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Abstract. The large amount of computational effort required for a full fatigue assessment of offshore wind turbine support

structures under operational conditions can make these analyses prohibitive. Especially for applications like design optimiza-

tion, where the analysis would have to be repeated for each iteration of the process. To combat this issue, we present a simple

procedure for reducing the number of load cases required for an accurate fatigue assessment. After training on one full fatigue

analysis of a base design, the method can be applied to establish a deterministic, reduced sampling set to be used for a family5

of related designs. The method is based on sorting the load cases by their severity, measured as the product of fatigue damage

and probability of occurrence, and then calculating the relative error resulting from using only the most severe load cases

to estimate the total fatigue damage. By assuming this error to be approximately constant, one can then estimate the fatigue

damage of other designs using just these load cases. The method yields a maximum error of about 6% when using around 30

load cases (out of 3647) and, for most cases, errors of less than 1-2% can be expected for sample sizes in the range 15-60. One10

of the main points in favor of the method is its simplicity when compared to more advanced sampling-based approaches. The

method as is can be used without further modifications and is especially useful for design optimization and preliminary design.

We end the paper by noting a few possibilities for future work that extend or improve upon the method.

1 Introduction

A central practical obstacle for researchers and designers when it comes to analyzing the performance of offshore wind tur-15

bine support structures is the large amount of environmental states that need to be included. In order to assess the structural

response to the many loading scenarios resulting from varying wind and wave conditions, simulations must be carried out for

a large number of combinations of environmental states, usually called load cases. Each simulation of this kind, at least when

carried out with accurate aero-elastic software, is a non-trivial task in terms of computational effort. Assessing the structural

performance in the fatigue limit states for operational conditions alone typically means thousands of load cases when following20

relevant standards (International Electrotechnical Commision, 2009). Consequently, the computational effort needed in total

presents a challenge. The increasing availability of high performance computing clusters in both the industry and at academic

institutions has alleviated this issue somewhat for one-time assessments of single designs, but there are other contexts where
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the problem remains relevant. Design optimization (Muskulus and Schafhirt, 2014; Chew et al., 2016; Oest et al., 2017) in

particular is such a case, where having to do repeated structural analyses of evolving designs means that the inclusion of thou-

sands of load cases becomes highly prohibitive. Hence, there is a need for methods that can reduce the computational effort of

these analyses, preferably without losing too much accuracy. Motivated by this need, the present study concerns itself with the

development of a method that reduces the number of load cases that need to be analyzed down to a more manageable level.5

Though other loading scenarios are in general relevant, the present work will focus on sets of load cases encompassing the

fatigue assessment of operational conditions for the wind turbine.

Several previous studies in the area of simplifying fatigue assessment through load case reduction have been carried out.

Zwick and Muskulus (2016) looked at two different methods, piece-wise linear approximation and multi-linear regression,

to simplify fatigue analysis for a jacket subject to 21 operational load cases. Using varying wind speeds, with a lumped sea10

state, the approach aimed to train the methods using fatigue data from several jacket designs and then to use them to predict

the fatigue damage of other designs. With this approach, the authors obtained reduced load case sets with sizes of 3-6, with

maximum prediction errors for the total fatigue damage of about 6% when using 3 load cases. One limitation with this study was

that extensive training of the methods, with substantial computational effort, was required in order to obtain these results. The

number of load cases studied was also small compared to the complete set of operational conditions. Häfele et al. (2017) and15

Häfele et al. (2018) used an approach where reduced load case sets were derived by sampling distributions for the probability

of occurrence of the various environmental states, taken from a database of 2048 states. From a hierarchy of load case subsets,

the authors estimated the fatigue damage for several different jacket designs. Though the errors were quite high for the smallest

subset sizes, this approach demonstrated a clear potential for large reductions in computational effort. Velarde and Bachynski

(2017) used a fatigue design parameter in order to select only the most important sea states for detailed fatigue assessment of20

a monopile.

Multiple studies of load case reduction have also been conducted for floating support structures. Müller et al. (2017) formu-

lated an approach that combined a response surface model with Latin Hypercube Sampling and an artificial neural network.

Müller and Cheng (2018) studied an approach making use of Sobol sequences in order to select the optimal load cases to

sample. This lead to a more rapid convergence than would have resulted from using just conventional Monte Carlo methods.25

The approach achieved a maximum error of about 10% in the fatigue estimates when using reduced load case sets of 200-500

out of a total of 5400. Finally, Kim et al. (2018) used an artificial neural network to modify the stress transfer function in order

to simplify fatigue assessment in the frequency domain.

While achieving various degrees of success in terms of accuracy and ability to reduce the computational effort, a common

trait in most of the cited studies above are that their aims differ slightly from ours. These studies, the one by Zwick and30

Muskulus (2016) exempted, tried to simplify the fatigue assessments of single designs by making use of methods that were

based on considerations of the environmental states alone. Whereas we aim to use also information about the actual fatigue

damage for each load case of a base design and then use the combined information to develop a reduced sample set that can be

used for designs that have been altered compared to this base design. Since the latter approach is highly relevant for applications

like design optimization, we think the present study addresses a gap in the literature.35
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The method proposed in this study, like in many of the cited studies above, is based on the idea that there is a large amount

of information about the total fatigue damage contained in a small subset of the load cases. Furthermore, a fundamental

assumption for this method is that the relative fatigue response to each load case remains approximately constant for an

extended family of related support structure designs. This makes it possible to train the method on one full fatigue analysis,

using the complete set of load cases, and then use the method to propose which load cases should be assessed for future5

analyses of designs that have been modified. The method itself is based on sorting the load cases by their contribution to the

total fatigue damage and then obtaining the partial sum of their contributions, up to a certain, smaller number of load cases. The

relative difference between this partial sum and the total fatigue damage is assumed to be constant when the underlying support

structure design is modified. From the corresponding partial sum of any new design, multiplied by a scale factor derived from

the original relative difference, the total fatigue damage of that design can then be obtained. Hence, using an approach relying10

simply on sorting and summation, an estimate for the total fatigue damage based on a significantly reduced set of load cases is

readily available.

The paper is structured as follows: After a quick review of some necessary background, the method itself will be motivated

and explained. Then we define the simulation and testing setup used to demonstrate the method. In the next section, we

show and explain the results. In the second-to-last section, we further discuss the results and the method and make some15

overall remarks about their interpretation and implications. In the last section, the findings are summarized and some overall

conclusions and thoughts about continued work are presented.

2 Background and methodology

Even with the restriction to operational conditions and fatigue analysis, there is a substantial machinery in place. Keeping

in accordance with the standards means covering a lot of different environmental conditions (International Electrotechnical20

Commision, 2009) and following a specific procedure for calculating the fatigue damage (Det Norske Veritas, 2014). Every

realization of wind and wave conditions corresponds to a single load caseE, which has a probability of occurrence P (E). After

a time domain analysis of the support structure, subject to the loading conditions encoded byE, the time series of normal stress

is estimated in eight different points along the circumference of each relevant location in the structure. The fatigue damage

for each load case, D(E), can be found from the stress by performing rainflow counting (Rychlik, 1987), applying SN-curves25

(Det Norske Veritas, 2005) for each stress range identified and then accumulating the damage by the Palmgren-Miner rule. The

maximum damage value among the eight points along the circumference is chosen to represent each location. The total fatigue

damage from all load cases, Dtot, during a lifetime Tlt, at a specific location in the structure, is then given by:

Dtot = Tlt ·
∑

E

P (E)D(E) (1)

A central fact to note here is that the contribution of each load case E to the total fatigue damage is determined by the product30

of the individual fatigue damage and the probability of occurrence. So the most severe load cases in the sense of having the

largest contribution to the sum are in fact those where there is a balance between these two factors. Very small damage and high
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Figure 1. Illustration of the model used in this study (a) and a plot of the curve formed by the fatigue damage partial sums from load cases

that have been sorted by severity (b).

probability, or vice versa, tend to give smaller contributions. Whereas load cases incurring intermediate fatigue damage while

also having reasonably high probability of occurrence, tend to be the most severe. This will be important below in determining

which load cases get sampled. Normally, a safety factor would be applied to Eq. (1). However, since this only changes the

result by a fixed constant, it has been neglected here. By the same reasoning, the lifetime scale factor Tlt will also be neglected

from now on.5

2.1 Sampling based on the k most severe load cases

From Eq. (1), we can define the k-th partial sums of the fatigue damage as:

Dk =
k∑

i=1

P (Ei)D(Ei) (2)

If we now let the set {Ei} of load cases be sorted in descending order based on the size of the corresponding product of

probability of occurrence and fatigue damage (from now on called severity), then from experience Dk should get fairly close10

to Dtot for small to intermediate values of k. In fact, plotting these partial sums as a function of k gives a curve like the one

shown in Fig. 1. Furthermore, we may define the relative difference between the sorted k-th partial sum and the actual total

fatigue damage as:

εk = 1− Dtot

Dk
(3)
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As our fundamental approximation, we may assume that εk is constant when the underlying support structure design is modi-

fied. That is, suppose we want to estimate the total fatigue damage Dnew
tot of some new design, with corresponding k-th partial

sums Dnew
k . If we assume that εk = εnew

k , then we can obtain an estimate for the new total damage as:

D̂new
tot =Dnew

k −Dnew
k · εk (4)

The intuitive interpretation here is essentially that the new total damage is the k-th partial sum plus (effectively speaking, since5

εk is always negative) an error term that should make up the difference. Some further clarity can be obtained by simplifying

the above:

D̂new
tot =Dnew

k · (1− εk)

=Dnew
k · Dtot

Dk

D̂new
tot =Dtot ·

Dnew
k

Dk
(5)10

Hence, in practice, the estimate for the new total fatigue damage is the old total fatigue damage times the ratio of the new k-th

partial sum to the old k-th partial sum.

2.2 Sampling for multiple locations

If we only wanted to know the total fatigue damage at a single location in the structure, Eq. (5) would suffice. However, there

is a slight complication when the fatigue damage at multiple locations is needed. While for the most part we expect the order15

of the severity of the load cases to be about the same at every location, there is no guarantee that it will be exactly the same.

Hence, using information from just a single location to decide which load cases to sample could lead to significant errors at

the other locations. The simplest solution to this is to take the union of the most severe load case sets from each location.

Specifically, let V i
k be the set of the k most severe products P (E)D(E) at location i. We can then define the sampling set, Ṽk,

as:20

Ṽk =
⋃

i

V i
k (6)

In plain words, we combine the k most severe load cases from each location into an expanded set (removing any duplicates),

from which we then calculate the partial sums to be used in Eq. (5). It would also be possible to define the sampling set in

such a way that it would have an already given size, filling up with as many load cases from the individual location sets as

possible. Motivated by, for example, having certain restrictions on how many load cases one can afford to sample given the25

computational resources and the task at hand. However, this would result in an unbalanced set, biased towards one or more of

the locations. Hence, it would be preferable to let the sizes of the individual sets determine the size of the sampling set and

then simply choose a value of k such that the resulting sampling set size is acceptable.
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2.3 Fatigue damage estimation procedure

By using one full fatigue assessment of a base design, we can then train our method on this data. Sorting the load cases by the

severity at each location and then taking the union of the resulting sets, we obtain the sampling set Ṽk for a given number of k

load cases from each location. If we denote the size of the sampling set by n, the n-th partial sums at each location i, combined

with the corresponding total damage, are then used to define εin. The total fatigue damage for any new design is then obtained5

by performing simulations and fatigue assessments for the n load cases in the sampling set, estimating the n-th partial sums

and scaling the original damage as prescribed in Eq. (5).

2.4 Simulation setup and testing framework

For the simulations used in this study we have used the fully integrated aero-elastic software tool FEDEM Windpower (Fedem

Technology, 2016). Our model is comprised of the NREL 5MW turbine (Jonkman et al., 2009) sitting atop the OC3 monopile10

support structure (Jonkman and Musial, 2010). The monopile model was clamped at the seabed. The load cases used in the

study have been derived from the Ijmuiden Shallow Water Site wind and wave data reported by Fischer et al. (2010), giving

probabilities of occurrence for different wind speeds, sea state parameters and wind and wave misalignment. The selected

environmental states represent wind speeds between 4 and 24 m/s with bin sizes of 2 m/s (giving 11 different speeds) with

a given turbulence intensity for each wind speed, significant wave height and peak period values depending on wind speed15

(between 21 and 42 different realizations for each speed) and incoming wave directions varying between 0◦ and 330◦ in steps

of 30◦ (giving a total of 12 directions for each sea state and wind speed). 3647 load cases were used in total. One simulation

of length 10 minutes (after removing initial transient data) was used for each load case, including different random seeds for

each realization of wind and wave input. In order to test the method, three different locations along the height of the support

structure, thought to be representative of different response behaviors, were selected. These include the tower top, the tower20

bottom and the mudline. A drawing of the model, which includes identification of the selected locations, is shown in Fig. 1.

As noted previously, one of the main motivations for this study has been applications to design optimization. Hence, we

have found it pertinent to test our method in a setting that would resemble situations likely to be encountered during an

optimization loop. In other words, we want to see how the method performs on designs that correspond to configurations that

might represent intermediate steps or even something close to a solution. This prompts a few different strategies for how to25

obtain these modified designs. First of all, the type of optimization we are concerned with here is mass (or weight) optimization.

Essentially, changing the diameters and thicknesses of various elements until the design is as light as possible, while satisfying

certain constraints on structural performance. The designs chosen are hence ones where the element sizes have been scaled

either up or down, both systematically across the entire structure and randomly from element to element. In total, seven new

designs were generated. Their names (for easy reference later) and quick summaries of how each design was scaled is given in30

Table 1.
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Figure 2. Normalized fatigue damage per load case (from low wind speeds to high wind speeds when going left to right) at tower bottom

with the 25 most severe load cases specially marked (a) and the size of the sampling set as a function of the number of load cases used per

each of the three locations (b).

3 Results

As an initial point of entry, we may ask which of the load cases are in fact the most severe for the base design and hence which

ones will be sampled by the method. From the distribution shown in the left panel of Fig. 2, it is clear that the most severe

load cases are clustered among just a few wind speeds. In particular, these speeds are (in order of which speed has the highest

number of severe load cases) 12 m/s, 14 m/s, 16 m/s and 10 m/s. Though less clear from the plot, these load cases otherwise5

represent the wind and wave misalignment angles and sea state parameter values having the highest probability of occurrence.

That is to say, while the severity of the wind speeds is a result of a balance between incurred fatigue damage and probability

of occurrence (at the particular site used in this study, 6 m/s has the highest probability of occurrence among the wind speeds),

the severity of particular wind and wave misalignment angles and sea state parameter values within a given wind speed bin is

Table 1. The modified designs used in this study, with names and how they have been modified (scaled).

Design name Design description

MD5 Element sizes scaled down by 5%

MI5 Element sizes scaled up by 5%

MR5 Element sizes randomly scaled up or down by 5%

MD10 Element sizes scaled up by 10%

MI10 Element sizes scaled down by 10%

MR10 Element sizes randomly scaled up or down by 10%

MRU10 Element sizes randomly scaled up or down by up to 10%, using a uniform probability distribution
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dominated by the probability of occurrence. The analysis here is based on data taken from the tower bottom, but completely

analogous conclusions can be drawn from the two other locations.

For each design, a full fatigue analysis was performed (that is, not just for the load cases selected by the method) in order

to be able to quantify the performance of the method. Specifically, the performance of the method as been quantified in a way

similar to Eq. (3), using now the relative difference of the estimate and the true value for the total fatigue damage of each5

design:

δ = 1− D̂new
tot

Dnew
tot

(7)

One concern might be that there are large differences in the order of the severity for the load cases in each of the three locations.

This would in principle lead to sampling sets that are very large compared to the number of load cases selected per location.

However, this turns out to not be the case. A plot of the size of the sampling set as a function of the number of load cases10

selected per location is shown in the right panel of Fig. 2. It is reasonably linear, varying between 7 for k = 5 and 181 for

k = 150. Hence, as an approximation, k can be said to be fairly close to the actual number of sampled load cases, at least for

smaller sample sizes. Finally, for the sake of not showing data that yield little additional insight, the results displayed below are

in each case taken from a single location only. Specifically, for each design, the location with the maximum error was chosen

to represent the behavior of all three locations within a given plot. In practice, the chosen location is usually either the tower15

bottom or the mudline, since the behavior at tower top seems generally more favorable.

3.1 Uniformly scaled designs

In Fig. 3, the relative errors for various sample sizes is shown for the four uniformly scaled designs (MD5, MI5, MD10, MI10).

Except for in the case of MI10, the estimates fairly quickly converge to a level of roughly 2% error or less. For MD5 and MI5

this level of accuracy requires 20-30 samples (a reduction in the load case set by more than a factor 100), whereas for MD1020

it takes about 50 samples to reach this level (though at 30 samples the error is no more than 3%). For MI10, the convergence

is slower and the error is generally a bit higher. In this case, the error level is at around 6% or less after 30 samples, goes

below 5% at around 100 samples and then slowly tends toward 4% or less for the larger samples sizes. The maximum error

encountered is at about 13% for MI10 and is otherwise less than than 10% for the other designs. In other words, for the

the first three designs, errors of about 4-8.5% are attainable using only 7 load cases. We observe that the method seems to25

consistently over-predict the fatigue damage (giving negative errors, see Eq. (7)) when the design has been consistently scaled

down and under-predicts (giving positive errors) when the design has been scaled up. Inspecting Eq. (5) we may surmise that

this means that for down-scaled designs the proportion of the fatigue damage in the k-th partial sum has increased compared to

the base design, whereas for the up-scaled designs this proportion has decreased. The overall convergence is not quite smooth,

presenting some occasional jumps in the estimation error. These jumps are ultimately quite small (usually at no more than a30

single percentage point) and are likely signs of small instabilities in the method for reduced sample sizes. In these cases, the

sudden inclusion of certain additional load cases (with the effect of either improving or decreasing performance) can have a

visible effect on the overall estimate. As for why MI10 seems to under-perform when compared to the others, this is likely
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Figure 3. Relative errors of fatigue estimates for models MD5 (a), MI5 (b), MD10 (c) and MI10 (d).

because the changes to the global eigenfrequency induced by scaling all elements by 10% can lead to dynamic amplification for

lower wind speed load cases when the frequency increases (corresponding to the structure being scaled up). In this particular

situation, there is a significant shift towards the 3P frequency of the turbine, as seen from the Campbell diagram of the NREL

5MW turbine (Jonkman and Jonkman, 2016). The result is a significant increase in the severity of lower wind speed load cases,

which means that the error in including only the most severe load cases in the fatigue estimation changes more drastically for5

this design. This in turn makes the method less accurate than for the other designs, where the changes in fatigue damage are

more uniformly distributed among the load cases.

3.2 Randomly scaled designs

The relative errors in the estimates for the randomly modified designs (MR5, MR10 and MRU10) are shown in Fig. 4. These all

generally show improved performance compared to the uniformly modified designs. Except for the smallest sample estimate10
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for each model, every estimate has an error of less than 2%. For MR5 and MRU10, errors of no more than 1% occur with

sample sizes of no more than 35-40 (a reduction of the load case set by a factor of about 100). MR10 crosses this same

error threshold at around 50-60 samples. There is in general a reasonable convergence behavior for all three models. MR10

exhibits marginally higher errors than the two other models. This could be because element scaling of ±10% could lead to

a higher degree of overall uniform changes than in the other cases. Since each element in the structure has a different size,5

one would expect a certain bias towards either overall decrease or increase when the scaling is done randomly from a uniform

distribution. The larger the scaling, the larger the resulting bias. In fact, inspecting the changes to the overall mass for these

models, MR10 has a bias twice as large as MR5. More interestingly, and in agreement with the previous results, we observe

observe a correspondence between overall down- or upscaling and the tendency to either over- or under-predict the fatigue

damage. Both MR5 and MRU10 consistently under-predict the fatigue damage and it turns out that these models both have a10

slight bias towards an overall increase in size. The reverse holds for MR10. The overall change in mass for MR10 is actually

very close to that of MD5 and indeed the results for these two models are very similar.

3.3 Real behavior of εk

When we initially defined the method, it was based on a basic assumption: That the relative error when using only the k most

severe load cases would remain approximately constant under modification of the support structure design. The results shown15

so far indicate that this is indeed the case, but this should be verified explicitly in order to have confidence in the theoretical

basis of the utilized methodology. To investigate this, we have calculated the absolute value of the relative difference between

the value of εk (as defined in Eq. (3)) for the base design and the actual value of εk for each modified design. This is displayed

as heatmaps in Fig. 5. There is generally very good agreement between the values of εk for each design, though again there is

some more deviation for design MI10. This is presumably for reasons similar to why the estimation method had larger errors20

in this case. The attentive reader might notice that unlike above, the differences do not decrease for increasing values of k. If

anything they seems to either fluctuate or increase. The reason for this is that as the number of load cases sampled increases,

the numerical value for εk decreases. Hence, the absolute differences are certainly decreasing. Though more specifically, it is

not hard to show from Eq. (3) and Eq. (5) that:

∣∣∣∣1−
εnew
k

εk

∣∣∣∣=Dtot ·

∣∣∣∣1−
Dnew

tot

D̂new
tot

∣∣∣∣
Dtot−Dk

(8)25

Both the numerator and the denominator decrease as k increases, so the actual behavior depends on the convergence of the

method (controlling the numerator) compared to the proportion of the total fatigue damage in a given partial sum Dk (con-

trolling the denominator). Essentially, one can roughly compare the convergence shown in Fig. 3 and Fig. 4 to that shown in

Fig. 1. Since the convergence of the fatigue estimates for MI10 was particularly slow, the behavior seen in the heatmaps for

this design at both tower bottom and mudline (a significant increase for increasing k) seems reasonable.30
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Figure 4. Relative errors of fatigue estimates for models MR5 (a), MR10 (b) and MRU10 (d).

4 Further discussion

4.1 Viability of the method

As seen above, the proposed method is able to predict the total fatigue damage of the modified designs with a high degree of

accuracy. With the exception of design MI10, all estimates eventually converge towards errors of 2% or less (in some cases

much less) and with drastic reductions in the load case set (factors of 50-200 in most cases). Even for the case of MI10, where5

the error is about 4-6% for all but the smallest sample sizes, this result is quite convincing in terms of the level of accuracy that

can be expected for such an approach given the extent of the modifications to the structural models. In fact, higher accuracy

than that reported for design MI10 might not even be required. A 5% error in the prediction of total fatigue damage represents

a change in the lifetime of a support structure by 1 year if the real expected lifetime is 20 years. This is certainly within the

range of other types of errors one might expect in terms of uncertainties in the modeling or the environmental conditions,10
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Figure 5. Relative differences between the value of εk for the base design and each additional design. At tower bottom (a), tower top (b) and

mudline (c).

both of which are usually accounted for by multiplying the total fatigue damage by partial safety factors of 2-3. In such a

framework, errors on the order of 10% might even be acceptable, in which case a very large load case reduction is possible

for all models. Additionally, there seems to be a clear connection between overall systematic changes to the size (mass) of the

structure and whether the estimates for the fatigue over- or under-predict the true value. Keeping track of such overall changes

then makes it possible to account for the errors in the estimates in systematic ways. For instance, if the estimate is known to be5

an over-prediction, then it may be deemed ”safe” in a conservative sense and in the opposite case one might want to add in a

small safety factor.

4.2 Applications to design optimization and preliminary design

One of the most discernible outcomes of the testing framework is the indication that the method works best for designs that

have been randomly modified. This is understandable given that the method is based on an assumption about how the fatigue10
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damage changes that works best when there are no major changes in structural behavior. Random changes will to a larger

extent leave the eigenfrequencies, and other global phenomena that are expected to skew the fatigue damage distribution across

all load cases, unaltered. With regards to applications to design optimization, this is very promising. While it can occur that

large systematic changes result from an optimization loop, e.g. if the original structure is significantly over- or under-designed

with respect to fatigue resistance, most of the computational work in most cases will occur in stages where the overall changes5

to the structure are small. One can certainly also envision applications of this method to preliminary design, where perhaps a

larger extent of the work is in rough scaling of the design. In most cases, the errors reported here are small enough also for

these design situations. Even the larger errors reported (in the case of 10% up-scaling) might be acceptable in the early phases

of design.

4.3 Comparison with previous work10

Comparing the approach taken in this study with most previous work on load case reduction, certainly the studies cited in

the introduction of this paper, one of the main advantages is the simplicity of the method. Because most of the other studies

have slightly different aims, i.e. reducing the number of load cases for single design situations, it is not necessarily sensible

to compare directly the achieved accuracy for a given amount of load case reduction (though if one were to do so, it would

be a reasonably favorable comparison). Something similar could be argued in terms of the methodology, that such a simple15

approach is only possible in the current setting, but we would still stress the overall simplicity as a major reason why this

method would be useful. Especially the avoidance of more advanced statistical and computational procedures will likely make

this approach more appealing for industrial applications. There is also little reliance on software, requiring only the ability to

sort the fatigue data and then create sampling sets where duplicate load cases have been removed. Furthermore, we note that

since the method is completely deterministic (as opposed to many sampling-based approaches), there is little or no uncertainty20

in the results reported here. Put another way, while the specific results (say whether k samples gives an error of exactly x%)

are tied to specific background details of the study (the models used, the load case data, etc.), if the method gives a certain

accuracy for a certain set of data, it will always give this accuracy for that data.

4.4 Possible continuations

The simplicity of the method might also suggest the possibility of improvements, at least in some of the scenarios shown.25

While some attempts at applying sequence acceleration techniques were made, with little or no positive effects (hence why this

was not shown), it is certainly possible that such approaches, or similar ideas, might decrease the error of the estimates or at

least decrease the number of samples needed to reach a certain level. We additionally note that further ideas for how to apply

the method for specific applications could also be developed. For example, since systematic design modifications of a certain

size can impact the accuracy of the method, it would be possible to apply it in an adaptive way for (e.g.) optimization. On the30

one hand, it is often possible to avoid such situations by enforcing eigenfrequency constraints. However, if it is known a priori

that certain changes in the eigenfrequencies can decrease the performance of the method due to dynamic amplification for

some wind speeds, then one can implement a check for this situation which when triggered has an effect on how the method is
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utilized. While several other solutions are possible, one could, when such large changes are detected, either increase the number

of samples used or perhaps require a new full analysis to update the data used to train the method. One can also envision other

types of applications, where something other than (or at least not exclusively) the design is modified. For example probabilistic

design/reliability analysis, where the statistical behavior under the variation of a set of input parameters is investigated. While

this would have to be verified in a separate, future study, one can envision the method being employed in a similar fashion as5

here: Training the method on a base parameter configuration and then reducing the number of load cases needed for fatigue

assessment when the parameters are allowed to vary.

5 Conclusions and outlook

In this study we have presented a simple approach for reducing the number of load cases required for accurate fatigue assess-

ment of an offshore wind turbine support structure under operational conditions. By making a simple assumption about the10

relative error incurred by only using the most severe load cases in the total fatigue sum, specifically that this error remains

approximately constant as the design is modified, we are able to make accurate predictions for the fatigue damage of a set of

seven modified designs. One key part of the method is that the ordering of the severity of each load case is slightly different

from location to location. Hence, we have used the union of the reduced sets at each location to form a total sampling set that is

used in the method. While slightly increasing the number of samples needed, this has a significant impact on the overall perfor-15

mance in terms of balancing the accuracy at each location in the structure. The overall results of the method are very promising,

achieving errors of a few percent or less for sample sizes of 15-60, depending on how the designs have been modified. Only

in one case, where the increased dimensions of the design caused significant changes in the eigenfrequency and subsequent

dynamic amplification for some wind speeds, were the errors a bit higher. Though still in this case less than 6% for comparable

sample sizes. Considering that even a sample size of 100 means a reduction of the load case set (initially numbering 3647) of20

about a factor of 36, the method generally allows for very large savings in computational effort for fatigue assessment. The

method is particularly effective for designs where modifications have been made randomly from element to element, achieving

errors of less than 1% for reasonably small sample sizes. This in particular, though also the overall performance, makes the

method useful for applications to design optimization. The fact that the method seems to consistently under- or over-predict

the fatigue damage based on whether the design has been scaled more up than down or vice versa even makes it possible to25

further correct the estimates in order to ensure that the method is always conservative.

One clear advantage compared to state of the art approaches for load case reduction, aside from the overall accuracy, is the

simplicity of the method. Whereas the most common approaches rely on various types of sampling techniques that require some

amount of statistical and computational complexity, our approach relies entirely on sorting, the union of small sets (combining

and then discarding duplicates) and basic arithmetic. Aside from the overall attractiveness of such simplicity, this makes the30

method more useful for applications in industry where complex methodologies can lead to unacceptable bottlenecks in the

work flow. The simplicity of the method presented in this study (on both a conceptual and implementation level) could also be

attractive for other scientists, who may not be as comfortable with advanced sampling methods.
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While the method as is can readily be applied in many settings, some future developments can be envisioned. For example,

one could study possibilities for improving the convergence of the estimates or investigate specific ways of applying the method

to design optimization that adapts to regimes where the estimates are expected to lose accuracy. A future study might also look

into whether, or to what extent, the method could be extended for use within a probabilistic design or reliability framework.

In practice, this would mean seeing whether the fundamental assumption of the method, the invariance of the relative fatigue5

estimation error when sampling only the most severe load cases, also holds when parameters other than those related to the

structural dimensions are altered.
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