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Abstract. Lidar systems have the potential of alleviating structural loads on wind turbines by providing a preview of the
incoming wind field to the control system. For a collective pitch controller the important quantity of interest is the rotor-
effective wind speed (REWS). In this study, we present a model of the coherence between the REWS and its estimate from
continuous-wave nacelle-mounted lidar systems. The model uses the spectral tensor definition of the Mann model. Model
results were compared to field data gathered from a 2- and 4-beam nacelle lidar mounted on a wind turbine. The comparison
shows close agreement for the coherence and the data fits better to the proposed model than to a model based on the Kaimal
turbulence model, which underestimates the coherence. Inflow conditions with larger length scales led to a higher coherence
between REWS and lidar estimates than inflow turbulence of smaller length scale. When comparing the two lidar systems,
it was shown that the 4-beam lidar is able to resolve small turbulent structures with a higher degree of coherence. Further,
the advection speed by which the turbulent structures are transported from measurement to rotor plane can be estimated by
10 minute averages of the lidar estimation of REWS. The presented model can be used as a computationally efficient tool to

optimize the position of the lidar focus points in order to maximize the coherence.

1 Introduction

The control system is an integral part of a wind turbine and has substantial influence on its behaviour. Its aim is to maximize
the power production while keeping the turbine structural loading within the design limits. In order to decrease the levelized
cost of energy, several novel sensors and control strategies have been proposed. One of them is a lidar-assisted pitch controller
and one of the first was introduced by Harris et al. (2006). It utilizes nacelle- or spinner-mounted lidar systems to retrieve
information about the inflow. In contrast to traditional feedback (FB) control of rotor speed, disturbances in the inflow can be
measured by the lidar before they affect the turbine. For collective pitch control, a simple approach is to add a feedforward
(FF) pitch angle demand Op based on lidar measurements to the FB demand 0y derived from the rotor speed deviation from
its desired value €2, see fig. 1.

For such a controller the important information about the wind is the rotor-effective wind speed (REWS) veg, which can
be defined in several ways (Soltani et al., 2013). One definition states that the REWS is the average longitudinal wind speed

component over the entire rotor plane, which is used in this work. Alternatively, the average of the longitudinal wind speed
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Figure 1. Block diagram of a lidar feedforward collective pitch controller to assist a traditional feedback controller.

with different weights for the hub or tip regions of the blade can be used. In the ideal case of perfect lidar measurements of veg
and turbine modeling, disturbances can be completely rejected and optimal rotor speed control can be achieved (Dunne et al.,

2011). However, this is not achievable in reality and important shortcomings of the lidar systems are

the contamination from lateral and vertical wind speed components,

the spatial averaging due to the lidar’s probe volume,

the scarcity of measurement points in the rotor plane

and the uncertain estimation of the time delay between lidar measurement and disturbance arrival at the rotor.

Thus, it is important to optimize the measurement positions of the lidar to maximize the correlation between lidar measurement
and REWS for which flexible and computationally efficient models are required.

Previously, Schlipf et al. (2013) presented an analytic correlation model in frequency domain to calculate the magnitude-
squared coherence and transfer function between a lidar and a turbine using the Kaimal spectral model and an empirical
exponential decay model of the longitudinal wind component for separations perpendicular to the flow. The turbulence model
is defined in the IEC-61400-1 standard (IEC, 2005). The advantage of this approach compared to simulations in time domain
is the reduced computational effort. However, integrating certain lidar properties becomes complicated if done analytically.
For example the spatial averaging effect of the lidar has not been integrated into the model. Therefore Schlipf et al. (2013)
also proposed a semianalytic model, where properties of the lidar can be added in frequency domain and coherence and
transfer function can then be calculated. The model has been extended by Haizmann et al. (2015a) to include linear rotor-
effective horizontal and vertical shear estimation. Different optimal focus positions were found for REWS and shear estimations
implying that a compromise needs to be found if both quantities want to be measured. Another optimization was performed
in Schlipf et al. (2015), where additionally the wind evolution and constraints from the controller were considered. In Simley
and Pao (2013b) a similar semianalytic method was presented to calculate the correlation between a spinner-mounted lidar and
blade-effective wind speeds. The difference lies in the fact that spinner lidars rotate with the rotor and thus sample the wind
field rotationally.

Comparisons between data gathered during field experiments and models were conducted in several studies. In Schlipf et al.

(2013) the previously mentioned semianalytic model was compared against data gathered on NREL’s CART?2 test turbine. The



10

15

20

25

30

Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2018-72 WIND

Manuscript under review for journal Wind Energ. Sci. Py ENERGY
Discussion started: 2 January 2019 e we \ SCIENCE
© Author(s) 2019. CC BY 4.0 License. ouropean acadermy of wind enerey

measured and modeled transfer function showed very good agreement and the maximum coherent wavenumber, defined as
the wave number where the coherence reaches a value of 0.5, was 0.06 rad/m for both methods. A similar comparison was
performed on NREL’s CART3 turbine by Scholbrock et al. (2013), where deviations between model and measured data was
observed. As a possible explanation interference of the guy wires of a close-by meteorological mast with the lidar was given.
In a later experiment on the same turbine with a different lidar system Haizmann et al. (2015b) found great agreement between
data and model. For this lidar, the maximum coherent wavenumber was found to be 0.03 rad/m.

The integration of lidar measurements into turbine control by suitable controllers and their associated benefits have been the
topic of various analyses. FF additions to FB controllers have been studied in e.g. Laks et al. (2011); Dunne et al. (2011). A
more sophisticated flatness-based controller was proposed in Schlipf and Cheng (2014), while individual pitch controllers have
been considered in e.g. Dunne et al. (2012). Model predictive control approaches were examined in e.g Mirzaei et al. (2013).

To verify simulated performances, field test have been pursued. In Scholbrock et al. (2013) a pulsed lidar system was used
on NREL’s CART?3 turbine. A collective pitch feedforward approach (similar to fig. 1) was compared to a feedback controller
only and load reduction at low frequencies (below 0.1 Hz) were observed. Damage equivalent loads (DELs) were reduced by
approximately 2% and 7% for the tower fore-aft bending and the blade flapwise bending moments, respectively. A similar
study was presented in Schlipf et al. (2014) using the CART? turbine, where a reduction in the blade and tower DELs were
reduced by 10%. However, periods where the lidar’s vision was obstructed by hard targets showed an increase in DELs and thus
emphasizing the sensitivity of environmental conditions on lidar measurements. Another experiment on CART?2 was performed
by Kumar et al. (2015), where, besides adding a feedforward controller, the gains of the feedback controller has been reduced.
Here the load analysis showed that a reduction was achieved after reducing the feedback gains.

In this paper we present a model of the coherence between REWS estimated from turbine and lidar measurements. The
model uses the description of a turbulence field according to the model by Mann (1994), which allows to derive expressions of
the auto- and cross-spectra numerically. In sec. 2 these expression are presented as well as the determination of REWS from
field measurements at the turbine and from the lidar. Sec. 3 explains the test site and its characterization, while sec. 4 shows the
measurement results and the comparison with the presented model. The model can be used as a computationally efficient tool
to predict the auto- and cross-spectra of REWS from turbine and lidar measurements and the optimization of the lidar focus

point positions.

2 Methodology

In this section we present a coherence model between nacelle lidar systems and a wind turbine. The theoretical expression to
calculate the variances of turbine and lidar measurements have already been derived in Mirzaei and Mann (2016) and here we
extend those to also calculate auto- and cross-spectra.

The fluctuating part of a three-dimensional (3D) wind field can be represented by the vector field w(x,t) = (u1,us,us3),
where x = (21,22,23) and k = (k1, k2, ks) refer to a 3D spatial and wavenumber domain, respectively. We assume that the

vector field u(x,t) is frozen and the fluctuations are advected by the mean wind speed, i.e. Taylor’s frozen turbulence hypoth-
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esis (Mizuno and Panofsky, 1975) applies:
u(x,t) =u(xry — Ut,x9,x3), (1)

where U = (u(x1,0,0)) is the mean wind speed along the advection direction x;. Thus, the dependence on time can be

eliminated. The field u(x) can be written as a Fourier transform pair:

w(w) = / w(k)e® el s u(k) = (2%)3 / w(@)e 7 da, @)

where an integral over the three-dimensional quantity, k or x, means the integral from —oo to oo over all three components.

The more rigorous Fourier-Stieltjes notation (Batchelor, 1953) was avoided due to brevity and clarity. The ensemble average

of the absolute squared Fourier coefficients is the spectral tensor ®;; (k)

(ui (k)u; (k) = ®i;(k)o(k— k). 3)

Since u*(k) = u(—k), eq. 3 can be written as

In this study we have used an estimation of the coherence to evaluate the correlation between models and measurements.
Specifically, we were interested in the magnitude squared coherence between the REWS measured at the turbine and estimated

from lidar measurements

~ |Sru(ky)?
ek = o ) ®

where Sp1, and Sgg are the auto-spectra of the lidar and turbine estimates of REWS and Sgy, is their cross-spectrum. From
time series measurements these spectra were calculated over a 10 minute period. The resulting frequency domain is converted
into wavenumber domain by the use of Taylor’s frozen turbulence hypothesis using k1 = % The remainder of this section
will present the methods to calculate the REWS and spectra. At the end the model is compared against numerical simulations

to validate the implementation.
2.1 Rotor-effective wind speed

The REWS vz is the defined as the longitudinal wind vector component averaged over the entire rotor plane

1 1 .
Vet (21) = 5 //ul(a:)dxgdmg = ///ul(k:)elk"’dkdxgdxg (6)

rotor rotor
1 . . ) o
= / up (k)ek1® / / el (k2w tha®s) oy ds dis ©)
rotor
hray 2J1(KR
- / ul(k)e‘klzliz(; ) a, 8)
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where R is the rotor radius, k = \/k3 + k3 and .J; is the Bessel function of the first kind. The rotor is positioned perpendicular
to the x1-axis, i.e. no yaw misalignment.

The auto-spectrum of veg can then be calculated using

Sun(ts) = [[ @11 k) LD g i, o

2.2 REWS estimated from turbine measurements

To estimate veg from signals measured on the turbine the approach in Pstergaard et al. (2007) was followed. It is based on using
the entire rotor as an anemometer and derive the rotor-effective wind speed by considering the turbine model characteristics and
several measured signals. The methods gives the magnitude of an undisturbed wind field that creates the (unique) combination
of power production, rotational speed and pitch angle at the turbine. Thus, there is no need to correct for the effect of turbine
induction.

The entire turbine is modelled by a simple drive train model

JQ:Qa_Qg_Qlossa (10)

where J is the moment of inertia of the drive train, €2 is the rotational speed of the rotor, @), is the aerodynamic torque
produced by the rotor, @), is the generator torque and Qs is a collective term for the lost torque along the drive train. In our
field experiment, torque measurements at the low-speed shaft (LSS) were performed. Thus, the measurements are taken before
the gearbox and generator (where most of the losses occur) and we can replace Qr.ss = Q4 + Q1oss in €q. 10. The sampling rate
of the turbine data was 1 Hz. Further a low-pass filter was used to reduce the influence of measurement noise in the estimation

of . The aerodynamic torque is defined by

3 302
Vo 1 5 R°Q)
0 Cp(B,A) = §P7TR 3

1
Qo= 5pr2 Cp(B,N), (11)

where p is the air density, A = ?—};’ is the tip-speed ratio (TSR), C,,(3, ) is the power coefficient as function of pitch angle
and TSR. By solving eq. 10 for (), and substitute it in eq. 11 we arrive at

Cp(B,N) 2Q.  2(Quss +J9Q)

X prR302 pmR5QO2

12)

With a measurement of the pitch angles, a look-up with linear interpolation can be used to find A that satisfies eq. 12 and by

the definition of the TSR the REWS can be estimated

. QR
Veff, R = T (13)
The necessary C), (3, A) surface can be precomputed. Details can be found in appendix A. Note that issues of non-monotony

of Cp(8,A) in eq. 12 can be avoided by performing the look-up on w and not on Cp(5,A). The air density has been

calculated from pressure and temperature measurements on a nearby meteorological mast.
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2.3 REWS estimated from lidar measurements

The measurement of a continuous-wave lidar system can be expressed mathematically as the convolution of the line-of-sight

(LOS) component of the wind vector and a weighting function given by the laser light intensity along the laser beam:

oo

vLos(@s) = /n-u(sn-l—:nf)(p(s—df)ds, (14)

— 00
where x; is the position of the lidar focus point, 7 is the laser beam unit vector,

1 ZR

o(s)= ;W (15)

is the weighting function defined by the Rayleigh length 2 and d is the focus distance. Note that the probe volume of the lidar
increases with focus distance, i.e. zp d?. The probe volume has an attenuating effect on the turbulent fluctuations of the wind
field. Eq. 14 is assuming that the first statistical moment is used to calculate the dominant frequency of the Doppler spectrum.
Different frequency estimators can yield less turbulence attenuation (Held and Mann, 2018). The Fourier transformation of the
weighting function (eq. 15) is F[p(s)](k) = exp(—zgr|k|) and the auto-spectrum of the lidar measurement along a single beam

can be expressed as
SrL(k1) = nin; // <I>ij(k)e—2m|k'”‘dk2dk3, (one beam only) (16)
—00

where n; refers to the components of the laser beam unit vector n and summation of repeated indices is implied.

The typical setup of a nacelle lidar looking forward is shown in the left part of fig. 4. The lidar systems probes sequentially
several focus points in front of the rotor. Due to the limitation of measuring only the LOS component of the wind vector
assumptions are necessary to derive the REWS from the lidar measurements. Here we apply the following assumptions: (1) no
vertical components, (2) zero turbine yaw misalignment. Based on these assumptions the REWS can be estimated from lidar
measurements as the average of all v,og velocities:

1 b
Z VLOS, i a7

Veff, L =
’ bcosa 4
=1

where b is the number of beams and « is the half-cone opening angle of the scanning cone (see left panel of fig. 4).
In wave-number domain the auto-spectrum of the REWS estimate from lidar measurement using eq. 17 and 14 can be written

as:

b o0
1 : )zl | em
Stu(k) = > //nik@kl(k)njleldfk'(m D=zl +lkens)) g, gk, (18)
Jj=1-

b2cos?a &
1,]=—

Similarly the cross-spectrum between the REWS and its estimate from lidar measurements veg 1, can be calculated using

b o0

1 i(dskm, ) —arlleon | 2J1 (KR

SRL<k1):bcosa§ // nij @1 (k)elldrkmithifn) o —zrlk z'—lﬁ(R )dkzdkg, (19)
i=1"
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where Az indicates the distance between rotor and lidar measurement plane.

When evaluating eq. 17 from field measurement two corrections are necessary. First, we used an analytic solution for the
flow speed reduction and diversion around the rotor (Conway, 1995). The model assumes an actuator disk model and laminar,
uniform inflow with uniform, non-rotational loading. An example of the flow around a rotor can be found in the appendix B.
The induction correction a, = %, where U, is the undisturbed free steam wind speed, can be defined from the calculated
flow field at the focus positions of the lidar beams. Thus, the induction correction depends on lidar parameters, i.e. the half-cone
opening angle o and the focus distance L ¢, and on the operational point of the turbine, i.e. the axial induction factor a. The
induction factor is determined from the measured 10 minute mean REWS by the lidar and a steady-state thrust curve is used
to look up the thrust coefficient C;. Then the relation C; = 4a(1 — a) is used to calculate the induction factor. The effect of the
induction is assumed to be constant over a 10 minute period.

Second, an estimation of the average turbine misalignment ¢ can be derived from lidar measurements. Since eq. 17 assumed
perfect turbine alignment, a correction of the 10 minute average misalignment was used by dividing by a correction factor
a,. The beam vector for the i-th beam is n; = (cosa, sin §; sin e, cos §;sina), where f3; is the azimuth angle along the mea-
surement cone, compare tab. 1. The horizontally misaligned wind normal vector is (cos,sin,0) and the correction can be
defined as

Ay =1, - (cos,sing,0) = (cosacosy + sin Fsinasin p) (20)

)

Integrating induction and misalignment corrections into eq. 17 yields

b
i Z VLOS,i @21
i=1 '

Gc

'f)efﬁL =

S| =

Qo ,i

2.4 Model implementation and validation against simulations

For the implementation of the model a C++ code has been created to numerically solve eq. 9, 18 and 19. Adaptive cubature
integration was used as an integration algorithm'. To validate the implementation numerical simulations have been performed.
At first six random 3D turbulence boxes with different turbulence seeds have been created according to the Mann spectral tensor
(Mann, 1998)?. The boxes had dimensions of 2800 m x 64 m x 64 m using 8192 x 32 x 32 grid points per box and contained
only the turbulent part of the wind field, i.e. the mean wind speed was zero. The lidar measurements have been simulated using
eq. 14, however due to the finite size of the boxes the integration has been truncated at £10zr from the focus point; details can
be found in Held and Mann (2018). The two lidar systems presented in tab. 1 have been used. The rotor plane (with a diameter
of 52 m) was discretized by 100 x 100 grid points.

The results of the coherence analysis can be found in fig. 2. It can be seen that the coherence for the 2-beam lidar drops
at lower wavenumbers than the 4-beam lidar. This is due to the greater coverage of the rotor plane using four distinct focus

locations compared to only two for the 2-beam lidar. Further, the comparison between the simulations and the model shows

IThe adaptive cubature integration scheme was written by Steven G. Johnson and is available on GitHub: https://github.com/stevengj/cubature
2The software can be downloaded free of charge at http://www.wasp.dk/weng#details__iec-turbulence-simulator
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Figure 2. Coherence between the estimation of REWS from the turbine and the lidar. The comparison between the numerical simulations

(Simu) and the implementation of the model (Theo) show very good agreement.

very good agreement. Some deviations remain, which can be attributed to using only six simulations when estimating the

coherence.

3 Experimental setup
3.1 Instrumentation

Field measurements have been conducted at DTU’s test site at Risg, located at the Roskilde Fjord in Denmark. The site consists
of one row of wind turbines intended for testing and several meteorological masts are installed around the turbines, see fig.
3. During the experiments only a Nordtank was operative, which is located at a distance of 215m (4.1D) at an angle of 195°
(from north). In general, there is a slight positive terrain slope from the fjord towards the turbines. To the east of the Vestas
V52 some buildings and vegetation exists, while towards the west the turbine is facing flat fields and the fjord.

For this experiment two continuous-wave coherent Doppler lidars manufactured by Windar Photonics A/S have been
mounted on a Vestas V52 turbine. The lidar systems, a 2-beam and a 4-beam lidar, are mounted on the nacelle of the tur-
bine and have been staring forwards to measure the inflow of the turbine. An illustration and a photo of the 4-beam lidar can be
seen in fig. 4. The specifications for both lidars can be found in tab. 1. The two systems both contain one laser source located
inside the nacelle and switch between the focus point sequentially. Each scan is completed in one second. Note the different
Rayleigh lengths due to the different focus distances and the increased half-cone opening angle for the 2-beam system. The
azimuth angle refers to the position on the scanning cone surface. The position at the top of the cone is at an azimuth angle of
0°. Hence, the 2-beam lidar consists of two horizontal beams, while the 4-beam lidar has one focus point in each quadrant of

the rotor area.
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Figure 3. Digital terrain model (DTM) of the DTU’s test site at Risg, where the Vesats V52, its meteorological mast and the Nordtank turbine
are indicated. Zone 32 UTM coordinates centered at the Vestas V52 turbine were used. The DTM data was obtained from the Danish Map
Supply (Agency for Data Supply and Efficiency).

LOS1

Figure 4. Left: Illustration of the 4-beam lidar focus locations on a cone with apex at the turbine nacelle. Right: Photo of the 4-beam lidar

mounted on the Vestas V52 turbine at the Risg test site.

The Vestas V52 turbine has a diameter of 52m and a hub height of 44 m with a rated power of 850kW. It is heavily
instrumented with several mechanical strain gauges, in particular a strain gauge set-up to measure the torque on the low-speed
shaft. Also a meteorological mast is located approximately 2.5D in front of it. To characterize the flow conditions during
the experiment a Metek P2901 USA-1 3D sonic anemometer mounted at hub height was used. Further measurements from
a Vaisala PTB110 air pressure sensor and a Vaisala R/H HMP 155 humidity sensor were used in addition to the temperature

measurements from the sonic anemometer to calculate the air density.
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Table 1. Information of lidar setup parameters and measurement periods. The azimuth angle refers to the position on the scanning cone

surface with 0° being the top of the cone.

2-beam 4-beam
Focus distance dy [m] 37 62
Rayleigh length zr [m] 2.1 6.0
Half-cone opening angle « [°] 30 18
Azimuth angle (3 [°] 90 and 270 45, 135, 225 and 315
Distance focus points - rotor Az [m] 32 59
Distance lidar - rotor dnac [m] ~1 ~1
Scan time per beam [s] 0.5 0.25
Period measured 30" Mar — 3™ May 2016 21* Oct — 15" Dec 2016

3.2 Site characterization

The wind rose derived from wind direction and horizontal wind speed of the sonic anemometer measurements during the
periods of the experiment are presented in the left panel of fig. 5. The main wind direction is from the west with winds coming

from the Roskilde Fjord.

£ Wake effect
N—'O'OZ > —Interpolated
O0.011 —Including Wake Effect

Wind Speeds in m/s Wind Rose g\ ol L | L
- = 20 N © 0 50 100 150 200 250 300 350
15 < Wg <20 3

10 < Wg <15
5 < W <10
WO < W <5

—40}
E
—20f

0 50 100 150 200 250 300 350

=25 m

0 50 100 150 200 250 300 350

0 50 100 150 200 250 300 350
Wind direction [deg]

Figure 5. Left: Wind rose gathered during the test periods at the Risg test site. Right: The three top panels show the result of fitting the Mann
Model to the calculated mean spectra as function of wind direction. The bottom panel shows the number of acquired 10 minute periods as

function of wind direction.

To get a clearer picture of the inflow conditions the data set was grouped into sectors of 30° and the Mann model has been
fitted to the average spectra in each sector. The fitting followed the procedure in Mann (1994) and was performed on the

u-, v-, w-spectra and the uw-co-spectra. The spectra have been normalized by the mean wind speed squared. The model has

10
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three parameters: e/ where € is the rate of viscous dissipation of turbulent kinetic energy and o the spectral Kolmogorov
constant, L is a length scale and I is an anisotropy parameter, for details see Chougule et al. (2015). The results of the three
model parameter as function of wind direction can be seen in the right panel of fig. 5. First of all, the effect of the wake from
the Vestas V52 turbine onto the sonic anemometer is clearly seen at a wind direction of 90°. In this sector a very high turbulent
kinetic energy dissipation rate and a low anisotropy parameter were calculated. The results from this sector were disregarded
and linearly interpolated. Secondly, two wind regimes can be identified. A region spanning from 330° to 180° shows a length
scale L of approximately 20 m, while for the region from 210° - 300° larger length scales were fitted. Similarly the normalized
dissipation rate is higher in the first region compared to the second. This is in agreement with the terrain of the test site. The
inflow for the first region is characterized by obstacles like buildings and tall vegetation. The second region faces open fields
and the fjord fetch. The fit has also been performed for the Kaimal turbulence model, which is defined in the IEC 61400-1
standard (IEC, 2005). This model has one characteristic length parameter L. Here only the u-, v- and w- spectra were fitted.
The measured spectra have been been normalized by their measured variance and the frequency domain has been converted
into wave number domain. Then the model was fitted to the measured spectra by minimizing the combined mean squared error
of the spectra.

We separated the following analysis into two regions. The information on the two regions can be found in tab. 2 including
the averaged fits to the Mann model. More 10 minute periods were obtained for region 2 due to the dominant wind direction
from the west. The fitting results for the Kaimal model can also be found in tab. 2. Similar to the Mann model a larger length

scale parameter was found for region 2. In Appendix C the spectra and the fitted Mann model can be found.

Table 2. Measurement sectors and fitted Mann model (“522/ ? , L and I') and Kaimal model (L) parameter.
Region 1 Region 2
Direction 330°-180°  210° - 300°
Nr. of 10-min periods 1678 2713
e 110° m™] 429 1.60
L [m] 18.5 37.9
NG 2.36 2.41
Ly, [m] 201.0 326.6

4 Results

The first step in the analysis of the results was to apply appropriate data filters. It was necessary to identify periods where
the turbine was in a normal power production state. Thus, a lower threshold on the minimum power production (i.e. >0kW),
minimum rotor speed (i.e. >16 rpm) and maximum pitch angle (i.e. <23°) in a 10 minute period were utilized. These thresholds
were found by inspection of the available turbine data. This filter removed 52.8% and 53.8% of the data for the 2- and 4-beam

experiments, respectively.

11



10

15

20

Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2018-72 WIND

Manuscript under review for journal Wind Energ. Sci. Py ENERGY
Discussion started: 2 January 2019 e we \ SCIENCE
© Author(s) 2019. CC BY 4.0 License. ouropean acadermy of wind enerey

20 Mast comparison - 2 beam 2 Mast comparison - 4 beam 2 Mast comparison - turbine
Data, n=711 . Data, n=447 . Data, n=1158
18 45deg line 4 18} 45deg line 18 45deg line
Fit: 0.994x+0.059 - R*: 99.68% ! Fit: 1.005x+0.002 - R%: 99.67% Fit: 1.006x0.036 - R: 99.62%
16 16 16
L 14 L 14r 14
3 8 2
= = £ p
£ 121 . £ 12f 3 12 4
g - 3 £ 1
o - o S
N 10+ > < 10r = 10
) A ) «
£ 3 = £
G f T 5
8 8r 8
o
6 6F 6
4 4r 4
2 4 6 8 10 12 14 16 18 20 2 4 6 8 10 12 14 16 18 20 2 4 6 8 10 12 14 16 18 20
WSP component along shaft axis [m/s] WSP component along shaft axis [m/s] WSP component along shaft axis [m/s]

Figure 6. Comparison of 10-minute REWS estimates from of the lidars and the turbine to the meteorological mast’s sonic anemometer. The

data was taken from periods when the turbine was operational and facing the mast.

The filter applied to the lidar data consisted of a minimum number (>90% or 540 measurements) of available measurements
on each beam in a 10 minute interval. Unavailable measurement have been interpolated linearly. Instances where 4 or more
consecutive unavailable measurements occurred on any beam were also discarded. Whether a measurement is available or not
was decided internally by the lidar system and depends on carrier-to-noise ratio and the Doppler peak shape and area. After
applying the turbine availability filter, this filter for the lidar data lead to an additional discard of 2.9% and 15.3% for the 2-
and 4-beam system, respectively. Since the 4-beam system was under development during the field test a higher unavailability
is observed.

Additionally, inflow from all yaw position except from the wake sector (195° & 30°) were considered because the lidar yaw
misalignment measurements are biased in wake situations (Held et al., 2018). The yaw position filter lead to an additional
exclusion of 6.0% and 6.3% of the data for the 2- and 4-beam periods, respectively.

Next, the 10 minute average REWS estimates of lidar and turbine are compared to the sonic anemometer mounted on the
meteorological mast. The comparisons for the 2 lidar systems and the turbine can be found in fig. 6. Besides the previously
mentioned data filters, only yaw positions, where the turbine was facing the meteorological mast (i.e. a yaw heading of 289° +
20°) have been considered. It can be seen that the both lidar systems agree well with the mast’s sonic anemometers; linear least-
square fitting results in a slope close to unity with no significant bias. This indicates that the correction for turbine misalignment
and induction are working as intended. Similarly, the correlation between mast and turbine also shows very good accordance
with no systematic error.

Corresponding comparisons are performed between the REWS estimated from the lidar systems and the turbine, respectively.
The correlation plots can be found in fig. 7. Analogous to the comparisons to the mast, theses comparisons also show that there
is no systematic error between the two signals. Both linear fits show unity slopes and very small offsets. They are slightly worse
than the comparisons to the meteorological mast, which can be explained by model inaccuracies when estimating the REWS

when using turbine and lidar data.
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Figure 7. Comparison of 10 minute REWS estimates between the lidars and the turbine. Data from the wake sector and nonoperational

periods of the turbine were removed.

For illustrative purposes, the next plots in fig. 8 show a single time series result for the lidar and turbine estimate of REWS.
Both signals have a sampling rate of 1 Hz. In general, it can be seen that the fluctuations in REWS that were sensed by the rotor
can also be measured by the lidar systems. For the 2-beam lidar larger deviations can be observed since this lidar probes the
incoming wind field only at two locations. Fluctuations that occur at the top or bottom parts of the rotor can not be measured. In
case of the 4-beam system a measurement in each quadrant is performed and gives a better estimate of the wind speed effecting
the entire rotor. Further, the preview ability of the lidar systems also becomes apparent. Fluctuations can be measured before
they affect the rotor.

The effect of probing two versus four focus locations is now studied in wavenumber domain by comparing the squared
coherences. The experimental data is also compared to two models: the model based on the Mann turbulence model introduced
in sec. 2 and the Kaimal turbulence model used in previous studies (Schlipf et al., 2013). As mentioned in sec. 3.2, the analysis
was split into two regions, of which one is disturbed by buildings or trees (region 1) and the other has an undisturbed inflow
over open fields or the fjord’s fetch (region 2).

The coherence analysis for region 1 can be found in fig. 9. At first, it can be seen that the coherence of the 2-beam lidar drops
at lower wavenumbers than the coherence of the 4-beam lidar indicating that small fluctuations can be sensed more accurately
by the 4-beam system. Secondly, the measured data agrees very well with the Mann turbulence model coherence. The Kaimal
model on the other hand seems to give a slight underestimation of the coherence. The wavenumber at which the measured
coherence dropped to the level of 0.5 is 0.027 rad/m for the 2-beam and 0.051 rad/m for the 4-beam. These wavenumbers have
been defined as the smallest detectable eddy size (Schlipf et al., 2018) and can be interpreted as the size of the eddy that is
captured with an accuracy of 50%. They are approximately 219.4 m (4.2 D) for the 2-beam and 122.5 m (2.6 D) for the 4-beams
system, where the number in the brackets are normalized by the rotor diameter. Thus, by adding two additional focal points to

a 2-beam nacelle lidar system the smallest detectable eddy size can be reduced by 44%.
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Figure 8. Time series example of lidar and turbine estimates of REWS. A high degree of similarity between the signals can be seen. Also

the preview ability of the lidar system is evident.
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Figure 9. Squared coherence between the REWS estimation of the lidar and the turbine for region 1. The two models are also included in

the plot
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Figure 10. Squared coherence between the REWS estimation of the lidar and the turbine for region 2. The two models are also included in

the plot

The results for region 2 are presented in fig. 10. Here very similar observations can be made. The coherence for the 2-beam
lidar drops at lowers wavenumbers compared to the 4-beam. The wavenumbers at ygr, = 0.5 are 0.032 rad/m and 0.056 rad/m
and the smallest detectable eddy sizes are 198.8 m (3.8D) and 111.4m (2.1D), respectively. This demonstrates once more a
reductions of 44% in the smallest detectable eddy size. Comparing these numbers to the results of region 1 shows that flow
having larger length scale parameter is beneficial for lidar systems as the coherence drops at higher wavenumbers.

Equivalently to region 1, the Mann turbulence model fits very well to the measured data. There are however some slight
deviations for both lidars in the region of 0.01 to 0.1 rad/m. When comparing the experimental data to the Kaimal model, a
larger mismatch is observed compared to region 1. These deviations could stem from the lack of the Kaimal model to represent
3D turbulent structures. It is a 1D model, which has been extended to represent 3D turbulence by applying an empirical
exponential lateral coherence model with completely independent velocity components, while the Mann model defines a full
3D tensor model.

Next, the delay between lidar and turbine estimations of REWS are analyzed. The delay stems from the perpendicular
distance between the rotor plane and the measurement plane Ax. It depends on the advection speed

Ax - tscan
Uadv 2 ’

At = (22)

where tgcan is the time to perform one full scan, which is 1s for both lidars and Az = df cosa — dnac, Where dyac = 1m
is the distance between lidar mounting position and rotor. U,qy is the advection speed of the turbulent fluctuations, which is
estimated by the 10 minute average of the lidar estimated REWS: U,q, = m.

Since the experiment was performed with very good time synchronization (with a maximum time delay of a few us), it is also
possible to calculate the delay between the two signals and compare it with expected delays based on the advection speed. The
delay between the two signal has been calculated using the information theoretical delay estimator presented in Moddemeijer

(1988). This method is based on splitting the two input signal into two parts: the past and the future and calculating the
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Figure 11. Delay time analysis results for the 2-beam and 4-beam lidar. Delays and advection speeds are calculated based on 10 minute

averages. The required filter time of a first-order Butterworth filter is also shown.

mutual information of two signals. By shifting the signals relative to each other, the time delay which minimizes the mutual
information is found. We have found that this method performs better than other delay estimators, namely the maximum index
of the cross-correlation and the slope of the cross-spectrum. Due to the sampling rate of 1 Hz calculated delays are discretized
in steps of 1s.

The result can be seen in fig. 11. For the 2-beam lidar shorter delays are expected due to the smaller focus distance and
larger half-cone opening angle. Still, the results for both lidars show great overlap between the measured delay and the delay
expected from advection speed and the lidar geometry. Towards high wind speeds the available preview time provided by
the lidar becomes smaller. Also, the required filter time is shown for the two lidar setups. Low-pass filtering the lidar system
is crucial to reject high-frequent fluctuations that are sensed by the lidar but not experienced by the rotor and if not filtered
would cause detrimental pitch actuation. In this study a first-order Butterworth filter is used following the approach presented
in Schlipf (2015), though different filters have been proposed, e.g. a Wiener filter (Simley and Pao, 2013a). The delay of the

filter is nonlinear but can be approximated by the delay at a certain frequency of interest Wqelay = 27 faelay (Schlipf, 2015):

arctan (M)

tie = ———— (23)

Wdelay

where fyclay = 0.433 Hz was chosen as the frequency of one rotation at the turbine’s rated rotor speed since the collective
pitch controller aims at reducing loads up to this frequency. The cutoff frequency was determined from the coherence analysis
presented previously at the point where yg1, = 0.5. The average over region 1 and 2 was computed for both lidar systems and
Weutoff = Uadvk|ﬁ,RL —0.5. This implies that the cutoff frequency changes with advection speed and an adaptive filter is required.
It can be seen that the expected preview time provided by the lidar system is sufficient for the low-pass filtering of both lidars.

For both lidar systems expected and observed delays show that there is ample preview time to perform the filtering.
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5 Conclusions

In this study we presented a model of the coherence between REWS estimated from turbine and lidar measurements. The
underlying model of the 3D turbulent field is the Mann spectral tensor and allows the direct calculation of auto- and cross-
spectra of REWS estimations for lidar and turbine. It is compared to field data obtained from two continuous-wave lidar
systems mounted on top of the nacelle of a wind turbine. To retrieve the turbulence model parameters, measured spectra from
a sonic anemometer have been fitted to the spectral tensor. The comparisons of squared coherence show that the presented
model fits the field data better than previously used models, which are based on the Kaimal model defined in IEC standard.
Thus, this study gives confidence that the proposed model can accurately represent the important lidar properties and it can be
used to optimize the lidar focus point positions to maximize the coherence between lidar and turbine. A common parameter
used in the lidar optimization is the wavenumber where the coherence drops to a value of 0.5 (Dunne et al., 2014), which can
be calculated precisely by the model.

We have found that larger turbulence length scales led to higher coherences between REWS estimated of turbine and lidar
compared to inflow turbulence of smaller length scale. It was also shown that the smallest detectable eddy size can by reduced
by almost 50% when using the 4-beam compared to the 2-beam system. Further, the advection speed by which the turbulent
structures are transported from measurement to rotor plane can be estimated from 10 minute averages of REWS from lidar
measurements. This is important information for the correct timing of the measured fluctuations of the lidar systems. There is
also enough preview provided by the lidar to perform the necessary low-pass filtering.

Since some of the physical mechanisms have not been modelled, future work includes additions to both the lidar and tur-
bulence modelling. First of all, the evolution of turbulence as it travels from measurement to rotor plane has been neglected.
An amendment of turbulence evolution to the Mann model has been proposed in de Maré and Mann (2016). The evolution
will have most influence on the small-scale fluctuations (Bossanyi, 2013) and including the effect will reduce the coherence.
Hence, the model presented here can be considered an idealized case. On the other hand, only small differences were observed
between data and model implying that the evolution effect is small. For larger turbine, which require larger focus distances,
this effect could be more severe. Secondly, the stability of the atmosphere was not considered, i.e. a neutral stratification was
assumed. Extensions to the Mann model have been proposed to include effect of the atmospheric stability, e.g. Segalini and
Arnqvist (2015) or Chougule et al. (2018). It should be noted that the discrete scanning of the lidar system and possible blade
blockage effects have not been integrated into the model. Also, environmental conditions like the aerosol concentration, fog or
precipitation have been disregarded.

The presented model in the current form can be applied to nacelle-mounted cw lidar and by modifying the spatial averaging
of the lidar it can be extended to nacelle-mounted pulsed lidars as well. To cover spinner-mounted lidar systems the rotational

sampling effect of the lidar as it rotates with the rotor needs to be modelled.
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Appendix A: Calculation of the power coefficient surface

For the calculation of the C),(3, \) surface an aerodynamic model of the Vestas V52 turbine was used. Aero-elastic simulations
in HAWC?2 over a domain of several pitch angles and TSR have been performed. A homogeneous, constant wind speed of 8 m/s
was used and constant pitch angles and rotational speeds of the rotor were set during the simulation. Stiff tower and blades

were used to avoid dynamic effects and calculate quasi-steady state C), values. The resulting surface can be found in fig. Al.

TR,
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Figure A1. Calculated C, (8, \) surface for the Vestas V52 turbine. For illustrative purposes negative C), values have been replaced with

Z€10.

Appendix B: Induction Correction

In this appendix an example of the flow field around a rotor operating at the aerodynamic optimum according to the model of

Conway (1995) is shown. The focus positions of the 4-beam lidar are indicated in red.

Appendix C: Comparison between average fitted Mann model parameter and average spectra

In section 3.2 the analysis was split into two distinct region, of which region 1 was disturbed by buildings and vegetation, while
region had a more undisturbed inflow over field and the fjord. Previously, the average spectra were fitted to the Mann model for
sectors of 30° width. The fitted parameter were then averaged per region to obtain a representative set of parameters for each
region. Here the averaged parameter are compared to the average spectra for region 1 and 2. In the process each individual u-,
v- and w- spectrum and the uw co-spectrum has been normalized by the 10 minute mean wind speed squared and the average

over all spectra for each region was taken. The result can be seen for region 1 in the left graph of fig. C1 and for region 2 in
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Figure B1. Example of the flow speed reduction and diversion around the rotor of a wind turbine. The red lines indicate the laser beam and

the red dots show the focus points.

the right graph of fig. C1. It can be seen that in both cases the model is describing the u-, v- and w- spectrum well. The uww

co-spectrum is underestimated by the model, which was also found in the fits done in Mann (1994).
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Figure C1. Average spectra and the corresponding Mann model fits from tab. 2 for region 1 (left) and region 2 (right).
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