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Abstract. Wind farm control often relies on computationally inexpensive surrogate models to predict the dynamics inside a

farm. However, the reliability of these models over the spectrum of wind farm operation remains questionable due to the many

uncertainties in the atmospheric conditions and tough-to-model flow dynamics at a range of spatial and temporal scales relevant

for control. A closed-loop control framework is proposed in which a simplified dynamical LES model is calibrated and used

for optimization in real time. This paper presents an estimation solution with an Ensemble Kalman filter (EnKF) at its core,5

which calibrates the surrogate model to the actual atmospheric conditions. The estimator is tested in high-fidelity simulations

of a nine-turbine wind farm. Using exclusively turbine SCADA measurements, the adaptability to modeling errors and changes

in atmospheric conditions (TI, wind speed) is shown. Convergence is reached within 400 seconds of operation, after which

the estimation error in flow fields is negligible. At a low computational cost of 1.2 s on an 8-core CPU, this algorithm shows

comparable accuracy to the state of the art from the literature while being approximately two orders of magnitude faster. Using10

the calibration solution presented, the surrogate model can be used for accurate forecasting and optimization.

1 Introduction

Over the past decades, global awakening on climate change and the environmental, political and financial issues concerning

fossil fuels have been catalysts for the growth of the renewable energy industry. As the primary energy demand in Europe

is projected to decrease by 200 million tonnes of oil equivalent from 2016 to 2040, there is an additional shift in the energy15

source used to meet this demand (International Energy Agency, 2017). Shortly after 2030, onshore and offshore wind energy

are projected to become the main source of electricity for the European Union. By then, about 80% of all new capacity added

is projected to come from renewable energy sources, enabled by a favorable political climate.

While there are clear benefits in the growth of the wind energy industry, an important problem with wind energy is that

almost all commercial turbines are currently disconnected from the electricity grid by their power electronics (Aho et al.,20

2012). As the current grid-connected fossil fuel plants are replaced by grid-disconnected renewable energy plants, the inertia

of the electricity grid will decrease. Thus, the grid will become less stable, making it more prone to machine damage and

blackouts (Ela et al., 2014). Therefore, there is a strong need for wind farms and other renewables to provide ancillary grid

services. Wind farm control aimed at increasing the grid stability is more commonly defined as active power control (APC). In
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APC, the power production of a wind farm is regulated to meet the power demand of the electricity grid, which may change

from second to second.

Existing literature on wind farm control has focused mainly on maximizing the power capture (e.g., Rotea, 2014; Gebraad

and van Wingerden, 2015; Gebraad et al., 2016; Annoni et al., 2016a; Munters and Meyers, 2017; Vali et al., 2017). Though,

literature on APC has been receiving an increasing amount of attention (e.g., Fleming et al., 2016; Van Wingerden et al.,5

2017; Boersma et al., 2017a). The main challenges in wind farm control are the large time delays caused by the formation of

wakes, the many uncertainties in the atmospheric conditions, and the questionable reliability of surrogate models over the wide

spectrum of wind farm operation (see Boersma et al. (2017a) and Knudsen et al. (2015) for state-of-the-art overviews of control

and control-oriented modeling for wind farms). While there has been success with model-free methods for power maximization

(e.g., Rotea, 2014), it is unclear to what degree such methods can be used for power forecasting. Furthermore, model-free10

methods typically have long settling times, making these methods intractable for APC. On the other hand, for model-based

approaches, the aforementioned challenges make it impossible for any model to reliably provide power predictions in an open-

loop setting. Hence, a model-based approach in which a surrogate wind farm model is actively adjusted to the present conditions

is a necessity for reliable and computationally tractable APC algorithms. This closed-loop wind farm control framework is

displayed in Fig. 1. The control framework of Fig. 1 requires three components.15
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Figure 1. Closed-loop wind farm control framework. Measurements z (e.g., SCADA, met mast, LiDAR data) are fed into the controller

block. First, the state of the surrogate wind farm model x is estimated to represent the actual atmospheric and turbine conditions inside

the wind farm. Secondly, using the calibrated model, an optimization algorithm determines the control policy (e.g., yaw angles, blade pitch

angles) for all turbines q . This control policy may be a set of constant operating points, but can also be time-varying, depending on whether

the surrogate model is time-varying and the employed optimization algorithm.

The first component of the closed-loop framework is a computationally inexpensive control-oriented surrogate model that

accurately predicts the power production of the wind farm ahead in time, on a time-scale relevant for control. The most
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commonly used surrogate models in wind farm control are steady-state models, which are heuristic and neglect all temporal

dynamics (Boersma et al., 2017a). Thus, wind farm control algorithms synthesized using such models neglect any transient

dynamics in the wind farm, thereby potentially limiting performance. While some of these models have shown success in wind

tunnel tests (e.g., Schreiber et al., 2017) and field tests (e.g., Fleming et al., 2017a, b) for power maximization, the actuation

frequency is limited to the minutes-scale, since the flow and turbine dynamics are predicted on the minute-scale. Furthermore,5

time-ahead predictions with these models are limited to the time-invariant steady-state, limiting their use for APC.1 There is a

smaller yet significant number of dynamic surrogate wind farm models (e.g., Munters and Meyers, 2017; Boersma et al., 2017b;

Shapiro et al., 2017a), which attempt to model the dominant temporal dynamics inside the farm. These models can be used for

control on the seconds-scale, and furthermore allow time-ahead predictions, some even under changing atmospheric conditions.

Specifically, the dynamic surrogate model employed in Shapiro et al. (2017a) is computationally feasible, but only models the10

flow in one dimension, and furthermore allows no turbine yaw or changes in the wind direction, limiting its applicability.

Furthermore, the dynamical model in Munters and Meyers (2017) has shown success for closed-loop control applications, but

as it is a 3D LES code, it is much too computationally costly for any kind of real-time control, and the authors present their

results solely as a benchmark case. In the work presented here, the model described in Boersma et al. (2017b) is used, which is

a light-weight two-dimensional LES code with wind farm control as its main objective. This dynamic surrogate model, named15

“WindFarmSimulator” (WFSim), includes yaw and axial induction actuation, turbine-induced turbulence effects, and spatially

and temporally varying inflow profiles, with a moderate computational cost (101− 102 ms per timestep).2

The second component of the closed-loop framework is an algorithm that adjusts the surrogate model’s parameters to im-

prove its accuracy online using flow and/or turbine measurements (e.g., SCADA data, LiDAR measurements, met masts). In

terms of control, this turns into a dual estimation problem, in which both the model state and a subset of model parameters20

are estimated online. Currently, the optimization algorithms presented in Munters and Meyers (2017) and Vali et al. (2017)

have assumed full state knowledge, conveniently ignoring the step of model adaptation. Literature on state reconstruction and

model calibration for dynamical wind farm models is sparse, limited to linear low-order models and/or common estimation

algorithms. Gebraad et al. (2015) designed a traditional Kalman filter (KF) for their low-fidelity “FLORIDyn” model, sho-

wing marginal improvements compared to optimization using a static model. Shapiro et al. (2017a) present a one-dimensional25

dynamic wake model used with receding horizon control for secondary frequency regulation, using an estimation algorithm

following Doekemeijer et al. (2016). Furthermore, Iungo et al. (2015) used dynamic mode decomposition to obtain a reduced-

order model of the wind farm dynamics, which was then combined with a traditional KF for state estimation. To the best of

the authors’ knowledge, none of these methods have explored more sophisticated models such as WFSim, and often only use

simple state estimation algorithms that are lacking in terms of accuracy and in terms of computational tractability.30

The third component of the closed-loop framework is an optimization algorithm, which typically is a gradient-based or

nonlinear optimization algorithm (e.g., Gebraad et al., 2016; Thomas et al., 2017) for steady-state models, and a model-based

1Control using steady-state models is typically limited to an actuation frequency of every 5-10 minutes, depending on the wind speed and size of the

farm. Namely, after each change in control settings, it takes minutes before the flow propagates through the farm and a steady-state is formed. In steady-state,

SCADA data is then temporally averaged, upon which a new set of control parameters is calculated for the current atmospheric conditions.
2For a more detailed analysis on the computational cost involved in WFSim, the reader is referred to Boersma et al. (2017b).
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predictive optimization method for dynamical models (e.g., Goit and Meyers, 2015; Vali et al., 2017; Siniscalchi-Minna et al.,

2018). A more in-depth discussion on optimization algorithms for the framework of Fig. 1 is out of the scope of this article,

and therefore not further continued here.

The focus of this work is on a model adaptation algorithm for WFSim, which trades off estimation accuracy with computa-

tional complexity for online model calibration. In previous work (Doekemeijer et al., 2016, 2017), recursive state estimation5

using flow measurements downstream of each turbine has shown success using an Ensemble KF (EnKF), with a computational

cost several orders of magnitude lower than traditional KF methods. The main contributions of this article are 1) the addition

of adaptation to time-varying atmospheric conditions (specifically, the freestream wind speed and turbulence intensity), which

is of crucial importance for accurate longer-term forecasting, 2) each turbine’s power signal can now be used in addition to, or

instead of, flow measurements, as power measurements are readily available in existing farms, in contrast to flow measurements10

(other than the hub anemometer, which yields low-quality measurements), 3) the computational complexity is further reduced

compared to previous work, and 4) the EnKF algorithm will be compared to the state of the art algorithms in the literature.

The structure of this article is as follows. In Section 2, the surrogate model will be described in more detail. In Section 3,

a time-efficient, online model calibration algorithm for low- and medium-fidelity dynamical wind farm models is detailed.

This online calibration algorithm is tested against standard algorithms in the literature using high-fidelity simulation data in15

Section 4. The article is concluded in Section 5.

2 The surrogate model

To motivate the choice of model parameters that are to be estimated in real time, the surrogate model used in the work at hand

is outlined in this section. The chosen surrogate model is the WindFarmSimulator (WFSim) model presented by Boersma et al.

(2017b). In short, WFSim solves a modified set of unsteady two-dimensional (2D) Navier-Stokes equations in a horizontal20

plane at the turbine hub height. This surrogate model is a medium-fidelity nonlinear dynamic wind farm model with a total

of 5 tuning parameters. WFSim has shown success in reconstructing the flow field and turbine power signals of high-fidelity

LES data. This model is particularly suited for the framework presented in Fig. 1 as it is dynamic, includes both yaw and axial

induction control, handles temporally and spatially varying inflows, and yields a relatively high accuracy with a manageable

computational cost.25

In Section 2.1, the governing equations of the model are presented. The turbulence and turbine model are described in

Sections 2.2 and 2.3, respectively. The spatial and temporal discretization process is described in Section 2.4, including some

remarks about the boundary conditions and the computational tractability of the model.

2.1 Governing equations

The WFSim wind farm model is based on the two-dimensional unsteady incompressible Navier-Stokes (NS) equations to30

maintain computational tractability compared to a three-dimensional model. Furthermore, in WFSim the continuity equation

is modified to accommodate for flow dissipation in the neglected vertical dimension. The surrogate model can be described
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completely by the flow and rotor dynamics in a horizontal plane at hub height, derived from the following set of partial

differential equations:

∂u

∂t
+ (u ·∇H)u + ∇H · τH + ∇H · p= f,

∂u

∂x
+ 2

∂v

∂y
= 0, where u =

[
u v

]T
, ∇H =

[
∂
∂x

∂
∂y

]T
, (1)

where u and v are the longitudinal and lateral flow velocity respectively, x and y are the spatial coordinates in longitudinal and

lateral direction respectively, τH is a 2D tensor containing the horizontal subgrid stresses (turbulence model), p is pressure,5

and f contains the forcing terms (turbine model) acting on the flow. Equation (1) deviates from the traditional 2D NS equations

in two ways. Firstly, the diffusion term is neglected, as it plays a negligible role in the dominant flow dynamics due to the low

viscosity of air. Secondly, the term ∂v
∂y in the continuity equation is multiplied by a factor 2 to approximate flow dissipating in

the vertical flow dimension. See Boersma et al. (2017b) for a detailed derivation of (1).

2.2 Subgrid-scale (turbulence) model10

Boersma et al. (2017b) introduced a new model for the subgrid-scale term τH . The subgrid-scale model is formulated using

an eddy-viscosity assumption in combination with Prandtl’s mixing length model,

τH =−`u(x,y)2
∣∣∣∂u

∂y

∣∣∣ ·
(

1
2
∇Hu + (∇Hu)T

)
, with `u(x,y) =




G(x′i,y

′
i) ∗ `iu(x′i,y

′
i), if x ∈ X and y ∈ Y,

0, otherwise,
(2)

where `u(x,y) ∈ R+ is a local spatially varying parametrization of the mixing length, inspired by the high-fidelity simulation

results presented in Iungo et al. (2017). G(x′i,y
′
i) is a smoothing pillbox filter with radius 3, ∗ is the 2D spatial convolution15

operator, and X and Y define a rectangular region behind the turbine rotor to which the turbulence model applies, given by

X = {x : x′i ≤ x≤ x′i + cos(φ) · d}, Y = {y : y′i−
D

2
+ sin(φ) ·x′i ≤ y ≤ y′i +

D

2
+ sin(φ) ·x′i},

with (x′i,y
′
i) the wind-aligned axis system centered at the turbine rotor,D the turbine rotor diameter, φ the mean wind direction

in the original (x,y)-axis system, and d a length parameter for the turbulence model. See Fig. 2 for a schematic drawing. Then,

`iu(x,y) is defined as20

`iu(x′i,y
′
i) =





(x′i− d′)`s, if d′ ≤ x′i ≤ d and −D
2 ≤ y′i ≤ D

2 ,

0, otherwise,
(3)

where `s defines the slope of `iu(x′i,y
′
i), and d′ is a second length parameter for the turbulence model. Thus, the entire turbulence

model has three tuning parameters: the length parameters d and d′ are the upper and lower spatial bounds, respectively, and `s

is a gradient parameter for the mixing length.

5
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Figure 2. The subgrid-scale model implemented in WFSim employs a spatially varying mixing length parameter that increases with distance

behind the rotor. This can be explained by the turbine-induced turbulent structures in the wake. Image courtesy of Boersma et al. (2017b).

2.3 Turbine model

Turbine forces in WFSim are modeled using the classical non-rotating actuator disk model (ADM), projected onto the 2D

plane at hub height. The turbine forcing term in (1), f, at spatial location s =
[
x y

]T
∈ R2 is expressed as

f =
NT∑

i=1

fi, with fi =
cf
2
C ′Ti

[Ui cos(γi)]
2


cos(γi +φ)

sin(γi +φ)


 ·H

[
D

2
− ||s − t i||2

]
· δ [(s − t i) · e⊥,i] , (4)

with H[•] the heaviside function, δ[•] the Dirac delta function, and e⊥,i ∈ R2 the unit vector perpendicular to the ith rotor disk5

with position t i ∈ R2. The scalar C ′Ti
is a variation of the non-dimensional thrust coefficient of turbine i which can be related

to physical turbine parameters such as the generator torque and blade pitch angles (Goit and Meyers, 2015). The scalar γi is

the yaw angle of turbine i with respect to the incoming wind, and Ui is the average flow velocity over the rotor of turbine i.

The scalar cf is a static tuning variable to account for the time-invariant rotor dimensions and numerical grid effects, making

it the fourth tuning variable in WFSim. The control variables for optimization in the framework of Fig. 1 are γi and C ′Ti
10

for i= 1, ...,NT , with NT the number of turbines. Furthermore, the instantaneous power capture of the wind farm Pfarm is

calculated in a similar approach by

Pfarm =
NT∑

i=1

Pturb,i, with Pturb,i =
cp
2
ρAC ′Ti

[Ui cos(γi)]
3
, (5)

with scalar cp the fifth tuning factor used to account for numerical grid effects and time-invariant turbine losses, andA the rotor

swept surface area. Note that C ′T has a direct mapping to the turbine power Pturb,i, and thus replaces the usual non-dimensional15

power coefficient, following the example of Goit and Meyers (2015).

6
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2.4 Discretization, boundary conditions, and computational cost

Equation (1) is spatially discretized on a quadrilateral grid employing the finite volume method and the hybrid differencing

scheme (Boersma et al., 2017b). Temporal discretization is performed using the implicit method, which guarantees stability of

the solution. Dirichlet boundary conditions for u and v are applied on one side of the grid for inflow, while Neumann boundary

conditions are applied on the remaining sides for the outflow. After discretization, the surrogate wind farm model described in5

this section reduces to a nonlinear discrete-time deterministic state-space model, described by

xk+1= f (xk,qk),

z k = h(xk,qk),

where xk ∈ RN is the system state at discrete time instant k ∈ Z, which is a column vector containing the collocated longi-

tudinal flow velocity at each cell in the domain uk ∈ RNu , the lateral flow velocity at each cell in the domain vk ∈ RNv , and10

the pressure term at each cell in the domain pk ∈ RNp , with N =Nu +Nv +Np and Nu ≈Nv ≈Np ≈ 1
3N . The state xk is

formulated as

xT
k =

[
uT

k vT
k pT

k

]
.

Empirically, good results have been achieved with cell dimensions of about 30−50 m in width and length, resulting in N with

a typical value on the order of 103− 104 for medium-sized wind farms (e.g., Vali et al., 2016, 2017; Doekemeijer et al., 2016,15

2017; Boersma et al., 2017b). Such a number of states may seem very small for LES simulations, yet is very high for control

purposes. Furthermore, qk ∈ RO includes the system inputs, i.e., the turbine control settings γi and C ′Ti
for i= 1, ...,NT . The

system outputs z k ∈ RM are defined by sensors. It can include, among others, flow field measurements (z k ⊂ xk) and power

measurements. We define the integer Mu,v ∈ Z with Mu,v ≤M as the total number of flow field measurements. The nonlinear

functions f and h are the state forward propagation and output equation, respectively.20

The computational cost may vary from 0.02 s for a small wind farm with N = 3 · 103 states (e.g., a 2 by 1 wind farm in

Doekemeijer et al. (2017)), to 1.2 s for N = 1 · 105 states for medium-sized wind farms (e.g., a 3 by 3 wind farm in Boersma

et al. (2017b)), for a single time-step forward simulation on a single desktop CPU core. This computational complexity is what

motivates the use of time-efficient estimation algorithms in the work at hand, and time-efficient predictive control methods for

optimization in related work (Vali et al., 2017). In this work, the limits of computational cost are explored to maximize model25

accuracy while still allowing real-time control.

3 Online model calibration

Due to the limited accuracy of surrogate wind farm models, and due to the many uncertainties in the environment, surrogate

models often yield predictions with significant uncertainty of the wind flow and power capture inside a wind farm. Since

control algorithms largely rely on such predictions, this may suppress gains or even lead to losses inside a wind farm. Unfortu-30

7
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nately, higher-fidelity models are computationally prohibitively expensive for control applications. Hence, rather, lower-fidelity

surrogate models are calibrated online using readily available measurement equipment.

In this section, first the challenges for real-time model calibration for the surrogate “WFSim” model described in Section 2

will be highlighted in Section 3.1. Secondly, a mathematical framework for recursive model state estimation will be presented

in Section 3.2. Thirdly, a number of state estimation algorithms are presented in Sections 3.3 to 3.6, building up from the5

industry standard to the state of the art in the literature. Finally, a robust, computationally efficient model calibration solution

is synthesized in Section 3.7, which allows the simultaneous estimation of the boundary conditions, model parameters, and the

model states of WFSim in real time using readily available measurements from the wind farm.

Note that we will henceforth refer to the estimation of x as state estimation. The estimation of tuning parameters, such as `s

and cf (Section 2), which are included in the expressions for f and h, are considered as parameter estimation.10

3.1 Challenges

Online model calibration for WFSim is challenging for a number of reasons. First of all, the model is nonlinear, and thus

the common linear estimation algorithms cannot be used without linearization. While analytical expressions for the linearized

surrogate model are available (Boersma et al., 2017b), the absence of linear expressions for the subgrid-scale model and the

multiple max-, min- and abs-operators in the nonlinear model limit its accuracy. Secondly, the surrogate model is sensitive to15

instability when the estimated state sufficiently deviates from the continuity equation in (1). In addition, while state estimation

(i.e., estimation of the instantaneous flow field) may prove helpful in short-term forecasting, calibration of additional model

parameters is necessary (e.g., the inflow/boundary conditions and the turbulence model) for reliable longer-term forecasting,

as will be shown in Section 4. Finally, the surrogate model typically has on the order of N ∼ 103− 104 states, which is

extraordinarily high for control applications. Though, real-time estimation is a necessity for real-time model-based closed-20

loop control, and thus one needs to find a trade-off between accuracy on the one hand, while guaranteeing updates at a low

computational cost on the seconds-scale on the other hand.

3.2 General formulation

This section details the basics of Kalman filtering, which is the literature standard for state estimation in control. The goal of a

Kalman filter (KF) is to estimate the unmeasured states of a dynamical system through noisy measurements. Assumed here is25

a system (the wind farm) represented mathematically by a discrete-time stochastic state-space model with additive noise,

xk+1= f (xk,qk)+wk, (6)

z k = h(xk,qk)+ vk, (7)

where k is the time index, x ∈ RN is the unobserved system state (in this case: the flow and pressure fields inside the wind

farm), z ∈ RM are the measured outputs of the system (e.g., flow measurements, SCADA data), f describes the forward-30

in-time state propagation mapping, h describes the output equation from state to measurement, q ∈ RO and w ∈ RN are

the controllable inputs and process noise respectively that drive the system dynamics, and v ∈ RM is measurement noise.

8
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Furthermore, we assume w and v to be zero-mean white Gaussian noise with covariance matrices

E




vk

wk



[
vT

` wT
`

]

=


Rk ST

k

Sk Qk


∆k−`, where ∆k−` =





1, if k = `,

0, otherwise,
(8)

with E the expectation operator. Estimates of the state xk, denoted by x̂k|k, are computed based on measurements from the

real system. Here, x̂k|` means an estimate of the model’s state vector x at time k, using all past measurements and inputs Z`,

as5

x̂k|` = E[xk|Z`] , with Z` = z 0,z 1,z 2 . . .z `, q0,q1,q2 . . .q `. (9)

State estimates are based on the internal model dynamics and the measurements, weighted according to their respective proba-

bility distributions. We aim to find an optimal state estimate, in which optimality is defined as unbiasedness, E[xk − x̂k] = 0,

and when the variance of any linear combination of state estimation errors (e.g., the trace of E
[
(xk − x̂k)(xk − x̂k)T

]
) is

minimized (Verhaegen and Verdult, 2007).10

In reality, the assumed model described by f and h always has mismatches with the true system, and the assumptions in (8)

often do not hold. Further, the matrices Qk, Rk, and Sk are usually not known and rather considered tuning parameters. In

practice, the values of R and Q are used to shift the confidence levels between the internal model and the measured values.

For R�Q , estimations will heavily rely on the measurements, while for Q �R, estimations will mostly rely on the internal

model. Kalman filtering remains one of the most common methods of recursive state estimation, as it has proven successful in15

many applications. KF algorithms typically consist of two steps, namely:

1. A state and output forecast, including their uncertainties (covariances):

x̂k|k−1 = E
[
f (xk−1,qk−1) +wk−1|Zk−1

]
, (10)

ẑ k|k−1 = E[h(xk,qk) + vk|Zk−1] , (11)

Px
k|k−1 = Cov(xk,xk|Zk−1) = E[(xk − x̂k|k−1)(xk − x̂k|k−1)T ], (12)20

Pz
k|k−1 = Cov(z k,z k|Zk−1) = E[(z k − ẑ k|k−1)(z k − ẑ k|k−1)T ], (13)

Pxz
k|k−1 = Cov(xk,z k|Zk−1) = E[(xk − x̂k|k−1)(z k − ẑ k|k−1)T ]. (14)

In (10) and (11), x̂k|` and ẑ k|` are the forecasted system state vector and measurement vector, respectively.

2. An analysis update of the state vector, where the measurements are fused with the internal model:

Lk = Pxz
k|k−1 ·

(
Pz

k|k−1

)−1

(15)25

x̂k|k = x̂k|k−1 +Lk

(
z k − ẑ k|k−1

)
, (16)

Px
k|k = Cov(xk,xk|Zk) = Px

k|k−1−LkP
z
k|k−1L

T
k . (17)

Here,
(
Pz

k|k−1

)−1

in (15) is the pseudo-inverse of Pz
k|k−1, since this matrix is not necessarily invertible.

9
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As can be seen in (15), a trade-off is made between the measured quantities and the surrogate model using the covariance

terms as weights.

3.3 Linear Kalman filter

Traditionally, state estimation for linear dynamic models is done using the linear Kalman filter (KF) (Kalman, 1960). In the

idealized situation where: 1) the assumptions on noise in (8) hold, 2) the surrogate model f and h perfectly match reality, and5

3) f and h are linear in x and q , with

f (xk,qk) = Akxk +Bkqk,

h(xk,qk) = C kxk +Dkqk,

where Ak, Bk, C k, Dk are the (possibly time-varying) matrices of the state-space system, then the linear KF is optimal in

the sense that it provides unbiased estimates, E(xk) = x̂k, with minimal mean-square error (the trace of Px
k|k is minimized).10

For (10) to (17), one can derive that in the linear case,

Px
k|k−1 = Ak−1P

x
k−1|k−1A

T
k−1 +Qk−1, (18)

Pz
k|k−1 = C kP

x
k|k−1C

T
k +Rk, (19)

Pxz
k|k−1 = Px

k|k−1C
T
k +Sk. (20)

If any of the three criteria is not met, optimality of the KF is lost. While points 1 and 2 are practically never met, good results15

are often still achieved. The crux lies with point 3. Namely, the traditional KF cannot deal with nonlinearity in the surrogate

model (f̂ and/or ĥ).

3.4 Extended Kalman filter (ExKF)

Linearization of the surrogate model is the most straight-forward solution to the issue of nonlinearity in f(x ,q) and h(x ,q).

This is what the Extended KF (ExKF) does. Here, the surrogate model is linearized around some point (x lin,q lin) w.r.t. x and20

q at every timestep k:

f (xk,qk)≈ ∂f (x ,q)
∂x

∣∣∣∣
x lin,q lin

︸ ︷︷ ︸
Ak

(
xk −x lin)+

∂f (x ,q)
∂q

∣∣∣∣
x lin,q lin

︸ ︷︷ ︸
Bk

(
qk − q lin) ,

h(xk,qk)≈ ∂h(x ,q)
∂x

∣∣∣∣
x lin,q lin

︸ ︷︷ ︸
Ck

(
xk −x lin)+

∂h(x ,q)
∂q

∣∣∣∣
x lin,q lin

︸ ︷︷ ︸
Dk

(
qk − q lin) .

Using the linearized system matrices Ak, Bk, C k, Dk, one can directly apply (10) to (17) for state estimation, where (18) to (20)

become approximations instead of equalities. Fundamentally, in the ExKF, the state is assumed to have a Gaussian probability25

distribution. This variable is propagated through the linearized system dynamics, yielding a posterior distribution which is also

10
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Gaussian. Hence, the ExKF can be considered a first-order approximation of the true state probability distribution. Optimality

is not guaranteed, and this lower-order approximation can even lead to divergence for some models. Though, the ExKF has

shown success in academia and industry (Wan and Van Der Merwe, 2000).

As described in Section 3.1, model linearization is troublesome. Furthermore, for surrogate models with many states such

as WFSim, the ExKF has an additional challenge: computational complexity. The operation in (15) includes a matrix inversion5

with a computational complexity ofO(M3), and (18) includes two matrix multiplications each with a computational complex-

ity of O(N3). As there are significantly fewer measurements than states (M �N ) for the problem at hand, (18) dominates

the computational cost. For example, a mesh in WFSim with 50× 25 cells yields a state vector size of N = 3 · 103, and (18)

contributes to about 80− 90% of the computational cost for the entire KF cycle, with a CPU time on the order of 1 · 101 s,

about one order of magnitude too large for online model calibration. To reduce computational cost in the ExKF, the surrogate10

model and/or the covariance matrix P have to be simplified. This is not further explored here. Instead, two KF approaches will

be explored that use the nonlinear system directly for forecasting and analysis updates. Doing so, we circumvent the problems

with linearization, and additionally better maintain the true covariance of the system state.

3.5 The Unscented Kalman filter (UKF)

The Unscented Kalman filter (UKF) relies on the so-called “unscented transformation” (UT) to estimate the means and covari-15

ance matrices described by (10) to (14). The conditional state probability distribution of xk knowing Zk is again assumed to

be Gaussian. In the UKF, firstly a number of sigma points (also referred to as “particles”) are generated such that their mean is

equal to x̂k|k and their covariance is equal to Cov(xk,xk). Secondly, each particle is propagated through the nonlinear system

dynamics (f , h). Thirdly, the mean and covariance of the forecasted state probability distribution is again approximated by a

weighted mean of these forecasted sigma points (Wan and Van Der Merwe, 2000).20

Mathematically, we define the ith particle as ψi
k|` ∈ RN , which is a realization of the condition probability distribution of

xk given Z`. The UKF follows a very similar forecast and analysis update approach as the traditional KF in (10) to (17), yet

applied to a finite set of particles (Wan and Van Der Merwe, 2000).

1. For the forecast step, a particle-based approach is taken.

(i) A total of Y = 2N + 1 particles are (re)sampled to capture the mean and covariance of the conditional state proba-25

bility distribution p [xk−1|Zk−1], by

ψi
k−1|k−1 =





ψk−1|k−1 for i= 1,

ψk−1|k−1 +
(√

(N +λ) ·Px
k−1|k−1

)
i

for i= 2, ...,N + 1,

ψk−1|k−1−
(√

(N +λ) ·Px
k−1|k−1

)
i−N−1

for i=N + 2, ...,Y,

(21)

where λ= α2 (N +κ)−N is a scaling parameter, where α determines the spread of the particles around the mean,

and κ is a secondary scaling parameter typically set to 0 (Wan and Van Der Merwe, 2000). The weight of each

particle’s mean w i
mean and covariance w i

cov. is given by30
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w i
mean =




λ(N +λ)−1 for i= 1,

1
2 (N +λ)−1 otherwise,

w i
cov. =




λ(N +λ)−1 + (1−α2 +β) for i= 1,

1
2 (N +λ)−1 otherwise,

where β is used to incorporate prior knowledge on the probability distribution. In this work, β = 2 is assumed,

which is stated to be optimal for Gaussian distributions (Wan and Van Der Merwe, 2000).

(ii) Each particle is propagated forward in time using the expectation of the nonlinear model, as

ψi
k|k−1 = f (ψi

k−1|k−1,qk−1) for i= 1, ...,Y,

ζi
k|k−1 = h(ψi

k|k−1,qk) for i= 1, ...,Y,
(22)5

where ζi
k|` is defined as the system output corresponding to the particle ψi

k|`.

(iii) The expected state ψ and expected output ζ are calculated as

x̂k|k−1 ≈ψk|k−1 =
Y∑

i=1

(
w i

mean ·ψi
k|k−1

)
,

ẑ k|k−1 ≈ ζk|k−1 =
Y∑

i=1

(
w i

mean · ζi
k|k−1

)
,

(23)

and the covariance matrices are (re-)estimated from the forecasted ensemble by

Px
k|k−1 =

Y∑

i=1

(
w i

cov.

(
ψi

k|k−1−ψk|k−1

)(
ψi

k|k−1−ψk|k−1

)T
)

+Qk−1, (24)10

Pz
k|k−1 =

Y∑

i=1

(
w i

cov.

(
ζi

k|k−1− ζk|k−1

)(
ζi

k|k−1− ζk|k−1

)T
)

+Rk, (25)

Pxz
k|k−1 =

Y∑

i=1

(
w i

cov.

(
ψi

k|k−1−ψk|k−1

)(
ζi

k|k−1− ζk|k−1

)T
)

+Sk. (26)

2. For the analysis step, one can apply the same equations as in (15) to (17).

The UKF has been shown to consistently outperform the ExKF in terms of accuracy, since it uses the nonlinear model for

model forecasting and covariance propagation. However, this does come at a cost. Namely, Y = 2N + 1 particles are required15

to capture the mean and covariance of the conditional state probability distribution. This implies that 2N + 1 function evalu-

ations are required for each UKF update. Even for a small wind farm in WFSim, N = 3 · 103, one function evaluation takes

approximately 0.02 s. This means that a lower limit on the computational cost of the UKF algorithm is 1 · 102 s on a single

core for a single-timestep forward simulation (k→ k+ 1). While (22) can easily be parallelized, computational complexity

remains troublesome, especially for larger wind farms. Rather, a more computationally efficient particle-based KF algorithm20

is investigated. This is the Ensemble Kalman filter described in Section 3.6.

12
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3.6 The Ensemble Kalman filter (EnKF)

The Ensemble Kalman filter (EnKF) (Evensen, 2003) is very similar to the UKF in that it relies on a finite number of reali-

zations (the “sigma points” or “particles” in the UKF) to approximate the mean and covariance of the conditional probability

distribution of xk knowing Zk. However, whereas the UKF relies on a systematic way of distributing the particles such that

the mean and covariance of the conditional probability distribution p [xk|Zk] are equal to that of the particles, the EnKF relies5

on random realizations, without guarantees that the mean and covariance are captured accurately. Though, the EnKF has been

shown to work well in a number of applications, with typically far fewer particles than states, i.e., Y �N (e.g., Houtekamer

and Mitchell, 2005; Gillijns et al., 2006). The forecast and update step are very similar to that of the UKF, namely:

1. In the UKF the particles are redistributed at every timestep, in contrast to the EnKF. Rather, the EnKF propagates the

particles forward without redistribution. We define the ith particle as ψi
k|` ∈ RN , which is a realization of the conditional10

probability distribution p [xk|Z`]. The forecast step is:

(i) Each particle is propagated forward in time using the nonlinear system dynamics, and with the realizations of noise

terms w and v denoted by ŵ i
k−1 ∈ RN and v̂ i

k ∈ RM , respectively.

ψi
k|k−1 = f (ψi

k−1|k−1,qk−1) + ŵ i
k−1 for i= 1, ...,Y,

ζi
k|k−1 = h(ψi

k|k−1,qk) + v̂ i
k for i= 1, ...,Y.

(27)

(ii) The expected state and output are calculated identically as in the UKF using (23) with w i
mean = (Y − 1)−1. The15

covariance matrices are (re-)estimated from the forecasted ensemble, by

Pz
k|k−1 =

1
Y − 1

Y∑

i=1

((
ζi

k|k−1− ζk|k−1

)(
ζi

k|k−1− ζk|k−1

)T
)
, (28)

Pxz
k|k−1 =

1
Y − 1

Y∑

i=1

((
ζi

k|k−1− ζk|k−1

)(
ψi

k|k−1−ψk|k−1

)T
)
. (29)

2. For the analysis step, one applies (15) to determine the Kalman gain Lk. Then, each particle is updated individually, as

ψi
k|k =ψi

k|k−1 +Lk

(
z k − ζi

k|k−1

)
for i= 1, ...,Y. (30)20

Note that, in contrast to the ExKF and the UKF, the state covariance matrix Px (see (12) and (17)) need not be calculated

explicitly in the EnKF. This, in combination with the small number of particles Y �N , is what makes the EnKF computati-

onally superior to the UKF (and often also computationally superior to the ExKF). However, this reduction in computational

complexity comes at a price. The disadvantages of the EnKF are discussed in the next section.

3.6.1 Challenges in the EnKF for small number of particles25

The caveat to representing the conditional state probability distribution with fewer particles than states, Y �N , is the forma-

tion of inbreeding and long-range spurious correlations (Petrie, 2008). The former, inbreeding, is defined as a situation where

13
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the state error covariance matrix Px is consistently underestimated, leading to state estimates that incorrectly rely more on

the internal model. One straight-forward method to address this is called “covariance inflation”, in which Px (or rather, the

ensemble from which Px is calculated) is scaled (the ensemble is “inflated”) to correct for the underestimated state uncertainty

(Petrie, 2008). Mathematically, this is achieved by applying

ψi
k|k−1 =ψk|k−1 + r

(
ψi

k|k−1−ψk|k−1

)
for i= 1, ...,Y, (31)5

before the analysis step, with r ∈ R the inflation factor, typically with a value of 1.01− 1.25.

The latter problem, long-range spurious correlations, can be better visualized in Fig. 3. In particle-based approaches, the

1 40 80 120
1

40

80

120

1 40 80 120 1 40 80 120

0 0.2 0.4 0.6 0.8 1

Figure 3. Long-range spurious correlations arise in the case where a covariance matrix is described by a small number of particles. Using

physical knowledge of the system, these undesired correlations can be corrected. Φx is the localization matrix. Applying localization, the

covariance of physically nearby states are multiplied with a value close to 1, and the covariance of physically distant states are multiplied

with a value close to 0. In our example case, this results in the localized covariance matrix Φx ◦Px, where ◦ is the element-wise product.

covariance terms cannot be captured exactly. This may lead to the formation of small yet nonzero covariance terms between

states and outputs which, in reality, are uncorrelated. Then, these states will be adapted according to uncorrelated measure-

ments, which can lead to the drift of unobservable states (states for which no information is available). This state drift can build10

up and lead to instability of the surrogate model. Increasing the number of particles is the most straight-forward solution to this

problem, but comes at a huge computational cost. A better alternative is “covariance localization”, where physical knowledge

of the states and measurements is used to steer the sample-based covariance matrices. Recall that in the surrogate model of

Section 2, the model states are the velocity and pressure terms inside the wind farm at a physical location. Define that the ith

state entry (xk)i belongs to a physical location in the farm si. Then, looking at an arbitrary state covariance term (i, j),15

(
Px

k|k−1

)
i,j

= E
[(

(xk)i− (x̂k|k−1)i

)(
(xk)j − (x̂k|k−1)j

)T ]
,

we define the physical distance between these two states as ∆si,j = ||si− sj ||2. Now, we introduce a weighting factor into

our covariance matrices by multiplying physically distant states with a value close to 0, and multiplying physically nearby
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states with a value close to 1. A popular choice for such a weighting function is Gaspari-Cohn’s fifth-order discretization of a

Gaussian distribution (Gaspari and Cohn, 1999), given by

φ(ci,j) =





− 1
4c

5
i,j + 1

2c
4
i,j + 5

8c
3
i,j − 5

3c
2
i,j + 1 if 0≤ ci,j ≤ 1,

1
12c

5
i,j − 1

2c
4
i,j + 5

8c
3
i,j + 5

3c
2
i,j − 5ci,j + 4− 2

3
1

ci,j
if 1< ci,j ≤ 2,

0 otherwise,

(32)

with ci,j = ||∆si,j ||2
L a normalized distance measure, with L the cut-off distance. Applying (32) for the covariance matrices

Pz
k|k−1 and Pxz

k|k−1 (note that the state covariance matrix Px
k|k−1 is not calculated explicitly in the EnKF, but could be5

calculated similarly), we can define the localization matrices

Φz =




φ(cz1,1) · · · · · ·φ(cz1,N )
...

. . .

φ(czN,1) φ(czN,N )


 , Φxz =




φ(cxz
1,1) · · · · · ·φ(cxz

1,N )
...

. . .

φ(cxz
N,1) φ(cxz

N,N )


 ,

where czi,j is the normalized distance between two measurements i and j, and cxz
i,j is the normalized distance between state i

and measurement j, respectively. Finally, localization and inflation can be incorporated into (28) and (29) by

Pz
k|k−1 = Φz ◦ 1

Y − 1

Y∑

i=1

((
ζi

k|k−1− ζk|k−1

)(
ζi

k|k−1− ζk|k−1

)T
)
, (33)10

Pxz
k|k−1 =

√
r ·Φxz ◦ 1

Y − 1

Y∑

i=1

((
ζi

k|k−1− ζk|k−1

)(
ψi

k|k−1−ψk|k−1

)T
)
, (34)

where ◦ is the element-wise product (Hadamard) of the two matrices. The improvement in terms of computational efficiency

and estimation performance is displayed in Fig. 4. A very significant increase in performance is shown, especially for smaller

numbers of particles. This is in agreement with what was seen in previous work (Doekemeijer et al., 2017). Furthermore,

performance is much more consistent. Additionally, note that there is no increase in computational cost, as the covariance15

matrices are sparsified, leading to a cost reduction in the calculation of (15), which makes up for the extra operations of

(33) and (34). Also, note that the localization matrices are time-invariant and can be calculated offline.

3.7 Synthesizing an online model calibration solution

As mentioned in Section 3.1, parameter estimation may be even of a higher importance than state estimation for longer-term

forecasting. Parameter estimation is achieved by extending the state vector with (a subset of) the model parameters. In this20

work, the model parameter `s (turbulence mixing length factor) is concatenated to the state vector. Higher values of `s lead to

more mixing behind the turbines, yielding more wake recovery, making the calibration solution adaptable to varying turbulence

levels. This adds one scalar entry to x , which is a negligible addition in terms of computational cost.

The freestream wind speed U∞ and direction φ in the wind farm are also estimated in this framework. This is done using

the turbine’s wind vane and power generation measurements, following the ideas of Gebraad et al. (2016) and Shapiro et al.25
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Figure 4. This figure shows the estimation performance and computational cost (parallelized, 8 cores) of the EnKF for a range of ensemble

sizes, with and without inflation and localization. Great improvement is seen for estimation accuracy, at no additional computational cost.

The simulation scenario is described in detail in Section 4.2, and the results presented here are rather meant as an indication.

(2017b). Using the wind vanes, φ can be calculated as the average of the wind vane measurements. Knowing this, and em-

ploying a simple steady-state wake model from the literature (Mittelmeier et al., 2017), the turbines operating in freestream

flow can be distinguished from the ones operating in waked flow. Next, define Ш ∈ ZЖ as a vector specifying the upstream

turbines, with Ж ∈ Z the total number of turbines operating in freestream. Then, the instantaneous rotor-averaged flow speed

at each turbine’s hub can be estimated using the inverse relationship of (5). One wind-farm-wide freestream wind speed U∞5

is then calculated using actuator disk theory. Smoothing results with a low-pass filter action on the average of U∞i for each

upstream turbine i, we obtain

cu∞
∂U∞
∂t

=
1

Ж

∑

i∈Ш

(
3

√
Pmeas.

turb,i
cp

2 ρAC
′
Ti

cos(γi)
3 ·
(

1 +
1
4
C ′Ti

))
−U∞, (35)

where we used actuator disk theory for the identity

U∞i
≈ Uri

(
1 + 0.25 ·C ′Ti

)
, when γi ≈ 0.10

Furthermore, cu∞ is the time constant of the first-order low-pass filter, and Pmeas.
turb,i is the measured instantaneous power capture

of turbine i. While the assumption γ = 0 is made here for the calculation of U∞, research is currently ongoing on how to best

incorporate the effects of turbine yaw (γ 6= 0) into the definition of C ′T .

An important remark is that this methodology for the estimation of U∞ relies solely on power measurements, and therefore

only works for below-rated conditions. For estimation of U∞ in above-rated conditions, one may, for example, require the15

implementation of a wind speed estimator on each individual turbine, from which the local wind speed in front of each turbine

can be estimated, as demonstrated by Simley and Pao (2016).
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Combining these elements yields an efficient, modular, and accurate model calibration solution for low- and medium-fidelity

dynamic wind farm models. The natural model states are estimated using SCADA and/or LIDAR data inside a wind farm,

of which the former is readily available, and the latter becoming more popular. State estimation greatly improves short-term

forecasting, important for the small timescales involved in active power control for wind farms. Furthermore, model parameters

can be estimated online in parallel with the states, and is required for accurate long-term forecasting and important for active5

power control at lower frequencies. Additionally, the freestream conditions (boundary conditions in our surrogate model, see

Section 2.4) are estimated using readily available SCADA data.

This control solution is implemented in MATLAB, but leverages the numerically efficient precompiled solvers for model

propagation. Furthermore, the forecasting step of (27) is parallelized, making the EnKF easily scalable up to Y cores. This, in

combination with covariance localization and inflation, makes the EnKF orders of magnitude faster than existing estimation10

algorithms, while competing with the UKF in terms of accuracy.

4 Results

In this section, the model calibration solution detailed in Section 3 will be validated using high-fidelity simulation data. First,

the simulation tool used to generate the high-fidelity validation data will be described in Section 4.1. Then, a two-turbine and

a nine-turbine simulation case are presented in Sections 4.2 and 4.3, respectively.15

Note that for the all presented results, pressure terms are ignored in the state vector, as they appeared unnecessary for the

estimation of flow fields and powers in previous work (Doekemeijer et al., 2017). Furthermore, for simplicity and due to lack

of information about the true system, the process and measurement noise will be assumed to be uncorrelated, i.e., Sk = 0, and

Qk and Rk are assumed to be time-invariant and diagonal.

4.1 SOWFA20

High-fidelity simulation data is generated using the Simulator fOr Wind Farm Applications (SOWFA), developed by the Nati-

onal Renewable Energy Laboratory (NREL). This wind farm model provides highly accurate flow data at a fraction of the cost

of field tests. SOWFA solves the filtered, three-dimensional, unsteady, incompressible Navier-Stokes equations over a finite

temporal and spatial mesh. SOWFA is a large-eddy simulation solver, meaning that larger scale dynamics are resolved directly,

but turbulent structures smaller than the discretization are approximated using subgrid-scale models to suppress computational25

cost. Coriolis and geostrophic forcing terms are included in SOWFA (Churchfield et al., 2016). The turbine rotor is modeled

using an actuator line representation as derived from Sorensen and Shen (2002). In the actuator line model (ALM), the rotor

blades are discretized spatially along their radial lines, where lift and drag forces are determined based on the incoming flow

angle, flow velocity, and blade (airfoil) geometry (Fleming et al., 2015).

SOWFA has previously been used for lower-fidelity model validation, controller testing, and to study the aerodynamics in30

wind farms (e.g., Fleming et al., 2015, 2016, 2017a; Gebraad et al., 2016, 2017). The interested reader is referred to Churchfield

et al. (2012) for a more in-depth description of SOWFA and LES solvers in general.
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4.2 2-turbine ALM with turbulent inflow

In this section, a two-turbine wind farm is simulated to highlight the need for state and model parameter estimation, and

to motivate the use for the EnKF. This simple wind farm contains two NREL 5-MW baseline turbines with D = 126.4 m,

separated five turbine diameters apart. This LES simulation has been used before in the literature and was described in more

detail in Annoni et al. (2016b). Several important simulation properties are listed in Table 1 for SOWFA and WFSim. The effect5

of the turbulence intensity on the wake dynamics in SOWFA is captured in WFSim through its mixing-length turbulence model.

In these simulations, WFSim is purposely initialized with a too low value for `s in order to represent the realistic situation of

a model mismatch. The remaining tuning parameters in WFSim were chosen such that a weighted-sum cost function of the

power and flow errors was minimized.

Table 1. Overview of several settings for the SOWFA and the WFSim 2-turbine wind farm simulation.

Variable Symbol SOWFA WFSim

Domain size - 3.0km× 3.0km× 1.0km 1.9km× 0.80km

Number of states N O(108)−O(109) 3.2 · 103

Cell size near rotors - 3m× 3m× 3m 38m× 33m

Cell size outer regions - 12m× 12m× 12m 38m× 33m

Rotor model - ALM ADM (cf = 1.4, cp = 0.95)

Inflow wind speed U∞ 8.0 m/s 8.0 m/s

Atmospheric turbulence -
Turbulent inflow,

TI∞ = 5.0%

d′ = 1.8 · 102 m,

d = 6.1 · 102 m,

`s = 1.8 · 10−2

Firstly, the three KF variants will be compared for state estimation in Section 4.2.1. Secondly, in Section 4.2.2, estimation10

using different information (sensor) sources is compared. Thirdly, the strength of simultaneous state-parameter estimation is

displayed in Section 4.2.3.

4.2.1 A comparison of the KF variants for state estimation

First, the performance of the ExKF, UKF, EnKF, and the case without estimation (denoted as open-loop, or “OL”) are compared

for the two-turbine simulation case of Table 1. This simulation only focuses on estimation of the model states, not the model15

parameter `s. Flow measurements downstream of each turbine are assumed (e.g., using LiDAR), their locations denoted as

red dots in Fig. 5, which is about 2% of the full to-be-estimated state space. These measurements are artificially disturbed

by zero-mean white noise with σ = 0.10 m/s. The KF settings are listed in Tables 2 and 3. The KF covariance matrices were

obtained through an iterative tuning process in previous work (Doekemeijer et al., 2017) with minor adjustments, to simulate

performance for untrained data. Figure 5 shows state (flow field) estimation of the three KF variants for two time instants,20

t= 300 s and t= 700 s. In this figure, (∆u)• ∈ RNu is defined as the error between the estimated and true longitudinal flow
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Table 2. Covariance settings for the KF variants, with I • the R•×• identity matrix. The full cov. matrices are diagonal concatenations of the

entries. For example, P0 is diag(P0,u, P0,v) and diag(P0,u, P0,v, P0,`s) for state-only and dual estimation, respectively.

Variable Symbol Units Value

Init. state error cov. of uk P0,u (m/s)2 1.0 · 10−1 · INu

Init. state error cov. of vk P0,v (m/s)2 1.0 · 10−1 · INv

Init. state error cov. of `sk P0,`s − 5.0 · 10−1

Model error cov. of uk Q0,u (m/s)2 1.0 · 10−2 · INu

Model error cov. of vk Q0,v (m/s)2 1.0 · 10−4 · INv

Model error cov. of `sk Q0,`s
− 1.0 · 10−4

Meas. error cov. of flow Ru,v (m/s)2 1.0 · 10−2 · IMu,v

Meas. error cov. of P RP (W)2 1.0 · 108 · INT

Table 3. Choice of tuning parameters for the KF variants, for both the 2-turbine and 9-turbine simulation case. Note that the ExKF does not

support power measurements nor parameter estimation due to the lack of linearization, and does not have any additional tuning parameters.

In terms of computational cost: simulations were run on a single node using 8 cores in parallel.

2-turb. 2-turb. 2-turb. 9-turb.

Variable ExKF UKF EnKF EnKF

Number of particles, Y − 4275 50 50

Tuning parameters −
α 1.0

β 2.0

κ 0

L 131 m

r 1.025

L 131 m

r 1.025

Comp. cost/it. 16.2 s 14.0 s 0.25 s 1.2 s

velocities in the field, given by

(∆u)• = |u•−uSOWFA|.

Looking at Fig. 5, the open-loop estimations are accurate for the unwaked and single waked flow, yet are lacking in the

situation of two overlapping wakes, for which the KFs correct. There is no significant difference in accuracy between the

different KF variants, yet they differ by two orders of magnitude in computational cost (Table 3).5

4.2.2 A comparison of sensor configurations

Previous results (Doekemeijer et al., 2016, 2017) have relied on flow measurements for state estimation. However, in exis-

ting wind farms, such measurements are typically not available. Rather, readily available SCADA data should be used for the

purpose of model calibration. For this reason, state estimation with the EnKF leveraging instantaneous turbine power measure-

ments, using an upstream-pointing LiDAR, and using a downstream-pointing LiDAR are compared in Fig. 6. Flow and power10

measurements are artificially disturbed by zero-mean white Gaussian noise with σ = 0.10 m/s and σ = 104 W, respectively.
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Figure 5. Comparison of estimation errors in flow fields for state-only estimation with the ExKF, EnKF and UKF at t= 300 s and t= 700 s.

The model and KF settings are depicted in Tables 1, 2, and 3. Wind is coming in from the top, flowing towards the bottom. The KFs

consistently improve the instantaneous flow field estimations, noticeably near the turbine rotors, where measurements (red dots) are nearby.

The KF settings are displayed in Tables 2 and 3. In Fig. 6 it can be seen that SCADA data allows comparable performance

compared to the use of flow measurements, making the proposed closed-loop control solution feasible for implementation in
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Figure 6. Comparison of estimation errors in flow fields for state-only estimation with the EnKF for various sensor configurations: using

only power measurements (SCADA), using flow measurements with a LiDAR system pointing upstream, and using flow measurements with

a LiDAR system pointing downstream of the rotor. The freestream wind is coming in from the top of the page, and flows towards the bottom.

Measurements (turbine/flow dots) are indicated in red.

existing wind farms, without the need for additional equipment. Furthermore, this modular framework allows the use of a

combination of LiDAR systems, measurement towers, and/or SCADA data, whichever is available, for model calibration.
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4.2.3 State and parameter (dual) estimation

Accurate long-term forecasting demands the calibration of model parameters such as `s in addition to the states (flow fields).

Dual estimation using flow measurements downstream of each turbine disturbed by zero-mean white noise with σ = 0.10 m/s

(as shown in the rightmost plots in Fig. 6) for the EnKF and UKF is displayed in Fig. 7, where the turbulence model tuning

parameter `s is additionally estimated. The higher `s, the more wake recovery is modeled by WFSim. The KF settings are5

identical to those in Tables 2 and 3. From this figure, it becomes clear that the flow field estimates are not only improved for

short-term forecasting, but are also consistently better than the non-calibrated (open-loop) model’s forecast for longer-term

forecasting due to the real-time adaptation of the turbulence model to the actual atmospheric conditions. Furthermore, it can

be seen that the EnKF performs comparably to the UKF, but at a much lower computational cost. Note that the EnKF even

outperforms the UKF in this simulation, but this is expected to be due to randomness in the EnKF. On average, the EnKF is10

expected to perform similar to the UKF in terms of estimation accuracy.

200 400 600 800 1000 1200 1400
0.5
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0.7

0.8

0.9

200 400 600 800 1000 1200 1400

Figure 7. Comparison of forecasting performance for state-only and state-parameter (`s) dual estimation with the EnKF and UKF, where

measurements are available up until the vertical red dashed lines, after which the estimation becomes a forecast. The KFs consistently

improve both the short-term and long-term forecasts, since the turbulence model is now also calibrated.

4.3 9-turbine ALM with turbulent inflow

In this section, we investigate the performance of the model calibration solution under a realistic 9-turbine wind farm scenario,

which employs the EnKF for dual state-parameter estimation. The wind farm contains nine NREL 5-MW baseline turbines,

oriented in a three by three layout, separated five and three rotor diameters apart in streamwise and crosswise direction,15

respectively. The turbines start with a 30◦ yaw misalignment, but are aligned with the mean wind direction within the first 30 s

of simulation. The turbine layout and numbering is shown in the top-left subplot of Fig. 9. This LES simulation has been used

before in the literature, and is described in more detail in Boersma et al. (2017b). A number of important simulation properties

are listed in Table 4 for SOWFA and WFSim, respectively.

Note that N has increased by a factor 4. In the UKF, this would result in the same factor of additional particles. Thus, not20

only is each particle more expensive to calculate, there are also more particles. Rather, in the EnKF, the approach is heuristic.

None of the EnKF settings needed to be changed for good performance compared to Section 4.2, as displayed in Tables 2 and 3.
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Table 4. Overview of several settings for the SOWFA and the WFSim 9-turbine wind farm simulation.

Variable Symbol SOWFA WFSim

Domain size - 3.5km× 3.0km× 1.0km 1.9km× 0.80km

Number of states N O(108)−O(109) 1.2 · 104

Cell size near rotors - 3m× 3m× 3m 25m× 38m

Cell size outer regions - 12m× 12m× 12m 25m× 38m

Rotor model - ALM ADM (cf = 2.0, cp = 0.97)

Inflow wind speed U∞ 12.03 m/s
12.00 m/s (OL)

9.00 m/s (EnKF)

Atmospheric turbulence - TI∞ = 4.7%

d′ = 3.8 · 101 m

d = 5.2 · 102 m

`s = 3.9 · 10−2

As shown in Table 3, the EnKF has a low computational cost of 1.2 s/iteration (8 cores, parallel). In this case study, both

the complete model state (flow field), the turbulence model parameter `s, and the freestream flow speed U∞ are estimated in

real-time using exclusively readily available power measurements from the turbines. The EnKF will deliberately be initialized

with a poor value for `s and U∞ to investigate convergence. The performance will be compared to an open-loop simulation of

WFSim with a poor value for `s, but with a correct value for U∞.5

In Fig. 8, it can be seen that the EnKF is successful in estimating the freestream wind speed U∞ and the turbulence model

parameter `s after about 300 s using only wind turbine power measurements. Furthermore, the flow fields of the to-be-estimated

model (SOWFA), of the open-loop (OL) simulation, and of the EnKF at various time instants are displayed in Fig. 9. From this

figure, it can be seen that the EnKF has very large errors at the start of the simulation. However, after 10 s, the error in flow

states surrounding each turbine significantly decreases through the use of wind turbine power measurements. This estimated10

flow then propagates downstream, “clearing up” the errors in the vicinity of the wind turbines. As time further propagates, the

freestream estimation improves, and the errors in front of the first row of turbines also reduce. Finally, the turbulence model

also adapts and the EnKF outperforms the open-loop simulation consistently.
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Figure 8. Convergence of `s and U∞ using the EnKF. In dashed lines are the grid-searched optimal constant values for the open-loop

simulation. With power measurements only, the model is able to estimate these parameters successfully in addition to the model states.
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Figure 9. Comparison of flow fields for state-parameter estimation with the EnKF. Wind is coming in from the top and flows downwards. The

variables U∞ and `s are incorrectly initialized in the EnKF and estimated in addition to the states, using only turbine power measurements.

The open-loop (OL) simulation is initialized with a poor `s but correct U∞. The EnKF quickly converges for the states, and more slowly for

`s and U∞. After several hundreds of seconds, the EnKF has converged and consistently reconstructs the wind flow in the farm.
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Figure 10. Comparison of power forecasting using the EnKF with measurements available up until time t= 600 s. After convergence of

the freestream wind speed (as seen as a positive power slope for the first row of turbines), the turbulence model is also calibrated. After

convergence, forecasting is significantly better than in open-loop. Oscillatory behavior is still present due to an oscillatory input signal (C′T ),

turbulent flow field, and the absence of inertia in the rotor model. Adding rotor inertia in the surrogate model would smooth the results to

better resemble true power data.

The power forecasting performance is shown in Fig. 10. In this figure, the power forecast for the OL is compared to that of

the EnKF, where we define the error in the time-series of the generated power of a single turbine i as (∆P )i
• ∈ RTk−Tf as

(∆P )i
• =

[
P i

k=Tf +1−P i
SOWFA,k=Tf +1 P i

k=Tf +2−P i
SOWFA,k=Tf +2 · · · P i

k=Tk
−P i

SOWFA,k=Tk

]T
,

with Tk the total number of discrete simulation timesteps, and Tf the discrete timestep at which the forecast starts.
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As previously seen in Fig. 8, the EnKF converges reasonably well after 300 s, and indeed the power forecasts outperform

those of the OL system at t= 300 s. Furthermore, it is interesting to see that the filtered power estimates of the first row of

turbines (i= 1,2,3) starts low at t= 1 s, but converges to the true power at approximately t= 200 s. This can be related to the

mismatch in U∞ estimates, which takes approximately 200− 400 s to converge to the true value of 12 m/s, as seen in Fig. 8.

The oscillatory behavior in both the OL and EnKF power predictions is due to the absence of rotor inertia in the rotor model,5

turbulent structures in the flow, and large fluctuations on the excitation signal C ′T .

Finally, the forecasts for flow at times t= 300 s and t= 600 s are examined in Fig. 11. The large flow estimation mismatch

in the EnKF at t < 250 s quickly reduces and for t > 250 s the EnKF estimation is consistently better than the OL case. This

has to do with the convergence of the model parameters `s and U∞, and the estimation of the states surrounding the turbines

using the power measurements.10

Figure 11. Comparison of flow field estimation using the EnKF. On the left, measurements are available only until t= 300 s, and on the

right until t= 600 s. The EnKF first has to converge due to the large mismatch between the estimated and true U∞. After convergence, the

forecasts are significantly better than in open-loop. Note that a relatively large region of (poorly observable) freestream flow is included in

(∆u), and hence the results appear suppressed compared to Fig. 9.

5 Conclusion

This paper presented a real-time model calibration algorithm for the dynamic surrogate wind farm model “WFSim”, relying

on an Ensemble Kalman filter (EnKF) at its core. The calibration solution was tested in two distinct high-fidelity wind farm

simulations. Using exclusively SCADA measurements which are readily available in current wind farms, the adaptability to

model discrepancies and time-varying atmospheric conditions (namely, the turbulence intensity and freestream wind speed) in15

a 9-turbine wind farm simulation was shown, at a low computational cost of approximately 1 s per timestep. Specifically, the

atmospheric parameters were shown to converge to their optimal values within 300 s. Furthermore, the EnKF was shown to

perform comparably in terms of accuracy to the state-of-the-art algorithms in the literature, at a computational cost of multiple

orders of magnitude lower. Additionally, estimation using flow measurements from LiDAR was compared to estimation using

SCADA data, and it was shown that SCADA data can effectively be used for real-time model calibration. Using the proposed20
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adaptation solution, the calibrated wind farm model can be used for accurate forecasting and optimization. This work presented

an essential building block for closed-loop wind farm control using surrogate dynamic wind farm models.

Code and data availability.

All models and algorithms presented in this article are open-source. The surrogate wind farm model (WFSim) and the

calibration solution are available in the public domain at https://github.com/TUDelft-DataDrivenControl/. SOWFA is available5

at https://github.com/NREL/SOWFA. All rights for SOWFA belong to the National Renewable Energy Laboratory (NREL) for

performing the simulations and providing these data.
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