = 3, however, the grid-generated turbulent25

flow is seen to be uniform within±1.0%. Both test cases were performed at the constant reference velocity of uref = 10.0m/s.

2.3 Measurement techniques

The mechanical power on both rotors was measured in separate steps with a HBM torque transducer of the type "T20W-N/2-

Nm", which is installed in the nacelle of the downstream turbine T2. The transducer is connected to the rotor shaft through30

flexible couplings. An optical photo cell inside the nacelle makes the rotor’s rotational speed assessable. On the test rig of T1

the rotational speed is controlled via a servo motor, ensuring the same power and load characteristics as for T2.

For the purpose of thrust force and yaw moment measurements the model turbines are separately installed on a six-component
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Table 1. Overview of test cases.

Test case Parameter Inflow Yaw angle γT1 Streamwise Lateral Yaw angle γT2

variation turbulence separation x/D offset ∆z/D

1 (a) Aligned turbines γT1 & x/D 0.23% [-40◦,..., +40◦] 3 & 6 0 0◦

1 (b) Aligned turbines γT1 & x/D 10.0% [-40◦,..., +40◦] 3 & 6 0 0◦

2 (a) Offset turbines ∆z/D 10.0% 0◦ 3 [-0.5,...+0.5] 0◦

2 (b) Offset turbines ∆z/D 10.0% +30◦ 3 [-0.5,...+0.5] 0◦

3 (a) Downstream turbine yaw ∆z/D & γT2 10.0% 0◦ 3 [-0.5,...+0.5] [-30◦,...,+30◦]

3 (b) Downstream turbine yaw ∆z/D & γT2 10.0% +30◦ 3 [-0.5,...+0.5] [-30◦,...,+30◦]

force balance by Carl Schenck AG. By constantly recording signals obtained from the three horizontal force cells, the yaw

moments referred to the rotor center can be calculated. For the assessment of the rotor thrust, the drag force on tower and

nacelle is measured isolated and then subtracted from the total thrust. No such correction is applied for the assessment of the

yaw moments.

5

2.4 Statistical measurement uncertainties

The statistical measurement uncertainties for power coefficients, thrust coefficient and normalized yaw moments have been

calculated following the procedure described by Wheeler and Ganji (2004). Random errors are computed from repeated mea-

surements of various representative measurement points based on a 95 % confidence interval. Furthermore, the match of power

and thrust values of the baseline cases (e.g. γT1 = 0◦, x/D = 3, ∆z/D = 0) with previous results e.g. by Bartl and Sætran10

(2016, 2017) has been checked for consistency.

For the purpose of clarity, errorbars are not shown in the resulting graphs in Section 3. Instead, a short overview of uncertain-

ties for the different measures is given here. The total uncertainty in T1’s power coefficient is 0.011 (1.9%) for non-yawed

operation, rising up to about 0.017 (3.9%) for a yaw angle of γT1 = 30◦. The uncertainty in T1’s thrust coefficient is assessed

to be very similar, varying from 0.013 (1.4%) to 0.018 (3.1%) for yaw angles 0◦ and ±40◦, respectively. The uncertainty in15

normalized yaw moments M∗
y is 0.0032, which corresponds to almost 15% of the absolute measurement value at γT1 = 30◦.

Due to very small absolute values of the yaw moments, the relative uncertainty is rather high. In the case of T2, the uncertainties

are presented representatively for the aligned test case, in which the upstream turbine is operated at γT1 = 30◦ and T2 located

at x/D = 3 and operated at γT2 = 0◦. The total uncertainties in power and thrust coefficient are 0.006 (2.5% of the absolute

CP -value) and 0.007 (0.9% of the absolute CT -value), respectively. The normalized yaw moment of the downstream turbine20

for this case is amounts 0.0019 (about 8% of the absolute value).
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2.5 Test case definition

Three main test cases are investigated in this study. In a first test case the two model turbines are installed in an aligned

arrangement in the wind tunnel, i.e. T2 is immersed in the full wake of T1 (for γT1 = 0◦). The upstream turbine’s yaw angle is

then systematically varied at nine different values γT1 = [−40◦,−30◦,−20◦,−10◦,0◦,+10◦,+20◦,+30◦,+40◦]. Moreover,

the streamwise separation distance between the turbines is varied from x/D=3 to x/D=6. Finally, the inflow turbulence intensity5

is varied from TIA = 0.23% (Inflow A) to TIB = 10.0% (Inflow B).

In a second test case, the effect of the lateral offset position ∆z/D of the downstream turbine T2 in the wake of an upstream

turbine T1 is investigated. That means that T2 is in most cases exposed to partial wake situations. For this purpose, the lateral

offset is set to seven different positions ranging from ∆z/D = [−0.50,−0.33,−0.16,0,+0.16,+0.33,+0.50]. This is done for

two upstream turbine yaw angles γT1 = 0◦ and γT1 = +30◦. The turbine separation distance is kept constant at x/D = 3 and10

only the highly turbulent inflow condition (Inflow B) is investigated.

In a third and final test case the downstream turbine yaw angle γT2 is varied as an additional parameter while it is operated

at different lateral offset positions ∆z/D. This concept intends to demonstrate the possibility for yaw moment mitigation in

partial wake situations by opposed yawing of the downstream turbine. In this test case T2 is therefore operated at 13 different

yaw angles ranging from γT2 = [−30◦, ...,+30◦]. An overview of all investigated test cases is presented in Table 1.15

For all test cases the power coefficient CP , thrust coefficient CT and normalized yaw moment M∗
y are assessed on T1 and T2.

Note that the coefficients for both turbines are normalized with the reference inflow velocity Uref measured far upstream of

the turbine array at x/D =−2. The power coefficient is the measured mechanical power normalized with the kinetic power of

the wind in a streamtube of the same diameter:

CP =
P

1/8ρπD2U3
ref

. (1)
20

The thrust coefficient is defined as the thrust force normal to the rotor plane normalized with the momentum of the wind in a

streamtube:

CT =
FT

1/8ρπD2U2
ref

. (2)

The yaw moment My is normalized in a similar way as the thrust force with an additional rotor diameter D to account for the

normalization of the yaw moment’s lever:25

M∗
y =

My

1/8ρπD3U2
ref

. (3)

3 Results

3.1 Operating characteristics of T1

At first the yaw-angle dependent operating characteristics of the upstream wind turbine are presented for two inflow conditions

in Figure 1. The model turbine is operated at a tip speed ratio of λT1 = 6.0 for all yaw angles. There, the power coefficient is30
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assessed to be maximum at λT1 = 6.0 for all yaw angles between γT1 = 0◦ to ±30◦. A slight shift towards a lower optimum

tip speed ratio of λT1 = 5.5 is measured for γT1 =±40◦ (not shown in graph). As the difference in total power coefficient is

observed to be very small, the upstream turbine is constantly operated at λT1 = 6.0 also for these yaw angles. The downstream

turbine shows exactly the same operating characteristics when operated in undisturbed inflow. For measurements showing the

power and thrust coefficient depending on the tip speed ratio λT1 it is referred to Bartl et al. (2018).5

At γT1 = 0 the upstream turbine reaches a power coefficient of about CP,T1 = 0.460 for both inflow conditions. It is observed

that an increase in inflow turbulence results in the same performance characteristics. As discussed by Bartl et al. (2018), the

decrease in power coefficient can be approximated CP,γT1=0 · cos3(γT1) when the turbine yaw angle is varied. The thrust

coefficient’s reduction through yawing is observed to match well with CT,γT1=0 · cos2(γT1). Despite the commonly assumed

exponent of α= 3 for the power coefficient CP (γ) = CP,γ=0 · cosα, Micallef and Sant (2016) refer to different values of α10

between 1.8 and 5 measured in different full-scale tests. The measured relations of our study, however, correspond well with

previous measurements on the same rotor by Krogstad and Adaramola (2012) and another experimental study on a smaller

rotor by Ozbay et al. (2012). Another recent experimental study on a very small rotor by Bastankhah and Porté-Agel (2017)

confirmed the α= 3 for the power coefficient, but found an slightly smaller exponent of β = 1.5 for the thrust coefficient.

The normalized yaw moment shows an almost linear behavior around the origin. However, minor asymmetries between positive15

and corresponding negative yaw angles are observed. These asymmetries are slightly stronger for inflow A (TIA = 0.23%).

Although it is not entirely clear where these stem from, the only reasonable source for an asymmetric load distribution in an

uniform inflow is the rotor’s interaction with the turbine tower. In the course of a revolution, the blades of a yawed turbine

experience unsteady flow conditions, i.e. fluctuations in angle of attack and relative velocity. When superimposing an additional

low-velocity zone, tower shadow or shear for example, the yaw-symmetry is disturbed. Asymmetric load distributions for20

turbines exposed to sheared inflow were recently reported by Damiani et al. (2018). They showed that vertical wind shear

causes asymmetric distributions of angle of attack and relative flow velocity in the course of a blade revolution. They link these

to rotor loads and conclude further consequences on wake characteristics and wind farm control strategies.

3.2 Test case 1: Aligned turbines

In the first test case both rotors are installed in the center of the wind tunnel at (y,z) = (0,0) aligned with the main inflow25

direction. The downstream turbine position is varied from x/D = 3 to x/D = 6, while the upstream turbine yaw angle is

systematically changed in steps of ∆γT1 = 10◦ from γT1 = [−40◦, ...,+40◦]. Figure 2 shows two example cases, in which

the downstream turbine is operated in the upstream turbine’s wake for γT1 = 0◦ and γT1 = 30◦. Positive yaw is defined as

indicated in Figure 2. The sketched wake flow contours in the xz-plane at hub height included for illustrative purposes. The

location of the wake flow as sketched in gray is roughly estimated from previously performed measurements as presented30

in Bartl et al. (2018). The results for the downstream turbine CP,T2, CT,T2 and M∗
y,T2 at inflow B in dependency of its tip

speed ratio λT2 are shown in Figure 3. The downstream turbine’s power is observed to increase with an increasing absolute

value of the upstream turbine yaw angle. As the wake is laterally deflected, the downstream turbine is partly exposed to higher

flow velocities in the freestream. The power output of the downstream turbine is observed to be asymmetric with respect to
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Figure 1. (a) Power coefficient CP,T1 (b) thrust coefficient CT,T1 and (c) normalized yaw moment M∗
y,T1 of the undisturbed upstream

turbine T1 for different inflow conditions. The turbine is operated at λopt,T1 = 6.0 for all yaw angles.

the upstream turbine yaw angle. Higher downstream turbine power coefficients are measured for negative upstream turbine

yaw angles. The optimum downstream turbine T2’s operating point shifts to higher tip speed ratios λT2 the more kinetic

energy is available in the wake. As the downstream turbine power coefficient is referred to the constant far upstream reference

velocity Uref , the optimum operating conditions are measured for higher tip speed ratios as soon as the local inflow velocity

increases. A corresponding asymmetry between positive and negative upstream turbine yaw angles is also observed in T2’s5

thrust coefficient, showing higher values for negative upstream turbine yaw angles. The yaw moments experienced by the

downstream turbine are observed to grow with increasing upstream turbine yaw angle. As expected, downstream turbine yaw

moments are positive for positive upstream turbine yaw angles and vice versa. For low tip speed ratios, i.e. during stall the

yaw moments are seen to be small and below 0.01. As soon as the flow is attached the absolute value of the yaw moments

is observed to strongly rise. Again, an asymmetry between negative and positive upstream turbine yaw angles is observed.10

The asymmetric wake deflection for positive and negative yaw angles is considered to be the main reason for the asymmetric

distribution of T2’s yaw moments. As discussed in an analysis of the wake flow behind a yawed turbine by Bartl et al. (2018),

the overall wake displacement for positive and negative yaw angles was observed to be slightly asymmetric. The interaction

of the rotor wake with the turbine tower is identified to be the main contributor for the asymmetric wake flow. This finding

is supported by a previous study on the non-yawed wake by Pierella and Sætran (2017), in which they attributed a significant15

displacement of the wake center to the interaction with the turbine tower.

The effect of a variation in inflow turbulence level (TIA = 0.23% versus TIB = 10.0%) on the downstream turbine’s CP,T2,

CT,T2 andM∗
y,T2 is shown in Figure 4. The results are presented for varying upstream turbine yaw angle γT1. The downstream

turbine T2 is operated at a λT2, for whichCP,T2 was maximum for the specific conditions. Note that for x/D = 6 neither thrust

nor yaw moments were measured.20

The downstream turbine’s power coefficient CP,T2 is in general observed to be higher for a higher inflow turbulence (Inflow
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Figure 2. Topview of the aligned downstream turbine operated in the wake of an upstream turbine at the two different positions x/D = 3

and x/D = 6. The wake flow is indicated for (a) γT1 = 0◦ and (b) γT1 = 30◦.

Figure 3. Downstream turbine (a) power coefficient, (b) thrust coefficient and (c) normalized yaw moment as a function of its tip speed ratio

λT2 for different upstream turbine yaw angles γT1. The downstream turbine T2 is located at x/D = 3. The turbines are exposed to inflow B.

B). As previously observed in Bartl et al. (2018), the wake flow recovers at a higher rate, leaving more kinetic energy for the

downstream turbine to extract. The difference in T2’s power extraction between the two inflow turbulence levels is observed

to be highest at small upstream turbine yaw angles γT1. At high yaw angles γT1 ≥ 30◦, however, the power coefficient CP,T2

is very similar for the two different inflow turbulence levels. For these high yaw angles the wake’s mean velocity deficit has

the largest lateral deflection, exposing about half of T2’s rotor swept area to the freestream. The kinetic energy content in5

the freestream is about the same for both inflows, which brings T2’s power levels closer together. Moreover, the downstream

turbine’s power output at low inflow turbulence (inflow A) is observed to be more asymmetric with respect to γT1 than at

high inflow turbulence (inflow B). Especially for x/D = 6, the downstream turbine power CP,T2 is strongly asymmetric for

inflow A. This observation corresponds well with the asymmetry in the mean streamwise wake flow measured for positive and

negative yaw angles reported in Bartl et al. (2018). Therein, the wake flow behind a positively and negatively yawed turbine10
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Figure 4. Downstream turbine (a) power coefficient, (b) thrust coefficient and (c) normalized yaw moment as a function of the upstream

turbine’s yaw angle γT1. The downstream turbine T2 is located at x/D = 3 and x/D = 6 respectively. The turbines are exposed to inflows

A and B.

exposed to inflow A was observed to feature a higher degree of asymmetry than for the same turbine exposed to inflow B.

For extreme yaw angles γT1 =±40◦, T2’s power coefficient reaches levels of CP,T2 = 0.45− 0.46, which is about the same

magnitude of CP,T1 at γT1 = 0◦. These high downstream power coefficients CP,T2 can be explained by increased velocity

levels of u/uref = 1.10 in the freestream outside of the wake as a result of wind tunnel blockage (Bartl et al., 2018). The

downstream turbine power coefficient is, however, still referred to the undisturbed far upstream reference velocity uref . Al-5

though a considerable part of the downstream turbine rotor is impinged by T1’s wake, higher wind speeds outside of the wake

lift the downstream turbine’s power to these levels.

Similar trends are observed for the downstream turbine thrust coefficient CP,T2 (Figure 4 (b)), where higher thrust forces are

measured for the higher turbulence level in Inflow B. Inflow A implicates a higher asymmetry in CT,T2 with respect to γT1. As

previously discussed, the downstream turbine yaw moments M∗
y,T2 are observed to increase with larger upstream turbine yaw10

angles γT1. For both inflow cases, the yaw moments’ absolute values are seen to be higher for positive γT1 than for negative

γT1. Larger yaw moments are measured for Inflow A than for Inflow B, which possibly stems from stronger mean velocity

gradients in the wake flow in Inflow A. The yaw moments M∗
y,T2 on the downstream turbine located at x/D = 3 have ap-

proximately the same magnitude as the yaw moments measured on the upstream turbine M∗
y,T1. Consequently, an intentional

upstream turbine yaw misalignment implicates significant yaw moments on the upstream turbine it self as well as an aligned15

downstream turbine.

A main goal of this study is to find out if upstream turbine yawing can positively affect the total power output. As observed

in Figure 1 yawing the upstream turbine reduces its power output, while Figure 4 shows that the downstream turbine’s power

increases simultaneously. In order to quantify if the gain in T2 power can make up for the losses in T1, we define the combined20
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Figure 5. Combined relative power P ∗
T1+T2 of two turbines for different upstream turbine yaw angles γT1. The downstream turbine T2 is

located at x/D = 3 and x/D = 6 respectively. The turbines are exposed to inflows A and B.

relative power output of the two turbine array

P ∗
T1+T2 =

PT1(γT1) +PT2(γT1)

PT1,γT1=0 +PT2,γT1=0
. (4)

The results for the combined relative power are presented in Figure 5 for both inflow conditions and two turbine separation

distances. In all of these four setups an increase in combined power between 3.5% and 11% was measured for upstream turbine

yawing. For both turbine spacings, the maximum combined efficiencies were measured for γT1 =−30◦. The combination of5

a larger wake deflection and a progressed wake recovery at higher separation distances are seen to shift the optimum of the

energy balance between T1 and T2 to higher yaw angles γT1. Moreover, the combined relative power is seen to be asymmetric

with higher values for negative yaw angles γT1. Both, upstream turbine power CP,T1 and downstream turbine power CP,T2 are

observed to be asymmetrically distributed. The larger portion can however be subscribed to the power extraction of downstream

turbine, which is exposed to asymmetric wake flow fields for positive and negative yaw angles. Furthermore, the relative power10

gains are observed to be significantly larger for lower inflow turbulence levels (Inflow A). Relative power gains of about 11%

were measured at Inflow A, while only 8% were obtained for Inflow B at the same yaw angle of γT1 =−30◦. Asymmetries

in the combined power output have been previously observed in a computational study Gebraad et al. (2016) and a similar

experimental setup by Schottler et al. (2016). In a recent follow-up study, Schottler et al. (2017) attributed the asymmetry to

a strong shear in the inflow to the two-turbine setup. As the inflow in the present study was measured to be spatially uniform,15

inflow shear is not a reason for the observed asymmetries.

3.3 Test case 2: Offset turbines

The power and loads of the downstream turbine T2 are dependent on many different parameters, such as the inflow conditions,

the operating point of the upstream turbine T1, its relative streamwise and lateral position with respect to T1 as well as its20
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Figure 6. Topview of two lateral offset positions ((a) ∆z/D = −0.16 and (b) ∆z/D = +0.33) of the downstream turbine while operated

in the wake of an upstream turbine at x/D = 3. The upstream turbine is operated at (a) γT1 = 0◦ and (b) γT1 = 30◦.

Figure 7. Downstream turbine (a) power coefficient, (b) thrust coefficient and (c) normalized yaw moment as a function of its tip speed ratio

λT2 for different lateral offset positions ∆z/D. The upstream turbine yaw angle is kept constant at γT1 = 0◦. The downstream turbine T2

is located at x/D = 3. The turbines are exposed to inflow B.

operating point. In a second test case we therefore investigate the downstream turbine’s performance in lateral offset. That

means that T2 experiences partial wake situations. The turbine separation distance is in this test case fixed to x/D = 3, while

different offset positions ∆z/D = [−0.50,−0.33,−0.16,±0,+0.16,+0.33,+0.50] are investigated. This is done for Inflow

B (TIB = 10.0%) only, while upstream turbine yaw angles of γT1 = 0◦ and γT1 = +30◦ are investigated. In Figure 6 two

example positions of the downstream turbine are sketched, illustrating two different wake impingement situations.5

Figure 7 shows the downstream turbine’s CP,T2, CT,T2 and M∗
y,T2 while operated in the wake of the upstream turbine at

γT1 = 0◦ in dependency of its tip speed ratio λT2 and lateral offset position ∆z/D. As expected, the power coefficient is seen

to increase with increasing lateral offset ∆z/D as the downstream turbine is partly exposed to a flow of higher kinetic energy.

T2’s power coefficient is observed not to be entirely symmetric with respect to its lateral position in the wake. Slightly higher
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power coefficients are measured for negative offset positions. The reason for this is deemed to be a not perfectly axis-symmetric

velocity deficit at x/D = 3 as indicated in Bartl et al. (2018). An analysis of the available kinetic energy contained in the wake

at x/D = 3 behind a non-yawed upstream turbine confirmed a higher kinetic energy over an imaginary rotor swept area for

negative lateral offsets z/D than for positive offsets. As observed earlier, T2’s optimum operating point shifts to higher tip

speed ratios λT2 with increasing kinetic energy being available in the wake.5

Similar trends are observed for the downstream turbine thrust coefficient CT,T2, which was measured to be slightly higher

for negative offset positions. The yaw moments experienced by the downstream turbine are seen to increase for larger lateral

offsets as the rotor is impinged by stronger mean velocity gradients. The largest increases are detected for a change from

∆z/D =±0 to ±0.16 and from ±0.16 to ±0.33, while a position change from ±0.33 to ±0.50 only causes a small increase

in yaw moment. The curves are generally observed to be almost symmetric with respect to the offset position, but also show10

slightly higher absolute values for negative offset positions.

The effect of a variation in upstream turbine yaw angle from γT1 = 0◦ to γT1 = 30◦ on the downstream turbine’s characteris-

tics in different lateral offset positions is presented in Figure 8. For the shown results the downstream turbine T2 is operated at

a its optimum λT2, which differs for each offset position.

The red curves summarize the results for γT1 = 0◦ already shown in Figure 7 for their optimum operating point, while the15

blue curves represent a setup, in which T1 is operated at γT1 = 30◦ (see Figure 6). For this upstream turbine yaw angle,

the wake center is shifted to ∆z/D =−0.167 (Bartl et al., 2018) and correspondingly the blue curves minima in CP,T2 and

CT,T2 are shifted to ∆z/D =−0.16 (Figure 8 (a) and (b)). The yaw moment M∗
y,T2 as depicted in Figure 8 (c) is observed

to be around zero for this offset position, as the rotor is approximately impinged by a full wake. For an offset position around

∆z/D = +0.16 to ∆z/D = +0.33 the yaw moments reach a maximum level, as roughly half the rotor swept area is impinged20

by the low velocity region of the wake. At a lateral offset of ∆z/D = +0.50 the yaw moments on T2 are observed to decrease

again. A large part of the rotor is exposed to the freestream flow; however, the wake is not yet entirely deflected away from

T2. For this offset position the power and thrust coefficient are seen to reach very high levels as the rotor is exposed to a large

portion of high kinetic energy freestream flow. A power coefficient of CP,T2 > 0.50 can be explained by increased freestream

velocity levels of u/uref = 1.10 (Bartl et al., 2018) caused by wind tunnel blockage. The power and thrust coefficient still are25

referred to uref measured x/D =−2 upstream of T1. Unfortunately, it is not possible to correct for blockage effects on the

downstream turbine power, thrust and yaw moments with simple correction models. The influence of wind tunnel blockage

on the highly complex inflow to the downstream turbine operated in a partial wake would have to be quantified by dedicated

experiments or high-fidelity simulations.

30

The combined relative power output of the two-turbine array is in this case calculated for a change of upstream turbine

yaw angle from γT1 = 0◦ to +30◦. It has to be kept in mind, that the upstream turbine power is constant, independent of the

downstream turbine position. The combined power for each offset position is calculated as

P ∗
T1+T2 =

PT1,γT1=30 +PT2,γT1=30(z/D)

PT1,γT1=0 +PT2,γT1=0(z/D)
. (5)
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Figure 8. Downstream turbine (a) power coefficient, (b) thrust coefficient and (c) normalized yaw moment as a function of its lateral offset

position ∆z/D. The downstream turbine yaw angle is kept constant at γT2 = 0◦. The downstream turbine T2 is located at x/D = 3. The

turbines are exposed to inflow B.

Figure 9. Combined relative power P ∗
T1+T2 of the two-turbine-array for different lateral offset positions ∆z/D. The combined power is

calculated for a change of upstream turbine yaw angle from γT1 = 0◦ to +30◦ for each position. The downstream turbine T2 is located at

x/D = 3. The turbines are exposed to inflow B.
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Figure 10. (a) Topview of the downstream turbine T2 operated at a lateral offset position ∆z/D = +0.50 and a yaw angle of γT2 = −20◦

in the wake of an upstream turbine T1 operated at γT1 = 0◦. (b) Topview of the downstream turbine T2 operated at a lateral offset position

(∆z/D = +0.16) and a yaw angle of γT2 = −15◦ in the wake of an upstream turbine T1 operated at γT1 = 30◦.

Figure 9 shows the resultant combined relative power output. For an offset position of ∆z/D = +0.33 a maximum combined

power increase of 13% is measured, as a major part is deflected away from the downstream rotor. Surprisingly, the relative

power gains measured for an offset ∆z/D = +0.50 are measured to be smaller, amounting about 6%. This can be explained

by significantly larger CP,T2-values in the non-yawed case for ∆z/D = +0.50 than for ∆z/D = +0.33, allowing smaller

relative gains. For zero lateral offset, about 5% in combined power are lost when yawing T1 to γT1 = +30◦ as previously5

observed in Figure 5. In the case of the downstream turbine being located at negative offset positions ∆z/D, the wake is

deflected directly on T2’s rotor, significantly reducing its power output and consequently also the combined power.

In conclusion, is has been demonstrated that intentional upstream turbine yaw control is favorable in offset situations when

considering both, the power output and yaw moments on a downstream turbine. Depending on the downstream turbine’s

streamwise and lateral position, the wake can be partly or even fully deflected away from its rotor swept area. This finding10

experimentally confirms results of a similar test case recently computed with a model-framework by van Dijk et al. (2017).

3.4 Test case3: Downstream turbine yawing

The third and final test case investigates whether a variation in downstream turbine yaw angle γT2 contributes to a yaw-load

mitigation and power optimization. As previously seen, both partial wake impingement and turbine yaw misalignment are

possible sources for increased yaw moments. An intentional yaw misalignment opposed to the partial wake impingement15

is therefore considered to cancel out yaw loading on the turbine. For this purpose, the downstream turbine yaw angle is

systematically varied from γT2=[−30◦, ...,+30◦] in steps of 5◦ for all seven lateral offset positions and upstream turbine yaw

angles γT1=[0◦,+30◦]. A sketch of two downstream turbine yaw angles at two offset positions is presented in Figure 10.

The resulting CP,T2, CT,T2 andM∗
y,T2 of the downstream turbine in dependency of its yaw angle γT2 and lateral offset posi-

tion ∆z/D for a constant upstream turbine yaw angle of γT1 = 0◦ are shown in Figure 11. The points for γT2 = 0◦ correspond20

to the previously shown red lines in Figure 8. In case the downstream turbine rotor is fully impinged by the upstream turbine’s

wake, i.e. ∆z/D = 0, a variation of its yaw angle γT2 reduces its power output and increases uneven yaw moments. During a

15



Figure 11. Downstream turbine (a) power coefficient, (b) thrust coefficient and (c) normalized yaw moment as a function of its yaw angle

γT2 for different lateral offset positions ∆z/D. The upstream turbine yaw angle is kept constant at γT1 = 0◦. The downstream turbine T2 is

located at x/D = 3. The turbines are exposed to inflow B.

lateral offset however, the maximum power output and minimum yaw moments are found for yaw angles γT2 6= 0◦. At a lateral

offset position of ∆z/D = +0.16, for instance, the maximum CP,T2 is assessed for γT2 =−10◦. Simultaneously, the yaw

moment is measured to be around zero at this yaw angle. The potential of load reductions of a single turbine by yawing has

been previously discussed by Kragh and Hansen (2014), in situations where the rotor was exposed to vertically sheared inflows.

In the present test case, however, the partial wake impingement on the rotor represents a situation of a strongly horizontally5

sheared flow. Whether the shear in the incoming wind field is horizontal or vertical obviously makes a big difference, but miti-

gation of loads and maximization of power might be possible with yaw adjustments in both cases. As the downstream turbine

operated in the partial wake is exposed to a strongly sheared inflow, yaw moments can be mitigated by actively yawing the rotor

in the opposite direction to the incoming shear. The simultaneous power increase for the oppositely yawed downstream rotor is

a positive side effect, although the exact reasons for the power increase are not entirely clear at this stage. A power increase by10

downstream turbine yawing has previously been reported in a full-scale data evaluation by McKay et al. (2013), who found an

offset in the downstream turbine’s yaw alignment for the purpose of optimized power output when operated in a partial wake

of an upstream turbine. The downstream turbine yaw angle was observed to adjust itself opposed to the velocity gradient in

the partial wake impinging the downstream rotor. These findings are in total agreement with the optimal downstream turbine

yaw angle measured in our wind tunnel experiment. Higher power outputs and decreased yaw moments are also measured for15

moderate yaw angles around γT2 =−10◦ at larger lateral offsets of ∆z/D = +0.33 and ∆z/D = +0.50. The slope of the

power curves in Figure 11 (a) and yaw moment curves in Figure 11 (c) are observed to be even steeper for larger lateral offsets.

The power gains when yawing the turbine from γT2 = 0◦ to γT2 =−10◦ are larger for higher lateral offsets. At the same time,

the relative yaw moment reduction is larger, implying that opposed downstream yawing is expected to be even more effective

for higher lateral offsets.20
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Figure 12. Downstream turbine (a) power coefficient, (b) thrust coefficient and (c) normalized yaw moment as a function of its yaw angle

γT2 for different lateral offset position ∆z/D. The upstream turbine yaw angle is kept constant at γT1 = 30◦. The downstream turbine T2

is located at x/D = 3. The turbines are exposed to inflow B.

For negative lateral offset positions, the opposite trends are observed, i.e. maximum power and smallest absolute yaw moments

are measured for positive downstream turbine yaw angles γT2. The power output and yaw moment distribution is however not

completely symmetrical with respect to yaw angle γT2 and offset position ∆z/D.

The concept of downstream turbine yawing in partial wake impingement situations is moreover investigated for an upstream5

turbine yaw angle of γT1 = +30◦. The wake flow features a significantly higher asymmetry in this case. The results for CP,T2,

CT,T2 and M∗
y,T2 are shown in Figure 12. As previously observed, an offset of ∆z/D =−0.16 approximately corresponds to

an impingement of the full wake. Thus, the power coefficient has an almost symmetric distribution with respect to downstream

turbine yaw angle γT2. The yaw moments are observed to be rather low for this offset position and around zero for γT2 = 0.

For partial wake impingement situations at ∆z/D ≥ 0, negative downstream turbine yaw angles are again seen to reduce the10

yaw moments acting on the rotor. The gradients in yaw moment reduction per degree of yaw angle are observed to be steeper

for larger lateral offsets. The maximum power coefficients are again measured for moderate downstream turbine yaw angles

around γT2± 10◦.

Power gains by downstream turbine yawing are assessed by a relative combined power of the two-turbine array

P ∗
T1+T2 =

PT1 +PT2(γT2,z/D)

PT1,γT1=0,z/D=0 +PT2,γT1=0,γT2=0,z/D=0
. (6)

15

As a reference the power measured for the non-yawed upstream turbine, a non-yawed downstream turbine in an aligned setup

(∆z/D = 0) is used. The results are shown in Figure 13. For an upstream turbine yaw angle of γT1 = 0◦ (Figure 13 (a))

combined power gains of approximately 3% are measured for a moderate downstream turbine yaw angles (γT2± 10−±15◦).

The combined power characteristics are observed to be quite symmetrical with respect to downstream turbine offset and its yaw

17



Figure 13. Combined relative power P ∗
T1+T2 of two turbines as a function of the downstream turbine yaw angle γT2 for different lateral

offset positions ∆z/D. The upstream turbine yaw angle is kept constant at (a) γT1 = 0◦ and (b) γT1 = 30◦ respectively. The downstream

turbine T2 is located at x/D = 3. The turbines are exposed to inflow B.

angle. Slightly higher relative power gains are obtained for the case of an upstream turbine yaw angle of γT1 = +30◦ (Figure

13 (b)). A maximum power gain of about 5% is measured for offset positions ∆z/D = 0 and +0.16 and a downstream turbine

yaw angle between γT1 =−10◦ and −15◦. Note that the downstream turbine’s tip speed ratio λT2 is kept constant when the

downstream turbine is yawed. As no change in optimum tip speed ratio was measured for yaw angle variations up to γ =±30◦

in undisturbed inflow, it is at this stage assumed, that no further adjustments of the tip speed ratio in a partial wake are needed5

for an optimal downstream turbine power output.

In conclusion, this third test case demonstrates that moderate downstream turbine yawing can be an effective method to mitigate

yaw moments acting on the rotor in partial wake situations, while simultaneously obtaining slight power gains.

4 Conclusions

A wind tunnel experiment studying the effects of intentional yaw misalignment on the power production and yaw moments10

of a downstream turbine was presented. Both, full wake impingement and partial wake overlap were investigated. For partial

wake overlap, the concept of downstream turbine yawing for the purpose of yaw moment mitigation is examined.

It is demonstrated that upstream turbine yaw misalignment is able to increase the combined power production of the two

turbines for both partial and full wake overlap setups. For aligned turbines the combined array power was increased up to

11% for a separation distance of x/D = 6 and low inflow turbulence levels (TIA = 0.23%). At a higher inflow turbulence15

of TIB = 10.0%, however, the relative power increase was assessed to be only 8%. For smaller turbine separation distances,

combined power gains were assessed to be even smaller. The distribution of combined power gains in dependency of the

upstream turbine yaw angle was observed to be rather asymmetrical. The formation of not entirely symmetric velocity deficit
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shapes in the wake was deemed to be the main reason for that finding.

The obtained power gains were assessed to be at the cost of increased yaw moments on the upstream rotor. The yaw moments

on the upstream rotor are observed to increase roughly linearly with increasing yaw angle, but are not entirely symmetrical

distributed. Upstream turbine yaw control is moreover seen to directly influence the yaw moments on a downstream rotor.

For aligned turbine positions, the downstream turbine yaw moments are observed to increase to similar magnitudes as for the5

upstream turbine. These results highlight the importance of also taking loads into account when optimizing layout and control

of a wind farm.

Further, we demonstrate advantages of upstream turbine yaw control for load reduction and power increases on an offset

downstream turbine. For situations, in which the downstream turbine is impinged by a partial wake, upstream turbine yaw

control can redirect the wake either on or away from the downstream rotor. In case the wake is directed onto the downstream10

turbine’s rotor swept area, its yaw moments and power production reduce. If the lateral offset between the turbines is large

enough, the wake can be deflected entirely away from the downstream turbine, maximizing its power and canceling out yaw

moments.

Moreover, a final test case proved the concept of yaw control for yaw moment mitigation on a downstream turbine operated in

partial wake overlap. While yaw moments are observed to decrease when yawing the rotor opposed to the shear layer in the15

incoming wake flow, also the turbine’s power output is seen to increase. These results illustrate the importance for combined

power and load optimization on all turbines in a wind farm.
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