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1. Abstract 

Wind turbines and wind farms lack information about upstream wind conditions which are ultimately converted into 
electricity. Remote sensing instruments such as compact pulsed scanning wind lidars can observe the incoming wind 
field at large distances (up to 10 km) ahead of a wind farm and provide spatial and temporal information about the 10 
inflow on operational timeframes not feasible with numerical weather models. On very-short horizons (below 1-hour 
lead times), the persistence method is commonly used, which fails to capture the unsteady state of the atmosphere 
and can introduce costly errors into the power system by means of imbalances. 

A method of measuring, processing, and predicting site-specific 1-60 minute ahead wind speeds is proposed using 
machine learning methods applied to lidar observations from a field experiment in western Denmark. A direct multi-15 
step forecast strategy is implemented using Stochastic Gradient Descent Regression (SGDR) with model weights 
updated following each repeating lidar scan. Overall, the proposed method demonstrates improved skill over 
persistence, with a reduction of root-mean-squared (RMS) wind speed errors ranging from 21 % (1-min ahead), to 
10.9 % (5-mins ahead), 9.2 % (10-mins ahead), 7.1 % (30-mins ahead), and 6.2 % (60-mins ahead) while maintaining 
normally distributed errors. 20 

2. Introduction 

As the share of variable generation increases in a power system, reducing forecast errors becomes crucial in 
maintaining power grid balance and stable electricity pricing through minimizing supply shocks and reserve 
requirements.  Numerical weather prediction (NWP) models such as Weather Research and Forecasting (WRF) are 
standard tools used by meteorologists for forecasting both general weather conditions as well as energy production 25 
from wind turbines. However for very-short time scales (< 1 hour) these methods are generally not applicable due to 
their coarse temporal and spatial resolutions, and long initialization times (Giebel et al., 2011). Site measurements 
offer a promising approach to generating forecasts for these lead times. Here we will explore various uses of 
intrahour forecasts and example methods used to generate them. 

2.1. Forecast horizons in wind power prediction 30 

The rapid expansion of wind power in past years has further prompted industrial and scientific interest in predicting 
wind conditions on a range of time scales, with lead times spanning from a few milliseconds up to one week or more. 
Prediction intervals can be described by a few broad categories, each with their own sets of applications and 
challenges. Table 1 outlines the common forecast horizons relevant to wind energy and typical methods applied 
within them. Broad overviews are also presented in Costa et al. (2008), Giebel et al. (2011) and Soman et al. (2010). 35 
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Table 1: Overview of forecast intervals of interest for wind energy purposes 
 

Designation Typical 
Horizon 

Example Methods Example Applications 

 Immediate Milliseconds 
to seconds 

− Persistence 
− Wind field measurements using nacelle lidars [1] 

and/or upwind turbine SCADA [2] 

− Wind turbine control [1] 
− Grid regulation [3] 

(e.g. frequency, voltage support) 

Very short-term  
(minute scale) 

1-minute to 
1-hour 

− Persistence [4] 
− Statistical time series models [5] 
− Markov (regime switching) models [6] 
− Machine learning and artificial neural networks 

(ANN) [7,8] 

− Wind farm control 
− Ancillary services (e.g. reserve 

power) [2,9] 
− Intrahour energy market trading 

[10] 
− Storage management 

(e.g. battery storage control) 

Short-term 1 to 72 
hours 

− Statistical time series models [11,12] 
− Numerical weather prediction (e.g. WRF) [13] 
− Analogue ensemble prediction [13,14] 
− Kalman filter [11,15] 

− Intraday and day-ahead energy 
market trading [10] 

− Ancillary services 
− Storage management 

(e.g. battery, hydrogen and 
pumped storage control) [16] 

− Economic dispatch and generator 
planning 

− Operator portfolio management 

Long-term 72 hours to 
10 days or 
more 

− Same as short term 
− Climatology 

− Reserve requirement decisions 
− Unit commitment decisions 
− Maintenance scheduling 

 

While a large volume of research work has been published on the short and long-term lead times, the prevailing lack 
of data access to high-frequency measurements along with a general incompatibility of grid and market support for 40 
implementing decision actions on minute time scales has led to a distinct gap in knowledge for forecasting within this 
category. 

2.2. Uses of minute-scale wind forecasts 

Predictions of the wind on very-short time scales have numerous applications both within and beyond the wind 
energy field. Concerning grid connected utility scale wind farms, the main uses lie in controls, grid support and 45 
participation in electricity markets. Consider the following use cases: 

• Forecasts of the incoming wind field near wind turbines and wind farms on this time scale allow for predictive 
control towards achieving optimum operation (both for energy production and loads). Currently, turbine and 
farm controllers react to what is experienced real-time by the turbine, which can delay or prevent ever reaching 
ideal performance. By anticipating changes in the incoming wind (such as speed and direction changes), a 50 
controller can configure set points to take better advantage of the impending conditions. This can be achieved for 
example by pre-emptively yawing the turbine so that its rotor axis is aligned to the wind direction, and/or by 
pitching the turbine blade flaps to achieve an optimal aerodynamic efficiency and avoid certain extreme loads. 
This concept has been demonstrated using feed-forward control on single wind turbines with continuous-wave 
nacelle lidars in Bossanyi et al. (2014) with look ahead times of 5 seconds. With longer-range pulsed Doppler lidar 55 
or radar systems, the spatial coverage is much larger and thus could potentially be applied to a controller 
covering an entire wind farm. 

• Electricity market participation horizons are shortening to better accommodate an increase in variable renewable 
energy generation. In the Northern European day-ahead market (NordPool Elspot), imbalance costs for wind 
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power producers not under support schemes such as the feed-in-tariff can be large due to market structures and 60 
difficulties in predicting an accurate wind power forecast with 1-hour time resolution (Holttinen, 2006). Estimates 
of EU-wide wind power balancing costs are between 1-4.5 EUR per MWh of production at 20 % penetration levels 
(EWEA, 2015), which are quickly being surpassed. In Denmark during 2017, this corresponds to between 3 and 
15 % of wholesale electricity prices. Elbas (NordPool’s intraday market) currently allows for trading up to 1-hour 
before delivery to account for deviations between what was offered in the day ahead market and the most 65 
recently updated wind power forecast (NordPool, 2015). In June 2017, the European Power Exchange announced 
5-minute ahead lead times in their German continuous intraday markets (EPEX SPOT, 2017). Bids for trading 
within each of Germany’s 4 control zones (described in Fraunhofer (2016)) can be placed up to 5-minutes before 
delivery. Otherwise the gate closure is 30 minutes for cross-zonal trades in Germany (EPEX SPOT, 2018). Australia 
has also announced plans to enact 5-minute dispatch and financial settlements beginning in 2021 (AEMC, 2017). 70 
We can expect that Denmark and the rest of Europe, along with other countries with a similar high penetration of 
renewables to soon follow suit by reducing lead times to delivery.  This will make predicting the wind on very-
short time scales more relevant for participating in these markets.  

• A systematic decrease in wind power forecast errors can allow for reducing the capacity requirements for real-
time balancing by grid operators. The Danish transmission system operator (TSO, Energinet) operates a number 75 
of ancillary service markets to support grid operation (Energinet, 2018). The shortest response time currently in 
effect is 5 seconds for 50 % of available power response in frequency-controlled disturbance reserves (FCR-D). 
The longest response time at present is 15 minutes for secondary automatic frequency restoration reserves 
(aFRR) and its manual counterpart (mFRR). These response times are consistent with the very-short term 
prediction interval and can further enable wind power plants to contribute to grid support actions. A recent pilot 80 
study in Germany demonstrates the willingness of TSOs to allow this type of reserve market participation by wind 
power producers (Regelleistung, 2016). 

2.3. Brief background of relevant forecasting methods 

The simplest prediction method, known as persistence, is a naïve predictor which forecasts the wind speed at time  
𝑡𝑡 + ∆𝑡𝑡 to be equal to the most recent observation (𝑡𝑡), where ∆𝑡𝑡 represents the forecast interval. Customarily, a 85 
moving average of the most recent observations (usually 10-minutes) is used in order to smooth the signal and 
reduce noise. This method is commonly used operationally on very-short time scales and in many cases outperforms 
complex physical and statistical methods (Potter and Negnevitsky, 2006). Therefore, it is regularly used as a 
benchmark in testing and validating more elaborate methods. This study also considers the persistence approach as a 
control in this manner, in order to determine improved skill of the lidar prediction method. 90 

Physical approaches such as NWP are based on parameterizations of the atmosphere, where coarse input data 
(global or synoptic scale) is combined with mathematical modelling of atmospheric properties such as air, soil and sea 
temperature, pressure, land cover and surface obstacles to provide a local site forecast at varying temporal and 
spatial resolutions. These models generally run on large supercomputers and require significant time and 
computational power to generate their forecasts. Further, they have not sufficiently demonstrated their ability to 95 
predict the small scale, local events that are of most use for real-time wind turbine and farm control. Therefore they 
are not considered appropriate in this context as they are ill-suited to be used operationally on very-short time scales 
with today’s technology.  

Statistical methods such as time series models utilize patterns from past observations to predict future outcomes.  
Auto-Regressive-Moving Average model-sets (ARMA) are widely used in this context. The Auto-Regressive 100 
component involves regressing the variable on its own time-lagged values, while the Moving Average term models 
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the linear combination of error terms which accumulate over the prediction steps. This combination results in both 
long and short-term memory of variable trends (Whittle, 1951).  

Because ARMA-family models assume that the univariate time series input is stationary (mean and variance being 
constant over time), a common processing step involves modelling the difference of the signal between time steps 105 
instead of the signal itself. This may be done one or more times until stationarity can be assumed. This differenced 
model is referred to as Auto-Regressive Integrated Moving-Average (ARIMA). 

Observational based forecasting methods have been demonstrated before, both from in-situ measurements as well 
as using remote sensing data. Utilizing meteorological and wind power data from nearby areas  (1-30km) has been 
shown to improve short-term forecasts by between 10-25% over persistence using genetic algorithms (GA) in 110 
Damousis et al. (2004) for lead times between 30 mins and 2 hours. Alexiadis et al. (1999) has also demonstrated a 
20-40% wind power forecast improvement over persistence through an ANN spatial correlation approach used to 
predict wind speed and power over 15 min windows from 1 min to 2 hours ahead using upwind observations from 
sites spaced between 12 and 40 km apart. 

Utilizing lidar observations to improve short-term wind forecasts is suggested in Frehlich (2013), which considers 115 
possibilities for assimilation of long-range lidar measurements into numerical weather models. The first 
demonstration of a purely observationally driven approach appears in Magerman (2014), where a Lockheed Martin 
WindTracer lidar was deployed in a site with complex terrain. Spatial variances in the wind were tracked as they 
advected towards a point representing a simulated wind turbine.  Another relevant study includes Valldecabres et al., 
(2018), which combines advection of coastal lidar observations with additional model refinements based on 120 
atmospheric processes in order to make a 5-minute ahead wind speed prediction which outperforms both ARIMA and 
persistence during neutral atmospheric conditions. 

In the context of this existing knowledge, we propose a local observation system which uses long-range inflow 
measurements from a scanning Doppler lidar to generate a site-specific wind speed forecast up to 1-hour ahead with 
a time resolution of 49 seconds (corresponding to the configured sampling rate of the lidar system used in the field 125 
experiment presented in Section 3). 

2.4. Brief introduction to wind measurements with pulsed scanning Doppler lidars 

Doppler lidars are active remote sensing instruments which probe the atmosphere with laser light in the near infrared 
band. Light pulses emitted by the lidar are reflected off of particles suspended in the air which are assumed to be 
moving with the speed of the wind. When interacting with these moving aerosols, the wavelength of the light shifts 130 
according to the Doppler principle. The lidar system receives the backscattered pulses and through spectral analysis is 
able to determine the Doppler (frequency) shift and thus the radial speed (projection of the wind speed along the 
laser’s path). Time of flight calculations allow for measurements at multiple distances along the line-of-sight, known 
as range gates. The addition of a steerable scanner head (usually dual-axis) allows the lidar to measure arbitrarily in 
space within its mechanical and optical limits, as long as the target is within a clear line of sight (i.e. not blocked by an 135 
object). A detailed overview of the hardware and software measurement chain of a typical pulsed scanning wind lidar 
can be found in Vasiljević (2014). 

2.5. Motivations and research questions 

The following questions represent the core aims that this research work sets out to answer:  
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• How is a horizontal wind field correlated in time and space? 140 
• At what distance upwind of the reference sensor do the lidar observations correlate? 
• Does a horizontal wind field advect with its mean speed? 
• Can an improvement be made over persistence by utilizing long-range lidar measurements as a model input 

for very-short term forecasting (1-60 minutes ahead)? 
• Is it possible to track coherent events such as gusts or weather fronts with a lead time that can be utilized for 145 

turbine/farm control (1-min), or in market actions (5-mins)? 

3. Field experiment 

3.1. Site description 

The Technical University of Denmark (DTU Wind Energy) operates two test stations for very large wind turbines in 
western Denmark (Høvsøre and Østerild). The field experiment for this study took place at Østerild test center, 150 
located near the town of Thisted with the following coordinates: 57° 2'55.94"N latitude, 8°52'51.00"E longitude. 

 
Figure 1: Location of Østerild test center in Denmark, with Risø also denoted 

The site is located on a coastal plain between Limfjord (6 km south) and the Vigsø Bay in the North Sea (7.5 km 
north). The vegetation is mostly grasslands with scattered forestlands to the south and north-west and the presence 155 
of sand dunes along the coastline. A terrain and vegetation map is presented in Fig. 3. Surface information is obtained 
using the Danish Geodata Agency’s digital height model (DHM) with a spatial resolution of 0.4 m (Kortforsyningen, 
2018).  

There are 7 turbine test stands running north-south, enclosed by two 250 m guyed aircraft warning towers equipped 
with meteorological instruments. The tower positions are indicated with star markers in Fig. 3. 160 
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3.2. Measurement characteristics, configuration and calibration 

3.2.1. Lidar instruments 

In the Balconies experiment, two scanning wind lidars (with specifications set according to Table 2) were deployed at 
Østerild test center. The two instruments together form a time synchronized multi-lidar apparatus known as the 
Long-Range WindScanner system (LRWS). The system is described fully in Vasiljević et al. (2016).  165 

Table 2: Lidar specifications used in the field experiment  

Manufacturer/Model 
DTU Long-Range WindScanner  
(Now commercially available as  
Leosphere Windcube 200S) 

Laser source Er-Yb silica fiber laser (pulsed) 

Mean emission power 1 W 

Laser emission wavelength 1543 nm 

Telescope diameter 100 mm 

Pulse length 400 ns (long pulse) 

Pulse energy 100 μJ (long pulse) 

Pulse repetition frequency 
(PRF) 10 kHz (long pulse) 

Photodetector sampling rate 4 ns (250 MHz) 

Eye safety IEC/EN 60825-1 &  
ANSI-Z136.1-2007 compliant 

Radial wind speed range -30 m/s to 30 m/s 

Dimensions 1.5 x 0.55 x 0.65 m 

Weight 150 kg 

Operating conditions IP65 and ISO9227 compliant 

 
The overall measurement goal of the experiment was to observe the 2-dimensional incoming wind field on a 
horizontal plane. This necessitates that the lidar instruments be situated at the desired measurement height, and be 
set to scan with an elevation angle of zero degrees. 170 

Purpose-built platforms were constructed and attached to the 250 m tall masts at the north and south ends of the 
site (see Fig. 3). The lidars were then raised by truck mounted winch and lifted into place. Photos of one of the 
platforms being lifted can be seen in Fig. 2. A video of the lifting procedure is available in Vasiljević (2016). 
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 175 

Figure 2: Photos of the lidar platform during the lifting procedure 

The lidars were first installed at 50 m above ground level (AGL) during the first phase of the experiment (April 12 – 
June 17, 2016). They were later raised to 200 m AGL in the second phase of the experiment (June 29 – August 12, 
2016).  

 180 

Figure 3: Combined terrain and vegetation (tree) height map of the experiment site with met-masts locations 
indicated with stars (Created by Ebba Dellwik and available in Simon et al., 2017) 

The multi-lidar system was configured to scan in one of two mirrored configurations (east or west facing as shown in 
Fig. 4), depending on the incoming wind direction. The direction changes were performed manually by the operator 
throughout the campaign.  The scan pattern was created such that the range gate positions measured by both lidars 185 
were collocated in space. Points along the central intersecting line were synchronized in both space and time. This 
allows for a dual-Doppler reconstruction of the wind field at all points where the beams intersect. The reconstructed 
points not along the time synchronized transect will be averaged over the time it takes to complete one scan (49 
seconds). 

 190 
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Figure 4: Merged scanning pattern of the lidars (red dots). Switches between east/west to measure inflow. The 
northing coordinate is relative to the time and space synchronized transect line. Blue areas represent regions where 

the beam intersecting angle is larger than 30 degrees. (Modified figure created by Jakob Mann and available in Simon 
et al. (2017))  195 

For the purposes of this study, only measurements taken during phase two of the experiment are used (200 m AGL). 
This is due to the desire to have wind conditions as similar to offshore as possible by minimizing the effects of terrain 
and vegetation on the measured winds. 

Further, although two lidars were deployed in the field campaign, this study only utilizes observations from the unit 
‘Sirocco’ mounted on the south tower, while it was operating the westerly scanning pattern depicted in Fig. 4. This 200 
was decided in order to avoid data loss (since both systems would require sufficient measurement range for a dual 
Doppler reconstruction), and to avoid turbine wake effects which are present in the east. These decisions ultimately 
act to simplify the system so that only one lidar would be required to demonstrate the forecasting system- as we 
expect would be typical of an operational setup. This solution is further supported by the result presented in Simon 
and Courtney (2016) which shows excellent agreement between both single and dual Doppler wind retrieval 205 
approaches on 10-minute averages. 

Table 3 describes the measurement setup for the lidar used in this study. 

Table 3: Measurement setup for lidar ‘Sirocco’ mounted on the south mast and scanning north-west 

Scan type Plan position indicator (PPI) 

Azimuth angle range 255-345 degrees 

Elevation angle 0.05 degrees 

Accumulation time 1000 ms 

FFT size 128 bins 

Measurement range 105-7000 m 

Range gate spacing 35 m 

Scanner head motion 2 degrees / second 

Reversing? No. Scanner head resets to initial 
position after completing each scan 
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Scan rate 45 s per scan, plus 4 s  
to reset position 

Probe length full-width half maximum 
(FWHM) 75 m 

Number of lines-of-sight (LOS) 45 

Number of range gates (RG) 198 

 

Following installation of the two lidars on their mast-attached platforms, they were levelled according to their dual-210 
axis inclinometer readouts. The static pointing accuracies of the instruments were assessed by mapping the Carrier-
to-Noise Ratio (CNR) of targeted landmarks, including e.g. met-masts (see Fig. 5). The north instrument “Vara” had its 
dual-axis inclinometer previously calibrated for another campaign, thus the mapped and referenced positions of the 
landmarks matched well (difference of 0.05° in azimuth, 𝜃𝜃, and elevation, 𝜑𝜑). However, the dual-axis inclinometer of 
the south instrument “Sirocco” had not been previously calibrated which resulted in its imperfect levelling. Figure 6 215 
demonstrates this imperfect levelling through a full (360°) PPI scan obtained at supposedly zero degrees elevation. 
The ground reflection of the laser beam appearing along with the expected reflection from the targeted landmarks 
indicates that the lidar is inappropriately levelled. 

Assuming that the static pointing error originates only from the lidar’s imperfect levelling and home position offset, 
Vasiljevic and Courtney (2017) demonstrates that the elevation error follows a sine curve for the full range of azimuth 220 
angles. Therefore, by deducing the elevation error for several well distributed azimuth positions, finding the sine 
curve that defines the elevation error is possible. The sine curve can then be encoded in the motion controller to 
compensate the imperfect levelling and home position offset and thus improve the pointing accuracy.  

To implement this for the south instrument (Sirocco), the surrounding terrain was profiled with the lidar’s laser beam. 
It was found that the terrain at 𝜃𝜃 (azimuth) = 255° and 𝜃𝜃 = 286° from the instrument was increasing in height from 225 
approximately 5 m to 23 m at 3.75 km and from 5 m to 44 m at 5.29 km respectively. Two RHI (range height indicator) 
scans with fixed azimuth and varying elevation angles were configured to profile the terrain along these two azimuth 
positions. The elevation angle ranged from 0° to 1° with steps of 0.01°. Using the RHI scans it was possible to deduce 
the elevation angle up to which the laser beam was still reflected by the terrain. Since the terrain height with respect 
to the distance from the lidar and the height of the instrument were known, it was then possible to calculate the 230 
elevation angle at which the laser beam would be reflected back from the ground if the lidar was properly levelled. 
Using the mapped and calculated elevation angles, the elevation error was computed. Two values for the elevation 
error were derived for two different azimuth positions of the scanner head, relatively close to each other 
(approximately 30° apart). Next, the north met-mast, a chimney and a wind turbine located at the azimuth positions 
of 355°, 50°, and 120° respectively were mapped and the corresponding elevation errors were calculated. These five 235 
points were then used to perform a sinusoidal fit, shown in Fig. 7, which was then implemented in the motion 
controller of the south WindScanner “Sirocco”. Succeeding this procedure, the lidar’s static pointing accuracy is 
considered to be within 0.5° on its elevation axis. 
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Figure 5: CNRMapper example, mapping mast #7 in order to determine the static pointing error 240 

 

 

Figure 6: Uncalibrated PPI scan at 0 degree elevation from Sirocco, demonstrating the imperfect levelling of the 
instrument 

 245 

Figure 7: Sinusoidal fit of elevation error by azimuth angle for Sirocco (lidar positioned on the south met-mast) 
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3.2.2. Mast instruments 

The 250 m tall masts are equipped with a range of meteorological instruments. This study utilizes the following 
sensors, both mounted on the southern mast where the lidar Sirocco is deployed.  

• Cup anemometer, with top of instrument situated at 210 m AGL. Type RISØ/WindSensor-P2546A with 250 
P3118A support pole. Boom length of 4.8 m. Wind speed data is logged at 10 Hz. 

• Sonic anemometer (3-D), with top of instrument situated at 244 m AGL. Type Metek USA-1/P2901 with 
P4023A support pole. Boom length of 4.8 m. 3D velocity data is logged at 20 Hz, which is projected into 
vector components (𝑢𝑢, 𝑣𝑣,𝑤𝑤). Note that only wind direction data from this instrument was used in this study, 
and that the cup and sonic sensors are not collocated at the same height. 255 

3.3. Data filtering and processing 

An overview of the dataset preparation and filtering steps are presented in Fig. 8. 

 
Figure 8: Flowchart of dataset filtering and preparation steps 

Measurements from the met-mast were expressly not used for filtering purposes of the lidar data. This is to 260 
demonstrate real-world usage where such instrumentation is not available, for example at an offshore wind farm 
where costs of mast installation alone can exceed 10 million euros (4C-Offshore, 2017). 

Measurements from the lidar were filtered according to the following steps: 

• Carrier to noise ratio (CNR) threshold. Signal quality must be above -25 dB to be considered valid 
• Inflow only conditions. Radial speeds must have the correct sign (negative in WindScanner convention) 265 
• Sparse data (data point are filtered if more than a 10-minute gap exists between them and the previous or 

subsequent valid observation) 

A plot demonstrating effective lidar range over the experiment is shown in Fig. 9. The figure is presented such that 
the range representation is aligned with the lidar beam (horizontally). Purple data is valid, while yellow data has been 
removed according to the filtering procedure described above. Due to low availability of data at ranges beyond 6 km, 270 
we have decided to only include measurements from 105 to 5950 m into the forecast model. Note that only periods 
where the lidar was operating using the westerly pattern are considered. Therefore, we do not consider data to be 
missing if the winds are from the east and the lidar is configured to scan eastwards. Such periods are simply omitted 
from the dataset. 
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 275 
Figure 9: Availability of lidar measurements. Horizontal range from left (105 m) to right (7 km). Filtered data in yellow 

 
Implications of the filtering steps can be seen in the wind roses (Fig. 10), which indicate wind direction 
representativeness as well as corresponding wind speed distributions included in the dataset. 
 280 

 
Figure 10: Wind rose before (left) and after (right) data filtering 

 

Table 4: Data filtering timeline (n = number of 49-second samples) 

Original data After CNR and RadSpeed filter After time gap filter 

n = 67932 (925 hours) n = 36363 (495 hours) n = 35058 (477 hours) 

 285 

Fig. 11 presents the scan area of the filtered lidar data (dashed lines) on top of the terrain and vegetation height map. 
Note that these angles do not correspond to the entire scanned measurement area (shown in Fig. 3). This is done for 
ease of interpretation of the results. 
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 290 
Figure 11: Terrain and vegetation height map of the lidar scan area (dashed lines) after filtering. Stars represent the 

250 m tall met-mast positions. Created by Ebba Dellwik 

Following the outlined filtering procedure, the lidar observations were processed according to the retrieval method 
presented in the methodology (Section 4.1), and matched in time to the met-mast measurements. This was achieved 
by converting both time-series to datetime format (millisecond precision) and cross-correlating the first lidar range 295 
gate to the cup anemometer signal in order to determine if a time offset was present. The time offset was 
determined to be very close to 1-hour. This is due to the lidar recording data in UTC format whereas the mast was set 
to local time (Central European Time, UTC+1). The offset was then corrected for by shifting the lidar timestamps (by 
1-hour) so that the measurements are matched in time. The empirical time offset was found not exactly at 1-hour 
due to the fact that the first lidar range gate was 105 m horizontally upstream of the cup anemometer. A 49-second 300 
moving average was applied to all mast observations before being joined with the coinciding lidar measurements. 
This was done to match the sampling rate of the mast data to that of the lidar. 

4. Methodology 

4.1. Wind field retrieval method 

The radial speed obtained by the lidar is described by Eq. 1, when the unit is calibrated such that its azimuth angle is 305 
oriented to the geographic direction (0° = North), and the laser beam is parallel to the ground (i.e. zero degree 
elevation angle). 

𝑉𝑉𝑟𝑟 (𝑚𝑚 𝑠𝑠−1) =  𝑉𝑉ℎ ∗ cos(β − 𝜃𝜃) (Eq. 1) 

where 𝑉𝑉𝑟𝑟 is the radial speed, 𝑉𝑉ℎ is the horizontal wind speed, β is the wind direction angle, and 𝜃𝜃 is the azimuth angle. 

Therefore, the true wind speed is equal to the absolute value of the radial wind speed when measuring directly into 310 
and away from the wind. When scanning perpendicularly, the lidar will measure zero radial speed. 

Commonly when processing PPI scans, a fitting function is used on a range of radial speed inputs in order to obtain 
the u and v (horizontal) vector components of the wind speed. This approach was first introduced in Lhermitte and 
Atlas (1961) and demonstrated in Browning and Wexler (1968) as the velocity azimuth display (VAD) method using 
steep elevation angles (up to 30°). Horizontal “sector” scanning at lower elevation angles builds upon this principle 315 
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using e.g. the iVAP (integrating velocity azimuth process) reconstruction method demonstrated in Liang (2007). These 
fitting methods have the benefit of performing even when measuring at angles relative to the wind, where the 
maximum (or minimum) radial speed is not measured directly. However, as they assume homogeneity within the 
scan volume and fit a function to the measurements, there are inherent errors introduced by these methods.  

Contrary to traditional fitting algorithms- by ensuring that our lidar scan crosses into (or away from) the oncoming 320 
wind direction, we can utilize the lidar observations of radial speed directly. This entails finding the maximum 
absolute magnitude of the radial speed within each scan, and recording both the speed value itself, as well as the 
azimuth position of the lidar scan head where the maximum occurs. At this point we will obtain the wind direction 
aligned wind speed, and corresponding wind direction for each range gate at each completed scan time. The method 
also assumes that the wind is frozen (homogeneous) during each PPI scan (here 49 seconds) but has the benefit of 325 
significant computational speed and memory improvements over the traditional fitting approaches along with the 
avoidance of errors introduced by the fitting function. However it should also be noted that this method can 
introduce a slight positive bias as points with the maximum positive perturbation are chosen. It is important that the 
peak selection be done in conjunction with the filtering steps, considering that it is possible to filter out the local 
minima or maxima if filtering is done beforehand. As this wind retrieval method is not well established in the 330 
literature, a validation has been included in the results (Section 5.1). 

4.2. Model training and prediction 

4.2.1. Overview of stochastic gradient descent (SGD) training 

Stochastic gradient descent (SGD) training is a process which aims to minimize an objective (cost function) by using 
iterative stochastic approximation of a gradient descent function (convex minimization) (Scikit-learn, 2018a). By 335 
design it is a fast algorithm suitable for very large training sets, and can be implemented out-of-core (i.e. datasets too 
large to fit in memory). 

The algorithm begins with initial input conditions (step size and learning rate), and stochastically manipulates 
coefficient weights of the inputs to follow the decrease (sign) in the objective function until approaching a minimum. 
The end result is a fitted linear model with weights optimized to achieve the best metric of the loss function (e.g. 340 
mean-squared-error (MSE), mean-absolute-error (MAE), etc.). This method can be applied both to regression (SGDR) 
and classification problems. By using a convex cost function such as MSE for linear regression, it is guaranteed to 
approach close to the global minima (and avoid being trapped at a local minima if the number of iterations is too 
few). The SGD method also incorporates a regularization penalty which can be used to counteract overfitting and 
perform feature selection.  345 

SGD models are particularly sensitive to feature scaling (also called data normalization). This step can significantly 
increases model performance and training speed. Feature scaling normalizes input variables in terms of their mean, 
minimum, maximum, variance, and distribution. The recommended scaling method will depend on characteristics of 
the input data together with assumptions made within the algorithm itself. 

The mathematical formulation of the SGDR algorithm is presented in Scikit-learn (2018) and further elaborated in 350 
Zhang (2004). 
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4.2.2. Forecast model implementation details 

The scikit-learn implementation of SGDR does not accept sparse (missing) data as inputs, so a strategy to fill or 
remove them from the dataset was needed. We have chosen to fill missing data using the mean value along the line 
of sight using the scikit-learn preprocessing imputer (Scikit-learn, 2018b).  355 

In order to ensure proper compartmentalization of past and future data, and to simulate real-world usage, a walk-
forward training and prediction architecture is implemented. At each point in time (here every 49 seconds which 
corresponds to the lidar scan rate in the experiment), in-sample data is used to train and predict wind speeds from 1 
to 73 scan-times ahead (corresponding to 0.8-60.4 minute ahead lead times). Subsequently, 49 seconds later, the 
latest measurements are assimilated into the training data, which is then updated and used to predict another set of 360 
wind speeds over the prediction interval. The model does not know how well it has performed until the proper 
amount of time has elapsed and the corresponding data is then included in the updated training set.  

The model training begins with an initial 500 sample spin-up, which corresponds to 6.8 hours of training data before 
the first prediction is made. Separate models are trained for each prediction length, in order to fully capture the 
spatio-temporal correlations present in the observations. Training data for models with lead times 0.8 to 3.27 365 
minutes (1-4 steps) include all available past data, while training data for subsequent models (4.08 – 60.4 minutes or 
5-74 steps) represents a rolling window of the last 1000 observations (13.6 hours). The main practical difference is 
that in the incremental approach new observations are partially fit to the already trained model from the previous 
time step, while in the rolling window approach a new model is trained at each time step. This hybrid approach leads 
to an increase in robustness, overall skill, and computational speed. The two data architectures are presented in Fig. 370 
12 and the two process flowcharts are presented in Fig. 13 and 14 respectively.  

 
Figure 12: Walk-forward training and prediction architecture. Incremental (left) and rolling window (right) 

Input features consist of wind direction aligned radial wind speeds from 105 m to 5950 m horizontal distance 
(upwind) from the lidar. This corresponds to the 35 m range gate spacing of the measurement setup. As mentioned in 375 
Section 3.3, data from 5985 m-7000 m are not included as inputs due to poor availability during the experiment after 
signal quality filtering. Model predictions are the 0.8-60.4 minute ahead cup anemometer measurements at 210 m 
AGL from the southern mast where the lidar is mounted.  

As previously mentioned, SGD training requires feature scaling for optimum performance. Since our wind speed time 
series is neither stationary nor normally distributed, and contains outliers which would otherwise influence the 380 
sample mean and variance, we have chosen to use the robust scaling method to transform our data using the 
interquartile range (IQR) of each feature. Following model prediction, we inverse transform our scaled outputs back 
into familiar wind speed values. The robust scaling method is described in Eq. 2. 
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𝑥𝑥𝑠𝑠 =  𝑥𝑥𝑖𝑖− 𝑄𝑄1 (𝑥𝑥)
𝑄𝑄3 (𝑥𝑥)− 𝑄𝑄1 (𝑥𝑥)

 (Eq. 2) 

where 𝑥𝑥𝑠𝑠 represents the scaled variable, 𝑥𝑥𝑖𝑖 represents the unscaled input, and 𝑄𝑄n (𝑥𝑥) represents the nth quartile of 385 
the input data distribution. 

The model is trained using scikit-learn’s SGDRegressor class (Scikit-learn, 2018c) with parameters according to Table 
5. If the parameter isn’t explicitly mentioned, then the default values are used. 
 

Table 5: Scikit-learn SGDR model parameters 390 

Parameter Value Note 

Loss function: squared_loss Ordinary least squares (OLS) fitting using mean-squared error (MSE) 

Learning rate: constant Used to frame our model as an online learning problem, where new 
data is being assimilated as time passes 

Shuffle: False Prevents shuffling of the training data since the observations are 
naturally ordered in time 

Initial learning rate 
(eta0): 

0.0001 A small learning rate is chosen based on hyper parameter tuning 

Maximum iterations 
(epochs) 

1 Only one full training cycle is performed as the data is not shuffled 

 

While the walk-forward execution runs on the dataset, the 0.8-60.4 minute ahead predictions at each time step are 
saved in memory along with the last (49 s averaged) wind speed observation from the met-mast (last value 
persistence). A 10-minute moving average of the mast observations (10-minute average persistence) is also included 
as a benchmark. After all predictions are made, the reference wind speed from the mast is joined to the predictions 395 
in order to calculate performance metrics of the three forecast methods. 

Figs. 13 and 14 present a flowchart overview of the two methods used to produce the forecasts. 

 

Figure 13: Forecast procedure for models with lead times between 1-4 steps ahead (0.8 - 3.27 minutes) 
 400 
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Figure 14: Forecast procedure for models with lead times between 5-74 steps ahead (4.1 - 60.4 minutes) 
 

4.3. Forecast evaluation 

When evaluating a regression model’s skill on (continuous) time series data, there are a multitude of metrics 405 
available. The choice should be context driven and related to the cost function used in the model’s 
training/optimization. Two of the most common standards are the mean-absolute-error (MAE) and root-mean-square 
error (RMSE). The root-mean-square metric penalizes larger errors disproportionately to smaller errors. Thus it is a 
good fit for evaluating forecasts of wind speed for the purposes of wind power prediction, since errors are amplified 
or attenuated by nonlinearities in the wind turbine’s power curve. Further, the RMSE metric is sensitive to large 410 
errors which have the most detrimental effects on the power system. MAE and RMSE units are the same as the input 
variable (here ms-1). 

𝑀𝑀𝑀𝑀𝑀𝑀(𝑦𝑦,𝑦𝑦�) =  1
𝑛𝑛
∑ |𝑦𝑦𝑖𝑖 −  𝑦𝑦�𝑖𝑖|𝑛𝑛−1
𝑖𝑖=0  (Eq. 3) 

𝑅𝑅𝑀𝑀𝑅𝑅𝑀𝑀(𝑦𝑦,𝑦𝑦�)  =  � 1
𝑛𝑛

 ∑ (𝑦𝑦𝑖𝑖 −  𝑦𝑦�𝑖𝑖)2𝑛𝑛−1
𝑖𝑖 = 0   (Eq. 4) 

Where 𝑦𝑦 is the known value and 𝑦𝑦� is the predicted value at point 𝑖𝑖 over all samples 𝑛𝑛. 415 

A simple general linear model between the predictions and observations is also used to determine systematic bias (y-
intercept), goodness of fit (coefficient of determination, R2) and proportion (slope) between the two time-series. 

5. Results 

5.1. Validation of wind field retrieval method 

The following figures demonstrate the performance of the simple wind field retrieval method by comparing time-420 
series plots and 2-D histograms of the first lidar range gate with the met-mast observations. Note that the 
measurements are not collocated in space. The lidar measurements are taken 105 m upwind of the met-mast, also 
with a height difference of 10 m for the cup anemometer, and 44 m for the sonic anemometer (wind direction). 
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Figure 15: Time series comparison between closest lidar and mast measurement, wind speed 425 

 

Figure 16: Time series comparison between closest lidar and mast measurement, wind direction 
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Figure 17: 2-D histogram comparisons between closest lidar and mast measurement,  
wind speed (left) and wind direction (right). Also showing the ideal relationship 𝑦𝑦 = 𝑥𝑥 with a black line. 430 

It is clearly demonstrated that the retrieval method performs well for wind speed, with an ordinary least squares 
(OLS) coefficient of determination (R2) of 0.97, slope of 0.96 ms-1 and constant offset of 0.28 ms-1.  

However, the wind direction result is distinctly mediocre in comparison. There are noticeably larger errors and an 
overall higher level of scatter. Because the method utilizes the lidar measurements directly, its resolution is limited by 
the angular separation between the lines of sight (here 2 degrees between each LOS). This is the cause of the striping 435 
pattern observed in Fig. 17 (right panel). A linear regression (OLS) between the two wind direction signals produces 
an R2 of 0.64, slope of 0.71 degrees, and offset of 80.44 degrees. By forcing the regression through the origin, the 
slope of the linear model becomes 0.99. This indicates that the wind direction errors are normally distributed around 
the one-to-one line. 

5.2. Spatio-temporal correlations 440 

To demonstrate the core utility of exploiting upwind measurements for the purposes of wind speed forecasting, Figs. 
18 and 19 present the spatio-temporal relationships present in the processed dataset. Here the cross-correlation 
between the lidar obtained wind speed signal (across all range gates) and the time synchronized cup anemometer 
measurements are shown. 

Fig. 18 presents the correlation coefficient as a function of scan lags (49 s shifts) of the upwind lidar observations 445 
relative to the cup anemometer. A distinct maximum peak is observed at the closest distance (105 m) at lag index 
zero. The peak then shifts forward (to the right) as the upwind distance increases, demonstrating the temporal link as 
the wind field advects downwind towards to the mast sensor. In addition, the peak also broadens as upwind distance 
increases and turbulent mixing decorrelates the measured winds between both positions. 

 450 

Figure 18: Cross-correlation function between the lidar and mast wind speed signals by 49 s scan lags for each upwind 
distance (35 m spacing, left) and a magnified version for every 10th range gate (350 m spacing, right) 

Fig. 19 shows the same space-time correlation result as a 2-dimensional heat map. As expected, the correlation is 
highest for shorter scan lags and closer distances upwind. Observations within 30-mins of each other exhibit the 
highest temporal correlation. 455 

Page 19 of 30 
 

Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2018-71
Manuscript under review for journal Wind Energ. Sci.
Discussion started: 13 December 2018
c© Author(s) 2018. CC BY 4.0 License.



 

Figure 19: Cross-correlation function between the lidar and mast wind speed signals by 49 s scan lags 

Using these space-time correlations, it is possible to construct a relationship between the distance upwind measured 
by the lidar and the temporal lag until it reaches the mast’s cup anemometer. This is done empirically by choosing the 
peak of each cross-correlation by range. Knowing the distance and average time of flight then gives a mean advection 460 
speed, which is presented in blue in Fig. 20. 

Taylor’s frozen turbulence hypothesis states that the wind field advects with its mean speed (Taylor, 1938). This 
allows for a theoretical derivation which can be compared with the empirical approach. An average wind speed over 
the entire experiment is taken (9.8 ms-1) which is used to construct the same relationship as shown in green in Fig. 20. 

 465 
Figure 20: Theoretical and empirical ideal forecast horizon as a function of measurement range 

Although the trends do follow, there is a disparity between the forecast horizons related by the two methods, 
particularly at further distances upwind. A linear model fit to the empirical data (dashed blue line) suggests a mean 
advection rate of 14.5 ms-1 compared to its mean speed (9.8 ms-1). This result suggests that Taylor’s hypothesis does 
not hold over all distances observed and that features present in the wind field do not simply advect downwind. At 470 
shorter distances (up to about 2 km) both approaches show good agreement which implies that advection is the 
primary transport mechanism up to about 3-minutes ahead. 
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5.3. Gust tracking 

Using the processed lidar measurements, it is also possible to visualize coherent structures as they approach the 
reference position (met-mast). This is achieved by plotting a 2-dimensional heat map of the upwind measurements 475 
over space and time. The slope of the feature represents its mean advection speed. Many such events are present in 
the dataset, which occur particularly during periods with stable atmospheric conditions (low turbulence), for example 
during night time. An example is presented in Fig. 21 where a 5-minute sustained gust can be detected advecting 
towards the mast position over a period of 15 minutes. The subsequent abatement of the gust can also be tracked 
over the same timescale. 480 

 

Figure 21: Gust tracking example with 15-minute ahead detection. Plot is wind speed over space and time upstream 
of the reference met-mast 

5.4. Overall forecast model results (wind speed prediction) 

Root-mean-square errors (RMSE) as a function of lead time for the three forecasting methods are presented in Figure 485 
22.  
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Figure 22: Comparison of overall RMSE results for the three approaches by forecast lead time. Also included is the 
lidar method percent improvement over the 10 minute moving average persistence forecast (right side y-scale) 

 490 

Note that although the forecasts are generated in multiples of 49 s (corresponding to the lidar sampling rate), for 
ease of discussion in the text, the time horizons are rounded to the nearest minute (e.g. the 6 step ahead forecast 
which is 294 s ahead is reported as the 5-min model).  

The lidar method is demonstrated to outperform both the last-value and 10-minute averaged persistence methods. 
The improved model performance is most significant from 1-3 minutes ahead, and continues up to 20-minutes ahead. 495 
After this point the performance advantage represents a near-constant reduction in root-mean-square errors (~7%). 
This is consistent with the results obtained in Section 5.2 relating to the upwind space-time correlations. The 
improvement upon persistence demonstrated by the lidar method at longer lead times could be explained as a shift 
in the persistence lead time as a function of distance measured by the lidar. 

When relying on the persistence method, it is almost always better to use a 10-minute smoothed signal instead of the 500 
singular most recent observation. Only for the 1-minute ahead predictions does the last instantaneous value 
approach outperform a 10-minute moving average, and then only marginally. 

An example time-series of the lidar prediction and reference signal is shown in Fig. 23 for the 5-minute model. 
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Figure 23: Time series of lidar method predictions with mast measurement for 5-min horizon 505 

From comparing the two signals, we observe that the lidar forecast tracks the reference measurement well with only 
a few major errors. However, there is significantly reduced variability in the lidar forecast, which is smoothed relative 
to the turbulent anemometer readings.  

5.5. Model weights 

Coefficient weights of two fitted models (1-min and 10-min ahead) used in the lidar prediction method are shown in 510 
Fig. 24. The iterations show how the model weights change while progressing through time. Note that as conditions 
are constantly changing, we do not expect the weights to converge to any particular range of values. 

 

Figure 24: Coefficient weights of the lidar forecast model at selected points in time (iterations). 1-minute ahead 
model (left) and 10-minute ahead model (right). Note that the y-scales differ 515 

We observe that for both models, the nearest observations are assigned the highest weights. The 1-min ahead model 
mainly relies on observations within 1 km upwind of the met-mast, while the 10-minute model weighs further 
distances more equally. Between approximately 2.5 km to 5.5 km, the 1-minute model assigns near-zero coefficients 
to the upwind measurements. This can be through means of the regularization penalty L1 (Lasso) incorporated in the 
optimization, as this region does not correlate to the wind which reaches the mast sensor along this timescale. 520 
However, inputs at the edge of the measurement range are once again positive (non-zero). The reasons for this are 
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not well understood, however we can speculate that this information is not already accounted for in the other model 
terms and as such has relevance for predicting changes. 

5.6. Performance statistics for various time steps 

Table 6 presents performance results of the three forecast methods for selected lead times. Fitted parameters using 525 
ordinary least squares (OLS) between forecast model predictions and the reference (cup anemometer) 
measurements are also included. 

Table 6: Performance statistics for various time steps 

Horizon Method MAE (ms-1) RMSE (ms-1) y-intercept coefficient R2 

1-min Lidar input to SGDR 0.535 0.737 0.503 0.950 0.958 

 Last value persistence 0.615 0.913 0.322 0.967 0.936 

 10-min average persistence 0.656 0.934 0.536 0.946 0.933 

5-min Lidar input to SGDR 0.678 0.938 0.732 0.931 0.934 

 Last value persistence 0.838 1.212 0.557 0.944 0.892 

 10-min average persistence 0.754 1.054 0.619 0.938 0.917 

10-min Lidar input to SGDR 0.737 1.013 0.791 0.925 0.923 

 Last value persistence 0.911 1.284 0.627 0.938 0.880 

 10-min average persistence 0.811 1.116 0.675 0.933 0.907 

15-min Lidar input to SGDR 0.783 1.068 0.838 0.920 0.914 

 Last value persistence 0.958 1.335 0.681 0.932 0.870 

 10-min average persistence 0.852 1.165 0.722 0.928 0.899 

30-min Lidar input to SGDR 0.886 1.204 0.966 0.908 0.891 

 Last value persistence 1.056 1.441 0.803 0.920 0.850 

 10-min average persistence 0.954 1.297 0.855 0.915 0.875 

60-min Lidar input to SGDR 1.071 1.445 1.225 0.882 0.845 

 Last value persistence 1.235 1.676 1.099 0.891 0.799 

 10-min average persistence 1.138 1.541 1.136 0.887 0.826 

 

Fig. 25 presents the probability density functions (PDFs) of absolute forecast errors (prediction minus reference) 530 
across the three methods for the same selected lead times as described in Table 6.  
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Figure 25: Forecast error distributions for 1-min (a), 5-min (b), 10-min (c), 15-min (d),  
30-min (e), and 60-min (f) predictions 

We observe from Fig. 25 that the error distributions across the three forecast approaches are similarly shaped 535 
(normally distributed around a zero mean). Note that the figure data represents the simple difference which 
considers all errors to have equal weights (unlike the RMSE metric). The lidar method lead times up to 15-mins tend 
to have slightly negative (left) skew, while exhibiting fewer over-prediction errors greater than 1 ms-1. This evidences 
why for example the 1-minute ahead lidar model outperforms the last value persistence method in RMSE, while the 
PDF of the persistence forecast error appears to exhibit smaller errors on average. 540 

5.7. Model changes which did not improve the overall result 

Numerous efforts to evaluate changes in model inputs were tested, without leading to an improved result. Such 
attempts included transformation of the processed wind speed data into principal components (PCA analysis). This 
procedure attempts to detect correlation between variables and reduce the dimensionality of the data by finding the 
directions of maximum variance and re-projecting these into a smaller dimensional subspace while preserving the 545 
patterns between the remaining (principle) components. Further attempts to reduce data dimensionality by thinning 
the input data by only selecting n-rows where: 𝑛𝑛 𝜖𝜖 (2,3, . .10) also led to reduced model performance. This could be 
due to the regularization component of the SGDR training where non-contributing inputs are automatically removed 
from the model (their coefficients set to zero) without needing to do so manually. 

Auto-Regressive (AR) lags of all input variables were also tested in order to further increase sample weights of the 550 
more recent observations and include short-term memory of the inputs. These were tested with lags ranging from 1 
step backwards (49 seconds) up to 73 steps (60.4 minutes) included in the test data used for training and prediction. 
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Each AR lagged model performed less favorably compared to the model presented in the methodology (Section 
4.2.2). 

5.8. Future extensions of work 555 

The forecast models presented are deterministic by design (single point predictions). Commercial providers and 
forecast users are beginning to move towards probabilistic approaches which also contain information about the 
uncertainty of the prediction (Pinson et al., 2007). Further, this study focuses on generating scalar wind speed 
predictions, and neglects the obvious utility of wind direction forecasts, or in forecasting the vector components 
themselves. These are recommended directions to consider for future work in this topic. 560 

6. Conclusions 

A novel field experiment was successfully conducted where horizontal wind fields were observed by scanning Doppler 
lidars situated alongside in-situ mast sensors. A simple lidar wind retrieval method was demonstrated which performs 
excellently for wind speed but less favorably for wind direction.  

Space-time correlations between upwind lidar observations and reference cup anemometer measurements were 565 
investigated, which reveal a distinct peak which shifts in time and broadens as a function of distance upwind. The 
highest correlations occur up to around 2-3 km upwind, which indicates the region where advection transport 
dominates. An example of gust tracking is also presented, which follows the structure as it advects downwind over a 
15-min period. 

Overall, the forecasting model utilizing these upwind lidar observations outperforms both benchmark persistence 570 
methods in all aspects of importance for wind speed predictions: RMSE, MAE, general linear fit and overall level of 
scatter. This is true across all lead times, however the improvements are most significant for the 1-3 minute ahead 
forecasts corresponding to the upwind distances with the strongest spatio-temporal wind speed correlations. 

At the 1-minute horizon, RMSE wind speed predictions are reduced by 21 % compared to the benchmark (10-min 
moving average persistence for the same horizon). This skill improvement continues for: 5-min (10.9 %), 10-min 575 
(9.2 %), 30-min (7.1 %) and 60-min (6.2 %). Moving beyond 20-min ahead predictions, the model settles to 
consistently demonstrate approximately 6-9 % improved skill. This can be explained as a shift (decrease) in the 
persistence lead-time by the distance upstream visible by the lidar. 

The model training algorithm with walk-forward execution was implemented in a way which emulates an operational 
real-time forecast system and is able to adapt to changing conditions. The regularization penalty inside the SGD fitting 580 
is able to perform feature selection, making the system robust to a large number of highly correlated input features 
which do not need to be expertly chosen. 

This research work has applicability towards reducing forecast errors within and below 60-minute ahead lead times. 
This acts to increase knowledge and reduce risk for stakeholders in countries which currently or plan to operate 
generator dispatch and market clearing on very-short intervals such as Germany, Australia, and the countries which 585 
will follow. 
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