Dear reviewer and editor,

We want to start by thanking you for the positive general comments and good specific suggestions that we can use to improve the paper. We will address the comments below.

Questions from reviewer Henk Poulinder

This paper presents test results of new method to test if a wind turbine meets the grid codes using a voltage source converter. What I appreciate very much is that this paper does not report on more simulations (as many other publications do), but on a test setup that has been built to test wind turbines. Building a voltage source converter with a power level of 8 MW and controlling it with such dynamics that it can simulate grid faults is a huge engineering job. This setup makes it possible to do lots of other tests that the current test setups using voltage dividers cannot do.

The authors presented this idea in earlier publications. This paper presents test results that show the equipment works.

1. More than half of the paper presents test results: measurements of voltages, currents and powers under different circumstances. Can the test of fig 5 be omitted because it does not add anything to fig 6?

2. Doing a frequency scan is something that is possible with a VSC. However, why is that useful? What can we do with the results? 3 p9, line 1, I think the ramp is 12.5 pu/s instead of 0.0125 pu/s. Is that correct?

4. I miss a reference to what seems to be a similar paper: C Saniter; J Janning, "Test Bench for Grid Code Simulations for Multi-MW Wind Turbines, Design and Control", IEEE Transactions on Power Electronics, 2008, Volume: 23, Pages: 1707 - 1715. What does the paper under review add to this one?

5. There are too many language mistakes. A number of examples: p3 line 4: In every grid code it is specified => Every grid code specifies p3 line 6: In fig. 1 is shown => Fig. 1 shows p4 line 7: dependent of => dependent on p4 line 24: can be of used to obtain => can be used to obtain p7 line 10-13: unclear sentence p9 line 14: as later see =>?? p12 line 3: signal of the wind turbine converter are => signals of the wind turbine converter are p12 line 5: have being kept => have been kept p12 line 7: dip => deep

Replay:

Dear Henk,

Thanks for the review, some comments follows, we have also updated the paper for most of your comments. Especially we have in a more clear way explained the benefits with frequency scan and improved the paper linguistically.

1. As explained in the text the LVRT control is not activated in the small dip test in fig 5 whereas in fig 6 the LVRT mode is activated and the control of active and reactive power starts a small oscillation in active and reactive power. And this can be a message for even larger transients
if the dip is larger. For this reason, we believe this case must stay in the paper. A note on this will be added to the paper.

2. This information is vital when, for example, analysing wind farm system data to identify the risk for sub-synchronous oscillations. This information is also valuable to evaluate the performance of large time-constant controller such as voltage control or power oscillations damping control that can be implemented in a wind turbine system or at wind farm level. A note on this will be added in the paper for better understudying of the reader.

3. Thank you for pointing this out. There is a m missing in pu/s, pu/ms. It will be corrected in the next revision.

4. Thank you for the suggestion and for the interest in the topic. The abstract indicate that that paper describe the test setup and not the use of it in a real test with a large wind turbine A discussion will be added to our paper and the list of reference will be updated. In the new text can be read: “For example, the test setup presented in Saniter and Janning (2008) consists of a complex configuration of several VSCs and a three-winding transformer. The paper discusses a comparison between no-load tests and simulation results, while the effectiveness of actual tests remain”

5. Thank you for pointing this. The paper will be checked for proofread.

The editor also like us to explain the scientific value of the paper:

This paper has demonstrated that the full characterisation of the wind turbine system can be carried out by using flexible VSC-based test equipment. The full controllability of the test device allows for testing of multiple grid scenarios, making it possible not only to determine the behaviour of the generating unit against common grid contingencies, but also to evaluate the performance of the generating unit in further improving overall grid reliability. This includes evaluating different operating modes of the wind turbine which can be of interest for the overall stability of the interconnected power system.

The unique field tests presented in this report have provided an experimental validation of the proposed wind turbine testing methodology, particularly on the wind turbine impedance characterisation and on the evaluation of its steady-state and dynamic performance under different grid conditions.

To the knowledge of the authors a full scale tests with a 4 MW wind turbine have not been reported in the literature, especially where the generator and the converter performance are shown during the same test occasion.

In this paper we have highlighted the test methods for wind turbines by VSC and the theory, methods development with simulations are omitted in this paper. The theory part are referred to in the background chapter and are well described in the PhD-thesis of the first author Nicolas Espinosa.

Best regards

Ola Carlson and Nicolas Espinosa
Field-Test of Wind Turbine by Voltage Source Converter

Nicolás Espinoza and Ola Carlson

Department of Electrical Engineering, Chalmers University of Technology, Gothenburg, SE - 412 96, Sweden

Correspondence to: Ola Carlson (ola.carlson@chalmers.se)

Abstract. One of the main challenges for wind energy development is to make wind turbines efficient in respect of costs while maintaining a terms of costs, whilst maintaining safe and reliable operation. An important design criterion is to fulfill the grid codes given by transmission system operators (TSO). The Grid Codes state how wind turbines/farms must behave when connected to the grid in normal and abnormal conditions. In this regard, it is well known that not all the technical requirements can be tested by using the actual impedance-based testing equipment. Therefore, test equipment comprising a fully-rated Voltage Source Converter (VSC) in back-to-back configuration is proposed. Thanks to the full controllability of the applied voltage in terms of magnitude, phase and frequency, the use of VSC-based test equipment provides more flexibility as compared with actual testing systems. As demonstrated in this paper, the investigated testing device can recreate any type of fault, including its recovery ramp and it can carry out steady-state tests, such as frequency scan, on the test object. Finally, test results are shown to validate the investigated grid code methodology.

1 Introduction

The reliability of the electrical grid depends on how well the generating units, including wind energy systems, are prepared to support the grid in case of abnormal conditions. In this regard, Transmission System Operators have included in their Grid Codes specific technical requirements for interconnection of wind power plants with the electricity grid. In general words, a Grid Code specifies how a generating plant should behave during normal and abnormal condition of the grid. The continuous increase in electrical energy from wind power injected into the power system has led TSOs to impose more stringent requirements for this kind of plants. For this reason, it is crucial to develop testing methodologies for this type of technology in order to ensure correct integration of wind energy into the electricity grids (Espinoza, 2016).

To evaluate the capability of the wind turbines to withstand grid disturbances, today tests are performed on the generating unit by using an impedance-based voltage dip generator. By developing further new testing methodologies, it will be possible to test for grid scenarios other than voltage dips, ensuring...
a reliable and fault-tolerant operation of the wind turbine system. Furthermore, in the future, wind turbines will be required
to participate more actively in the regulation of the grid (Tsiliand and Paphathanassiou, 2009). In this regard, it is
well known that voltage source converters (VSC) can provide the necessary flexibility in order to control the
terminal voltage as desired. On the other hand, power-electronic devices have become cheaper and more accessible over the
years (Blaabjerg and Ma, 2013). It is therefore natural that future test devices will be fully, or if not, partially
partly or fully driven by VSC devices. For these reasons, a test run has been carried out during January 2015 to August 2017 on Big Glenn wind turbine (4.1 MW full-power converter (FPC) wind turbine) by means of a full-rated VSC-based testing equipment (so called “Big Glenn” wind turbine) using a fully-rated 8 MW VSC-HVDC VSC-based test equipment.

2 Review of Grid Code technical requirements

The Grid Codes considered in this section refer to countries that have high penetration of wind power penetration into their national grids (EWEA, 2016). Consequently, these countries have developed detailed technical requirements for grid interconnection of wind power plants (Espinoza et al., 2013).

The requirements for steady-state operation of the grid can be mainly categorized into three groups: reactive power requirements for normal voltage operation range; reactive power requirements during nominal active power production; and minimum operation time and active power curtailment during long-term frequency deviations.

These requirements have been compared in Tsiliand and Paphathanassiou (2009), Espinoza et al. (2013), Mohseni and Islam (2012) and Altin et al. (2010). A dedicated analysis of the German Grid Code is given in Erlich and Bachmann (2005). A specific analysis of the German grid code is given in Erlich and Bachmann (2005). Finally, control strategies developed for meeting Grid Code technical requirements have been documented in Bongiorno and Thiringer (2013), Molina et al. (2007) and Martinez and Navarro (2008).

2.1 Requirements for steady-state condition of the grid

A TSO can require reactive power injection from wind farms to support overall system voltage control during normal operation of the grid. Usually, reactive power requirements are delimited in a minimum power factor range that goes from 0.95 lagging to 0.925 leading and for an active power set-point of between 0.05 pu and 1 pu and within a nominal voltage that varies between 0.9 pu and 1.15 pu.

Reactive power requirements are also dependent on the active power production of the wind farm. For instance, the Danish Grid Code (ENERGINETDK, 2010) states that dependencies between voltage and reactive power, and between active and reactive power production. Both requirements shall be complied with simultaneously during normal operation of the wind farm. Moreover, reactive power injection can be controlled by either a voltage control or power factor control (Tsiliand and Paphathanassiou,
2009). An extra option to define the additional option for defining reactive power production is to manually set the reactive power operating point if, for example, a continuous voltage deviation is present at the connection point. Moreover, grid codes specify the steady-state frequency and voltage operation range within which the wind turbine should operate continuously. Normal for voltages, normal condition is considered for voltages close to be at 1.0 pu and frequency around with frequency of 50 or 60 Hz, with a deviation of approximately ±0.1 pu from the rated voltage and ±0.5 Hz from the rated frequency. Any steady state grid condition outside these values boundaries is defined by a minimum operational time, and in some cases, by a control action on the active power set-point of the wind farm, as enforced by the TSOs, e.g.: the Danish (ENERGINETDK, 2010), Irish (EirGrid, 2015) and German (E.ON, 2006, 2008) TSOs. When active power curtailment is demanded by the TSOs, in case of frequency deviations, the generation unit must vary its active power output in order to contribute to the overall regulation of the system frequency. In severe cases, where the system frequency is outside the frequency operation band, the generating plant is allowed to disconnect.

2.2 Requirements for dynamic condition of the grid

Every Grid Code specifies a voltage dip profile that the wind turbine should ride through without tripping. An exhaustive comparison of LVRT profiles is given in Tsiliand and Papathanassiou (2009). Low voltage ride through profiles, characterised in terms of fault time, retained voltage and recovery ramp rates can be found in Mohseni and Islam (2012). Figure 1 shows a combination of the strictest LVRT profiles among the selected Grid Codes. In particular, the European Grid Code (ENTSO-E, 2016) defines the guidelines to establish the LVRT profiles in each network inside the European Union (EU).
When it is specified in the Grid Code, wind parks are required to support voltage restoration by injecting reactive power into the grid. In particular, specifically, the generating plant must provide voltage support by injecting a specific amount of reactive current during a voltage dip depending on the retained voltage at the connection point. For example, the Danish Grid Code (ENERGINETDK, 2010) enforces a specific LVRT with a retained voltage of 0.2 pu per 500 ms, as shown in Fig. 1, and demands for stipulates reactive power support during voltage restoration. Reactive current must be injected when in a linear fashion when the voltage deviates below 0.9 pu. When the system voltage is lower than 0.5 pu, nominal reactive current injection must be reached.

2.3 Testing for Grid Code fulfilment

The IEC 61400-21 standard issued by the International Electrotechnical Commission (IEC) defines the methodology to test part of the requirement stated in Grid Codes for interconnection of technical requirement stipulated in grid codes, particularly for interconnecting wind turbines (IEC 61400-21 ed2.0, 2008). Moreover, in order to fulfil the standard criteria, specialised testing equipment has been developed to convey the standard criteria and phase angle of the applied voltage can be controlled as desired. Although it has a simple and robust design which makes it modular and easily transportable, one of the main drawbacks of this test device is the fact that it is only able to apply voltage steps test device is that can only be applied to voltage step variations due to the closing-opening action of the circuit breaker. Moreover, the device is highly dependent on the short-circuit power at the grid connection point, which will also impact the resulting wind turbine voltage (Ausz et al., 2008; Yang et al., 2012; Hu et al., 2009). Other devices have been developed in which the applicable voltage is controlled by VSC. For example, the test setup presented in Saniter and Janning (2008) consist of a highly-complex consists of a complex configuration of several VSCs and a three-winding transformer while the paper discusses a comparison between no-load test tests and simulation results, while the effectiveness of actual tests remain undisclosed.

A simple and flexible solution to realise a voltage dip generator is to use two fully-rated VSCs in back-to-back configuration. By controlling the turbine-side output of the converter system, the effect of all kinds of grid faults can be emulated (Wessels et al., 2010). Thanks to the full controllability of the applied voltage in terms of magnitude, phase and frequency, the use of VSC-based test equipment, shown in Fig. 2, provides more flexibility as compared to the standard impedance-based test equipment (Espinoza et al., 2013; Ausin et al., 2008). It also brings more advantages in terms of size and weight (Yang et al., 2012; Diaz and Cardenas, 2013). In addition, furthermore, the AC grid is decoupled from the tested object when performing the test, meaning that the strength of the grid is not a major limitation test object when conducting the test. This means that, if a proper control strategy is implemented for the grid-side VSC of the test equipment is implemented, grid strength is not a major limitation.
Moreover, the LVRT profile given in the majority of the Grid Codes can be fully tested, including the recovery ramp (Espinoza et al., 2013), allowing for the emulation of any kind of grid scenario applied to the tested object. Its precise control allows for more possibilities of tests that can be carried out besides what is normally required in the Grid Codes: more test types to be conducted than normally required by grid codes. For example, frequency characterization of wind turbines can be performed support capabilities of the test object can be evaluated by conducting a test in which the fundamental frequency applied at the PCC is varied. On the other hand, a frequency characterization of the wind turbine can be conducted by introducing asynchronous frequency content into the applied voltage while observing the equivalence admittance at the Point of Common Coupling – point of common coupling (PCC). Additionally, frequency support capabilities of the tested object can be evaluated by performing a test where the frequency applied at the PCC is varied, as later demonstrated, as demonstrated later in this paper.

Since wind turbine data is not always available, the testing equipment can be used to obtain more information from an actual wind turbine system (Espinoza, 2016). By using a fully controllable VSC-based testing equipment, it is possible to determine how well the wind turbine is able to reject frequency components other than the fundamental frequency. In this regard, the generating unit can be scanned across a wider frequency range in which the wind turbine could interact with other existing elements present in the interconnected grid. In this regard, frequency scan tests have been carried out by means of the testing-device to characterize the input admittance of the tested wind turbine unit being tested. In this paper, this analysis is limited to the sub-synchronous range only. The implementation of the controller on the testing equipment is also discussed in Espinoza (2016).

The main drawback of this technology is the fact that it is more expensive than using the standard testing device introduced in the previous section. In addition, the control algorithm needed to implement such arrangement of VSC is more complex, and extra attention must be paid when dealing with over-currents due to the use of sensitive power electronics. Moreover, to emulate a grid fault as realistically as possible, a high dynamic performance of the controller that computes the output voltage of the VSC is necessary.
3 Description of the testing facility

3.1 System layout

The testing equipment is an 8 MW back-to-back HVDC station placed in the harbour of Gothenburg, Sweden. A picture of the actual wind turbine is given in Fig. 3 (Göteborg Energi AB). Figure 3 pictures the wind turbine itself. The turbine is located at the edge of the land in proximity and close to the sea. During the majority of the time, the wind turbine receives offshore wind from the northern part of Denmark. The station, shown in Fig. 3, houses the interconnecting filters shown in Fig. 3. Equipment shown at the bottom right side. Moreover, a diagram of the layout of the wind turbine wind turbine layout connected to the VSC-based testing device is shown in Fig. 2, including test device, including the VSC, interconnecting filters and coupling transformer, which are located in the HVDC station, is shown in Fig. 2.
3.2 Description of the VSC-based test system

3.3 VSC-based testing system description

The test equipment is rated at 8 MVA at 10.5 kV. The wind turbine is coupled to the testing device at the primary of the coupling transformer, as shown in Fig. 2. The secondary of the transformer is rated at 9.35 kV and its impedance 0.08 pu. An LCL filter bank is placed in order to remove the harmonic content produced by the turbine-side VSC itself. This converter controls the AC voltage imposed to the wind turbine system, while the grid-side converter is controlling the DC-link voltage by exchanging active power with the interconnecting grid. The testing equipment is interfaced with the grid means of LCL 10.5 kV grid using again an LCL filter bank and coupling transformer, which grid-side is again 10.5 kV. Note that the AC grid is decoupled from the tested object when performing the test; meaning that the strength of the grid is not a major limitation. Finally, between, the wind turbine and testing equipment are interconnected by a 300 m cable.

In this installation, only the three-phase voltages and three-phase currents at the PCC are sampled by a computer located in the control room of the HVDC station. The instantaneous active and reactive power are calculated off-line.

3.2.1 Control of the grid-side VSC

The main blocks that constitute the implemented discrete controller are the DC voltage control and the inner current controller together with the inner current control and pulse-width modulator (PWM) block in cascade configuration and synchronized with the AC grid by means of a phase-locked loop (PLL). The structure of a typical cascaded controller can be found in Espinoza (2016). The outer DC voltage control generates the reference current for the inner current controller of the grid-connected converter. The output of the current controller is the reference voltage value for the output voltage at the terminals of the grid-side VSC. The output reference voltage is sent to a pulse-width modulator (PWM) block which computes the gating signals of the VSC (Espinoza, 2016) for the VSC transistors. The complete structure of a typical controller for this type of application can be found in Espinoza (2016).

3.2.2 Control of the turbine-side VSC

A dedicated open-loop voltage control is incorporated in the control algorithm of the turbine-side VSC of the test equipment. A dedicated open-loop voltage control is implemented. The output of the controller is the reference value for the output voltage of the VSC–VSC terminal voltage. Finally, a PWM modulator is used to compute the switching signals of the converter (Espinoza, 2016).
3.3 Big Glenn wind turbine

In an FPC wind turbine, the generator is connected to the grid through a full-power rated back-to-back VSC, as depicted in Fig. 4. This configuration allows for an increased fault-tolerant capability of the wind turbine, avoiding severe transients in the generator when a grid fault occurs. Moreover, the grid-side converter of an FPC wind turbine can be designed and controlled in order to provide additional reactive power support, without having the need of over-magnetizing the generator core. Moreover, a gearbox is typically used to step-up the rotational speed when coupling the wind turbine hub with the generator shaft. In a direct-drive configuration similar to that found in Big Glenn, i.e., absence of the gearbox in the drive train, allowing direct connection between the hub and the rotor, a dedicated low-speed multi-pole generator must be used in order to achieve the desired nominal frequency in the stator terminals. The back-to-back VSC is then used to transfer the generated power to the AC grid, while allowing enough decoupling thanks to the DC-link between the two VSCs in Fig. 4. This configuration allows for an increased fault-tolerant capability of the wind turbine, avoiding severe transients in the generator when a grid fault occurs. Moreover, the grid-side converter of an FPC wind turbine can be designed and controlled to provide an additional reactive power support.

The use of fully-rated back-to-back VSC for grid interconnection of wind turbine generators allows for a fast response during abnormal grid condition. The wind turbine under test is rated at 4.1 MVA at 10.5 kV. The stator of the generator, having a voltage rating of 0.69 kV, is directly connected to the back-to-back VSC. The generator-side VSC, here operated in torque control mode, injects the generated power into the wind turbine DC-link capacitor. The grid-side VSC controls the DC-link voltage by exchanging active power into the grid. The DC-link capacitor is protected by a DC-crowbar, which allows for the redirection of the produced power into a resistor providing a fast protection during DC over-voltages.
power with the imposed AC grid. A filtering stage is placed between the VSC and the LV-side of the wind turbine transformer in order to reduce the harmonic content injected into the electricity grid.

Finally, the output transformer of the wind turbine, with an impedance of 0.06 pu, steps-up the voltage from 0.69 kV to 10.5 kV. Information about wind turbine control during faults can be found in Espinoza (2016), Abram Perdana (2014), Espinoza et al. (2015).

4 Tests results

4.1 Testing for Low Voltage Ride Through (LVRT)

One of the first tests carried out on the testing facility corresponds to a voltage dip at full power production. The following tests were conducted on January 13th, 2015. The first attempt was to select a relatively small voltage variation, with a smooth transition between normal operation level and retained level. In order to conduct the experiment safely while learning the dynamics of the system, the voltage is reduced from 1 pu to 0.9 pu for 100 ms. The results are shown in Fig. 5. In the following and in all plots, a base voltage of 10.5 kV and base power of 4.1 MVA is utilized.

The three-phase PCC voltage is shown in Fig. 5. At 0.05 s the voltage is reduced from 1 pu to 0.9 pu. At 0.15 s the voltage is brought back to 1 pu with a ramp function. In this test, a stiff ramp rate of 0.2 pu/ms has been selected for the inception of the voltage dip, while a ramp of 0.01 pu/ms has been set for the recovery. In order for the wind turbine to maintain constant
power production during the voltage reduction, the generating unit increases the magnitude of the current, while maintaining a constant power production, as also depicted in Fig. 5. During the voltage variation, the wind turbine maintains its active power set-point, injecting a steady 0.9 pu of active power into the imposed grid. From the figure, it is possible to observe that the wind turbine does not engage its LVRT control. Thus, the reactive power is reduced only due to the reduction of the voltage across the AC-link between the wind turbine and the test equipment.

A second test was carried out the same day and during the time in which the wind turbine was still producing nominal active power. Here, the voltage varied from 1 pu to 0.65 pu for 100 ms while the wind turbine is producing nominal active power. As compared with the test presented in Fig. 5 with the same ramp-rates as previously mentioned. In this test, the LVRT control strategy of the wind turbine is here activated. The results are depicted in presented Fig. 6. Moreover, the latter figure shows an indication on how sensitive fault ride-through thresholds were activated during the voltage dip, providing an indication of how sensitive fault ride-through thresholds are set in the tested object. The results are presented in Fig. 6.

The three-phase PCC voltage is dropped at t=0.05 s. In this test, a stiff ramp rate of 0.2 pu/ms has been selected for the voltage dip while a ramp of 0.01 pu/ms has been set for the recovery. At 0.075 s, it is possible to observe a transient in both the current and the voltage shown in the figure. The transient lasts for 10 ms and while the wind turbine manages to control its current output during the voltage dip.
measurement point is 0.2 pu. The wind turbine injects an additional 0.2 pu of reactive power when detecting the voltage dip at its terminals. Therefore, a total of 0.4 pu is maintained until the voltage is increased back to 1 pu. The voltage starts to recover at 0.18 s with a ramp function. Observe that the current is also reduced at the same time while the reactive power is brought back to 0.2 pu. The active power oscillates at 0.23 s when the voltage has reached a steady-state level of 1 pu. Observe that the current is above 1 pu during the voltage dip, meaning that the wind turbine has over-current capabilities and it is capable of momentarily increase the output current beyond nominal values during the voltage dip contingency.

4.2 Reactive power control during voltage dip

A similar test has been carried out on the 17th of May of 2016. Unfortunately, the wind turbine was operating at low wind speed. However, the lack of produced active power made the variations in the reactive power more prominent, as shown later in this section. This experiment consists of a voltage variation from 1 pu to 0.75 for about 200 ms. In order to avoid an oscillatory response similar to the ones experienced in the previous experiment, the down-slope ramp of the controlled VSC voltage is set to 0.02 pu/ms and the recovery ramp is set to 0.006 pu/ms. From the voltage waveform given in Fig. 7, it is possible to observe that the voltage is controlled by the testing equipment in an effective and smooth way. Moreover, due to reduced ramp rate slope at dip inception, as compared to 10 times faster in Fig. 6, the oscillatory response is not triggered.

The active power was set to 0.15 pu during this test. Moreover, the reactive power seen in Fig. 7 at pre-fault is mainly due to the capacitor bank of the local LCL filter placed at the terminals of the turbine-side VSC of the testing equipment, while the variation observed during the voltage dip is due to the control action of the wind turbine.

When the wind turbine injects reactive current when the voltage dip is detected at 0.12 s, the wind turbine injects reactive current. As shown in the figure, the current reaches 0.95 pu at 1 pu, meaning that the turbine is operated in proximity to the rated current. In order to quickly boost the voltage, the reactive power is increased with a ramp function. There is a small overshoot in the current that is reflected on the reactive power at 0.14 s, mainly due to the fact that the voltage has reached steady-state during the dip while the current continues to increase. This can be attributed to the voltage monitoring system and the reactive power controller of the wind turbine during dynamic condition of the grid.

The reactive power injection is maintained for the complete duration of the voltage dip. The (mainly reactive) three-phase current is later reduced when the voltage is restored to 1 pu. Note that the current is maintained during a short period of time briefly at 0.85 pu, while the voltage has already started to increase towards 1 pu. The system reaches a post-fault steady-state at 0.43 s. It can be observed that there is a small transient on the reactive power set-point after the voltage dip can be observed both at fault inception and recovery.

This can be attributed to the wind turbine voltage monitoring system and the dynamics of the reactive power controller of the wind turbine; particularly, to the wind turbine control action when calculating a reactive current reference based on a varying instantaneous measured voltage. Afterwards, the wind turbine will resume normal operation, reducing the
current (and therefore the reactive power output) to its pre-fault operating point. The system reaches a post-fault steady-state at 0.43 s.

4.3 Testing for unbalance voltage dip

In this section, the response of the wind turbine under unbalanced voltage dips is studied. This test was conducted on 17th of May of 2016, at under low wind conditions. The turbine-side VSC of the actual testing equipment is controlled in an open-loop and the voltages in phases a and b are dropped from 1 pu to 0.7 pu for 200 ms. The resulting PCC voltage is given in Fig. 8. During the duration of the test, the voltage in phase c is maintained at 1 pu from the VSC output. However, due to the negative sequence across the AC circuit between test-VSC-test device and wind turbine, phase c appears to be slightly lower than 1 pu at the measurement point.

Moreover, observe from the power plot in Fig. 8 that the reactive power is increased from approximately 0.25 pu to 0.35 pu approximately, while a relatively small oscillation at 100 Hz in both active and reactive power is seen. The distorted current shown in Fig. 8 accounts for oscillations seen in the power, although these oscillations are small, mainly due to the small negative sequence present in the current.

These last three examples clearly illustrate the response of the wind turbine, particularly the reactive power controller during a balanced and unbalanced voltage dip. Considering that the control system of the tested wind turbine’s control system is unknown, these results suggest that the controller implemented on the wind turbine accounts for the negative sequence, while still experiencing small oscillations in its output power.
Figure 8. Wind turbine tested for unbalanced voltage dip at low power production. In figure shows three-phase voltage and current and active and reactive power output.

4.4 Impact of the voltage dip in wind turbine converter

A voltage dip applied at the VSC terminals of the VSC of the testing equipment affect drastically the voltage of the testing equipment. Moreover, the grid-side VSC controller of the wind turbine VSC will also react against the voltage dip measured at the LV-side of its output transformer (where the local LCL filter is, particularly at the grid-side LCL filter shown in Fig. 4). Although the measured voltage will be somewhat smooth because of the filtering action of the overall inductance due to the wind turbine transformer impedance and filtering stage, the resulting output current and DC voltage of the back-to-back wind turbine converter VSC are controlled in such way that the wind turbine can maintain normal operation as when possible. In the following this regard, the internal signals of the wind turbine converter are plotted for the case given in Fig. 6 and the effect of the voltage dip test is further discussed below.

For a better understanding of the dynamics inside the wind turbine converter, the physical magnitudes of speed, voltage and power have been kept, while the measured torque and mechanical power at the generator are shown in percentage of their nominal values.

If the voltage reduction is not dip sufficiently, the wind turbine might have some extra room in its rating in order to maintain normal power production at a reduced voltage (see Fig. 5). This can be done by increasing the current immediately after detecting a voltage dip. In this regard, Fig. 9 shows the effect of a voltage dip in the wind turbine converter. The voltage imposed is measured at 1 pu and is dropped to 0.74 pu for approximately
Figure 9. Wind turbine VSC under a non-severe voltage dip. The figure shows AC voltage resulting at the LV-side of the wind turbine transformer and DC voltage and AC current magnitude measured at the grid-side VSC.

Figure 10. Wind turbine VSC under a non-severe voltage dip. The figure shows generator torque and generator speed.

The VSC line current is also plotted in Fig. 9 and it increases rapidly when the voltage dip is detected at 0.08 s. Its pre-fault value is 0.85 pu and rises to 1.3 pu during the dip. The DC voltage (also shown in Fig. 9) is dropped during the test. This can be attributed to the fast increase in wind turbine current, which can be faster than the time constant of the DC link capacitor, allowing capacitors at the wind turbine converter. This allows a normal power flow during the dip while affecting slightly or even decreasing slightly disturbing the DC voltage.
Finally, it is interesting to see the decoupling that exist between the grid-side VSC and the generator-side VSC of the wind turbine. Figure 10 shows the generator torque and generator-speed when the grid voltage experiences a dip. If the conditions are met so that for the wind turbine VSC response is to be smooth, the generator is not affected. Here, the torque is maintained constant at a constant 1 pu and the speed is also controlled at 1 pu as well, meaning that. This means the wind turbine system is operated at full power. Note that the wind turbine converter has over-current capabilities in order to maintain a constant power flow during transients.

4.5 Testing for frequency deviation

In this case study, the voltage applied to the wind turbine is controlled at 1 pu and only the fundamental frequency is varied. The obtained results are shown in Fig. 11. In order to measure for a long period of time, voltage and current are measured by a portable unit installed at the turbine-side of the VSC-HVDC station shown in Fig. 3. Particularly, at the converter-side of the coupling transformer in. The unit is placed between the coupling transformer and the LCL filter shown in Fig. 3. For this reason, the reactive power curve depicted (shown in red in Fig. 11) has a different value compared to the other case studies shown throughout in this paper.

Here, the measured frequency and the active and reactive power output are shown. The first scenario corresponds to a frequency drop of 0.5 Hz for 15 seconds. From the first case shown in Fig. 11, it can be noticed observed that the frequency is varied with a ramp of 0.2 Hz/s, or 5 seconds per varied Hz, for both the drop and the recovery of the frequency. According to the Swedish Grid Code code (Svenska Kraftnät, 2005), the wind turbine should maintain its active power production at any given frequency within the specified normal frequency range, i.e., from 49.5 Hz to 50.5 Hz; while varying its output power for frequencies outside this range and ultimately ceasing to operate at frequencies outside the full operational range, i.e., 48 Hz to 52 Hz. The upper plot in Fig. 11 for frequency dip in Fig. 11 shows that the active power is kept constant at 0.7 pu for the majority of the time during the test. At 30 s, the active power is slightly reduced, mainly due to the variations in the wind speed at the moment of the variations in wind speed during the test.

The second scenario corresponds to two consecutive frequency swells of 1 Hz. The frequency is initially controlled at 50 Hz and varied upwards with a ramp of 0.05 Hz/s, or 20 seconds per varied Hz. A frequency of 51 Hz is maintained for approximately 25 seconds. Afterwards, the frequency is increased to 52 Hz. The results are shown in the right-side of Fig. 11.

Observe in the lower plot that the upwards and downwards tendency of the output power suggests that the wind turbine its operating point according to the wind speed and not in demand for the applied frequency. In addition, the active power is increased slightly 10 seconds after the frequency reaches 51 Hz, at 40 s, while continues to increase with the increasing of the system frequency as the system frequency increases, at 60 s. Finally, a critical point is encountered at 80 s when the frequency reaches 52 Hz. The wind turbine enters into an operation mode which affects the active power output while...
whilst experiencing an oscillation at roughly 100 Hz. The wind turbine shuts down via an over-frequency protection relay, five seconds after the frequency reaches 52 Hz, at t=85 s. The different power production levels experienced when performing the test are also somewhat reflected on the reactive power output of the wind turbine, as seen in the red traces for both scenarios shown in Fig. 11.

4.6 Frequency scan

Carry on Conducting a frequency scan on a wind turbine generator can provide valuable information about how the tested system behaves across a wider frequency range. This information is vital when, for example, analysing wind farm system data to identify e.g., the risk for issues such as the risk of sub-synchronous oscillations; the risk for interaction with other elements of the interconnecting grid such as underwater cables or filter banks in case of off-shore wind farms; as well as wind turbine (for offshore wind farms), or interaction with active devices such as a Static Synchronous Condenser (STATCOM). In addition, the investigated method can provide information in order to evaluate the stability as well as the performance of large time-constant controllers, such as voltage control or power oscillations damping control implemented in a wind turbine system or at wind farm level energy system.

Firstly, this section shows the frequency scan test carried out on the 20th of June, 2016, when the wind turbine was operating at 0.6 pu power of production. Afterwards, the result of the frequency scan test carried out on the 17th of May, 2016, at low power production, is then given. The current and voltage are measured at the HVDC station, where controlling the voltage applied to the wind turbine is controlled. The frequency scan is performed by adding a voltage
Figure 12. Results of frequency scan on the wind turbine operated at 565% of power production. In the figure, it shows operating points prior the scan, measured, and admittance components, measured.

Figure 13. Results of frequency scan on the wind turbine operated at 655% of power production. In the figure, it shows the operating points prior the scan, measured, and admittance components, measured.

Component of magnitude 0.015 pu modulated at the interested frequency, on top of (modulated to the frequency being scanned) to the fundamental reference voltage of 1 pu. The measured phase voltage and line current are evaluated at the frequency of interest, by and using the methodology given in Espinoza (2016), also reported in Espinoza et al. (2016).

The wind turbine is changing. During the scan, the wind turbine changed its operating conditions during each tested frequency, and these are shown in Fig. 12 in bars. The average output power, power output, of the wind turbine is measured at 2.9 MW. However, a wide variation between 2.6 MW and 3.5 MW has been encountered during the test. The, as shown in Fig. 12, as bars of different length. For each scan at a given frequency, the wind turbine impedance $Z_w(j\omega)$ is obtained as an average of the phase impedances. The, while each phase impedance is computed with the corresponding voltage and current vector measured at the frequency of interest and averaged within the sampling period.
The wind turbine admittance $Y_w(j\omega)$ can be calculated by the inverse of $Z_w(j\omega)$. The real and imaginary part together with the parts, plus magnitude of the measured phase admittance $Y_w(j\omega)$ are shown in Fig. 12 with as blue and green dots respectively. The magnitude of the admittance is plotted in as white dots. The resulting measured points in Fig. 12 suggest that the wind turbine presents a positive real part for frequencies below 22 Hz, with a maximum measured value of 2.8 pu at 10 Hz. On the other hand, a relatively high non-passivity behaviour is exhibited for frequencies above 30 Hz, meaning that the wind turbine could resonate if these frequencies are encountered in the network. The minimum value for $Re(Y_w(j\omega))$ is -1.5 pu and can be observed at the last scanned frequency of 34 Hz.

The scanned imaginary part of the admittance $Im(Y_w(j\omega))$ is also shown in Fig. 12 in as green dots. The turbine seems to exhibit a capacitive behaviour for most of the studied frequency range. The reactive power set-point at the measurement point is dependent on both the configuration of the filtering stage at the terminals of the VSC-HVDC terminals and on the wind turbineÔÇÖs reactive power controller. The minimum value of $Im(Y_w(j\omega))$ is found to be -2.4 pu at 18 Hz, exhibiting its maximum capacitance in the scanned frequency range. For frequencies above 20 Hz, $Im(Y_w(j\omega))$ increases up to a maximum of -0.4 pu measured at 34 Hz, corresponding to its minimum capacitance in the synchronous-sub-synchronous range. Observe, however, that the reactive power set-point shown Fig. 12 is kept relatively constant at 0.2 pu (0.9 MVAr) at 50 Hz during all throughout the test.

The absolute value of the measured wind turbine admittance $|Y_w(j\omega)|$ is also shown in Fig. 12 as white dots. The Note that the operating point of the wind turbine at the moment of each test impacts both the amplitude and also the vector components of its input admittance during each scan impact not only the amplitude of the admittance but also its vector components. For this reason, the uneven trend of $|Y_w(j\omega)|$ somewhat matches the variation on the output power of the wind turbine at each scanned frequency.

Finally, a second frequency scan is given in Fig. 13. The test was carried out in a very low windy day; therefore, conducted on a day with very little wind; thus, the wind turbine is operating at low power production. The figure shows the active and reactive power set-points at the moment of each test. Moreover, it is possible to note that the power flow is mainly dominated by reactive power coming from the filter banks between the wind turbine and the testing equipment. The test equipment with a measured reactive power is 0.023 pu for all 0.23 pu throughout the test. The calculated admittance components are shown in dots also in Fig. 13 magnitude and its real and imaginary components are also shown in Fig. 13 as white, blue and green dots, respectively.

The real part of the admittance component $Re(Y_w(j\omega))$, shown in blue dots in Fig. 13, is slightly reduced to 2.2 pu, as compared to 2.8 pu given for the previous case. The shows a reduction of 0.3 pu in its magnitude, if compared with the previous scan. However, the main difference is the zero-crossing of the real part, which in this case occurs at 26 Hz, instead of 23 Hz for mid-power operation. From the plots where the reactive power is given, this second test shows a small increase in the reactive power measured at the HVDC station. Thus, the imaginary part of the measured admittance $Im(Y_w(j\omega))$ can be affected by the operating point of the wind turbine, making the green trace in Fig. 13 slightly closer to 0 pu, as compared with Fig. 12. Finally, the total magnitude $|Y_w(j\omega)|$ of the admittance is decreased from 4 pu from in the first test, to 2.7 pu when...
operated at no power, as shown in white dots in the figure. Observe that the trend of $|Y_w(j\omega)|$ is somewhat smoother given that the wind turbines operate at low power during the complete turbine operates at low power for the full duration of the scan.

5 Conclusions

In this paper it has been demonstrated that the full characterization of the wind turbine system can be carried out by the use of flexible VSC-based test equipment. The full controllability of the test device allows for testing of multiple grid scenarios, making it possible not only to determine the behaviour of the generating unit against common grid contingencies, but also to evaluate the performance of the generating unit in further improving the overall reliability of the wind turbine system. This includes, for example, the evaluation of different operating modes that are of interest for the overall stability of the interconnected power system.

Field test results of the Big Glenn 4.1 MW wind turbine and 8 MW test equipment have been included in this paper. The tests carried out on the actual wind turbine system include balance and unbalanced voltage dips, defined by different retained voltage and different ramp-rates, as well as frequency variation tests and frequency scans. The results show that a LVRT control strategy is implemented in the tested system. Moreover, it has been shown that the generating unit maintains a smooth control of the reactive power output even during unbalanced voltage dips, at least for low power set-points. These results demonstrate that a VSC-based test device can be used to evaluate how well a wind turbine system can withstand the technical requirements given in the Grid Codes.

The multi-megawatt FPC wind turbine system has also been characterized in the sub-synchronous range by means of the interconnected VSC-based test equipment. The frequency scanning technique has been demonstrated by field test and the input admittance of the generating unit has been evaluated under two operating conditions. The frequency trend of the scanned turbine exhibits a non-passive behaviour at higher frequencies within the sub-synchronous range, while also exhibiting capacitive behaviour throughout the complete scanned range. The unique field tests presented in this report have provided an experimental validation of the proposed wind turbine testing methodology, particularly on the wind turbine impedance characterization and on the evaluation of its steady-state and dynamic performance against different conditions of the grid.

Acknowledgements. This work was carried out within the Swedish Wind Power Technology Centre (SWPTC). The financial support provided by the academic and industrial partners including Göteborg Energi, Protrol, the Västra Götaland Region and the Swedish Energy Agency is gratefully acknowledged.
References

ENERGINETDK: Technical regulation 3.2.5 for wind power plants with a power output greater than 11 kW, Energinet.dk, 2010.

Svenska Kraftnät: The Business Agency Svenska kraftnats regulations and general advice concerning the reliable design of production plants, Svenska Kraftnat, 2005.

