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REVISION TO MANUSCRIPT DRAFT 

Wind Energy Science Discussion 

Performance of non-intrusive uncertainty quantification in the aeroservoelastic simulation 

of wind turbines 

The authors would like to thank the two reviewers for their time and for the useful feedback. All 

inputs that they provided have contributed to the improvement of the paper. 

A list of point-by-point replies to the reviewers’ comments is reported in the following. 

Reviewer #1  

Numbered comments 

1. [Reviewer] The authors present a well-written and well-motivated application of standard 

non-intrusive uncertainty calculations to the estimation of loads on a wind turbine. There 

are, however, a few areas where additional clarity or corrections to the text and figures 

are required. Abstract: In the first line, "uncertainties" should be replaced by "aleatory 

uncertainties". 

[Authors] The word “aleatory” has been added, as suggested. 

2. [Reviewer] The last sentence should also be made more specific as to what the effects 

and shortcomings are.  

[Authors] The whole abstract has been reformulated and made more specific. 

3. [Reviewer] Section 2, page 1, line 21: "uncertainties are [...] only indirectly accounted for" 

– the concept of "indirect" uncertainty calculation should be explained, preferably with a 

citation of an example.  

[Authors] An example has been added to the text. 

4. [Reviewer] Section 2.1, page 4, line 14: "give" should read "given".  

[Authors] The typo has been corrected. 

5. [Reviewer] Section 2.1, page 4, lines 16-20: The choice of a Beta distribution (actually 

strictly speaking a scaled Beta distribution, since the input values do not always lie 

between 0 and 1 – see also Section 2.2, page 5, line 21 for ESD) is not sufficiently 

motivated. This distribution has some specific purposes in the statistical literature, in 

particular for expressing an uncertainty distribution over a probability. The reason for the 

turbulence intensity to be modified by a factor which lies between 0.5 and 2 is not 

explained, since it implies that the turbulence intensity corresponding to k_TI=1 will not 

actually be the mean or median of this distribution? A log-normal or truncated Gaussian 

distribution (with mean or median set to 1) would appear more appropriate.  

[Authors] The focus of the present study is on uncertainty propagation methods that are 

applicable to wind energy problems and that can converge faster than the standard 



 

Page 2 of 9 

Monte Carlo (MC) approach. To perform the necessary comparisons, realistic 

uncertainties were generated from proprietary datasets. It was observed that the 

distributions of these datasets could be accurately modeled by scaled beta distributions. 

In the datasets, TI was not distributed symmetrically, and this is why k_TI=1 is not 

centered around 1. 

It should however be highlighted that neither NIPCE nor Kriging are bound to (scaled) 

Beta distributions and that other distributions could be readily used. Log-normal or 

truncated Gaussian distributions would be a perfectly feasible option. This said, in this 

study the scaled beta distributions nicely met our needs, i.e. representing data that is 

bound and not necessary symmetrically distributed. 

The text in the manuscript has been changed to better explain these points. 

6. [Reviewer] Section 2.1, page 4, lines 21-22: The Dimitrov paper does not appear to 

contain this equation, and the physical motivation behind asserting that SE = SE_ref + 

a/TI - 1/4 (where a is a constant) is not obvious. The equation is in any case unclear, as 

TI(k) looks like a function, but appears to be a distribution, from the description on line 24.  

[Authors] The equation is number five in the paper from Dimitrov et al., 2015 

(https://doi.org/10.1002/we.1797). The difference between the equation of Dimitrov et al., 

2015 and our equation is that in our work TI is not only dependent on wind speed, but 

also on the uncertain parameter kTI. For varying values of kTI, TI changes and so does the 

shear coefficient. 

We rewrote a large portion of the section to better explain this point. 

7. [Reviewer] Section 2.1, page 4, lines 26-28: The method by which the k_TI values in table 

4 have been derived should be explained, to aid reproducibility. 

[Authors] The focus of the paper is on uncertainty propagation and results can be 

reproduced by using the parameters reported in Table 3. These values are site and wind 

turbine dependent, and different values would certainly change the outputs, without 

however invalidating the methods used for uncertainty propagation.  

Lines 26-28 and the corresponding references were removed in the new version of the 

manuscript, as they did not help with the understanding and were therefore deemed to 

be superfluous. 

8. [Reviewer] Section 3.1, page 8, line 3-4: what does it mean, to say that the mean is below 

1%? 

[Authors] The sentence was imprecise, and it has been improved. The sentence refers 

to the convergence trends and to the variations in mean and standard deviation over the 

iterations. 

9. [Reviewer] Section 3.1, page 8, line 10: "converge" should read "convergence".  

[Authors] This typo has now been corrected. 

https://doi.org/10.1002/we.1797
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10. [Reviewer] Section 3.2, page 11, Figure 5: This figure is difficult to understand. Does the 

y-axis label "difference in" refer to a change between adjacent function evaluations? What 

is the definition of "potential inexactness" that the grey band is representing, and what 

information does it give the reader about the other lines on the graph? Finally, the legend 

says "1.1k MC" whereas the rest of the text indicates 1200 evaluations.  

[Authors] The y-axis represents the difference with respect to the MC estimates obtained 

with 1,100 sample points. As the legend of Figure 5 reports, “The gray area reflects the 

potential inexactness of the MC benchmark, and it represents the 95% confidence 

intervals for 1,100 sampling points.”. “Potential inexactness” then accounts for the fact 

that, with a finite number of sampling points (here, equal to 1,100), MC estimates the 

outputs only up to some possible residual variations. The grey band could be made 

narrower by increasing the number of samples. The text was updated to clarify this point. 

The number 1,200 referred to older calculations, while 1,100 is the correct number. The 

text was corrected accordingly. 

11. [Reviewer] Section 3.3, page 12, Figure 6: More explanation is required concerning the 

pdf values being shown - how should they be interpreted? They are different to the pdf 

values being shown in Fig 5. The pdf values are presumably also not conditional on 

k_TI=1, since they do not appear to integrate to 1? Finally, the second graph on the top 

line has a typo in the title: "MDT" should read "MTD".  

[Authors] Figure 6 shows the values and corresponding probabilities of each key output 

for combinations of kAF and ESD. These values correspond to a 2D slice of the tri-

dimensional space. The slice is cut for kTI=1. 

Two plots are defined for each key output: on the left a plot shows the percent difference 

with respect to the mean of the various key outputs for the different possible input 

combinations of kAF and ESD, while the plot on the right shows the corresponding 

probabilities. The plots were generated by evaluating the UK model, trained with 40 

function evaluations, with a large random sample of 1,000,000 points, using kTI=1. The 

probabilities were then computed using this sample, so they are conditional on kTI=1. 

The pdf shown in Fig. 4 (not Fig. 5, which has no pdfs) corresponds to the sample of 

1,100 points obtained from Monte Carlo simulations. 

The typo in the title of the graph has now been corrected and a more complete 

description of Fig. 6 has been added at the beginning of Sect. 3.3. 

12. [Reviewer] Section 3.3, page 12, line 7: Isn’t the low probability of occurrence of ESD=0 

and k_AF=0 an input assumption? Perhaps when the meaning of the pdf plots is more 

fully explained, this will become clear.  

[Authors] Yes, it is. The text has been changed to clarify this point. 

13. [Reviewer] Section 3.3, page 13, line 5: The "largest probability" implies total probability 

greater than 50% of lying within +/- 1% of the mean? 
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[Authors] The sentence in the text has now been reformulated to highlight that the 

highest probabilities of occurrence correspond to values of MTD that fall very close to 

the mean values, and that the deterministic condition prescribed by the standards 

actually corresponds to the lowest probability of occurrence. 

14. [Reviewer] Page 13: Mostly these conclusions are justified and well-written. However, 

some more discussion could be given to the relative influence on the qualitative or 

quantitative results (i.e. differences with a deterministic approach) of the method itself, 

versus the specific numerical assumptions made about input parameter values, 

distributions and covariances 

[Authors] We thank the reviewer for the useful comments and suggestions. We hope that 

our changes improved the text. We are aware that this work represents only a preliminary 

step and much remains to be done before these methods for uncertainty propagation are 

fully understood and become widely applicable. A better analysis of the outputs is a top 

priority, especially to evaluate the impact of these methods on design. In fact, work is 

ongoing to integrate the UQ approach within a design framework. A sentence on future 

work was added to this section, to highlight this point. 

 

Reviewer #2 

The authors present the application of two non-intrusive uncertainty propagation techniques: 

Universal Kriging and Polynomial Chaos Expansion, as means of propagating the effect of 

uncertainty in wind conditions and blade aerodynamics on wind turbine loads. The manuscript 

describes the process of setting up the uncertainty propagation models and demonstrates an 

application on a 10MW research turbine. In the results section, the authors show how the 

uncertainty in two variables – the airfoil unevenness, and the extent of degradation along the 

blade span, affect the distribution of various wind turbine load components. The article is well 

structured and clearly written, and deals with a relevant scientific problem. In my opinion, the 

manuscript will benefit scientifically if the authors go in further depth in some aspects of their 

analysis. These recommendations are given in the comments below. 

General comments 

1. [Reviewer]: In several places in the paper (e.g. page 5, line 3) the authors state that there 

are some potentially significant sources of uncertainty, which are not considered in order 

to allow more focus on other relevant uncertainty sources. This is reasonable; however in 

such a situation it is important to understand what is the effect of not considering these 

uncertainties. For example, would the ignored uncertainties have the same effect over the 

entire variable space considered, meaning that they will not mask the relative effects of 

other uncertainties? Or will their effect mix with that of other uncertainties meaning a 

larger model error in general? 

[Authors] This is a very good point, which however we have not yet addressed and that 

-to be fully answered- indeed requires methods like the ones presented in this work. The 
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problem of uncertainty quantification in wind turbine simulation and design is very 

complex due to multiple reasons. One of them is exactly the one raised by the reviewer: 

what are the most “important” uncertainties? Answering this question with a standard 

MC approach is extremely expensive, to the point of being undoable. To address this 

problem, we started by testing different uncertainty propagation methods, in order to 

identify the most suitable one. To run the necessary comparisons, a sub-set of 

uncertainties that we could quantify was selected. We agree with the reviewer that the 

next natural step is a detailed assessment of the importance of all uncertainties impacting 

wind turbine analysis and design.  

These thoughts were already included in the outlook for future work, but we have now 

added one additional sentence to better elaborate on them. In addition, although the 

introduction already clearly stated the goals of this paper, we have now added a new 

sentence that clarifies that an in-depth study of the effects of uncertainties is not one of 

them. 

2. [Reviewer] The uncertainty propagation models are trained based on variable spaces with 

beta-distributed marginal variables. Then the probability density functions for the 

response surfaces are plotted based on a Monte Carlo simulation which apparently uses 

the abovementioned marginal distributions. However, these sampling distributions do not 

fully correspond to the real-world distributions of the uncertainty variables. It is therefore 

difficult to judge on whether a given load event is critical as it may have a high probability 

of occurrence in the sampling space used to train the uncertainty propagation model, but 

low probability in the real world, and vice versa. I suggest that the authors redo the MC 

analysis (Figure 6) using realistic joint distributions of the uncertainty variables. This is also 

a key distinguishing point between uncertainty propagation and uncertainty 

quantification: the response surface only propagates the uncertainty, so in order to 

quantify the uncertainty of the dependent variable we need to feed the propagation model 

with the right input uncertainties. 

[Authors] This a second very good point raised by the reviewer. However, as clearly 

stated throughout the text, this work limits its scope to the testing of two propagation 

methods, analyzing their convergence trends and performing an initial analysis of the 

uncertain outputs. We did not (and still do not) have access to distributions of the 

uncertain inputs coming from the real-world. These data sets would be extremely 

valuable, also to address Comment #1. This work aims at showing that NIPCE and 

Universal Kriging are two valuable alternatives to MC for the propagation of uncertainties 

affecting wind turbines. A second goal of this work is to show that the world of UQ has a 

very large potential to better estimate outputs of interest and help reducing safety factors 

in wind turbine design.  

3. [Reviewer] To me, the authors are considering a manifold of four random quantities: two 

uncertainty variables (𝑘AF and 𝐸SD) combined with two environmental conditions – wind 

speed, and turbulence intensity (and wind shear as fully dependent on the latter two). I 

think it will make the paper clearer if the presentation is made along this logic. In this way 
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one can also distinguish between point-to-point uncertainty between individual 

realizations, and the effect of the two uncertainty factors integrated over the joint 

distribution of the environmental conditions (which is what I believe is the purpose of 

Figure 6 in the current manuscript). 

[Authors] The work adopts three random quantities, kAF , ESD and kTI. Shear is linked to 

TI through Eq. 1. Wind speed is not an uncertain parameter and simulations are run for 

wind speed bins of 2 m/s from cut in to cut out. We thought of adopting the logic 

proposed by the reviewer of analyzing the single uncertainties. However, no strong 

conclusion could be drawn by that approach, and we finally opted for a more aggregated 

analysis of the results. 

4. [Reviewer] It is not clear whether the results reported in Figure 6 are averaged over the 

wind speed or not. If we were considering integrated quantities such as e.g. fatigue loads, 

it would be relevant to show the average values. However, when talking about extremes 

it would be more appropriate to not do any averaging, and instead include the wind speed 

as one of the factors in computing the pdf of the extreme loads. This also relates to the 

comments above. 

[Authors] The results are not averaged over the wind speed. Quantities such as MTD, 

ThS, CBRM and CTBM are computed by taking the maximum values across all wind 

speeds. Quantities such as AEP and the three DELs are instead integrated across the 

wind speeds assuming the Weibull distribution corresponding to Class IA (k=2, Uavg=10). 

We added a paragraph in Sect. 3.1 to better explain this point. 

Specific comments 

5. [Reviewer] Page 3, line 20 (first paragraph of Section 2): This is a classification of the 

uncertainties according to the physical mechanism that causes them. Another maybe 

even more relevant classification could be according to their type, e.g., statistical, 

measurement, model, human-caused… This should make it easier to categorize the 

uncertainties. 

[Authors] Following the reply to Comment #2, the focus of the present work is to test 

uncertainty propagation methods for three realistic uncertain inputs. An important, but 

also very challenging, work would be to categorize the input uncertainties and assess 

their importance. This would be very valuable to the scientific community, although the 

lack of measurements and field data available in the public domain complicates this task. 

Although very useful, we believe this aspect to be outside of the scope of the present 

work. 

6. [Reviewer] Page 3, lines 23-25: “Not only the nominal values of all such parameters are 

uncertain, but additional sources of uncertainty are introduced by manufacturing 

processes and the status of wear and tear of each individual machine or component”. 

Another uncertainty source which the authors should consider here is the measurement 
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uncertainty: the observed value of a given variable is different from its true value due to 

imperfect observation. This also means that we don’t necessarily know the true reference. 

[Authors] We agree with the reviewer on this point, and we added this source of 

uncertainty in the text. 

7. [Reviewer] Page 4, line 8: The authors describe that turbulence boxes include random 

realizations of a turbulence field. It would be useful to describe in more details what are 

the statistical properties of these randomly generated fields – e.g. are they Gaussian, what 

are the spectral parameters. 

[Authors] Turbulence fields were generated adopting the standard values prescribed by 

IEC standards. Only TI and shear exponent were assumed uncertain and perturbed. 

8. [Reviewer] Page 4, line 12: “…These effects may alter in a significant way the statistics 

of the wind at a given site. All such effects are difficult to measure and quantify with 

precision…” What the authors refer to may be considered as a kind of measurement 

(epistemic) uncertainty due to not being able to quantify the variables with sufficient 

precision. A specific reference to this type of uncertainty can be found in Tarp-Johansen 

at al. [1] where this is referred to as “Exposure uncertainty”. 

[Authors] When modeling the wind, the distinction between aleatory and epistemic 

uncertainties may blur. In this work we addressed the first ones, but it is however true 

that wind is also affected by epistemic uncertainties that should be addressed. We thank 

the reviewer for having provided a reference we were not aware of. This reference has 

now been included in the revised version of the manuscript. 

9. [Reviewer] Page 4, eq. 1: Please note that in Dimitrov et al. (2015) the reference 

turbulence intensity 𝑇𝐼𝑟ef is a function of the turbulence quantile, i.e., the wind shear 

distribution changes with respect to the turbulence quantile. What kind of turbulence 

quantile have the authors considered as 𝑇Iref? Is that taken into account by the uncertainty 

factor 𝑘𝑇I? I think the authors have to explain the relationship between the turbulence 

quantile and 𝑘𝑇I. 

[Authors] Following Comment #6 of Reviewer #1, the paragraph has been reformulated. 

The distribution shown in Fig. 3 was determined for a turbulence quantile of 90%. 

[Reviewer] Page 5, line 14: “either uniform or a beta probability distribution” – why either 

distributions and not one specific? 

[Authors] This was a typo and we corrected it. In the preliminary studies we did not have 

any indication on kAF and we therefore ran the first analyses adopting a uniform 

distribution. Later on during the study, one of the authors gained access to real data and 

provided the values of α and β reported in Table 3. 

[Reviewer] Page 6, line 22: Is the severity of surface degradation 𝑘𝐴F assumed to be 

uniform over the full extent of spanwise degradation (ESD)? I would suggest that a more 

realistic approach would be to have 1) 𝑘AF as a random, spatially-correlated variable over 
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the blade span, and 2) the expected value of 𝑘AF to gradually increase towards the blade 

tip. This could still amount to some integrated degradation measure.  

[Authors] We agree with Reviewer #2 that this could be a better approach for future 

studies. Nonetheless, the (few) experimental data points used to fill Table 3 suggested a 

constant 𝑘AF. 

10. [Reviewer] Page 6, line 9: What was the trend function used in the Universal Kriging 

approach? One could consider e.g. a polynomial chaos expansion as a trend function – 

one could even make use of the NIPCE already trained as a standalone model. 

[Authors] The trend function used in the UK approach is a reduced quadratic polynomial. 

11. [Reviewer] Page 6, line 29 (and Figure 3): what turbulence quantile does 𝑇Iref refer to? 

Why is the turbulence uncertainty factor 𝑘𝑇I beta-distributed, normally one could use the 

standard assumption that the turbulence (standard deviation of wind speed) is log-

normally distributed? Again, in continuation to a previous comment, we need an 

explanation of the relationship between the turbulence probability distribution and the 

uncertainty factor 𝑘TI and what are the implications of replacing the turbulence distribution 

with 𝑘TI. 

[Authors] See Comment #9, the whole paragraph has been reformulated to better explain 

how 𝑘𝑇I was defined. 

12. [Reviewer] Page 9, Table 4: are these statistics based on the full data set over all wind 

speeds? Have the results been Weibull-weighted according to a certain wind speed 

probability, or is the wind speed probability considered uniform? Is the “standard 

deviation” the sample standard deviation, or the uncertainty in the mean estimate? 

[Authors] These statistics are based on a sample of 1,100 MC function evaluations. Each 

function evaluation corresponds to 12 transient simulations at different wind speeds from 

cut-in to cut-out, considering six turbulent seeds. The extreme loads (MTD, ThS, CBRM, 

CTBM) are computed extracting the maximum overall value of each simulation for each 

quantity. The DELs (DEL ThS, DEL CBRM, DEL CTBM) and AEP are computed for each 

dynamic simulation and Weibull-averaged according to the Weibull of wind class 1A. The 

standard deviation is computed as the amount of dispersion of the key outputs of the 

1,100 function evaluations. 

Text has been changed to include the above information. 

13. [Reviewer] Page 10, line 7: give a definition of the collocation ratio 

[Authors] The collocation ratio is defined as the ratio between the number of function 

evaluations used to train the model and the total number of terms in the chaos expansion. 

The definition has now been added to the text. 

14. [Reviewer] Page 10, line 8: what is the sampling distribution of the MC? Is that the same 

as the MC sample used to train the models? 
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[Authors] The sampling distribution of the MC is random. Yes, it is the same used to train 

the models. 

15. [Reviewer] Page 10, line 11: the UK converges faster than the NIPCE. Could that be 

because Kriging is in essence an interpolation scheme, and the response is linear enough 

(as the authors point out themselves) so that a few points are sufficient to establish a 

reasonable extrapolation? 

[Authors] Yes, we believe this to be a correct interpretation of the results. 

16. [Reviewer] Figure 6: there are some “wrinkles” in the contour plots. Could these be 

caused by having few data points (40 function evaluations only)? What if we added more 

data – maybe the contours would resemble more straight lines (= closer to linear 

dependencies)? 

[Authors] The contour plots in Fig. 6 are computed by evaluating 1,000,000 random 

sample points in the UK model trained with 40 function evaluations. We did ask ourselves 

the same question at the time of analyzing the outputs of the simulations. We then 

generated similar contour plots training the model with more evaluation points. However, 

the plots did not change substantially, and we therefore concluded that the wrinkles are 

likely associated to non-linearities of the aeroservoelastic model. 

17. [Reviewer] Page 13, line 24: “…the deterministic conditions prescribed by international 

design standards generate maximum values of loads and power production, which 

however are typically associated with a very low probability of occurrence”. This is 

guaranteed only if the sampling distribution used to propagate the uncertainty is the same 

as the real-world distribution of the random input variables. As discussed in the general 

comments, this is not necessarily the case with the present data sets. 

[Authors] The uncertain input parameters reported in Table 3 come from real datasets 

and can be assumed to be realistic. It is true that a higher number of uncertain parameters 

will likely increase the uncertainty of the outputs. Nonetheless, the variations observed in 

this work suggest that the adoption of uncertainty propagation methods may help 

reducing safety factors, possibly drastically. 

Technical comments: 

18. [Reviewer] Page 4, line 14: “give turbine” -> “given turbine” 

[Authors] The typo has been corrected. 

19. [Reviewer] Page 8, line 10: “converge” -> “convergence” 

[Authors] The typo has been corrected. 

We have taken the opportunity to make several small editorial changes to the text, in order to 

improve readability. A revised version of the manuscript is attached to the present reply, with the 

main changes highlighted in blue. 

The authors 
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Abstract. The present paper characterizes the performance of non-intrusive uncertainty quantification methods for aeroser-

voelastic wind turbine analysis. Two different methods are considered, namely non-intrusive polynomial chaos expansion and

Kriging. Aleatory uncertainties are associated with the wind inflow characteristics and the blade surface state, on account of

soiling and/or erosion, and propagated throughout the aeroservoelastic model of a large conceptual off-shore wind turbine.

Results are compared with a brute-force extensive Monte Carlo sampling, which is used as benchmark. Both methods require5

at least one order of magnitude less simulations than Monte Carlo, with a slight advantage of Kriging over polynomial chaos

expansion. The analysis of the solution space clearly indicates the effects of uncertainties and their couplings, and highlights

some possible shortcomings of current mostly deterministic approaches based on safety factors.

1 Introduction

The analysis and design of complex engineering systems is typically based on sophisticated numerical models. While in the10

past these have been mostly based on deterministic formulations, more recently probabilistic approaches have been gaining an

increased attention because of their ability to account for uncertainties in both the models and their inputs. Although numerous

applications of probabilistic methods can be found in many areas of engineering, so far formal uncertainty quantification has

been applied to a lesser degree in the wind energy field. In fact, probabilistic approaches have been used to estimate wind turbine

extreme loads, as reported by Dimitrov (2016) and Graf et al. (2018) among others, but comprehensive analyses and design15

procedures that account for uncertainties have been lagging behind. This can probably be attributed to the inherent complexity

of the models describing the behavior of wind turbines and the environment in which they operate. Indeed, wind (and water,

in the offshore case) excitations are highly unsteady and characterized by complex phenomena. Additionally, comprehensive

wind turbine simulation environments are obtained by coupled multi-physics models, which account for the effects of structural

dynamics, aero and hydrodynamics, closed-loop controls, and their mutual interactions. As a consequence of the inherent20

complexity and computational cost of the resulting simulation tools, most of the analysis and design methods are currently

based on deterministic simulation models and uncertainties are, to a large extent, only indirectly accounted for. For example,

instead of computing extreme loads from the tails of probability distributions —which would be the probabilistic approach—,

artificial deterministic wind time histories are routinely used to generate in a simpler way such limit cases (IEC61400-1, 2005).
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The behavior of wind turbines and of the environment in which they operate is profoundly affected by uncertainties. There-

fore, time is ripe for investigating rigorous mathematical formulations to evaluate the robustness of designs and to establish

confidence levels on outputs of interest. In the literature, already a few authors have taken the first steps in this direction. One of

the first wind energy related publications in this field is the paper by Witteveen et al. (2007), where an intrusive formulation of

polynomial chaos expansion (IPCE) is used to investigate the effects of uncertainties affecting the Onera dynamic stall model5

with regard to a 1 MW wind turbine blade. The authors conclude that the model is very sensitive to input uncertainties and that

IPCE is able to reconstruct the output statistics with one order of magnitude fewer function evaluations than a standard Monte

Carlo (MC) approach. In Petrone et al. (2011), the aerodynamic design optimization of a wind turbine blade is presented, where

uncertain levels of contamination affect the airfoil polars along the span of the blade. A Simplex Stochastic Collocation (SSC)

method is used for the propagation of the uncertainties, and convergence is compared against the standard MC approach. SSC10

is found to be significantly more efficient than MC, in the sense that it requires a much smaller number of evaluations of the

model for convergence. Multi-objective design solutions are also presented in the same work, investigating trade-offs between

maximum power coefficient and minimum sound pressure levels. Another approach for the robust design optimization of wind

turbine rotor blades is presented by Campobasso et al. (2016), where uncertainties are assumed in the chord and twist distribu-

tions as well as in the prescribed pitch angle. Additional recent efforts in this area have been dedicated to the development of15

novel stochastic models for the aerodynamic analysis of wind turbine blades (Fluck, 2017).

Modern simulation and design frameworks are typically based on validated comprehensive aeroservoelastic models. Drastic

rewritings of such complex codes to incorporate stochastic formulations are clearly undesirable. To enable the use of legacy

codes as black boxes within a probabilistic approach, studies have been recently focusing on the augmentation of aeroser-

voelastic solvers with non-intrusive uncertainty propagation methods. In addition to enabling the reuse of existing software,20

non-intrusiveness also allows one to rapidly reap the benefits of any modeling improvement, as the problem of uncertainty quan-

tification is essentially decoupled from the details of the underlying simulation model. This approach is followed by Abdallah

et al. (2015) using MC. The method, however, is non-intrusive but also typically extremely expensive, because it performs a

straightforward exhaustive sampling of the solution space. More sophisticated spectral methods are used in Matthäus et al.

(2016) and Murcia et al. (2017). In these three studies, the impact of uncertainties in the soiling of the airfoils and the wind25

inflow is estimated in terms of the statistics of rotor performance and extreme loads.

The present study expands and refines the work presented in Matthäus et al. (2016), with the primary goal of identifying the

most suitable approaches for the propagation of uncertainties throughout aeroservoelastic wind turbine models. A second goal

of this work is that of establishing the performance and convergence properties of such methods for this specific application.

The in-depth study of uncertainties and their effects on wind turbines is not amongst the goals of this paper, although it is30

clearly a long term objective of crucial importance. Among the various approaches that are available in the literature (Sudret,

2007), non-intrusive polynomial chaos expansion (NIPCE) and Kriging (Krige, 1951) are considered here, because of their

generality and typical good performance on a wide range of different applications.

The study is conducted with reference to a conceptual offshore 10 MW wind turbine, which is representative of the edge of

the current technology. The machine is modeled with the code Cp-Lambda (Code for Performance, Loads and Aeroelasticity35
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by Multi-Body Dynamic Analysis), which implements a multi-body formulation for flexible systems with general topologies.

The element library includes rigid bodies, non-linear flexible elements, joints, actuators and aerodynamic models (Bottasso et

al., 2006; Bauchau, 2011). Uncertainties are assumed both in the wind characteristics, using actual field measurements, and

in the aerodynamic properties of the rotor blades, on account of soiling and erosion. Simulations are performed over a range

of wind speeds covering the entire operating regime of the machine. The two considered uncertainty propagation methods5

are compared in terms of their ability to reconstruct the main statistics of key performance indicators and design drivers,

including maximum blade tip deflection, ultimate and fatigue loads at various spots on the machine and, finally, annual energy

production (AEP). An exhaustive sampling by the classical MC approach is used as benchmark to define the convergence and

accuracy of the tested methods. The resulting probabilistic simulation framework can quantify the effects of uncertainties for

a comprehensive black-box aeroservoleastic simulator, in support of the analysis and design of wind turbines. This work is10

an intermediate step towards the inclusion of robust design methods in the procedures described in Bortolotti et al. (2016),

which are at present purely deterministic (except than for the standard treatment of wind by the use of multiple realizations of

turbulent fields (IEC61400-1, 2005)).

The paper is structured as follows. Section 2 first discusses sources and models of uncertainty for wind turbine aeroservoe-

lasticity, and then briefly presents the two methods considered here for the propagation of such uncertainties. Next, the wind15

turbine model is presented at the beginning of Sect. 3, followed by a comparison of the convergence trends for the two methods

in Sect. 3.2, while an analysis of the results is discussed in Sect. 3.3. Conclusions and recommendations for future work are

finally given in Sect. 4.

2 Sources of uncertainty and propagation methods

Uncertainties are commonly categorized into two macro families: aleatory and epistemic uncertainties. The former source of20

uncertainty emerges from the underlying randomness of a process, as for example described by the probability distribution of

the wind speed at a certain site. The latter, on the other hand, originates from a lack of knowledge and data. This work considers

the effects of aleatory model parameters and inputs with established underlying probability distributions.

Wind turbines are subjected to several sources of uncertainty. In addition to the inherently stochastic character of the wind,

which varies in time and space for a multitude of reasons, uncertainties are also present in the aerodynamic characteristics25

of the machine, in the mechanical properties of the materials, structures and foundations, as well as in the characteristics and

performance of many of the sub-systems of a wind turbine. Not only the nominal values of all such parameters are uncertain, but

additional sources of uncertainty are introduced by manufacturing processes and the status of wear and tear of each individual

machine or component. Additionally, one should not forget that measurements are also uncertain (Tarp-Johansen et al., 2002),

so that an absolute real ground truth can not be established in general.30

Due to its preliminary character, this study limits its attention to uncertainties affecting the wind inflow and the aerodynamics

of the blades. These are typical and relevant examples of aspects of a turbine model that can often only be described in statistical

terms, but that also have a profound impact on the behavior and overall performance of the system. It should however be
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remarked that the methods analyzed here are general, and in principle applicable to problems other than the ones considered in

this work.

2.1 Uncertainty in the characterization of the wind

Wind is a natural phenomenon where air particles move dynamically following three-dimensional paths as the result of a

number of driving effects. In general, such a complex process can only be measured and described in terms of its statistics.5

International standards, such as IEC61400-1 (2005), represent wind profiles by a combination of deterministic mean parameters

—typically, mean hub-height speed, shear exponent (SE), vertical and horizontal inflow angles— and a turbulence model,

which, for an assigned mean turbulence intensity (TI), describes the stochastic variability of the flow field. Each realization of

the turbulent wind field is associated with a random seed. By combining the mean flow field with the fluctuations produced

by the turbulence model, one obtains a representation of the wind field in space and time. Sufficient durations and number of10

realizations are typically necessary for the statistics of the generated wind fields to reach convergence.

However, effects such as solar irradiation, seasonal and long term climate changes, vegetation growth and complex terrain

conditions play important roles in increasing uncertainties in the characteristics of the wind (Sathe et al., 2011; Ernst and

Seume, 2012). These effects may alter in a significant way the statistics of the wind at a given site. All such effects are difficult

to measure and quantify with precision, in turn introducing uncertainties in the assumed wind characteristics used for the15

simulation and design of wind turbines. This is clearly a problem of crucial importance. In fact, for a given turbine and control

system, the assumed wind input plays a fundamental role in determining performance and loading, including lifetime and

safety.

This work assumes that both TI and SE are uncertain. However, field data often exhibit a correlation between SE and TI that,

according to Dimitrov et al. (2015), can be modelled as20

SE = SEref +
TIref −TI

TIcSE
. (1)

In this expression, SEref is a reference value for the shear exponent, cSE a correction factor that can be generally assumed equal

to 4, and TIref is the value of the turbulence intensity at a wind speed of 15 m/s. Here an uncertain multiplicative factor kTI is

used to perturb an initial distribution of TI over wind speed; when kTI equals 1, TI at 15 m/s equals TIref. Therefore, through

Eq. (1), kTI also introduces a corresponding uncertainty in SE.25

Here and in the following all uncertain parameters are modelled with scaled beta distributions. Such distributions are pre-

ferred to other possible choices for two reasons: first, they are highly flexible in shaping the probability density function on

account of given statistical data and, secondly, they generate bounded distributions with lower and upper limits. This is a nec-

essary feature when modeling parameters that cannot assume negative values. It should be noted, however, that neither NIPCE

nor Kriging are bound to scaled beta distributions, and truncated Gaussian, log-normal, uniform distributions or others could30

also be readily used. The parameters of the beta distribution for the uncertain factor kTI are reported in Sect. 3.1.
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2.2 Uncertainty in rotor aerodynamic properties

A second important source of uncertainty in wind turbine simulation and design lies in the aerodynamic characteristics of the

rotor. Among other effects, the performance of the airfoils —measured in terms of the aerodynamic coefficients of lift, drag

and moment— is considered as a possible major source of uncertainty.

The estimation of airfoil aerodynamic coefficients can be obtained by experimental and numerical techniques. Both ap-5

proaches are challenging and lead to uncertainties of an aleatory and epistemic nature, especially in the stall and post-stall

regimes. Although potentially very significant, such uncertainties are not considered further in this work, which focuses in-

stead on blade surface conditions.

During operation, the surface of a blade may be contaminated by the deposition of dust, dirt, insects and pollen. Additionally,

the blade surface can also be altered due to erosion caused by sand and rain. All these effects are typically and particularly10

prominent at the leading edge, which has a fundamental role in dictating the behavior of airfoils. As a result, changes in surface

conditions during operation may result in significant uncertainties in power capture and loading.

Several studies have quantified the impact of erosion and contamination on aerodynamic performance (Khalfallah and

Koliub, 2007; Sareen et al., 2014; Zidane et al., 2016). The exact pattern and location of surface changes during operation

is a random process, which is largely governed by local effects, such as the local relative speed of the flow with respect to the15

blade and the local manufacturing surface quality, for example in terms of gel coat thickness and bonding strength (Khalfallah

and Koliub, 2007). In the current study, an uncertain level of airfoil profile unevenness is simulated by using the random vari-

able kAF, modeled with a scaled beta probability density function. Variable kAF is assumed to vary within the values of zero and

one, where zero corresponds to the nominal (clean) state of an airfoil, while one corresponds to a contaminated or fully rough

state of operation. The airfoil aerodynamic coefficients between these two states are linearly interpolated for any intermediate20

value of the random variable, as shown in Fig. 1.

Uncertainties in the actual extension of surface degradation along the span of the blade are modelled by introducing a second

parameter, termed extent of spanwise degradation (ESD). Parameter ESD is defined as the non-dimensional span length —

measured from blade tip— where factor kAF affects the airfoil coefficients. Since surface degradation typically occurs in the

outer portion of the blades, ESD is assumed to follow a beta distribution between zero, which corresponds to a fully clean25

blade, and 0.5, which implies that the outer 50% of the blade is affected by surface degradation with a severity dictated by kAF.

2.3 Methods for uncertainty propagation

As anticipated in Sect. 1, the current literature offers a vast range of methods for the propagation of uncertainties. A detailed

overview of the various formulations can be found in Sudret (2007). Among the many options, based on the results presented

in Matthäus et al. (2016), the present study considers the regression-based order 3 NIPCE and Universal Kriging (UK), as30

implemented in DAKOTA (Adas et al., 2015), to propagate the uncertainties discussed in Sects. 2.1 and 2.2.

In Matthäus et al. (2016), the methods of spectral projection and linear regression were tested to determine the polynomial

coefficients of NIPCE, the latter typically yielding the best results. In terms of polynomial order, tests were conducted between
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Figure 1. Interpolation of the airfoil aerodynamic coefficients between the fully clean and fully rough conditions.

order one and 16. The best results were obtained for order three, while above this value the solution first stopped improving and

then deteriorated. It was also found that Universal Kriging is superior to Ordinary Kriging, mostly due to its better adaptability

to a general trend in the response.

3 Application to a 10 MW wind turbine

Here uncertainties in the wind characteristics and in the airfoil polars are propagated throughout the aeroservoelastic model5

of an offshore wind turbine, with the goal of comparing the performance of the uncertainty quantification methods and of

establishing their main convergence characteristics. First, Sect. 3.1 introduces the turbine model together with the assumed

uncertainties. Convergence of the statistics is then discussed in Sect. 3.2, while the analysis of the effects of uncertainties on

some key outputs is finally presented in Sect. 3.3.

3.1 Wind turbine model and associated uncertainties10

The AVATAR wind turbine is considered in this work, as a representative case of a large offshore wind turbine. This conceptual

machine was developed by a consortium of academic and industrial partners within the EU project AVATAR (AVATAR Con-

sortium, 2014-2017), and its main characteristics are summarized in Table 1. In this study, the standard configuration defined

by the consortium is used, while the blade inner structure is the one developed at Politecnico di Milano (Croce et al., 2017).

Table 2 lists the airfoils used along the span of the blades.15

For airfoils DU97-W-300 and DU91-W2-240, which occupy the outermost part of the blade, surface conditions are specified

by the two parameters kAF and ESD, by interpolating between fully clean and fully rough aerodynamic coefficients. The clean

and rough polars of the two airfoils, which are based on the work performed in the AVATAR project (Méndez et al., 2017), are

6



Table 1. Principal characteristics of the 10 MW AVATAR wind turbine.

Wind turbine model 10 MW offshore

Wind class IEC 1A

Rated electrical power 10.0 MW

Drivetrain & generator efficiency 94.0%

Rotor diameter D 205.76 m

Hub height H 127.0 m

Nacelle uptilt angle Φ 5.0 deg

Rotor cone angle Ξ 2.5 deg

Cut-in wind speed Vin 4 m/s

Cut-out wind speed Vout 25 m/s

Max tip speed vtipmax
90 m/s

Blade mass 52,874 kg

Tower mass 630.0 ton

Table 2. Spanwise positions of the airfoils.

Airfoil Thickness Position Airfoil Thickness Position

Circle 100.0% 0.0% DU00-W2-350 35.0% 36.31%

Circle 100.0% 0.61% DU97-W-300 30.0% 45.63%

DU-600 60.0% 17.00% DU91-W2-240 24.0% 65.00%

DU00-W2-401 40.1% 28.47% DU91-W2-240 24.0% 100.00%

reported in Fig. 2. On the other hand, only clean aerodynamic coefficients are used for the airfoils located closer to the blade

root, as surface degradation is less likely to happen in this region.

Uncertainties are considered in kTI, kAF and ESD. As previously explained, the wind parameter SE is not assumed as an

independent uncertain variable, but it obeys the relationship of Eq. (1), assuming SEref equal to 0.15 and TIref equal to 4.9%

(see Fig. 3). All uncertainties are assumed to follow the beta distributions whose parameters are reported in Tab. 3. The5

distribution of turbulence intensity is taken from a measurement campaign conducted in a wind park in the North Sea. The

distribution for kTI = 1 is reported in Fig. 3.

An extensive MC is first performed to characterize the solution space. The three uncertainties are propagated throughout the

aeroservoelastic model in a power production state at 12 different wind speeds from cut-in to cut-out, considering six turbulent

seeds. Eight outputs of interests are analyzed, namely maximum blade tip deflection (MTD), ultimate and damage equivalent10

load (DEL) of the thrust measured at the main shaft (ThS), ultimate and DEL combined blade root moment (CBRM), ultimate
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Figure 2. Fully clean and fully rough aerodynamic coefficients CL, CD , CM and airfoil efficiency vs. angle of attack for airfoils DU97-W-

300 and DU91-W2-240.

α β Region

kTI 3.4 6.0 [0.5 , 2.0]

kAF 2.0 6.0 [0.0 , 1.0]

ESD 2.5 4.0 [0.0 , 0.5]

Table 3. Probability density functions for turbulence intensity factor kTI, airfoil roughness kAF and non-dimensional spanwise extent of

erosion ESD.
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Figure 3. Turbulence intensity distribution for varying wind speed.

and DEL combined tower base moment (CTBM), and finally annual energy production (AEP). MTD and ultimate ThS, CBRM,

and CTBM are obtained by computing the maximum overall value across all time steps and wind speeds. DELs and AEP are

instead averaged via the Weibull distribution corresponding to wind class IA, which is characterized by a shape factor of 2 and

an average wind speed at hub height of 10 m/s (IEC61400-1, 2005).

The MC analysis was stopped at 1,100 evaluations, where the convergence of mean and standard deviations for all quantities5

consistently returned variations below 1% of their average values. While convergence is rapidly obtained for the mean values

of the eight outputs of interest, standard deviations require a significantly higher number of evaluations to reach convergence.

The statistics of the outputs are reported in Table 4.

Here, six seeds were used to limit the computational cost of the MC analysis, following accepted international standards

(IEC61400-1, 2005). However, as reported in the literature (Dimitrov et al., 2015; Graf et al., 2018), this number might not10

always be adequate. This is confirmed also here, as the use of only six seeds does not guarantee the full convergence of all

quantities, especially in terms of standard deviations, as shown by Fig. 4. While the differences in AEP and DELs are indeed

small, this is not true for the ultimate loads. A better understanding of the convergence of results with the number of turbulent

realizations should be the subject of future work, as discussed in Sect. 4.

3.2 Convergence analysis15

The convergence of the uncertainty propagation methods is studied first. The analysis considers mean and standard deviation of

AEP, maximum tip displacement, thrust, combined blade root moment, combined tower base moment and the corresponding

damage equivalent loads.

Order-three NIPCE and UK, both as implemented in Dakota (Adas et al., 2015), are tested against the MC benchmark

presented in Sect. 3.1. To ensure a fair comparison, a MC sampling strategy is adopted for both NIPCE and Kriging. The20

number of training data samples follows the relation R= rNt, where r is the collocation ratio, varying from 0.6 to 8, and Nt is

9



Table 4. Main statistics of the eight outputs of interest for 1,100 MC function evaluations. MTD: maximum tip deflection; ThS: thrust at

main shaft; CBRM: combined blade root moment; CTBM: combined tower base moment; DEL: damage equivalent load; AEP: annual energy

production.

Mean
Standard Coefficient

deviation of variation

MTD 6.99 m 0.11 m 1.58 %

ThS 2.08 MN 0.02 MN 1.02 %

DEL ThS 0.34 MN 0.05 MN 13.79%

CBRM 56.29 MNm 0.63 MNm 1.12 %

DEL CBRM 29.51 MNm 2.61 MNm 8.83 %

CTBM 236.05 MNm 2.20 MNm 0.93 %

DEL CTBM 46.79 MNm 7.82 MNm 16.72 %

AEP 53.71 GWh 0.29 GWh 0.54 %
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Figure 4. Probability density functions of key output metrics for varying number of seeds. Each case is based on 1,100 sampling points.
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the total number of terms considering a total-order expansion. The collocation ratio is defined as the ratio between the number

of function evaluations used to train the model and the total number of terms in the chaos expansion. On the resulting response

surface, an extensive MC sampling with 100,000 points is conducted to extract mean and standard deviation.

Both NIPCE and UK appear to be capable of estimating the eight outputs of interest at a much reduced number of function

evaluations compared to MC. In addition, UK consistently converges faster than the other two methods, with a reduction of5

one-two orders of magnitude with respect to MC for the estimation of the output mean and standard deviation. The plots

reported in Fig. 5 provide for a visualization of these results. In the figure, a gray area represents the 95% confidence intervals

for the finite (here equal to 1,100) number of sampling points used in the MC analysis. The grey band could be made narrower

by increasing the number of samples.
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Figure 5. Convergence of mean and standard deviation for key output quantities. The gray area reflects the potential inexactness of the MC

benchmark, and it represents the 95% confidence intervals for 1,100 sampling points.
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3.3 Effects of uncertainties on outputs of interest

The results obtained by UK with 40 function evaluations are then subjected to a more detailed analysis. Response surfaces for

the eight outputs of interest and their corresponding probability density functions are shown in Fig. 6. The plots are generated

by first training the UK model with 40 points and then evaluating it with a random sample of 1 million points. Given the

three-dimensionality of the solution space, two-dimensional surfaces are plotted for a constant kTI equal to one.5

Figure 6. Key outputs (in percent difference with respect to the mean value) and corresponding probability density functions, for kTI equal

to one.

The contour plots visibly show non linearities. Additionally, they also show that the condition corresponding to a fully clean

rotor, namely ESD and kAF equal to 0 (bottom left corner of each plot in Fig. 6), generates the highest values for all eight

outputs of interest (left plots). However, according to the input distributions of Table 3, these conditions also have a very

low probability of occurrence (right plots). For MTD and the three key loads ThS, CBRM and CTBM, this means that the

deterministic simulations prescribed by the standards overestimate the actual output values. Since the variations in the outputs10

12



are limited, and typically in the range of ±3%, these results might appear to suggest that the conventional safety factors equal

to 1.2 or 1.3 may be excessive. It is however clear that this analysis is purely limited to the effects of surface roughness and

some wind inflow parameters, and a more comprehensive analysis should be conducted before drawing any final conclusion or

recommendation. It should also be remarked that the non-intrusive uncertainty propagation methods used here would indeed

allow for such a more general analysis in a rather straightforward manner.5

MTD provides for an interesting example. International standards prescribe MTD to be 30% lower than tower clearance. The

top left plots in Fig. 6 show that the largest probability of occurance corresponds to MTD values that fall within ±1% of the

mean, while very low probabilities are associated to the value of MTD obtained in the deterministic condition prescribed by the

standards (kAF and ESD equal to 0). Similarly, a deterministic analysis overestimates AEP by about 3%, while the uncertainty

analysis shows an equal probability within a range of ±1.5% from the mean value.10

In addition, the contour plots of MTD and AEP indicate a fairly linear behavior of the solution space, where the two outputs

show a maximum variation along the 45 degree bi-sector. This follows from the fact that, as expected, the rotor is more loaded

for clean airfoils and a low extent of erosion (both kAF and ESD equal to zero), generating higher AEP and MTD. These

variations are apparently approximately linear, and as a result the region of maximum probability aligns with the expected

values of kAF and ESD.15

4 Conclusions and outlook

This work has reported on the first steps towards the development of a framework for the non-intrusive propagation of un-

certainties throughout black-box aeroservoelastic wind turbine models. Non-intrusiveness is key to the reusability of legacy

models, and for rapidly reaping the benefits of modeling improvements without the need for a deep rewriting of such complex

codes.20

NIPCE and UK were applied to a large state-of-the-art conceptual wind turbine, considering both power capture, tip deflec-

tion and some typical design-driving loads as performance indicators. Uncertainties were considered in both the wind inflow

conditions and the roughness of the blades, on account of soiling and/or erosion. For both methods, comparisons to standard

brute-force Monte Carlo predictions indicate a good performance in terms of quality at a significantly lower computational

cost. Of the two, UK appears to consistently converge faster than NIPCE.25

The analysis of the results indicates non-linearities and couplings among the various sources of uncertainty. In addition, it

was found that the deterministic conditions prescribed by international design standards generate maximum values of loads

and power production, which however are typically associated with a very low probability of occurrence. Although the results

obtained here are not comprehensive enough to draw any significant conclusions, they do suggest that the use of formal

mathematically-based methods of uncertainty propagation may lead to a revision of typical safety factors, in the interest of30

more cost-competitive —but still fully safe— designs.

The present study should be refined in several important aspects. To start, the problem of turbulent realizations deserves

specific attention. Here the number of turbulent seeds typically recommended by design standards was used, but appeared
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not to be always sufficient for guaranteeing convergence of the statistics. If the number of seeds needs to be increased in a

substantial manner to ensure convergence, this might require a change in the methodological approach, as the computational

cost might become prohibitive. In this sense, the use of surrogate models, instead of the high-fidelity ones used here, might

become attractive. An additional problem of interest is the computation of extreme states, which populate the tails of the

probability distributions and often act as design drivers. Here, ad hoc sampling strategies have been developed by the statistical5

research community, and could be applied to the problem at hand (Graf et al., 2018). Other sophisticated sampling methods,

such as Latin Hypercube Sampling or Hammersley Sampling (Hosder et al., 2007; Eldred et al., 2009), have been described

in the literature and will be topic of future studies. Furthermore, additional sources of uncertainty should be investigated. In

fact, in principle many parameters and inputs can be assumed to be uncertain. However, a comprehensive knowledge of the

role played by the various uncertainties and their couplings is still largely missing. A ranking of uncertainties and a deeper10

understanding of their effects is a very worthwhile endeavour, which might have a significant role in the future design of wind

energy systems.
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