
Online model calibration for a simplified LES model in pursuit of
real-time closed-loop wind farm control
Bart Doekemeijer1, Sjoerd Boersma1, Lucy Pao2, Torben Knudsen3, and Jan-Willem van Wingerden1

1Delft Center for Systems and Control, Delft University of Technology, The Netherlands
2Electrical, Computer & Energy Engineering, University of Colorado Boulder, United States of America
3Department of Electronic Systems, Aalborg University, Denmark

Correspondence: B.M. Doekemeijer (B.M.Doekemeijer@tudelft.nl)

Abstract. Wind farm control often relies on computationally inexpensive surrogate models to predict the dynamics inside a

farm. However, the reliability of these models over the spectrum of wind farm operation remains questionable due to the many

uncertainties in the atmospheric conditions and tough-to-model dynamics at a range of spatial and temporal scales relevant for

control. A closed-loop control framework is proposed in which a simplified model is calibrated and used for optimization in

real time. This paper presents a joint state-parameter estimation solution with an Ensemble Kalman filter at its core, which5

calibrates the surrogate model to the actual atmospheric conditions. The estimator is tested in high-fidelity simulations of

a nine-turbine wind farm. Using exclusively SCADA measurements, the adaptability to modeling errors and mismatches in

atmospheric conditions is shown. Convergence is reached within 400 seconds of operation, after which the estimation error in

flow fields is negligible. At a low computational cost of 1.2 s on an 8-core CPU, this algorithm shows comparable accuracy to

the state of the art from the literature while being approximately two orders of magnitude faster.10

1 Introduction

Over the past decades, global awakening on climate change and the environmental, political and financial issues concerning

fossil fuels have been catalysts for the growth of the renewable energy industry. As the primary energy demand in Europe

is projected to decrease by 200 million tonnes of oil equivalent from 2016 to 2040, there is an additional shift in the energy

source used to meet this demand (International Energy Agency, 2017). Shortly after 2030, onshore and offshore wind energy15

are projected to become the main source of electricity for the European Union. By then, about 80% of all new capacity added

is projected to come from renewable energy sources, enabled by a favorable political climate.

While there are clear benefits in the growth of the wind energy industry, an important problem with wind energy is that

the rotational speed of almost all commercial turbines is currently decoupled from the electricity grid frequency via each

turbine’s power electronics (Aho et al., 2012). As the current grid-connected fossil fuel plants are replaced by non-synchronous20

renewable energy plants, the inertia of the electricity grid will decrease. Thus, the grid will become less stable, making it more

prone to machine damage and blackouts (Ela et al., 2014). Therefore, there is a strong need for wind farms and other renewables

to provide ancillary grid services. Wind farm control aimed at increasing the grid stability is more commonly defined as active
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power control (APC). In APC, the power production of a wind farm is regulated to meet the power demand of the electricity

grid, which may change from second to second.

Existing literature on wind farm control has mainly focused on maximizing the power capture (e.g., Rotea, 2014; Gebraad

and van Wingerden, 2015; Gebraad et al., 2016; Munters and Meyers, 2017). Though, literature on APC has been receiving

an increasing amount of attention (e.g., Fleming et al., 2016; Van Wingerden et al., 2017; Boersma et al., 2017a). The main5

challenges in wind farm control are the large time delays caused by the formation of wakes, the many uncertainties in the

atmospheric conditions, and the questionable reliability of surrogate models over the wide spectrum of wind farm operation.

See Boersma et al. (2017a) and Knudsen et al. (2015) for state-of-the-art overviews of control and control-oriented modeling

for wind farms. While there has been success with model-free methods for power maximization (e.g., Rotea, 2014), it is unclear

to what degree such methods can be used for power forecasting. Furthermore, model-free methods typically have long settling10

times, making them intractable for APC. On the other hand, for model-based approaches, the aforementioned challenges make

it impossible for any model to reliably provide power predictions in an open-loop setting. Hence, a model-based approach in

which a surrogate wind farm model is actively adjusted to the present conditions is a necessity for reliable and computationally

tractable APC algorithms. This closed-loop wind farm control framework, consisting of three components, is shown in Fig. 1.
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Figure 1. Closed-loop wind farm control framework. Measurements z (e.g., SCADA, met mast, LiDAR data) are fed into the controller.

First, the state of the surrogate wind farm model x is estimated to represent the actual atmospheric and turbine conditions inside the wind

farm. Secondly, using the calibrated model, an optimization algorithm determines the control policy (e.g., yaw angles, blade pitch angles)

for all turbines q . This control policy may be a set of constant operating points, but can also be time-varying, depending on whether the

surrogate model is time-varying and the employed optimization algorithm. The photograph of the wind farm is from Christian Steiness.

The first component of the closed-loop framework is a computationally inexpensive surrogate model that accurately predicts15

the power production of the wind farm ahead in time, on a time-scale relevant for control. The most commonly used surrogate

models in wind farm control are steady-state models, which are heuristic and neglect all temporal dynamics (Boersma et al.,

2017a). While some of these models have shown success in wind tunnel tests (e.g., Schreiber et al., 2017) and field tests
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(e.g., Fleming et al., 2017a, b) for power maximization, the actuation frequency is limited to the minutes-scale, since the

flow and turbine dynamics are predicted on the minute-scale. Furthermore, time-ahead predictions with these models are

limited to the steady state, limiting their use for APC. There is a smaller yet significant number of dynamic surrogate wind

farm models (e.g., Munters and Meyers, 2017; Boersma et al., 2017b; Shapiro et al., 2017a), which attempt to include the

dominant temporal dynamics inside the farm. These models can be used for control on the seconds-scale, and furthermore5

allow time-ahead predictions, some even under changing atmospheric conditions. Specifically, the dynamic surrogate model

employed in Shapiro et al. (2017a) is computationally feasible, but only models the flow in one dimension, and furthermore

allows no turbine yaw or changes in the wind direction, limiting its applicability. Furthermore, the dynamical model in Munters

and Meyers (2017) has shown success for closed-loop control applications, but it is too computationally costly for any kind

of real-time control, and the authors present their results solely as a benchmark case. In the work presented here, the model10

described in Boersma et al. (2017b) is used, which is a two-dimensional LES code with wind farm control as its main objective.

This dynamic surrogate model, named “WindFarmSimulator” (WFSim), includes yaw and axial induction actuation, turbine-

induced turbulence effects, and spatially and temporally varying inflow profiles, with a moderate computational cost.

The second component of the closed-loop framework is an algorithm that adjusts the surrogate model’s parameters to im-

prove its accuracy online using flow and/or turbine measurements (e.g., SCADA data, LiDAR measurements, met masts). In15

terms of control, this turns into a joint estimation problem, in which both the model state and a subset of model parameters

are estimated online. Currently, the optimization algorithms presented in Munters and Meyers (2017) and Vali et al. (2017)

have assumed full state knowledge, conveniently ignoring the step of model adaptation. Literature on state reconstruction and

model calibration for dynamical wind farm models is sparse, limited to linear low-order models and/or common estimation

algorithms. Gebraad et al. (2015) designed a traditional Kalman filter (KF) for their low-fidelity model, showing marginal20

improvements compared to optimization using a static model. Shapiro et al. (2017a) present a one-dimensional dynamic wake

model used with receding horizon control for secondary frequency regulation, using an estimation algorithm following Doe-

kemeijer et al. (2016). Furthermore, Iungo et al. (2015) used dynamic mode decomposition to obtain a reduced-order model

of the wind farm dynamics, which was then combined with a traditional KF for state estimation. To the best of the authors’

knowledge, none of these methods have explored more sophisticated models such as WFSim, and often only use simple state25

estimation algorithms that are lacking in terms of accuracy and computational tractability.

The third component of the closed-loop framework is an optimization algorithm, which typically is a gradient-based or

nonlinear optimization algorithm (e.g., Gebraad et al., 2016) for steady-state models, and a model-based predictive optimization

method for dynamical models (e.g., Goit and Meyers, 2015; Vali et al., 2017; Siniscalchi-Minna et al., 2018). A more in-depth

discussion on optimization algorithms for the framework of Fig. 1 is out of the scope of this article.30

The focus of this work is on a model adaptation algorithm for WFSim, which trades off estimation accuracy with computati-

onal complexity. In previous work (Doekemeijer et al., 2016, 2017), state estimation using flow measurements downstream of

each turbine has shown success using an Ensemble KF (EnKF), with a computational cost several orders of magnitude lower

than traditional KF methods. The main contributions of this article specifically are 1) the addition of adaptation to a mismatch

in atmospheric conditions (specifically, the freestream wind speed and turbulence intensity), 2) the option to use turbine’s po-35
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wer signals in addition to, or instead of, flow measurements, 3) a further reduction in the computational complexity, and 4) a

comparison of the EnKF with the state of the art in the literature.

The structure of this article is as follows. In Section 2, the surrogate model will be introduced. In Section 3, a time-efficient,

online model calibration algorithm for dynamical wind farm models is detailed. This calibration algorithm is validated and com-

pared with standard algorithms in the literature in high-fidelity simulations in Section 4. The article is concluded in Section 5.5

2 The surrogate model

The framework of Fig. 1 requires a surrogate model of the wind farm. In this work, that is the WindFarmSimulator (WFSim)

model presented by Boersma et al. (2017b). WFSim has shown success in reconstructing the flow field and turbine power

signals of high-fidelity simulation data (Boersma et al., 2017b; Doekemeijer et al., 2017). This model is particularly suited for

the framework presented in Fig. 1 as it includes both yaw and axial induction actuation and yields a relatively high accuracy10

with a relatively low computational cost.1

The scope of this section is to give a summary of the surrogate model, rather than a full derivation and motivation of

the assumptions made. The reader is referred to Boersma et al. (2017b) for more information. In Section 2.1, the governing

equations of the model are presented. The turbulence and turbine model are described in Sections 2.2 and 2.3, respectively.

The spatial and temporal discretization process is described in Section 2.4.15

2.1 Governing equations

The WFSim model is based on the two-dimensional unsteady incompressible Navier-Stokes (NS) equations to maintain com-

putational tractability compared to a three-dimensional model. The surrogate model can be described completely by the flow

and rotor dynamics in a horizontal plane at hub height, derived from the following set of partial differential equations:

∂u

∂t
+ (u ·∇H)u +∇H · τH +∇H · p= f,

∂u

∂x
+ 2

∂v

∂y
= 0, where u =

[
u v

]T
, ∇H =

[
∂
∂x

∂
∂y

]T
, (1)20

where u and v are the longitudinal and lateral flow velocity respectively, x and y are the spatial coordinates in longitudinal

and lateral direction respectively, τH are the subgrid stresses (turbulence model), p is pressure, and f contains the forcing

terms (turbine model) acting on the flow. Equation (1) deviates from the traditional 2D NS equations in two ways. Firstly, the

diffusion term is neglected, as it plays a negligible role in the dominant flow dynamics due to the low viscosity of air. Secondly,

the term ∂v
∂y in the continuity equation is multiplied by a factor 2 to approximate flow dissipating in the vertical flow dimension.25

Other vertical flow contributions such as vertical meandering and shear are neglected.

1Note that it is still uncertain what accuracy is necessary and what computational cost can be permitted for real-time closed-loop wind farm control.
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2.2 Subgrid-scale (turbulence) model

The subgrid-scale model is formulated using an eddy-viscosity assumption in combination with Prandtl’s mixing length model,

τH =−`u(x,y)2
∣∣∣∂u
∂y

∣∣∣ · 1
2

(
∇Hu + (∇Hu)T

)
, with `u(x,y) =

G(x′i,y
′
i) ∗ `iu(x′i,y

′
i), if x ∈ X and y ∈ Y,

0, otherwise,
(2)

where `u(x,y) ∈ R+ is a local spatially varying parametrization of the mixing length, inspired by the high-fidelity simulation5

results presented in Iungo et al. (2017). G(x′i,y
′
i) is a smoothing pillbox filter with radius 3, ∗ is the 2D spatial convolution

operator, and X and Y define a rectangular region behind the turbine rotor to which the turbulence model applies, given by

X = {x : x′i ≤ x≤ x′i + cos(φ) · d}, Y = {y : y′i−
D

2
+ sin(φ) ·x′i ≤ y ≤ y′i +

D

2
+ sin(φ) ·x′i},

with (x′i,y
′
i) the wind-aligned axis system centered at the turbine rotor, D the rotor diameter, φ the mean wind direction in

the original (x,y)-axis system, and d a length parameter for the turbulence model. See Fig. 2 for a schematic drawing. Then,10

`iu(x,y) is defined as

`iu(x′i,y
′
i) =

(x′i− d′)`s, if d′ ≤ x′i ≤ d and −D
2 ≤ y

′
i ≤ D

2 ,

0, otherwise,
(3)

where `s defines the slope of `iu(x′i,y
′
i), and d′ is a second length parameter for the turbulence model. Thus, the entire turbulence

model has three tuning parameters: the length parameters d and d′ are the upper and lower spatial bounds, respectively, and `s

is a gradient parameter for the mixing length.15
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Figure 2. The subgrid-scale model implemented in WFSim employs a spatially varying mixing length parameter that increases with distance

behind the rotor. This can be explained by the turbine-induced turbulent structures in the wake. Image courtesy of Boersma et al. (2017b).
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2.3 Turbine model

Turbine forces in WFSim are modeled using the classical non-rotating (static) actuator disk model, projected onto the 2D plane

at hub height. The turbine is assumed to be a rigid object applying a two-dimensional force vector on the flow. The turbine

forcing term in (1), f, at spatial location s =
[
x y

]T
∈ R2 is expressed as

f =

NT∑
i=1

fi, with fi =
cf
2
C ′Ti

[Ui cos(γi)]
2

cos(γi +φ)

sin(γi +φ)

 ·H[D
2
− ||s − t i||2

]
· δ [(s − t i) · e⊥,i] , (4)5

with H[•] the heaviside function, D the rotor diameter, φ the mean wind direction on the rotor plane, δ[•] the Dirac delta

function, and e⊥,i ∈ R2 the unit vector perpendicular to the ith rotor disk with position t i ∈ R2. The scalar C ′Ti
is the thrust

coefficient of turbine i defined according to Meyers and Meneveau (2010). The scalar γi is the yaw misalignment angle of

turbine i, and Ui is the average flow velocity over the rotor. The scalar cf is a static tuning variable containing the rotor swept

area and a correction for numerical grid effects, making it the fourth tuning variable in WFSim. The control variables for10

optimization in the framework of Fig. 1 are γi and C ′Ti
for i= 1, ...,NT , with NT the number of turbines. Furthermore, the

instantaneous power capture of the wind farm Pfarm is calculated in a similar approach by

Pfarm =

NT∑
i=1

Pturb,i, with Pturb,i =
cp
2
ρAC ′Ti

[Ui cos(γi)]
3
, (5)

with scalar cp the fifth tuning factor used to account for numerical grid effects and time-invariant turbine losses, andA the rotor

swept surface area. Note that C ′T has a direct mapping to the turbine power Pturb,i, and thus replaces the usual non-dimensional15

power coefficient, following Goit and Meyers (2015). Note that a cosine-cubed term is used to model the effects of a yaw

misalignment. The validity of this correction term is still under investigation (Boersma et al., 2017b).

2.4 Discretization, boundary conditions, and computational cost

Equation (1) is spatially discretized on a quadrilateral grid employing the finite volume method and the hybrid differencing

scheme (Boersma et al., 2017b). Temporal discretization is performed using the implicit method. Dirichlet boundary conditions20

for u and v are applied on one side of the grid for inflow, while Neumann boundary conditions are applied on the remaining

sides for the outflow. After discretization, the surrogate wind farm model described in this section reduces to a nonlinear

discrete-time deterministic state-space model, described by

xk+1= f (xk,qk),

z k = h(xk,qk),25

where xk ∈ RN is the system state at discrete time instant k, which is a column vector containing the collocated longitudinal

flow velocity at each cell in the domain uk ∈ RNu , the lateral flow velocity at each cell in the domain vk ∈ RNv , and the

pressure term at each cell in the domain pk ∈ RNp , with N =Nu +Nv +Np and Nu ≈Nv ≈Np ≈ 1
3N . The state xk is
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formulated as

xT
k =

[
uT

k vT
k pT

k

]
.

Empirically, good results have been achieved with cell dimensions of about 30−50 m in width and length, resulting in N with

a typical value on the order of 103− 104 for six- to nine-turbine wind farms (e.g., Vali et al., 2017; Doekemeijer et al., 2016,

2017; Boersma et al., 2017b). Such a number of states may seem very small for LES simulations, yet is very high for control5

purposes. Furthermore, qk ∈ RO includes the system inputs, i.e., the turbine control settings γi and C ′Ti
for i= 1, ...,NT .

The system outputs z k ∈ RM are defined by sensors. It can include, among others, flow field measurements (z k ⊂ xk) and

power measurements. We define the integer Mu,v ∈ Z with 0≤Mu,v ≤M as the total number of flow field measurements.

The nonlinear functions f and h are the state forward propagation and output equation, respectively.

The computational cost may vary from 0.02 s for two-turbine wind farm with N = 3 · 103 states (e.g., in Doekemeijer et al.10

(2017)), to 1.2 s for N = 1 · 105 states for medium-sized wind farms (e.g., in Boersma et al. (2017b)), for a single time-step

forward simulation on a single desktop CPU core. The computational complexity of the model is what motivates the use

of time-efficient estimation algorithms in this work, and time-efficient predictive control methods for optimization in related

work (Vali et al., 2017). Here, the limits of computational cost are explored to maximize model accuracy while still allowing

real-time control. Note that research on the computational feasibility of optimization algorithms using WFSim is ongoing.15

3 Online model calibration

Due to the limited accuracy of surrogate wind farm models, and due to the many uncertainties in the environment, surrogate

models often yield predictions with significant uncertainty of the wind flow and power capture inside a wind farm. Since

control algorithms largely rely on such predictions, this may suppress gains or even lead to losses inside a wind farm. Unfortu-

nately, higher-fidelity models are computationally prohibitively expensive for control applications. Hence, rather, lower-fidelity20

surrogate models are calibrated online using readily available measurement equipment.

In this section, first the challenges for real-time model calibration for the surrogate “WFSim” model described in Section 2

will be highlighted in Section 3.1. Secondly, a mathematical framework for recursive model state estimation will be presented

in Section 3.2. Thirdly, a number of state estimation algorithms are presented in Sections 3.3 to 3.6, building up from the

industry standard to the state of the art in the literature. Finally, a robust, computationally efficient model calibration solution25

is synthesized in Section 3.7, which allows the simultaneous estimation of the boundary conditions, model parameters, and the

model states of WFSim in real time using readily available measurements from the wind farm.

Note that we will henceforth refer to the estimation of x as state(-only) estimation. The estimation of both model states and

model parameters such as `s is referred to as (joint) state-parameter estimation.
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3.1 Challenges

Online model calibration for WFSim is challenging for a number of reasons. First of all, the model is nonlinear, and thus the

common linear estimation algorithms cannot be used without linearization, which limits accuracy (Boersma et al., 2017b).

Secondly, an estimation solution relying on WFSim is sensitive to instability when the estimated state sufficiently deviates

from the continuity equation in (1). Finally, the surrogate model typically has on the order of N ∼ 103− 104 states, which5

is extraordinarily high for control applications. Though, real-time estimation is a necessity for real-time model-based control,

and thus one needs to find a trade-off between accuracy on the one hand, while guaranteeing updates at a low computational

cost on the other hand.

3.2 General formulation

This section details the basics of the Kalman Filter (KF), which is the literature standard for state estimation in control. The10

goal of a KF is to recursively estimate the unmeasured states of a dynamical system through noisy measurements. Assumed

here is a system (the wind farm) represented mathematically by a discrete-time stochastic state-space model with additive

noise,

xk+1= f (xk,qk)+wk, (6)

z k = h(xk,qk)+ vk, (7)15

where k is the time index, x ∈ RN is the unobserved system state, z ∈ RM are the measured outputs of the system, q ∈ RO and

w ∈ RN are the controllable inputs and process noise respectively that drive the system dynamics, and v ∈ RM is measurement

noise. Furthermore, we assume w and v to be zero-mean white Gaussian noise with covariance matrices

E

vk

wk

[vT
` wT

`

]=

Rk ST
k

Sk Qk

∆k−`, where ∆k−` =

1, if k = `,

0, otherwise,
(8)

with E the expectation operator. Estimates of the state xk, denoted by x̂k|k, are computed based on measurements from the20

real system. Here, x̂k|` means an estimate of the state vector x at time k, using all past measurements and inputs Z`, as

x̂k|` = E[xk|Z`] , with Z` = z 0,z 1,z 2 . . .z `, q0,q1,q2 . . .q `. (9)

State estimates are based on the internal model dynamics and the measurements, weighted according to their probability distri-

butions. We aim to find an optimal state estimate, in which optimality is defined as unbiasedness, E[xk − x̂k] = 0, and when

the variance of any linear combination of state estimation errors (e.g., the trace of E
[
(xk − x̂k)(xk − x̂k)

T
]
) is minimized.25

In reality, the assumed model described by f and h always has mismatches with the true system, and the assumptions in (8)

often do not hold. Further, the matrices Qk, Rk, and Sk are usually not known and rather considered tuning parameters, used

to shift the confidence levels between the internal model and the measured values. For R�Q , estimations will heavily rely

on the measurements, while for Q �R, estimations will mostly rely on the internal model. Kalman filtering remains one of

the most common methods of recursive state estimation. KF algorithms typically consist of two steps, namely:30

8



1. A state and output forecast, including their uncertainties (covariances):

x̂k|k−1 = E
[
f (xk−1,qk−1) +wk−1|Zk−1

]
, (10)

ẑ k|k−1 = E[h(xk,qk) + vk|Zk−1] , (11)

Px
k|k−1 = Cov(xk,xk|Zk−1) = E[(xk − x̂k|k−1)(xk − x̂k|k−1)T ], (12)

Pz
k|k−1 = Cov(z k,z k|Zk−1) = E[(z k − ẑ k|k−1)(z k − ẑ k|k−1)T ], (13)5

Pxz
k|k−1 = Cov(xk,z k|Zk−1) = E[(xk − x̂k|k−1)(z k − ẑ k|k−1)T ]. (14)

In (10) and (11), x̂k|` and ẑ k|` are the forecasted system state vector and measurement vector, respectively.

2. An analysis update of the state vector, where the measurements are fused with the internal model:

Lk = Pxz
k|k−1 ·

(
Pz

k|k−1

)−1

(15)

x̂k|k = x̂k|k−1 +Lk

(
z k − ẑ k|k−1

)
, (16)10

Px
k|k = Cov(xk,xk|Zk) = Px

k|k−1−LkP
z
k|k−1L

T
k . (17)

Here,
(
Pz

k|k−1

)−1

in (15) is the pseudo-inverse of Pz
k|k−1, since this matrix is not necessarily invertible.

3.3 Linear Kalman filter

Traditionally, state estimation for linear dynamic models is done using the linear KF (Kalman, 1960). In the idealized situation

where the following three criteria hold: 1) the assumptions on noise in (8) are correct, 2) the surrogate model f and h perfectly15

match reality, and 3) f and h are linear in x and q , with

f (xk,qk) = Akxk +Bkqk,

h(xk,qk) = C kxk +Dkqk,

where Ak, Bk, C k, Dk are the (possibly time-varying) matrices of the state-space system, then the linear KF is optimal in

the sense that it provides unbiased estimates, E(xk) = x̂k, with minimal mean-square error (the trace of Px
k|k is minimized).20

For (10) to (17), one can derive that in the linear case,

Px
k|k−1 = Ak−1P

x
k−1|k−1A

T
k−1 +Qk−1, (18)

Pz
k|k−1 = C kP

x
k|k−1C

T
k +Rk, (19)

Pxz
k|k−1 = Px

k|k−1C
T
k +Sk. (20)

If any of the three criteria is not met, optimality of the KF is lost. While criteria 1 and 2 are practically never met, good results25

are often still achieved. The crux lies with criterion 3. Namely, the traditional KF cannot deal with nonlinearity in the surrogate

model (f̂ and/or ĥ).
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3.4 Extended Kalman filter (ExKF)

Linearization of the surrogate model is the most straight-forward solution to the issue of model nonlinearity. In the Extended

KF (ExKF), the surrogate model is linearized around some point (x lin,q lin) w.r.t. x and q at every timestep k:

f (xk,qk)≈ ∂f (x ,q)

∂x

∣∣∣∣
x lin,q lin︸ ︷︷ ︸

Ak

(
xk −x lin)+

∂f (x ,q)

∂q

∣∣∣∣
x lin,q lin︸ ︷︷ ︸

Bk

(
qk − q lin)+ f (x lin,q lin),

h(xk,qk)≈ ∂h(x ,q)

∂x

∣∣∣∣
x lin,q lin︸ ︷︷ ︸

Ck

(
xk −x lin)+

∂h(x ,q)

∂q

∣∣∣∣
x lin,q lin︸ ︷︷ ︸

Dk

(
qk − q lin)+ h(x lin,q lin).5

Using the linearized system matrices Ak, Bk, C k, Dk, one can directly apply (10) to (17) for state estimation, where (18) to (20)

become approximations instead of equalities. Fundamentally, in the ExKF, the state is assumed to have a Gaussian probability

distribution. This variable is propagated through the linearized system dynamics, yielding a posterior distribution which is also

Gaussian. Hence, the ExKF can be considered a first-order approximation of the true state probability distribution. Optimality

is not guaranteed, and this lower-order approximation can even lead to divergence for some models. Though, the ExKF has10

shown success in academia and industry (Wan and Van Der Merwe, 2000).

As described in Section 3.1, model linearization is troublesome. Furthermore, for surrogate models with many states such

as WFSim, the ExKF has an additional challenge: computational complexity. The operation in (15) includes a matrix inversion

with a computational complexity ofO(M3), and (18) includes two matrix multiplications each with a computational complex-

ity ofO(N3). As there are significantly fewer measurements than states (M �N ) for the problem at hand, (18) dominates the15

computational cost. The ExKF has a CPU time in the order of 101 s for a two-turbine wind farm, which may be too large for

online model calibration if APC is the objective. To reduce computational cost in the ExKF, the surrogate model and/or the co-

variance matrix P have to be simplified. This is not further explored here. Instead, two KF approaches will be explored that use

the nonlinear system directly for forecasting and analysis updates. Doing so, we circumvent the problems with linearization,

and additionally better maintain the true covariance of the system state.20

3.5 The Unscented Kalman filter (UKF)

The Unscented Kalman filter (UKF) relies on the so-called “unscented transformation” to estimate the means and covariance

matrices described by (10) to (14). The conditional state probability distribution of xk knowing Zk is again assumed to be

Gaussian. In the UKF, firstly a number of sigma points (also referred to as “particles”) are generated such that their mean is

equal to x̂k|k and their covariance is equal to Cov(xk,xk). Secondly, each particle is propagated through the nonlinear system25

dynamics (f , h). Thirdly, the mean and covariance of the forecasted state probability distribution is again approximated by a

weighted mean of these forecasted sigma points (Wan and Van Der Merwe, 2000).

Mathematically, we define the ith particle as ψi
k|` ∈ RN , which is a realization of the conditional probability distribution of

xk given Z`. The UKF follows a very similar forecast and analysis update approach as the traditional KF in (10) to (17), yet

applied to a finite set of particles (Wan and Van Der Merwe, 2000).30
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1. For the forecast step, a particle-based approach is taken.

(i) A total of Y = 2N + 1 particles, with N equal to the state dimension, are (re)sampled to capture the mean and

covariance of the conditional state probability distribution p [xk−1|Zk−1], by

ψi
k−1|k−1 =


ψk−1|k−1 for i= 1,

ψk−1|k−1 +
(√

(N +λ) ·Px
k−1|k−1

)
i

for i= 2, ...,N + 1,

ψk−1|k−1−
(√

(N +λ) ·Px
k−1|k−1

)
i−N−1

for i=N + 2, ...,Y,

(21)

where λ= α2 (N +κ)−N is a scaling parameter, α determines the spread of the particles around the mean, and5

κ is a secondary scaling parameter typically set to 0 (Wan and Van Der Merwe, 2000). The vector ψk−1|k−1 is

the estimated state vector calculated as ψk−1|k−1 =
∑Y

i=1

(
w i

mean ·ψ
i
k−|k−1

)
, where the weight of each particle’s

mean w i
mean and covariance w i

cov. is given by

w i
mean =

λ(N +λ)−1 for i= 1,

1
2 (N +λ)−1 otherwise,

w i
cov. =

λ(N +λ)−1 + (1−α2 +β) for i= 1,

1
2 (N +λ)−1 otherwise,

and β is used to incorporate prior knowledge on the probability distribution. In this work, β = 2 is assumed, which10

is stated to be optimal for Gaussian distributions (Wan and Van Der Merwe, 2000).

(ii) Each particle is propagated forward in time using the expectation of the nonlinear model, as

ψi
k|k−1 = f (ψi

k−1|k−1,qk−1) for i= 1, ...,Y,

ζik|k−1 = h(ψi
k|k−1,qk) for i= 1, ...,Y,

(22)

where ζik|` is defined as the system output corresponding to the particle ψi
k|`.

(iii) The expected state ψ and expected output ζ are calculated as15

x̂k|k−1 =ψk|k−1 =

Y∑
i=1

(
w i

mean ·ψ
i
k|k−1

)
,

ẑ k|k−1 = ζk|k−1 =

Y∑
i=1

(
w i

mean · ζ
i
k|k−1

)
,

(23)

and the covariance matrices are (re-)estimated from the forecasted ensemble by

Px
k|k−1 =

Y∑
i=1

(
w i

cov.

(
ψi

k|k−1−ψk|k−1

)(
ψi

k|k−1−ψk|k−1

)T)
+Qk−1, (24)

Pz
k|k−1 =

Y∑
i=1

(
w i

cov.

(
ζik|k−1− ζk|k−1

)(
ζik|k−1− ζk|k−1

)T)
+Rk, (25)20

Pxz
k|k−1 =

Y∑
i=1

(
w i

cov.

(
ψi

k|k−1−ψk|k−1

)(
ζik|k−1− ζk|k−1

)T)
+Sk. (26)
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2. For the analysis step, one can apply the same equations as in (15) to (17).

The UKF has been shown to consistently outperform the ExKF in terms of accuracy, since it uses the nonlinear model for

forecasting and covariance propagation. However, this does come at an increased computational cost. Namely, Y = 2N + 1

particles are required to capture the mean and covariance of the conditional state probability distribution. This implies that

2N+1 function evaluations are required for each UKF update. Even for a 2-turbine wind farm in WFSim, a computational cost5

of 1 · 102 s per iteration (k→ k+ 1) would not be surprising. While (22) can easily be parallelized, computational complexity

remains troublesome, especially for larger wind farms. The issue of computational complexity is tackled by the Ensemble KF.

3.6 The Ensemble Kalman filter (EnKF)

The Ensemble Kalman filter (EnKF) (Evensen, 2003) is very similar to the UKF in that it relies on a finite number of reali-

zations (the “sigma points” or “particles” in the UKF) to approximate the mean and covariance of the conditional probability10

distribution of xk knowing Zk. However, whereas the UKF relies on a systematic way of distributing the particles such that

the mean and covariance of the conditional probability distribution p [xk|Zk] are equal to that of the particles, the EnKF relies

on random realizations, without guarantees that the mean and covariance are captured accurately. Though, the EnKF has been

shown to work well in a number of applications, with typically far fewer particles than states, i.e., Y �N (e.g., Houtekamer

and Mitchell, 2005; Gillijns et al., 2006). The forecast and update step are very similar to that of the UKF, namely:15

1. In the UKF the particles are redistributed at every timestep, in contrast to the EnKF. Rather, the EnKF propagates the

particles forward without redistribution. We define the ith particle as ψi
k|` ∈ RN , which is a realization of the conditional

probability distribution p [xk|Z`]. The forecast step is:

(i) Each particle is propagated forward in time using the nonlinear system dynamics, and with the realizations of noise

terms w and v denoted by ŵ i
k−1 ∈ RN and v̂ i

k ∈ RM , generated using MATLABs randn(...) function.20

ψi
k|k−1 = f (ψi

k−1|k−1,qk−1) + ŵ i
k−1 for i= 1, ...,Y,

ζik|k−1 = h(ψi
k|k−1,qk) + v̂ i

k for i= 1, ...,Y.
(27)

(ii) The expected state and output are calculated identically as in the UKF using (23) with w i
mean = (Y − 1)

−1. The

covariance matrices are (re-)estimated from the forecasted ensemble, by

Pz
k|k−1 =

1

Y − 1

Y∑
i=1

((
ζik|k−1− ζk|k−1

)(
ζik|k−1− ζk|k−1

)T)
, (28)

Pxz
k|k−1 =

1

Y − 1

Y∑
i=1

((
ζik|k−1− ζk|k−1

)(
ψi

k|k−1−ψk|k−1

)T)
. (29)25

2. For the analysis step, one applies (15) to determine the Kalman gain Lk. Then, each particle is updated individually, as

ψi
k|k =ψi

k|k−1 +Lk

(
z k − ζik|k−1

)
for i= 1, ...,Y. (30)

12



Note that, in contrast to the ExKF and the UKF, the state covariance matrix Px (see (12) and (17)) need not be calculated

explicitly in the EnKF. This, in combination with the small number of particles Y �N , is what makes the EnKF computati-

onally superior to the UKF (and often also computationally superior to the ExKF). However, this reduction in computational

complexity comes at a price. The disadvantages of the EnKF are discussed in the next section.

3.6.1 Challenges in the EnKF for small number of particles5

The caveat to representing the conditional state probability distribution with fewer particles than states, Y �N , is the for-

mation of inbreeding and long-range spurious correlations (Petrie, 2008). The former, inbreeding, is defined as a situation

where the state error covariance matrix Px is consistently underestimated, leading to state estimates that incorrectly rely more

on the internal model. One straight-forward method to address this is called “covariance inflation”, in which Px (or rather,

the ensemble from which Px is calculated) is “inflated” to correct for the underestimated state uncertainty (Petrie, 2008).10

Mathematically, this is achieved by applying

ψi
k|k−1 =ψk|k−1 + r

(
ψi

k|k−1−ψk|k−1

)
for i= 1, ...,Y, (31)

before the analysis step, with r ∈ R the inflation factor, typically with a value of 1.01− 1.25.

The latter problem, long-range spurious correlations, can be better visualized in Fig. 3. In particle-based approaches, the
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Figure 3. Long-range spurious correlations arise in the case where a covariance matrix is described by a small number of particles. Using

physical knowledge of the system, these undesired correlations can be corrected. Φx is the localization matrix. Applying localization, the

covariance of physically nearby states are multiplied with a value close to 1, and the covariance of physically distant states are multiplied

with a value close to 0. In our example case, this results in the localized covariance matrix Φx ◦Px, where ◦ is the element-wise product.

covariance terms cannot be captured exactly. This may lead to the formation of small yet nonzero covariance terms between15

states and outputs which, in reality, are uncorrelated. This can lead to the drift of unobservable states, and eventually to

instability of the KF. Increasing the number of particles is the most straight-forward solution to this problem, but comes

at a huge computational cost. A better alternative is “covariance localization”, where physical knowledge of the states and
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measurements is used to steer the sample-based covariance matrices. Recall that in the surrogate model of Section 2, the model

states are the velocity and pressure terms inside the wind farm at a physical location. Define that the ith state entry (xk)i

belongs to a physical location in the farm si. Then, looking at an arbitrary state covariance term (i, j),(
Px

k|k−1

)
i,j

= E
[(

(xk)i− (x̂k|k−1)i
)(

(xk)j − (x̂k|k−1)j
)T ]

,

we define the physical distance between these two states as ∆si,j = ||si− sj ||2. Now, we introduce a weighting factor into5

our covariance matrices by multiplying physically distant states with a value close to 0, and multiplying physically nearby

states with a value close to 1. A popular choice for such a weighting function is Gaspari-Cohn’s fifth-order discretization of a

Gaussian distribution (Gaspari and Cohn, 1999), given by

φ(ci,j) =


− 1

4c
5
i,j + 1

2c
4
i,j + 5

8c
3
i,j − 5

3c
2
i,j + 1 if 0≤ ci,j ≤ 1,

1
12c

5
i,j − 1

2c
4
i,j + 5

8c
3
i,j + 5

3c
2
i,j − 5ci,j + 4− 2

3
1

ci,j
if 1< ci,j ≤ 2,

0 otherwise,

(32)

with ci,j =
||∆si,j ||2

L a normalized distance measure, with L the cut-off distance. Applying (32) for the covariance matrices10

Pz
k|k−1 and Pxz

k|k−1 , we can define the localization matrices

Φz =


φ(cz1,1) · · · · · ·φ(cz1,M )

...
. . .

φ(czM,1) φ(czM,M )

 , Φxz =


φ(cxz1,1) · · · · · ·φ(cxz1,M )

...
. . .

φ(cxzN,1) φ(cxzN,M )

 ,
where czi,j is the normalized distance between two measurements i and j, and cxzi,j is the normalized distance between state i

and measurement j, respectively. Finally, localization and inflation can be incorporated into (28) and (29) by

Pz
k|k−1 = Φz ◦ 1

Y − 1

Y∑
i=1

((
ζik|k−1− ζk|k−1

)(
ζik|k−1− ζk|k−1

)T)
, (33)15

Pxz
k|k−1 = r ·Φxz ◦ 1

Y − 1

Y∑
i=1

((
ζik|k−1− ζk|k−1

)(
ψi

k|k−1−ψk|k−1

)T)
, (34)

where ◦ is the element-wise product (Hadamard) of the two matrices. The improvement in terms of computational efficiency

and estimation performance is displayed in Fig. 4. A significant increase in performance is shown, especially for smaller

numbers of particles. This is in agreement with what was seen in previous work (Doekemeijer et al., 2017). Furthermore,

performance is more consistent. Additionally, note that there is no increase in computational cost, as the covariance matrices20

are made sparse, leading to a cost reduction in the calculation of (15), which makes up for the extra operations of (33) and (34).

Also, note that the localization matrices are time-invariant and can be calculated offline.

3.7 Synthesizing an online model calibration solution

Certain model parameters such as `s are closely related to the turbulence intensity, which vary over time. Estimation of such

parameters is achieved by extending the state vector with (a subset of) the model parameters. In this work, `s is concatenated to25
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Figure 4. This figure shows the estimation performance and computational cost (parallelized, 8 cores) of the EnKF for a range of ensemble

sizes, with and without inflation and localization. Great improvement is seen for estimation accuracy, at no additional computational cost.

The simulation scenario is described in detail in Section 4.2, and the results presented here are rather meant as an indication.

the state vector. Higher values of `s lead to more wake recovery, making the calibration solution adaptable to varying turbulence

levels. This adds one scalar entry to xk, which is a negligible addition in terms of computational cost.

Furthermore, a proposal is made for the estimation of the freestream wind speed U∞. This is suggested to be done using

the turbine’s power generation measurements, following the ideas of Gebraad et al. (2016) and Shapiro et al. (2017b). Using

the wind vanes and employing a simple steady-state wake model from the literature (Mittelmeier et al., 2017), the turbines5

operating in freestream flow can be distinguished from the ones operating in waked flow. Next, define Ш ∈ ZЖ as a vector

specifying the upstream turbines, with Ж the total number of turbines operating in freestream. Then, the instantaneous rotor-

averaged flow speed at each turbine’s hub can be estimated using the inverse relationship of (5). One wind-farm-wide freestream

wind speed U∞ is then calculated using actuator disk theory. Smoothing results with a low-pass filter on the average of U∞i

for each upstream turbine i, we obtain10

cu∞

∂U∞
∂t

=
1

Ж

∑
i∈Ш

(
3

√
Pmeas.

turb,i
cp
2 ρAC

′
Ti

cos(γi)
3 ·
(

1 +
1

4
C ′Ti

))
−U∞, (35)

where it is assumed that U∞i ≈ Uri

(
1 + 1

4 ·C
′
Ti

)
, when γi ≈ 0. Research is currently ongoing on how to best incorporate the

effects of turbine yaw (γ 6= 0) into the definition of C ′T . Furthermore, cu∞ is the time constant of the first-order low-pass filter,

and Pmeas.
turb,i is the measured instantaneous power capture of turbine i.2

Combining these elements yields an efficient, modular, and accurate model calibration solution for WFSim. The model15

states are estimated using SCADA and/or LIDAR data, of which the former is readily available, and the latter becoming more

popular. State estimation paired with parameter estimation improves the accuracy of the surrogate model, potentially leading to
2 Note that this method for the estimation of U∞ relies solely on power measurements, and therefore only works for below-rated conditions. For estimation

of U∞ in above-rated conditions, one may require the implementation of a wind speed estimator on each turbine (e.g., Simley and Pao (2016)).
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more accurate control. Additionally, the freestream wind speed is estimated using readily available SCADA data. This control

solution is implemented in MATLAB, and leverages the numerically efficient precompiled solvers and parallelization for model

propagation. The EnKF is orders of magnitude faster than existing estimation algorithms due to covariance localization and

inflation, while competing with the UKF in terms of accuracy.

4 Results5

In this section, the calibration solution detailed in Section 3 will be validated using high-fidelity simulations. First, the model

used to generate the validation data will be described in Section 4.1. Then, a two-turbine and a nine-turbine simulation case

are presented in Sections 4.2 and 4.3, respectively.

Note that for the presented results, pressure terms are ignored in the state vector, as they appeared unnecessary for state

estimation in previous work (Doekemeijer et al., 2017). Furthermore, for simplicity and due to lack of information, the process10

and measurement noise will be assumed to be uncorrelated, Sk = 0, and Qk and Rk are assumed to be time-invariant and

diagonal. Also, note that the simulations presented are not conclusive on the feasibility of the solution under all relevant

conditions experienced in an operational wind farm. Rather, this work presents a first step towards algorithm validation.

4.1 SOWFA

High-fidelity simulation data is generated using the Simulator fOr Wind Farm Applications (SOWFA), developed by the Na-15

tional Renewable Energy Laboratory. SOWFA provides accurate flow data at a fraction of the cost of field tests. It solves

the filtered, three-dimensional, unsteady, incompressible Navier-Stokes equations over a finite temporal and spatial mesh, ac-

counting for the Coriolis and geostrophic forcing terms. SOWFA is a large-eddy simulation solver, meaning that larger scale

dynamics are resolved directly, and turbulent structures smaller than the discretization are approximated using subgrid-scale

models to suppress computational cost. (Churchfield et al., 2012). The turbine rotor is modeled using an actuator line repre-20

sentation as derived from Sorensen and Shen (2002). SOWFA has previously been used for lower-fidelity model validation,

controller testing, and to study the aerodynamics in wind farms (e.g., Fleming et al., 2016, 2017a; Gebraad et al., 2017). The

interested reader is referred to Churchfield et al. (2012) for a more in-depth description of SOWFA and LES solvers in general.

4.2 2-turbine ALM with turbulent inflow

In this section, a two-turbine wind farm is simulated to analyze the effect of different measurement sources, KF algorithms,25

and the difference between state-only and state-parameter estimation. This simple wind farm contains two NREL 5-MW

baseline turbines with D = 126.4 m, separated 5D in stream-wise direction. This LES simulation was described in more

detail in Annoni et al. (2016). Important simulation properties are listed in Table 1 for SOWFA and WFSim. The effect of the

turbulence intensity on the wake dynamics in SOWFA is captured in WFSim through its mixing-length turbulence model. In

these simulations, WFSim is purposely initialized with a too low value for `s in order to represent the realistic situation of30
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a model mismatch. The remaining tuning parameters in WFSim were chosen such that a weighted-sum cost function of the

power and flow errors was minimized.

Table 1. Overview of several settings for the SOWFA and the WFSim 2-turbine wind farm simulation.

Variable Symbol SOWFA WFSim

Domain size - 3.0km× 3.0km× 1.0km 1.9km× 0.80km

Cell size near rotors - 3m× 3m× 3m 38m× 33m

Cell size outer regions - 12m× 12m× 12m 38m× 33m

Rotor model - ALM ADM (cf = 1.4, cp = 0.95)

Inflow wind speed U∞ 8.0 m/s 8.0 m/s

Atmospheric turbulence -
Turbulent inflow,

TI∞ = 5.0%

d′ = 1.8 · 102 m,

d = 6.1 · 102 m,

`s = 1.8 · 10−2

Firstly, the three KF variants will be compared in Section 4.2.1. Secondly, in Section 4.2.2, estimation using different

information sources is compared. Thirdly, the potential of joint state-parameter estimation is displayed in Section 4.2.3.

4.2.1 A comparison of the KF variants for state estimation5

In this simulation study, four estimation cases are compared: 1) the ExKF, 2) the UKF, 3) the EnKF, and 4) the open-loop

(OL) simulation, i.e., without estimation. The focus here is on state-only estimation, thus excluding `s. Flow measurements

downstream of each turbine are assumed (e.g., using LiDAR), their locations denoted as red dots in Fig. 5, which is about 2% of

the full to-be-estimated state space. These measurements are artificially disturbed by zero-mean white noise with σ = 0.10 m/s.

The KF settings are listed in Tables 2 and 3. The KF covariance matrices were obtained through an iterative tuning process in10

previous work (Doekemeijer et al., 2017) with minor adjustments, to simulate performance for untrained data. Figure 5 shows

state (flow field) estimation of the three KF variants for two time instants, t= 300 s and t= 700 s. In this figure, (∆u)• ∈ RNu

is defined as the absolute error between the estimated and true longitudinal flow velocities in the field.

Looking at Fig. 5, the open-loop estimations are accurate for the unwaked and single waked flow, yet are lacking in the

situation of two overlapping wakes, for which the KFs correct. There is no significant difference in accuracy between the15

different KF variants, yet they differ by two orders of magnitude in computational cost (Table 3).

4.2.2 A comparison of sensor configurations

Previous results (Doekemeijer et al., 2016, 2017) have relied on flow measurements for state estimation. However, in exis-

ting wind farms, such measurements are typically not available. Rather, readily available SCADA data should be used for the

purpose of model calibration. For this reason, state estimation with the EnKF leveraging instantaneous turbine power measure-20

ments, using an upstream-pointing LiDAR, and using a downstream-pointing LiDAR are compared in Fig. 6. Flow and power

measurements are artificially disturbed by zero-mean white Gaussian noise with σ = 0.10 m/s and σ = 104 W, respectively.
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Table 2. Covariance settings for the KF variants, with I • the R•×• identity matrix. The full cov. matrices are diagonal concatenations of the

entries. For example, P0 is diag(P0,u, P0,v) and diag(P0,u, P0,v, P0,`s) for state-only and state-parameter estimation, respectively.

Variable Symbol Units Value

Init. state error cov. of uk P0,u (m/s)2 1.0 · 10−1 · INu

Init. state error cov. of vk P0,v (m/s)2 1.0 · 10−1 · INv

Init. state error cov. of `sk P0,`s − 5.0 · 10−1

Model error cov. of uk Q0,u (m/s)2 1.0 · 10−2 · INu

Model error cov. of vk Q0,v (m/s)2 1.0 · 10−4 · INv

Model error cov. of `sk Q0,`s
− 1.0 · 10−4

Meas. error cov. of flow Ru,v (m/s)2 1.0 · 10−2 · IMu,v

Meas. error cov. of P RP (W)2 1.0 · 108 · INT

Table 3. Choice of tuning parameters for the KF variants, for both the 2-turbine and 9-turbine simulation case. Note that the ExKF does not

support power measurements nor parameter estimation due to the lack of linearization, and does not have any additional tuning parameters.

In terms of computational cost: simulations were run on a single node using 8 cores in parallel.

2-turb. 2-turb. 2-turb. 9-turb.

Variable ExKF UKF EnKF EnKF

Number of particles, Y − 4275 50 50

Tuning parameters −
α 1.0

β 2.0

κ 0

L 131 m

r 1.025

L 131 m

r 1.025

Comp. cost/it. 16.2 s 14.0 s 0.25 s 1.2 s

The KF settings are displayed in Tables 2 and 3. In Fig. 6 it can be seen that SCADA data allows comparable performance

compared to the use of flow measurements, making the proposed closed-loop control solution feasible for implementation in

existing wind farms, without the need for additional equipment. Furthermore, this modular framework allows the use of a

combination of LiDAR systems, measurement towers, and/or SCADA data, whichever is available, for model calibration.

4.2.3 Joint state-parameter estimation5

Forecasting, as used in predictive control, benefits from the calibration of model parameters such as `s in addition to the

model states. Joint state-parameter estimation using flow measurements downstream of each turbine (as shown in the rightmost

plots in Fig. 6) disturbed by zero-mean white noise with σ = 0.10 m/s for the EnKF and UKF is displayed in Fig. 7, where

`s is additionally estimated. The higher `s, the more wake recovery is modeled by WFSim. The KF settings are shown in

Tables 2 and 3. From this figure, it becomes clear that the flow field estimates are not only improved for the 3-minute forecast,10

but are also consistently better than the non-calibrated (open-loop) model’s 10-minute forecast due to the real-time estimation
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Figure 5. Comparison of absolute values of the estimation errors (in long. flow fields) for state-only estimation with the ExKF, EnKF and

UKF at t= 300 s and t= 700 s, with (∆u)• = |u•−uSOWFA|. The model and KF settings are depicted in Tables 1, 2, and 3. Wind is coming

in from the top, flowing towards the bottom. The measured states are depicted by red dots in the flow, not to be confused with estimation

error. The KFs consistently improve the instantaneous flow field estimations, noticeably nearby the measurements.

of `s.3 Furthermore, the EnKF performs comparably to the UKF at a lower computational cost. Note that the EnKF even

outperforms the UKF in this simulation, expected to be due to randomness in the EnKF. On average, the EnKF is expected to

perform similar to the UKF in terms of estimation accuracy.

3Note that this is highly dependent on the frequency at which the freestream conditions change in the atmosphere.
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Figure 6. Comparison of absolute values of the estimation errors (in long. flow fields) for state-only estimation with the EnKF for various

sensor configurations: using turb. power measurements, using flow measurements with a LiDAR system pointing upstream, and using flow

measurements with a LiDAR system pointing downstream of the rotor. Here, (∆u)• = |u•−uSOWFA|. Wind is coming in from the top,

flowing towards the bottom. The sensors are depicted by red dots (flow meas.) or red turbines (power meas.), not to be confused with

estimation error.

4.3 9-turbine ALM with turbulent inflow

In this section, we investigate the performance of the EnKF-based model calibration solution under a more realistic 9-turbine

wind farm scenario. The purpose of this case study is to highlight the need for state-parameter estimation for accurate wind

farm modeling. The wind farm contains nine NREL 5-MW baseline turbines, oriented in a three by three layout, separated 5D
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Figure 7. Comparison of forecasting performance for state-only and joint state-parameter (`s) estimation with the EnKF and UKF, where me-

asurements are available up until the vertical dashed lines, after which the estimation becomes a forecast. Here, the 2-norm of the estimation

error is plotted along the y-axis, with (∆u)• = |u•−uSOWFA|.

and 3D in stream- and cross-wise direction, respectively. The turbines start with a 30◦ yaw misalignment, but are then aligned

with the mean wind direction within the first 30 s of simulation. The turbine layout and numbering is shown in the top-left

subplot of Fig. 9. This LES simulation has been used before in the literature, and is described in more detail in Boersma et al.

(2017b). A number of important simulation properties are listed in Table 4 for SOWFA and WFSim, respectively.

Table 4. Overview of several settings for the SOWFA and the WFSim 9-turbine wind farm simulation.

Variable Symbol SOWFA WFSim

Domain size - 3.5km× 3.0km× 1.0km 1.9km× 0.80km

Cell size near rotors - 3m× 3m× 3m 25m× 38m

Cell size outer regions - 12m× 12m× 12m 25m× 38m

Rotor model - ALM ADM (cf = 2.0, cp = 0.97)

Inflow wind speed U∞ 12.03 m/s
9.0 m/s and 12.0 m/s (OL)

9.0 m/s (EnKF)

Atmospheric turbulence - TI∞ = 4.7%

d′ = 3.8 · 101 m

d = 5.2 · 102 m

`s = 3.9 · 10−2

Compared to the 2-turbine case, N has increased by a factor 4. In the UKF, this would result in the same factor of additional5

particles. Thus, not only is each particle more expensive to calculate, there are also more particles. Rather, in the EnKF, the

approach is heuristic. None of the EnKF settings needed to be changed for good performance compared to Section 4.2, as

displayed in Tables 2 and 3.

As shown in Table 3, the EnKF has a low computational cost of 1.2 s/iteration (8 cores, parallel). In this case study, both

the complete model state (flow field), the turbulence model parameter `s, and the freestream flow speed U∞ are estimated10

in real-time using exclusively readily available power measurements from the turbines. The EnKF and one of the open-loop
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simulations (OL) will deliberately be initialized with a poor value for `s and U∞ to investigate convergence. The other open-

loop simulation will be initialized with a poor value for `s but a correct value for U∞ for comparison.

In Fig. 8, it can be seen that the EnKF is successful in estimating U∞ and `s after about 300 s using only wind turbine power

measurements. Furthermore, the flow fields of SOWFA, of the open-loop (OL) simulation with U∞ = 9.0 m/s, and of the EnKF

at various time instants are displayed in Fig. 9. From this figure, it can be seen that the EnKF has large errors at the start of5

the simulation. However, after 10 s, the error in flow states surrounding each turbine significantly decreases through the use of

turbine power measurements. This estimated flow then propagates downstream, “clearing up” the errors in the vicinity of the

wind turbines. As time further propagates, the freestream estimation improves, and finally the estimation error converges.

0 200 400 600 800 1000
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10
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0 200 400 600 800 1000

0

0.1
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Figure 8. Convergence of `s and U∞ using the EnKF. In dashed lines are the grid-searched optimal constant values for the open-loop

simulation. With power measurements only, the EnKF is able to estimate these parameters successfully in addition to the model states.

The power forecasting performance is shown in Fig. 10 and Table 5. As also seen in Fig. 8, the EnKF converges after 300 s,

and indeed the power forecasts outperform those of the OL simulation at t= 300 s. Furthermore, it is interesting to see that10

the filtered power estimates of the first row of turbines (i= 1,2,3) starts low at t= 1 s, but converges to the true power at

t≈ 200 s. This can be related to the mismatch in U∞, which takes approximately 300 s to converge to the true value of 12 m/s,

as seen in Fig. 8. The oscillatory behavior in both the OL and EnKF power predictions is due to the absence of rotor inertia in

the rotor model, turbulent structures in the flow, and large fluctuations on the excitation signal C ′T .

Table 5. Turbine-averaged RMSE in power timeseries of Fig. 10 (compared to SOWFA). The lower the RMSE, the better the forecast.

turbine row OL (U∞ = 9.0 m/s) OL (U∞ = 12.0 m/s) EnKF

1 1.46 MW 0.19 MW 0.16 MW

2 1.61 MW 0.30 MW 0.18 MW

3 1.78 MW 0.82 MW 0.32 MW

Finally, the forecasts for flow at times t= 300 s and t= 600 s are examined in Fig. 11. The large flow estimation mismatch15

in the EnKF at t < 250 s quickly reduces and for t≥ 250 s the EnKF estimation is consistently better than both the OL cases.

This has to do with the convergence of the model parameters `s and U∞, and the estimation of the states surrounding the

turbines using the power measurements.

A crucial remark with the simulations presented here is that low-frequency changes in the atmosphere are neglected. In a

real wind farm, atmospheric properties such as the mean wind direction and turbulence intensity change continuously, and20
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Figure 9. Comparison of absolute values of the estimation errors (in long. flow fields) for state-parameter estimation with the EnKF. Wind is

coming in from the top and flows downwards. The variables U∞ and `s are incorrectly initialized in both the OL and the EnKF. In the EnKF,

U∞ and `s are estimated in addition to the states, using only turbine power measurements. The EnKF quickly converges for the states, and

more slowly for `s and U∞. After 300 s, the EnKF has converged to a negligible estimation error.
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Figure 10. Comparison of power forecasting using the EnKF with measurements available up until time t= 600 s. After convergence U∞

(as seen as a positive power slope for the first row of turbines), `s is also calibrated. After convergence, forecasting is significantly better

than in open-loop. Oscillatory behavior is still present due to an oscillatory input signal (C′T ), turbulent flow field, and the absence of inertia

in the rotor model. Adding rotor inertia in the surrogate model would smooth the results to better resemble true power data.

Figure 11. Comparison of flow field estimation for the 9-turbine case. Measurements are available until t= 300 s (left) and t= 600 s (right),

respectively. The EnKF converges to the true U∞ after 300 s. After convergence, the forecasts are significantly better than in open-loop.
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this will impact the estimation and forecasting performance. The EnKF uses an assumption of persistence for the atmospheric

properties at the time of forecasting, and thus a change in mean wind direction may invalidate the model forecast. In future

work, the algorithm presented here should be tested under high-fidelity simulations with such realistic low-frequency changes.

This would provide insight into the potential of the work at hand, and advance towards a practical wind farm implementation.

5 Conclusion5

This paper presented a real-time model calibration algorithm for the dynamic wind farm model “WFSim”, relying on an En-

semble Kalman filter (EnKF) at its core. The joint state-parameter calibration solution was tested in two high-fidelity simulation

case studies. Using exclusively SCADA measurements which are readily available in current wind farms, the adaptability to

model discrepancies in a 9-turbine wind farm simulation was shown, at a low computational cost of 1.2 s per timestep on an

8-core CPU. Specifically, the freestream wind speed and turbulence intensity were shown to converge to their optimal values10

within 300 s. Furthermore, the EnKF was shown to perform comparably in terms of accuracy to the state-of-the-art algorithms

in the literature, at a computational cost of multiple orders of magnitude lower. Additionally, estimation using flow measure-

ments from LiDAR was compared to estimation using SCADA data, and it was shown that SCADA data can effectively be used

for real-time model calibration. In future work, the algorithm presented here should be tested under high-fidelity simulations

with realistic low-frequency changes. This would provide insight into the potential of the work at hand, and advance towards15

a practical wind farm implementation. This work presented an essential building block for real-time closed-loop wind farm

control using surrogate dynamic wind farm models.

Code and data availability.

The surrogate model and state-parameter estimation solutions presented in this article are open-source, available at https:

//github.com/TUDelft-DataDrivenControl/. SOWFA is available at https://github.com/NREL/SOWFA. All rights for SOWFA20

and the simulation data presented in this work belong to the National Renewable Energy Laboratory.
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