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Abstract. In the simulation of a wind turbine, the lowest eigenmodes of the rotor blades are usually used to describe their 

elastic deformation in the frame of a multibody system. In this paper, a finite element beam model for the rotor blades based 

on the transfer matrix method is proposed. Both static and kinetic field matrices for the 3D Timoshenko beam element are 

derived by numerical integration of the differential equations of motion using RUNGE KUTTA 4
th

 order procedure. The 10 

beam reference axis in the general case is at an arbitrary location in the cross section. The inertia term in the motion 

differential equation is expressed using appropriate shape functions for the Timoshenko beam. The kinetic field matrix is 

built by numerical integration applied on the approximated inertia term. The beam element stiffness and mass matrices are 

calculated by simple matrix operations from both field matrices. The system stiffness and mass matrices of the rotor blade 

model are assembled in the usual finite element manner in a global coordinate system with the accounting for structural twist 15 

angle and possibly pre-bending. The program developed for the above calculations and the final solution of the eigenvalue 

problem is accomplished using MuPAD, a symbolic math toolbox of MATLAB
®
. The calculated natural frequencies using 

generic rotor blade data are compared with the results proposed from FAST and ADAMS software. 

1 Introduction  

Vibration of an elastic system refers to a limited reciprocating motion of a particle or an object of the system. Wind turbines 20 

operate in an unsteady environment which results in a vibrating response (Manwell, McGowan, & Rogers, 2009). They 

consist of long slender structures (rotor blades and tower), of which resonant frequencies should be taken into account during 

the initial design and construction. When the excitation frequency of the vibrating system is near any natural frequency, the 

undesirable resonant state occurs with large amplitudes, which may lead to damage or even collapse of the wind turbine or 

its components. The vibration response especially of the rotor blades depends on the stiffness which is a function of the 25 

materials used, design and size ( Jureczko, Pawlak, & M˛e˙zyk, 2005). Therefore, the estimation of natural frequencies in the 

early design phase plays an important role in avoiding resonance. 

The eigenmodes associated to the lowest natural frequencies are employed as shape functions to describe the elastic 

deformation of the rotor blade beam model in the frame of the usual simulation of the wind turbine as a multi-body system. 
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Mostly, the first two bending eigenmodes in each (flapwise and edgewise) direction and optionally the two additional 

torsional eigenmodes are used. The determination of those lowest eigenmodes with sufficient numerical accuracy is the first 

step for the modal superposition applied to the deformational motion of the rotor blades. 

Due to geometrical complexity of the blade cross section profiles and the extended use of composite materials, the exact 

calculation of natural frequencies in the design process takes a considerable time and financial expense for the 3D modelling 5 

of the rotor blade using CAD software. Hence a simplified finite element beam model is necessary. A twisted rotor blade is 

simplified into a cantilever beam with non-uniform cross section. The structural twist angle is implemented by changing the 

orientation of the principal axis of the blade cross section along the length of the blade. 

In the finite element formulation of beams two linear beam theories are established, the Euler Bernoulli beam model and the 

Timoshenko beam model. Although the Euler-Bernoulli beam theory is widely used, the Timoshenko beam theory is 10 

considered to be better as it incorporates the effects of transverse shear and the rotational inertia on the dynamic response of 

the beam (Kaya, 2006). In the classical approach of finite element formulation for the free vibration analysis of beams, the 

stiffness and mass matrices are derived using interpolation functions derived from second and fourth order Hermite 

polynomials. The stiffness matrix is derived from the equation (Wu, 2013): 

𝐾(𝑒) = ∫𝐵𝑇𝐷𝑚 𝐵 𝑑𝑣  (1) 15 

where, 𝐾(𝑒) is the element stiffness matrix, 𝐵  is the strain matrix , 𝐷𝑚 is the elasticity matrix for the beam. The element 

mass matrix of the beam is derived using the equation (Wu, 2013): 

𝑀(𝑒) = ∫𝜌 𝑎𝑇𝑎 𝑑𝑣           (2) 

where, 𝑀(𝑒)  is the element mass matrix, 𝜌  is the mass density, 𝑣  is the volume and  𝑎  is the matrix of interpolation 

functions. 20 

Using the above standard relations and appropriate shape functions for the Euler-Bernoulli beam and Timoshenko beam, the 

stiffness matrix and consistent mass matrix for the finite beam element can be derived. However, an alternative to this 

procedure, based on the transfer matrix method for the beam theory, see (Graf & Vassilev, 2006), p.69-88 and (Stanoev, 

2007), will be developed in the present article. The element stiffness matrix can be derived on the basis of numerical 

integration of the first order ordinary differential equation system for the differential beam element. The associated mass 25 

matrix can be developed by numerical integration of the inertia term in the differential equation of motion. The numerical 

integration results in static and kinetic field matrices, from which the element stiffness and mass matrices can be easily 

assembled. 

In the present article, the above mentioned procedure is used to determine the element stiffness and element mass matrix for 

the Timoshenko beam. The interpolation functions used for deriving the mass matrix are based on Hermite polynomials 30 

according to (Bazoune & Khulief, 2003). The system stiffness and mass matrices for the rotor blade are assembled in a 

global coordinate basis in the usual finite element manner. The numerical solution of the associated eigenvalue problem for 

the system without damping is computed using computer algebra software (in the frame of MATLAB
®
). 
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In the section 2 and 3, the proposed method is described in detail and in section 4 the method is applied on a rotor blade 

structure with 288 DOF. The results for the natural frequencies and the corresponding eigenmodes are compared with the 

results calculated using FAST and ADAMS software. 

2 Theoretical framework for 3-D Timoshenko beam  

2.1 Kinematic relationships 5 

 

The general assumptions in the linear beam theory are as follows: 

a) The beam reference (longitudinal) axis is at any arbitrary location of the cross section. 

b) Only stresses that occur are normal stresses 𝜎𝑥 and shear stresses 𝜏𝑥𝑦 , 𝜏𝑥𝑧. 

c) Cross section planes, which are initially normal to the longitudinal axis, will remain plane after deformation. 10 

The geometrical representation of the deformation state of a beam cross section is shown in the fig. 1. The deformations 

𝑢𝑝(𝑥, 𝑦, 𝑧),  𝑣𝑝(𝑥, 𝑦, 𝑧),  and 𝑤𝑝(𝑥, 𝑦, 𝑧) at a cross-sectional point 𝑃(𝑥, 𝑦, 𝑧) are determined by three displacement functions 

𝑢(𝑥), 𝑣(𝑥), 𝑤(𝑥) and three cross-sectional rotation angles 𝜑𝑥(𝑥), 𝜑𝑦(𝑥) and 𝜑𝑧(𝑥) – all of them are a function of the beam 

axis coordinate 𝑥. The differential equation system is derived in accordance to (Stanoev, 2013). 

From fig. 1, the displacement vector 𝑢𝑝 can be expressed at any cross-section point 𝑃(𝑥, 𝑦, 𝑧) as: 15 

𝑢𝑝 = [

𝑢𝑝(𝑥, 𝑦, 𝑧)

𝑣𝑝(𝑥, 𝑦, 𝑧)

𝑤𝑝(𝑥, 𝑦, 𝑧)

] = [

𝑢(𝑥) − 𝑦𝜑𝑧(𝑥) + 𝑧𝜑𝑦(𝑥)

𝑣(𝑥) − 𝑧𝜑𝑥(𝑥)

𝑤(𝑥) + 𝑦𝜑𝑥(𝑥)

]  (3) 

𝑥 

𝑧 

𝑦 𝑧 
𝑃(𝑥 , 𝑦,  𝑧) 

𝑢𝑥 = 𝑧 ∙ 𝜑𝑦 

𝜑𝑦 

𝑤 

𝑥 

𝑦 

𝑧 𝑦 

𝑣 

𝑢𝑥 = −𝑦 ∙ 𝜑𝑧 

𝜑𝑧 

𝑦 𝑦 

𝜑𝑥 
𝑧 

𝑥 

Figure 1: Deformation at the point 𝑷(𝒙 ,𝒚,  𝒛) (Andersen & Nielsen, 2008) 

𝑃(𝑥 , 𝑦,  𝑧) 
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The three components of the strains occurring in the beam can be expressed as the derivatives of the displacement 

functions 𝑢𝑝, 𝑣𝑝 and 𝑤𝑝. The axial strain 휀𝑥𝑥 and the two shear strain components 𝛾𝑥𝑧 and 𝛾𝑥𝑦 are given by: 

휀𝑥𝑥 =
𝜕𝑢𝑝

𝜕𝑥
= 𝑢′ − 𝑦𝜑𝑧

′ + 𝑧𝜑𝑦
′            

𝛾𝑥𝑧 =
𝜕𝑢𝑝

𝜕𝑧
+
𝜕𝑤𝑝

𝜕𝑥
= 𝜑𝑦 + 𝑤

′
⏟    

𝛾𝑧

+ 𝑦𝜑𝑥
′   (4a-c) 

𝛾𝑥𝑦 =
𝜕𝑢𝑝

𝜕𝑦
+
𝜕𝑣𝑝

𝜕𝑥
= −𝜑𝑧 + 𝑣

′⏟      
𝛾𝑦

− 𝑧𝜑𝑥
′   5 

where, 𝛾𝑧 and 𝛾𝑦 are the constant shear strains which are not neglected in Timoshenko beam theory. 

𝛾𝑦 = −𝜑𝑧 + 𝑣
′             (5a)  

𝛾𝑧 =  𝜑𝑦 + 𝑤
′            (5b) 

2.2 Principle of virtual work for internal forces 

The virtual work components for internal forces corresponding to normal stresses and shear stresses are given by: 10 

−𝛿𝑊𝑖 = ∫ {𝛿𝑢
′𝑁 +  𝛿𝜑′𝑧𝑀𝑧 + 𝛿𝜑′𝑦𝑀𝑦}𝑥

𝑑𝑥 + ∫ {𝛿𝛾𝑧𝑄𝑧}𝑑𝑥𝑥
+ ∫ {𝛿𝛾𝑦𝑄𝑦}𝑑𝑥𝑥

+ ∫ {𝛿𝜑′𝑥𝑀𝑇𝑃}𝑑𝑥𝑥
  (6) 

Where, 𝑁 is the axial force, 𝑀𝑧 and 𝑀𝑦 are bending internal moments, 𝑄𝑦  and 𝑄𝑧 are the corresponding shear forces, 𝑀𝑇𝑃 is 

the St. Venant torsional moment. 

With the introduction of the constitutive relations of Hooke’s material law for the stresses corresponding to the internal 

forces in (6) and expressing the strains by Eq. (4), (5), the virtual work relationship is reformulated as: 15 

−𝛿𝑊𝑖 = ∫{𝐸

[
 
 
 
 

(∫𝑑𝐴

𝐴

)

⏟    
𝐴

∙ 𝑢′ − (∫𝑦𝑑𝐴

𝐴

)

⏟      
𝐴𝑦

∙ 𝜑𝑧
′ + (∫𝑧𝑑𝐴

𝐴

)

⏟      
𝐴𝑧

∙ 𝜑𝑦
′

]
 
 
 
 

𝛿𝑢′

𝑥

 

−𝐸

[
 
 
 
 

(∫𝑦𝑑𝐴

𝐴

)

⏟      
𝐴𝑦

∙ 𝑢′ − (∫𝑦2𝑑𝐴

𝐴

)

⏟      
𝐴𝑦𝑦

∙ 𝜑𝑧
′ + (∫𝑦𝑧𝑑𝐴

𝐴

)

⏟      
𝐴𝑦𝑧

∙ 𝜑𝑦
′

]
 
 
 
 

𝛿𝜑𝑧
′   

+ 𝐸

[
 
 
 
 

(∫𝑧𝑑𝐴

𝐴

)

⏟      
𝐴𝑧

∙ 𝑢′ − (∫𝑦𝑧𝑑𝐴

𝐴

)

⏟      
𝐴𝑦𝑧

∙ 𝜑𝑧
′ + (∫𝑧2𝑑𝐴

𝐴

)

⏟      
𝐴𝑧𝑧

∙ 𝜑𝑦
′

]
 
 
 
 

𝛿𝜑𝑦
′  

+𝐺 [
𝐴𝑠𝑧(𝑤

′ + 𝜑𝑦)𝛿𝑤
′ + 𝐴𝑠𝑧(𝑤

′ + 𝜑𝑦)𝛿𝜑𝑦
+𝐴𝑠𝑦(𝑣

′ − 𝜑𝑧)𝛿𝑣′ − 𝐴𝑠𝑦(𝑣
′ − 𝜑𝑧)𝛿𝜑𝑧

] + 𝐺 [∫ (𝑧2 + 𝑦2)
𝐴

𝑑𝐴]⏟          
𝐼𝑇

𝜑𝑥
′𝛿𝜑𝑥

′ } 𝑑𝑥 (7) 
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Here,  𝐴𝑠𝑧 = 𝛼𝑠𝑧 ∙ 𝐴   and  𝐴𝑠𝑦 = 𝛼𝑠𝑦 ∙ 𝐴  are the shear areas in z and y directions respectively,  𝛼𝑠𝑧 ,  𝛼𝑠𝑦  are the 

corresponding shear correction coefficients, 𝐴 is the cross-sectional area, 𝐴𝑦 is the static moment with respect to the z axis, 

𝐴𝑧 is the static moment with respect to the y axis, 𝐴𝑦𝑦 is the moment of inertia with respect to the z direction, 𝐴𝑧𝑧 is the 

moment of inertia with respect to the y direction, 𝐴𝑦𝑧 is the deviation moment of inertia, 𝐼𝑇  is the torsional moment of 

inertia. 5 

After coefficient comparison in the Eq. (6) and (7) the internal forces corresponding to the normal stresses can be expressed 

by introducing the cross sectional stiffness matrix 𝐸𝐴:  

[

𝑁
−𝑀𝑧
𝑀𝑦

] = [

𝐸𝐴 𝐸𝐴𝑦 𝐸𝐴𝑧
𝐸𝐴𝑦 𝐸𝐴𝑦𝑦 𝐸𝐴𝑦𝑧
𝐸𝐴𝑧 𝐸𝐴𝑦𝑧 𝐸𝐴𝑧𝑧

]

⏟              
𝐸𝐴

∙ [

𝑢′

−𝜑𝑧
′

𝜑𝑦
′
]                    ⇒   [

𝑢′

−𝜑𝑧
′

𝜑𝑦
′
] = (𝐸𝐴)

−1

[

𝑁
−𝑀𝑧
𝑀𝑦

]  (8) 

The shear stress component in Eq. (6) and (7) leads to the following relations: 

𝑀𝑥 = 𝑀𝑇𝑃 = 𝐺𝐼𝑇𝜑𝑥
′            (9) 10 

𝑄𝑧 = 𝐺𝐴𝑠𝑧(𝑤
′ + 𝜑𝑦)           (10a) 

𝑄𝑦 = 𝐺𝐴𝑠𝑦(𝑣
′ − 𝜑𝑧)           (10b) 

The relation (10a,b) implies that the chosen reference axis coincides with the shear centre – due to neglected shear-torsion 

coupling terms in Eq.(7).  

For the special case of the cross section coordinate system coinciding with the principal axes, the deformation relationship in 15 

Eq. (8) reduces to: 

[

𝑁
−𝑀𝑧
𝑀𝑦

] = [

𝐸𝐴 0 0
0 𝐸𝐴𝑦𝑦 0

0 0 𝐸𝐴𝑧𝑧

] ∙ [

𝑢′

−𝜑𝑧
′

𝜑𝑦
′
]              ⇒      [

𝑢′

−𝜑𝑧
′

𝜑𝑦
′
] = (𝐸𝐴)−1 [

𝑁
−𝑀𝑧
𝑀𝑦

]     (11) 

2.3 Differential equation system 

The virtual work relation in Eq. (7) is rewritten for the case the beam coordinate system coinciding with the principal axis of 

the cross section – see Eq. (11): 20 

−𝛿𝑊𝑖 = ∫ {(𝐸𝐴𝑢
′)𝛿𝑢′ + (𝐸𝐴𝑦𝑦𝜑𝑧

′)𝛿𝜑𝑧
′ + (𝐸𝐴𝑧𝑧𝜑𝑦

′ )𝛿𝜑𝑦
′

𝑥
+ (𝐺𝐼𝑇𝜑

′
𝑥
)𝛿𝜑′𝑥 + 𝐺𝐴𝑠𝑧(𝑤

′ + 𝜑𝑦)(𝛿𝑤
′ + 𝛿𝜑𝑦) +

𝐺𝐴𝑠𝑦(𝑣
′ − 𝜑𝑧)(𝛿𝑣

′ − 𝛿𝜑𝑧)}𝑑𝑥  (12) 

After partial integration of Eq. (12) the cross section deformation relations and differential equilibrium conditions for the 

Timoshenko beam element are compiled in a differential equation system of 1st order, see Eq. (13), (14). For the 

Timoshenko beam with arbitrary beam reference axis at any point on the cross-section, see Eq. (8), the system of differential 25 

equations can be expressed in the following form: 

 

 



6 

 

 

 

 

𝑑

𝑑𝑥

[
 
 
 
 
 
 
 
 
 
 
 
𝑢
𝑣
𝑤
𝜑𝑥
𝜑𝑦
𝜑𝑧
𝑁
𝑄𝑦
𝑄𝑧
𝑀𝑥
𝑀𝑦
𝑀𝑧]
 
 
 
 
 
 
 
 
 
 
 

=  

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0 0 0 0 0 0 𝑆11 0 0 0 𝑆13 −𝑆12

0 0 0 0 0 1 0
1

𝐺𝐴𝑠𝑦
0 0 0 0

0 0 0 0 −1 0 0 0
1

𝐺𝐴𝑠𝑧
0 0 0

0 0 0 0 0 0 0 0 0
1

𝐺𝐼𝑇
0 0

0 0 0 0 0 0 𝑆31 0 0 0 𝑆33 −𝑆32
0 0 0 0 0 0 −𝑆21 0 0 0 −𝑆23 𝑆22
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 −1 0 0 0 0 ]

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 ∙

[
 
 
 
 
 
 
 
 
 
 
 
𝑢
𝑣
𝑤
𝜑𝑥
𝜑𝑦
𝜑𝑧
𝑁
𝑄𝑦
𝑄𝑧
𝑀𝑥
𝑀𝑦
𝑀𝑧]
 
 
 
 
 
 
 
 
 
 
 

+

[
 
 
 
 
 
 
 
 
 
 
 
0
0
0
0
0
0
−𝑝𝑥
−𝑝𝑦
−𝑝𝑧
−𝑚𝑇

−𝑚𝑦

−𝑚𝑧 ]
 
 
 
 
 
 
 
 
 
 
 

  (13) 
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The differential equation system for the Timoshenko beam with beam reference axis on principal axes can be represented in 

the following matrix form: 

𝑑

𝑑𝑥

[
 
 
 
 
 
 
 
 
 
 
 
𝑢
𝑣
𝑤
𝜑𝑥
𝜑𝑦
𝜑𝑧
𝑁
𝑄𝑦
𝑄𝑧
𝑀𝑥
𝑀𝑦
𝑀𝑧]
 
 
 
 
 
 
 
 
 
 
 

=  

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 0 0 0 0 0 0

1

𝐸𝐴
0 0 0 0 0

0 0 0 0 0 1 0
1

𝐺𝐴𝑠𝑦
0 0 0 0

0 0 0 0 −1 0 0 0
1

𝐺𝐴𝑠𝑧
0 0 0

0 0 0 0 0 0 0 0 0
1

𝐺𝐼𝑇
0 0

0 0 0 0 0 0 0 0 0 0
1

𝐸𝐴𝑧𝑧
0

0 0 0 0 0 0 0 0 0 0 0
1

𝐸𝐴𝑦𝑦

0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 −1 0 0 0 0 ]

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 ∙

[
 
 
 
 
 
 
 
 
 
 
 
𝑢
𝑣
𝑤
𝜑𝑥
𝜑𝑦
𝜑𝑧
𝑁
𝑄𝑦
𝑄𝑧
𝑀𝑥
𝑀𝑦
𝑀𝑧]
 
 
 
 
 
 
 
 
 
 
 

+

[
 
 
 
 
 
 
 
 
 
 
 
0
0
0
0
0
0
−𝑝𝑥
−𝑝𝑦
−𝑝𝑧
−𝑚𝑇

−𝑚𝑦

−𝑚𝑧 ]
 
 
 
 
 
 
 
 
 
 
 

    (14) 

 

The entries 𝑆𝑖𝑗  in Eq. (13) are determined by inversion of the cross-sectional stiffness matrix in Eq. (8): 10 

[

𝑢′

−𝜑𝑧
′

𝜑𝑦
′
] = ([

𝐸𝐴 𝐸𝐴𝑦 𝐸𝐴𝑧
𝐸𝐴𝑦 𝐸𝐴𝑦𝑦 𝐸𝐴𝑦𝑧
𝐸𝐴𝑧 𝐸𝐴𝑦𝑧 𝐸𝐴𝑧𝑧

])

−1

⏟                  
𝑆

∙ [

𝑁
−𝑀𝑧
𝑀𝑦

] = [

𝑆11 𝑆12 𝑆13
𝑆21 𝑆22 𝑆23
𝑆31 𝑆32 𝑆33

]

⏟          
𝑆

∙ [

𝑁
−𝑀𝑧
𝑀𝑦

]  (15) 
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3 Alternative Finite element formulation 

In the classical finite element formulation, the beam stiffness matrix and the consistent beam mass matrix are derived by 

developing an approach for the displacement functions through shape (interpolation) functions, which consists of 1
nd

 and 3
th

 

order Hermite polynomials. In this section, an alternative finite element procedure is presented, based on the numerical 

RUNGE KUTTA 4
th

 order integration of the differential motion equations. The integration of the static part (the coefficient 5 

matrix in Eq. (13) and (14) resp.) leads to the static field matrix, the integration of the inertia terms in the equations of 

motion Eq. (16) results in a kinetic field matrix. From the last step of the integration, using both field matrices, the element 

stiffness and resp. the element mass matrices can be calculated by simple matrix operations. 

3.1 The differential equations of motion  

The differential equations of motion for the differential beam element can be written in a matrix form (Stanoev, 2007) as:  10 

 

[
𝑧1,𝑥
𝑧2,𝑥

] = [
𝐴11 𝐴12

𝐴21 𝐴22
]

⏟      
𝐴

∙ [
𝑧1
𝑧2
] + [

𝑏1
𝑏2
] + [

0
𝑚] ∙ �̈�1  (16) 

where, matrix 𝐴 is the coefficient matrix, see Eq. (13), (14), and vector 𝑧 =  [𝑧1 𝑧2]𝑇 is the state vector, 

𝑧1 = [𝑢(𝑥) 𝑣(𝑥) 𝑤(𝑥) 𝜑𝑥(𝑥) 𝜑𝑦(𝑥) 𝜑𝑧(𝑥)]𝑇  : vector of the displacement functions   (16a) 

𝑧2 = [𝑁(𝑥) 𝑄𝑦(𝑥) 𝑄𝑧(𝑥) 𝑀𝑥(𝑥) 𝑀𝑦(𝑥) 𝑀𝑧(𝑥)]𝑇 : vector of internal (section) force functions   (16b) 15 

The vector 𝑏 =  [𝑏1 𝑏2]𝑇   contains the known excitation forces. However, for an eigenvalue problem   𝑏 = 0 . The 

coefficient matrix 𝐴 together with the state vector 𝑧 and excitation force 𝑏 constitute the static part of the motion equation. 

Figure 2:  The finite beam element - internal forces and nodal DOFs 

𝑎 𝑏 

𝑥 , 𝜉 

𝑧 
𝑦 

𝐿 

Node 

𝑢 

𝑤 

𝑣 

𝜑𝑥 

𝜑𝑧 

𝜑𝑦 

𝜉 =
𝑥

𝐿
 

𝑁𝑥𝑎 𝑀𝑥𝑎 

𝑄𝑧𝑎 

𝑀𝑧𝑎 

𝑄𝑦𝑎 

𝑀𝑦𝑎 

𝑁𝑥𝑏 𝑀𝑥𝑏 

𝑀𝑧𝑏 

𝑀𝑦𝑏 

𝑄𝑦𝑏 

𝑄𝑧𝑏 
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The kinetic part of the motion equation can be expressed using a matrix of interpolation function and nodal acceleration 

vector as: 

[
0

𝑚] ∙ �̈�1 = [
0

𝑚] ∙ [
𝛷1(𝑥) 𝛷2(𝑥)]

⏟              
𝑏𝑚

∙ [
�̈�(𝑎)

�̈�(𝑏)
]

⏟  
�̈�𝑅(𝑒,𝑡)

  (17) 

where, 

�̈�1 = [�̈� �̈� �̈� �̈�𝑥 �̈�𝑦 �̈�𝑧]𝑇  - Vector of accelerations, [Φ1(𝑥) Φ2(𝑥)]  ϵ 𝑅(6×12)  matrix of interpolation functions 5 

(see sec. 3.3),  �̈�(𝑎),  �̈�(𝑏) ϵ 𝑅(6×1)  vector with nodal accelerations, 𝑚 ϵ 𝑅(6×6) is the inertia matrix of the differential beam 

element (see Sec.3.2). 

3.2 The inertia matrix term  

The inertia matrix in the Eq. (17) due to distributed mass 𝜇(𝑥) [
𝑘𝑔

𝑚
] implicates eccentrically application of the mass at any 

location (𝑦, 𝑧) in the cross section. The inertia matrix is expressed as (Stanoev, 2013): 10 

𝑚 = 𝜇 ∙

[
 
 
 
 
 
 
 
 
   1    0 0    0 𝑧 −𝑦
   0    1 0 −𝑧 0    0
   0    0 1    𝑦 0    0

   0 −𝑧 𝑦 (𝑦2 + 𝑧2 +
Θ𝑝

𝜇
) 0    0

   𝑧    0 0    0 (𝑧2 +
Θ𝑦

𝜇
) −𝑦𝑧

−𝑦    0 0    0 −𝑦𝑧 (𝑦2 +
Θ𝑧

𝜇
)]
 
 
 
 
 
 
 
 

  (18) 

where, 𝛩𝑝, 𝛩𝑦 , 𝛩𝑧 in [
𝑘𝑔 𝑚2

𝑚
] are the mass moments of inertia for the cross section: 

Θ𝑦 =
𝜇∙𝐼𝑦

𝐴
=

𝜇∙𝐴𝑧𝑧

𝐴
,     𝛩𝑧 =

𝜇∙𝐼𝑧

𝐴
=

𝜇∙𝐴𝑦𝑦

𝐴
,     𝛩𝑝 = 𝛩𝑦 + 𝛩𝑧 (19) 

3.3 Shape functions for Timoshenko beam element 

 15 

The acceleration terms  �̈�1  in Eq. (17) are expressed using the product of Hemite interpolating polynomials and the nodal 

acceleration vectors �̈�(𝑎), �̈�(𝑏).  

Shape functions for axial and torsional deformations 𝑢(𝜉) resp. 𝜑𝑥(𝜉) are derived using first order polynomial as: 

Figure 3: Definition of dimensionless coordinate (ξ) of a beam element 

 
  

L 

a b 



9 

 

𝑢(𝜉) =  𝑎1 + 𝑎2𝜉 = [1 𝜉]⏟  
𝑁𝑢

[
𝑎1
𝑎2
]

⏟
𝑎

= 𝑁𝑢 ∙ 𝑎 ,        𝜉 =
𝑥

𝐿
 (20) 

To express the coefficients 𝑎𝑗 in terms of the nodal displacements the following relations  𝑢(𝜉 = 0) =  𝑢𝑎 ,  

 𝑢(𝜉 = 1) =  𝑢𝑏  resp. and for the torsion 𝜑𝑥(𝜉 = 0) = 𝜑𝑥𝑎 ,   𝜑𝑥(𝜉 = 1) = 𝜑𝑥𝑏  are applied to Eq. (20):  

[
𝑢𝑎
𝑢𝑏
]

⏟
𝑢

= [
1 0
1 1

]
⏟  
𝑆

[
𝑎1
𝑎2
]         →     [

𝑎1
𝑎2
] =  𝑆−1 ∙ 𝑢 = [

1 0
−1 1

] [
𝑢𝑎
𝑢𝑏
] (21) 

Substituting Eq. (21) in the Eq. (20) results in the shape function for axial deformation 5 

𝑢(𝜉) =  [1 𝜉] [
1 0
−1 1

]
⏟    

𝐺𝑢

[
𝑢𝑎
𝑢𝑏
]

⏟
𝑣𝑢

= 𝑁𝑢 ∙ 𝐺𝑢 ∙ 𝑣𝑢 = 𝐻𝑢1⏟
1−𝜉 

𝑢𝑎 + 𝐻𝑢2⏟
𝜉

𝑢𝑏 (22) 

resp. for torsional deformation 𝜑𝑥  

𝜑𝑥(𝜉) = 𝐻𝑢1𝜑𝑥𝑎 + 𝐻𝑢2𝜑𝑥𝑏  (23) 

Starting point to derive approximation functions for bending deformation in xz - plane are the relationships (10a), (11) and 

the corresponding part of Eq. (14): 10 

𝑄𝑧 = 𝐺𝐴𝑠𝑧(𝑤
′ + 𝜑𝑦) = 𝑀𝑦

′ = 𝐸𝐴𝑧𝑧𝜑𝑦
′′   (24) 

 Using the above relation the expression for 𝑤′ is given by: 

𝑤′ = −𝜑𝑦 +
𝐸𝐴𝑧𝑧

𝐺𝐴𝑠𝑧
𝜑𝑦
′′ = −𝜑𝑦 + 𝜂𝑦

𝐿2

12
𝜑𝑦
′′

⏟    
𝛾𝑧

        ←  𝜂𝑦 =
12𝐸𝐴𝑧𝑧

𝐺𝐴𝑠𝑧𝐿
2       (25) 

The translational deformation function 𝑤(𝜉) is approximated by a cubic polynomial function: 

𝑤(𝜉) = 𝑐0 + 𝑐1𝜉 + 𝑐2𝜉
2 + 𝑐3 𝜉

3 =  [1    𝜉    𝜉2    𝜉3]⏟          
𝑁𝑤

[

𝑐0
𝑐1
𝑐2
𝑐3

]

⏟
𝑐

= 𝑁𝑤 ∙ 𝑐 (26) 15 

Using the constant shear strain relation in Eq. (5b) and Eq. (26) the polynomial expression for constant shear strain can be 

deduced: 

𝛾𝑧 = 𝜂𝑦
𝐿2

12
𝜑𝑦
′′       where,   𝜑𝑦

′′ = − 𝑤′′′ = −
6𝑐3

𝐿3
        (27) 

By including Eq. (27) and (26) into Eq.  (25) the polynomial expression for 𝜑𝑦(𝜉) results in: 

𝜑𝑦(𝜉) =
1

𝐿
[0   − 1  − 2𝜉    −

𝜂𝑦

2
− 3 𝜉2] [

𝑐0
𝑐1
𝑐2
𝑐3

] =  𝑁𝜑𝑦 ∙ c   (28) 20 

To determine the coefficients 𝑐𝑗 the following boundary conditions are applied: 
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𝑣𝑤 = [

𝑤𝑎
𝜑𝑦𝑎
𝑤𝑏
𝜑𝑦𝑏

] =

[
 
 
 
𝑤(𝜉 = 0)

𝜑𝑦(𝜉 = 0)

𝑤(𝜉 = 1)

𝜑𝑦(𝜉 = 1)]
 
 
 

=

[
 
 
 
 
1 0 0 0

0
−1

𝐿
0

−𝜂𝑦

2𝐿

1 1 1 1

0
−1

𝐿

−2

𝐿

−
𝜂𝑦

2
+3

𝐿 ]
 
 
 
 

⏟            
𝐻𝑤

∙ [

𝑐0
𝑐1
𝑐2
𝑐3

] =  𝐻𝑤 ∙  c      (29) 

The inversion of  Eq. (29) yields: 

𝑐 =  𝐻𝑤
−1 ∙ 𝑣𝑤 =

1

1+𝜂𝑦
 .  

[
 
 
 
 
 
𝜂𝑦 + 1 0 0

−𝜂𝑦
−𝐿(𝜂𝑦+2)

2
𝜂𝑦

−3
2

𝐿(𝜂𝑦+4)

2

−𝐿

3
−2

   

0
𝜂𝑦

2
𝐿

−𝐿(𝜂𝑦−2)

2

−𝐿

 

]
 
 
 
 
 

⏟                      
𝐺𝑤

[

𝑤𝑎
𝜑𝑦a
𝑤𝑏
𝜑𝑦b

] = 𝐺𝑤 ∙ 𝑣𝑤 (30) 

The interpolation functions for  𝑤(𝑥, 𝑦, 𝑧) and 𝜑𝑦(𝑥, 𝑦, 𝑧), Eq. (26) and (28), can be expressed by employing Eq. (30): 

𝑤(𝜉) = [1 𝜉 𝜉2 𝜉3]⏟          
𝑁𝑤

1

𝜂𝑦 + 1

[
 
 
 
 
 
 
𝜂𝑦 + 1 0 0

−𝜂𝑦
−𝐿(𝜂𝑦 + 2)

2
𝜂𝑦

−3
2

𝐿(𝜂𝑦 + 4)

2
−𝐿

3
−2

   

0
𝜂𝑦

2
𝐿

−𝐿(𝜂𝑦 − 2)

2
−𝐿

 

]
 
 
 
 
 
 

⏟                                
𝐺𝑤

[

𝑤𝑎
𝜑𝑦𝑎
𝑤𝑏
𝜑𝑦𝑏

]

⏟  
𝑣𝑤

 

            = 𝐻𝑤1𝑤𝑎 + 𝐻𝑤2𝜑𝑦a + 𝐻𝑤3𝑤𝑏 + 𝐻𝑤4𝜑𝑦b (31) 5 

Where, the product of both matrices 𝑁𝑤 and 𝐺𝑤 is introduced as functions 𝐻𝑤𝑗 (𝑗 = 1, . . ,4). 

𝜑𝑦(𝜉) =
1

𝐿
[0 − 1 − 2𝜉    −

𝜂𝑦

2
− 3 𝜉2]

⏟                  
𝑁𝜑𝑦

1

𝜂𝑦 + 1

[
 
 
 
 
 
 
𝜂𝑦 + 1 0 0

−𝜂𝑦
−𝐿(𝜂𝑦 + 2)

2
𝜂𝑦

−3
2

𝐿(𝜂𝑦 + 4)

2
−𝐿

3
−2

   

0
𝜂𝑦

2
𝐿

−𝐿(𝜂𝑦 − 2)

2
−𝐿

 

]
 
 
 
 
 
 

∙ [

𝑤𝑎
𝜑𝑦a
𝑤𝑏
𝜑𝑦b

] 

             =  𝐻𝜑𝑦1
𝑤𝑎 +𝐻𝜑𝑦2

𝜑𝑦a + 𝐻𝜑𝑦3
𝑤𝑏 + 𝐻𝜑𝑦4

𝜑𝑦b (32) 

In Eq. (32), the functions 𝐻𝜑𝑦𝑗
 (𝑗 = 1, . . ,4) are introduced in an analogous manner. 

Similar method is used in determining the approximation functions 𝑣(𝜉) and 𝜑𝑧(𝜉) for bending deformation in xy – plane. 

Starting with relations (10b), (11) and (14) to obtain: 10 

𝑄𝑦 = 𝐺𝐴𝑠𝑦(𝑣
′ − 𝜑𝑧) = −𝑀𝑧

′ = −𝐸𝐼𝑧𝜑𝑧
′′         (33) 

𝑣′ = 𝜑𝑧 −
𝐸𝐼𝑧

𝐺𝐴𝑠𝑦
𝜑𝑧
′′ = 𝜑𝑧 + 𝜂𝑧

𝐿2

12
𝜑𝑧
′′         ←   𝜂𝑧 =

12𝐸𝐼𝑧

𝐺𝐴𝑠𝑦𝐿
2 ,       (34) 

The approximations analogous to Eq. (31) and (32) can be derived: 

𝑣(𝜉) =  𝐻𝑣1𝑣𝑎 + 𝐻𝑣2𝜑𝑧a + 𝐻𝑣3𝑣𝑏 + 𝐻𝑣4𝜑𝑧b         (35) 
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𝜑𝑧(𝜉) =  𝐻𝜑𝑧1𝑣𝑎 + 𝐻𝜑𝑧2𝜑𝑧𝑎 + 𝐻𝜑𝑧3𝑣𝑏 +𝐻𝜑𝑧4𝜑𝑧𝑏         (36) 

The 𝐻∗𝑗 –functions developed in Eq. (31), (32) and Eq. (35), (36) are “static” shape functions for the Timoshenko beam. 

Supposing dependence of time only for the nodal displacement vectors  𝑉(𝑎), 𝑉(𝑏), the matrix of the interpolation functions 

[Φ1(𝑥) Φ2(𝑥)]   in the inertia term Eq. (17) can be developed by using Eq. (31), (32), (35), (36) (Kusuma 

Chandrashekhara, 2018): 5 

[Φ1(𝑥) Φ2(𝑥)] =

[
 
 
 
 
 
 
𝐻𝑢1 0 0 0 0 0

0 𝐻𝑣1 0 0 0 𝐻𝑣2
0 0 𝐻𝑤1 0 𝐻𝑤2 0

0 0 0 𝐻𝑢1 0 0

0 0 𝐻𝜑𝑦1
0 𝐻𝜑𝑦2

0

0 𝐻𝜑𝑧1 0 0 0 𝐻𝜑𝑧2

     

𝐻𝑢2 0 0 0 0 0

0 𝐻𝑣3 0 0 0 𝐻𝑣4
0 0 𝐻𝑤3 0 𝐻𝑤4 0

0 0 0 𝐻𝑢2 0 0

0 0 𝐻𝜑𝑦3
0 𝐻𝜑𝑦4

0

0 𝐻𝜑𝑧3 0 0 0 𝐻𝜑𝑧4]
 
 
 
 
 
 

  (37) 

 

3.4 Numerical Integration 

The special form of the numerical RUNGE-KUTTA 4
th

 order integration method applied here is described in detail in 

(Müller & Wolf, 1975) and (Schenk, 2012). The integration operator is applied to the equations of motion in Eq. (16), i.e.  10 

[
𝑧1,𝑥
𝑧2,𝑥

] = 𝐴 ∙ [
𝑧1
𝑧2
] + [

𝑏1
𝑏2
] + 𝑏𝑚 ∙ �̈�

𝑅(𝑒, 𝑡)         (38) 

In order to gain sufficient numerical precision the beam axis needs to be divided into at least 20 integration intervals. The 

integration operator transfers the known state vector at beginning of the integration interval to the end of the interval. The 

integration procedure starts with state vector at the first node  𝑎, i.e. at location (𝑥 = 0): 

[
𝑧1(𝑥 = 0)

𝑧2(𝑥 = 0)

1

]

⏟        
𝑧(𝑎)

= [
1

⋯
1

] 𝑧(𝑎)          (39) 15 

The integration operator is applied subsequently to the evaluated coefficient matrix 𝐴  in each interval by excluding the 

initial state vector 𝑧(𝑎). The result are static field matrices 𝐹(𝑥, 𝑎), multiplicative linked to 𝑧(𝑎), see Eq.(40). So each 

𝐹(𝑥, 𝑎)-matrix “transfers” the state vector at location (𝑥 = 0) to the end 𝑥 of the considered integration interval (transfer 

matrix method). In the frame of the integration procedure the actual field matrix  𝐹(𝑥, 𝑎) serves column wise as initial vector 

for the next interval, the components of the state vector 𝑧(𝑎) remains excluded. The beam “load” vector  [
𝑏1
𝑏2
] , Eq. (38), 20 

evaluated in the actual interval, yields after integration the [

𝛽1

𝛽2

1

]-column in the 𝐹(𝑥, 𝑎)-matrix – Eq. (40). 
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The numerical integration of the inertia term 𝑏𝑚  in Eq. (38) is done column wise analogously to the “load” vector, by 

excluding the nodal accelerations �̈�𝑅(𝑒, 𝑡) – the result are kinetic field matrices  𝐻(𝑥, 𝑎) at the end of each integration 

interval (at location 𝑥), see Eq.(40): 

[
𝑧1(𝑥)

𝑧2(𝑥)

1

]

⏟    

= [

𝛼11 𝛼12 𝛽1

𝛼21 𝛼22 𝛽2

0 0 1

]

⏟          

∙ [
𝑧1(𝑎)

𝑧2(𝑎)

1

] + [

𝐻11 𝐻12 0

𝐻21 𝐻22 0

0 0 1

]

⏟          

∙ [

�̈�(𝑎)

�̈�(𝑏)

0

]  

    𝑧(𝑥)   =              𝐹(𝑥, 𝑎) ∙ 𝑧(𝑎)           +             𝐻(𝑥, 𝑎) ∙ �̈�𝑅(𝑒)      (40) 5 

This type of numerical integration allows (slightly) varying values of the coefficients of the 𝐴-matrix, the 𝑏𝑚-inertia term 

and of the 𝑏-vector along the beam axis – i.e. all stiffness, mass and external load values of the beam element may vary. 

After the last integration step at the second node 𝑏, at location (𝑥 = 𝐿), static 𝐿(𝑒) and kinetic 𝐻(𝑒) field matrices are 

obtained: 

[
𝑧1(𝑏)

𝑧2(𝑏)

1

]

⏟    

= [

𝐿11 𝐿12 𝑓1

𝐿21 𝐿22 𝑓2

0 0 1

]

⏟          

∙ [
𝑧1(𝑎)

𝑧2(𝑎)

1

]

⏟    

+ [

𝐻11 𝐻12 0

𝐻21 𝐻22 0

0 0 1

]

⏟          

∙ [

�̈�(𝑎)

�̈�(𝑏)

0

]    

[

𝑉(𝑏)

𝑆(𝑏)

1

] =     𝐿(𝑒)       ∙ [

𝑉(𝑎)

𝑆(𝑎)

1

] +       𝐻(𝑒)   ∙ �̈�𝑅(𝑒)        (41) 10 

According to Eq. (13) and (14) the state variable 𝑧1  represents 6-component displacement vectors for  𝑉(𝑎) and 𝑉(𝑏), 

respectively, and the state variable 𝑧2 represents 6-component internal forces vectors  𝑆(𝑎) and  𝑆(𝑏) , at locations (𝑥 = 0) 

and (𝑥 = 𝐿) respectively. 

3.5 The element stiffness and mass matrices  

By solving the matrix in Eq. (41) for  𝑆(𝑎)  and 𝑆(𝑏), and accounting for the definitions of internal forces in finite element 15 

beam formulation, see fig. 2, 

𝐹(𝑎) = −𝑆(𝑎) ,     𝐹(𝑏) = 𝑆(𝑏) ,          (42) 

one can derive the element stiffness matrix 𝐾(𝑒) , element mass matrix 𝑀(𝑒) and element forces and moments  𝐹0 using 

simple matrix operations as shown in Eq. (43). Then the beam element relationships for the internal forces at two nodes can 

be formulated as: 20 

[
𝐹(𝑎)

𝐹(𝑏)
] = [

𝐹0(𝑎)

𝐹0(𝑏)
] + [

𝐾𝑎𝑎 𝐾𝑎𝑏

𝐾𝑏𝑎 𝐾𝑏𝑏
]

⏟      
𝐾(𝑒)

∙ [
𝑉(𝑎)

𝑉(𝑏)
] + [

𝑀𝑎𝑎 𝑀𝑎𝑏

𝑀𝑏𝑎 𝑀𝑏𝑏
]

⏟        
𝑀(𝑒)

∙ [
�̈�(𝑎)

�̈�(𝑏)
] = [

𝐿12
−1 ∙ 𝑓1

𝑓2 − 𝐿22 ∙ 𝐿12
−1 ∙ 𝑓1 

]
⏟            

𝐹0

+ 
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[
𝐿12
−1 ∙ 𝐿11 −𝐿12

−1

𝐿21 − 𝐿22 ∙ 𝐿12
−1 ∙ 𝐿11 𝐿22 ∙ 𝐿12

−1]
⏟                    

𝐾(𝑒)

∙ [
𝑉(𝑎)

𝑉(𝑏)
] + [

𝐿12
−1 ∙ 𝐻11 −𝐿12

−1 ∙ 𝐻12

𝐻21 − 𝐿22 ∙ 𝐿12
−1 ∙ 𝐻11 𝐻22 − 𝐿22 ∙ 𝐿12

−1 ∙ 𝐻12
]

⏟                            
𝑀(𝑒)

∙ [
�̈�(𝑎)

�̈�(𝑏)
]   (43) 

3.6 Single masses at eccentric positions 

The numerical integration according to RUNGE-KUTTA, described in Sec. 3.4, offers the possibility to include single load 

or mass quantities within a beam element. Single eccentric masses can be taken into account at the integration interval 

boundaries. In the local coordinate system of the beam element, at a general position vector  𝑥𝐴𝐸 = [𝑦𝐸 𝑧𝐸]𝑇 , the eccentric 5 

mass and the vector representation of dynamic equilibrium, Eq.(44a-b), is as shown in fig 4. The beam reference axis is at 

point 𝐴, and vector �̈�𝐸  represents the acceleration vector at the point of application (𝑥, 𝑥𝐴𝐸). With the help of the dynamic 

equilibrium conditions Eq.(44a-b), additional inertia forces and moments due to eccentric mass can be determined. (Li, 

2015) 

 10 

 

−𝑁𝐿 + 𝑁𝑅 = 𝑚𝐸�̈�𝐸           (44a) 

𝑀𝐿 +𝑀𝑅 = ∑ (Θ𝐸𝑖  �̈�𝑖
3
𝑖=1 𝑒𝑖 ) + (𝑥𝐴𝐸 ×𝑚𝐸�̈�𝐸)        (44b) 

where, 𝑁𝐿, 𝑁𝑅  resp. 𝑀𝐿 and 𝑀𝑅 are internal force resp. moment vectors on left and right side in differential proximity to the 

point at location 𝑥 (see fig. 4),  𝑚𝐸  is the eccentric single mass, Θ𝐸𝑖  are the mass moments of inertia of the mass and �̈�𝑖 are 15 

the angular accelerations at location 𝑥. 

The additional inertia matrix 𝑀𝐸(𝑚𝐸 , Θ𝐸𝑖 , 𝑥, 𝑥𝐴𝐸) , derived from Eq.(44a-b), is analogous to the inertia matrix due to 

distributed mass in the Eq. (18). During the numerical integration within the beam element, see Sec. 3.4, an additional 

𝑥𝐸  

𝑀𝐿 

  

𝑀𝑅 

  

𝑁𝑅 
𝑁𝐿 

  
𝐴 

y 

z 

𝑥𝐴𝐸  𝑒2 𝑒1 

𝑒3 

Beam axis 

𝑚𝐸�̈�𝐸 

 (𝜃𝐸𝑖�̈�𝑖

3

𝑖=1

𝑒𝑖) 

Figure 4: Eccentrically applied mass 𝑚𝐸 at the point 𝒙𝑨𝑬 of the beam in the 3D case 

𝑚𝐸�̈�𝐸 
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eccentric inertia term has to be added to the kinetic field matrix at the end 𝑥 (the point of application of eccentric mass) of 

the corresponding integration interval – see Eq. (40) and (45). 

 𝑧(𝑥) = [

𝛼11 𝛼12 𝛽1

𝛼21 𝛼22 𝛽2

0 0 1

] ∙ [
𝑧1(𝑎)

𝑧2(𝑎)

1

] +

[
 
 
 
 

[

𝐻11 𝐻12 0

𝐻21 𝐻22 0

0 0 1

] + [

0 0 0

𝑀𝐸Φ1 𝑀𝐸Φ2 0

0 0 1

]

]
 
 
 
 

∙ [

�̈�(𝑎)

�̈�(𝑏)

0

]    (45) 

Single masses will usually not appear in a rotor blade model, but the same finite element may be used for modelling of wind 

turbine towers. In this case single masses within a finite beam element could represent bolted ring flange connections or the 5 

mass of any equipment like lifts etc. 

4 The eigenvalue problem  

The system matrices for a rotor blade beam model are assembled in the usual finite element manner employing the 

developed element matrices 𝐾(𝑒) and 𝑀(𝑒) from Eq. (43). In the case of free damped oscillation, the linear homogenous 

differential equations of motion are given by: 10 

𝑀 �̈�(𝑡) + 𝐷 �̇�(𝑡) + 𝐾 𝑞(𝑡) = 0          (46) 

where, 𝑀 ϵ 𝑅(𝑛×𝑛) is the system mass matrix, 𝐾 ϵ 𝑅(𝑛×𝑛) is the system stiffness matrix, 𝐷 ϵ 𝑅(𝑛×𝑛) is the system damping 

matrix and 𝑞(𝑡) ϵ 𝑅(𝑛×1) is the nodal displacement vector. The system matrices are symmetric and positive definite for finite 

element structures. For a free undamped system, the matrix for the equation of motion is reduced to: 

𝑀 �̈�(𝑡) + 𝐾 𝑞(𝑡) = 0           (47) 15 

By introducing the following solution approach which is given by: 

𝑞(𝑡) =  �̂� 𝑒𝑖𝜔0𝑡 ,      �̈�(𝑡) =  �̂� (𝑖𝜔0)
2𝑒𝑖𝜔0𝑡         (48) 

into the equation of motion Eq. (47) the eigenvalue problem is obtained: 

(𝑀−1𝐾 −𝜔0𝑘
2𝐼) �̂�𝑘 = 0  ,              (49) 

Where,  𝐼  is a unity matrix. The condition for non-trivial solution for Eq. (49) is given by  20 

𝑝(𝜔0𝑘
2) = 𝑑𝑒𝑡 (𝑀−1𝐾 − 𝜔0𝑘

2𝐼) = 0         (50) 

The n-grade characteristic polynomial 𝑝(𝜔0𝑘
2) has n real solutions  𝜔0𝑘, (𝑘 = 1,… , 𝑛) (eigenfrequencies) and associated n 

eigenvectors �̂�𝑘, calculated from Eq. (49). For real life tasks the solution is usually done by use of eigensolver software. 
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5 Numerical example  

The programing code for the procedure described above as for the graphic plots shown below was written in MuPAD, a 

symbolic math toolbox of MATLAB
®
, see (Kusuma Chandrashekhara, 2018). The code was verified using realistic data for 

a wind turbine rotor blade. The blade structural data belongs to a 5 MW reference wind turbine designed for offshore 

development (Jonkman, Butterfield, Musial, & Scott, 2009). The blade is of length 63 m divided into 48 beam elements. The 5 

blade structural data consists of distributed mass (𝑚𝐿), blade extensional stiffness (𝐸𝐴), flapwise stiffness (𝐸𝐴𝑧𝑧), edgewise 

stiffness (𝐸𝐴𝑧𝑧), torsional stiffness (𝐺𝐼𝑡), flapwise mass moment of inertia (𝛩𝑦), edgewise mass moment of inertia (𝛩𝑧). For 

lack of any shear stiffness data in (Jonkman, Butterfield, Musial, & Scott, 2009) the values of (𝐺𝐴𝑠𝑧) and (𝐺𝐴𝑠𝑦) - the 

edgewise resp. flapwise shear stiffness – are estimated as 10 % resp. 20 % of extensional stiffness (𝐸𝐴) . The values of the 

above mentioned stiffness and mass moment of inertias are specified at span wise locations along the blade pitch axis and 10 

about the principal axes of each cross section as oriented by a twist angle (γ) defined in the input data. The twist angle is 

incorporated by using the rotational transformation of each local element stiffness resp. mass matrices (obtained after 

numerical integration) into the global coordinate system. The results of first three (flapwise and edgewise) eigenfrequencies 

calculated using Timoshenko beam model, see (Kusuma Chandrashekhara, 2018), are compared with the proposed results 

from FAST and ADAMS (Jonkman, Butterfield, Musial, & Scott, 2009). The results are as shown in the table below: 15 

 

Eigenmode Type 
FAST           

[𝑯𝒛] 

ADAMS        

[𝑯𝒛] 
𝒇𝐓𝐢𝐦 [𝑯𝒛] 

Percentage deviation [%] 

FAST and 

Timoshenko 

ADAMS and 

Timoshenko 

1
st
 blade Asymmetric Flapwise Yaw 0.6664 0.6296 

0.6704 

0.60 6.48 

1
st
 Asymmetric Flapwise Pitch 0.6675 0.6686 0.43 0.27 

1
st
 Blade Collective Flap 0.6993 0.7019 4.13 4.49 

1
st
 Blade Asymmetric Edgewise Pitch 1.0793 1.0740 

1.0958 

1.53 2.03 

1
st
 Blade Asymmetric Edgewise Yaw 1.0898 1.0877 0.56 0.74 

2
nd

 Blade Asymmetric Flapwise Yaw 1.9337 1.6507 

1.8992 

1.78 15.05 

2
nd

 Blade Asymmetric Flapwise Pitch 1.9223 1.8558 1.20 2.34 

2
nd

 Blade Collective Flap 2.0205 1.9601 6.39 3.11 

Table 1: First three calculated (bolded values) flapwise and edgewise eigenfrequencies 
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The mode shapes and the corresponding eigenfrequencies for the first flapwise and edgewise eigenmodes as well for two 

torsional eigenmodes are as shown below: 
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 20 

Figure 5: First flapwise eigenmode  Figure 6: First edgewise eigenmode  

Figure 7: Second flapwise eigenmode  Figure 8: mixed flap/edgewise eigenmode  
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Figure 9: First torsional eigenmode Figure 10: Third flapwise eigenmode 

Figure 11: Second torsional eigenmode 
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𝐺𝐴𝑠𝑧
𝐸𝐴

  ∶   
𝐺𝐴𝑠𝑦

𝐸𝐴
 

Eigenmode Type 

Timoshenko Beam Bernoulli Beam 

10% : 20% 

 

𝒇𝐓𝐢𝐦  [𝑯𝒛] 

20% : 40% 

 

𝒇𝐓𝐢𝐦  [𝑯𝒛] 

30% : 60% 

 

𝒇𝐓𝐢𝐦  [𝑯𝒛] 

 

 

𝒇𝐁𝐞𝐫𝐧 [𝑯𝒛] 

1
st
  Flapwise Bending Mode 0.6704 0.6737 0.6749 0.6771 

1
st
 Edgewise Bending Mode 1.0958 1.1035 1.1060 1.1113 

2
nd

 Flapwise Bending Mode 1.8992 1.9227 1.9307 1.9472 

1
st
 Mixed Flap/Edge Mode 3.8357 3.9275 3.9596 4.0262 

2
nd 

Mixed Flap/Edge Mode 4.2922 4.4062 4.4462 4.5295 

1
st
 Torsional Mode 5.5181 5.5181 5.5181 5.5181 

2
nd

 Torsional Mode 9.6937 9.6937 9.6937 9.6937 

Table 2: Comparison Timoshenko – Bernoulli beam with 3 variants for shear stiffness values 

In table 2 are shown the calculated natural frequencies for three different variants for the shear correction coefficients, 

approximated as 
𝐺𝐴𝑠𝑧

𝐸𝐴
 resp. 

𝐺𝐴𝑠𝑦

𝐸𝐴
 –ratios. The comparison to the frequencies calculated using the Bernoulli-beam model 

outlines the tendency to more stiff structure due to the presupposed infinite shear stiffness in this case. Natural frequencies 5 

𝒇𝐁𝐞𝐫𝐧 are on average 0.5% -1.0% higher then 𝒇𝐓𝐢𝐦  - in the (30% : 60%)-case. The natural frequencies remain unchanged for 

both beam models only for the purely torsional modes. The reason is that the equations for torsion and bending are 

uncoupled (for the case of principal axes, see Eq. (14)) and remain the same in both models. 

6 Conclusion and Outlook 

The proposed Timoshenko beam element in 3D description has been developed on the basis of the transfer matrix method. 10 

Both static and kinetic field matrices for the beam element are derived by applying in a special way a RUNGE KUTTA 4
th
 

order numerical integration procedure on the differential equations of motion. Appropriate shape functions for the 

Timoshenko beam have been used to approximate the inertia forces in the motion differential equation. The beam element 

stiffness and mass matrices are assembled by matrix operations from the derived element field matrices. The usual finite 

element equations of motion for the rotor blade model are cast in the general case with the accounting for structural twist 15 

angle and possibly pre-bending.  So in the general case the rotor blade beam model represents a polygonal approximated 

space curve. 
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For the sake of verification, the natural frequencies and associated eigenmodes are calculated using real life rotor blade data 

with incorporation of realistic twist angle data. The first two edgewise and flapwise eigenfrequencies obtained are compared 

with the proposed results from FAST and ADAMS software given in (Jonkman, Butterfield, Musial, & Scott, 2009). It can 

be observed that the deviation of the results of Timoshenko beam model from FAST is comparatively lesser and is in good 

agreement with FAST and thus, it can be stated that the presented approach of alternative finite element formulation works 5 

well.  

One key input parameter for the Timoshenko beam model is the shear stiffness. As far it was not the main goal of the present 

work to determine an appropriate shear correction coefficient for realistic rotor blade data, the numerical example was 

performed with a very rough approximation for 𝐺𝐴𝑠𝑧 and 𝐺𝐴𝑠𝑦. It was used in order to simply demonstrate the performance 

and differences to the Bernoulli beam model. However, if detailed data for the complex multilayer design of a rotor blade are 10 

available, more realistic estimation of the shear stiffness can be expected. A workable method for determination of the shear 

correction coefficient of a real life rotor blade represents an important topic for further research.  

References 

Jureczko, M., Pawlak, M., & M˛e˙zyk, A. (2005). Optimisation of wind turbine blades. Journal of Materials Processing 

Technology, 463-471. 15 

Andersen, L., & Nielsen, S. R. (2008). Elastic Beams in Three Dimensions. Aalborg: Department of Civil Engineering, 

Aalborg University. 

Bazoune, A., & Khulief, Y. (2003). Shape Functions of Three-Dimensional Timoshenko Beam Element. Journal of Sound 

and Vibration, 473-480. 

Graf, W., & Vassilev, T. (2006). Einführung in computerorientierte Methoden der Baustatik. Berlin: Verlag Ernst&Sohn, 20 

ISSN 978-3-433-01857-6. 

Jonkman, J., Butterfield, S., Musial, W., & Scott, G. (2009). Definition of a 5-MW Reference Wind Turbine for Offshore 

System Development. Colorado: National Renewable Energy Laboratory. 

Kaya, M. O. (2006). Free vibration analysis of a rotating Timoshenko beam by differential transform method. Aircraft 

Engineering and Aerospace Technology, 194-203. 25 

Kusuma Chandrashekhara, S. (2018). Calculation of natural vibrations of wind turbine rotor blades using Timoshenko beam 

elements in the frame of MATLAB, Master Thesis, Rostock : Chair of Wind Energy Technology, University of 

Rostock 

Li, N. (2015). Berechnung der Querschnittssteifigkeiten des Rotorblatts einer WEA durch ein FE-Verfahren für 

dünnwandige mehrzellige Profile mit Einsatz von MATLAB, Masterarbeit, Stiftungslehrstuhl für 30 

Windenergietechnik, Universität Rostock. 

Manwell, J., McGowan, J., & Rogers, A. (2009). Wind Enerfy Explained. Theory, Design and Applicaiton. West Sussex: 

Wiley. 



20 

 

Müller, H., & Wolf, C. (1975). Stabtragwerke (STATRA) Berechnung des Schnittkraft- und Verschiebungszustandes ebener 

Stabtragwerke nach Theorie I. und II. Ordnung sowie Stabilitätsuntersuchung, Baustein 1 des Programmsystems 

STATRA, Grundlagen, Bauakademie der DDR, Verlag Bauinformatio. Berlin. 

Müller, K. (2012). Untersuchungen zur Abschätzung von 3D-Schiffskörpereigenschwingungen durch Einsatz effizienter FE-

Balkenmodelle mit Hilfe von MATLAB, Diplomarbeit, Rostock: Lehrstuhl für Schiffstechnische Konstruktionen, 5 

Universität Rostock. 

Schenk, S. (2012). Entwicklung eines MATLAB-Programmtools zur effizienten Berechnung von 

Schiffskörpereigenschwingungen durch ein FE-Balkenmodell, Masterarbeit, Rostock: Lehrstuhl für 

Schiffstechnische Konstruktionen, Universität Rostock. 

Stanoev, E. (2007). Eine alternative FE-Formulierung der kinetischen Effekte beim räumlich belasteten Stab. Rostocker 10 

Berichte aus dem Institut für Bauingenieurwesen,Heft 17, Universität Rostock, Institut für Bauingenieurwesen, 

ISSN 1438-7638, 17. 

Stanoev, E. (2013). Vorlesungsskript: Berechnung dünnwandiger Stabsysteme. Rostock: Universität Rostock. 

Wu, J.-S. (2013). Analytical and Numerical Methods for Vibration Analyses. Singapore: Wiley.  

 15 

 

 


