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Abstract. The actuator line was intended as a lifting line technique for CFD applications. In this paper we prove - theoretically

and practically - that smearing the forces of the actuator line in the flow domain forms a viscous core in the bound and shed

vorticity of the line. By combining a near-wake representation of the trailed vorticity with a viscous vortex core model, the

missing induction from the smeared velocity is recovered. This novel dynamic smearing correction is verified for basic wing

test cases and rotor simulations of a multi-MW turbine. The latter cover the entire operational wind speed range as well as yaw,5

strong turbulence and pitch step cases. The correction is validated with lifting line simulations with and without viscous core,

that are representative of an actuator line without and with smearing correction, respectively. The dynamic smearing correction

makes the actuator line effectively act as a lifting line, as it was originally intended.

Copyright statement. ©Author(s) 2018.

1 Introduction10

The actuator line (AL) technique developed by Sørensen and Shen (2002) is a lifting-line (LL) representation of the wind

turbine rotor suitable for computational fluid dynamics (CFD) simulations. It captures transient physical features like shed and

trailed vorticity (including root/tip vortices) , without the computational cost associated with resolving the full rotor geometry.

The AL model thus enables Large-eddy simulations (LES) of large wind farms in realistic, turbulent atmospheric boundary

layers (Vollmer et al., 2017).15

However, different to LL vortex formulations the blade forces are dispersed in the flow domain - most commonly in form

of a Gaussian projection - to avoid numerical instabilities. A length scale - also referred to as smearing coefficient - controls

this force redistribution, whose lower limit is linked to the grid size through numerical stability requirements (Troldborg et al.,

2009). Mikkelsen (2003) observed a large sensitivity of the blade velocities to this length scale, which consequently also

propagated to the blade forces. Especially in regions along the blade exhibiting stark load changes, as around the root and20

tip, forces are substantially over-predicted, meaning this effect is exacerbated by non-tapered and low aspect ratio blades.

As actuator disc formulations suffer from similar issues towards the blade tip, their Glauert (1935) type tip corrections are

also frequently applied to ALs (Shen et al., 2005). Yet, these correct discs for missing discrete blades and thus should be

unnecessary - strictly even invalid - for ALs. Shives and Crawford (2013) and Jha et al. (2014) achieved a reduction in the
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force over-prediction by varying the originally fixed smearing factor with respect to the blade chord. Yet, their methods cannot

decouple the blade forces from the smearing length scale: a smeared force distribution in the flow domain necessarily leads to

lower induction at the blade - increasing lift and drag - compared to an actual LL with a concentrated, spatially singular force.

1.1 The vortex smearing hypothesis

Shives and Crawford (2013) noticed the similarity between the velocities induced across an actuator line and those predicted5

by a viscous vortex core model. These models include the limiting effect of viscous shear forces on the induced velocities

around vortex cores. A similar comparison of the swirl velocities about an infinite vortex line are shown in Fig. 1 - here with

a Lamb-Oseen vortex core model (Lamb, 1932; Oseen, 1911). Without viscosity (inviscid) the velocities approach infinity

towards the vortex centre. The startling agreement between the Lamb-Oseen and AL velocities was first demonstrated by Dag

et al. (2017). The Gaussian body force smearing in the AL technique thus produces similar swirl velocities as a viscous vortex.10

Ignoring viscous effects, the AL should in principle induce the same velocities as a LL - equivalent to the inviscid solution.

The missing induced velocity in the AL model (marked area in Fig. 1) can be approximated following Dag et al. (2017) by:

∆vθ(r) =

inviscid︷︸︸︷
Γ

2πr
−

viscous core︷ ︸︸ ︷
Γ

2πr

[
1− exp

(
−r2/ε2

)]
=

Γ

2πr
exp

(
−r2/ε2

)
(1)

Here Γ represents the vortex line’s circulation, r is the distance from the vortex core and ε the length scale used in the force

smearing. This formulation can be split into an inviscid and viscous/smearing contribution:15

∆vθ(r) =

inviscid︷ ︸︸ ︷
vθ(r) fε(rε)︸ ︷︷ ︸

smearing

with vθ(r) =
Γ

2πr
, fε(rε) = exp(−r2

ε ), rε =
r

ε
(2)

If this viscous behaviour of the force smearing in AL simulations would be limited to the bound vortex representing the blade,

then it would not influence the blade forces as long as the blade is straight. Yet Dag et al. (2017) argued the trailing vortices

(in the wake) to exhibit the same viscous core, as they originate from the bound vortex. Hence, the wake of an AL is inducing

lower velocities at the blade than in case of a LL. The missing velocity can be estimated from the viscous core equivalence and20

thus correct the velocities at the blade. This mostly impacts blade forces by changing the angle-of-attack at the blade sections.

1.2 Contributions of this paper

Dag et al. (2017) corrected AL simulations of a rectangular wing and two rotors with different aspect ratios by recuperating

the missing induced velocity introduced by the viscous core. For all their simulations they were able to show the beneficial

effect of the correction on the blade load distribution - represented by more physical behaviour, especially towards the tip and25

root. However, their implementation of the correction did not fully couple the flow-field with the blade forces and the induction

correction.

The major contributions of this paper are:
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Figure 1. Distribution of the tangential velocity component in a plane orthogonal to an infinite vortex line (along x) obtained from either an

inviscid or viscous (Lamb-Oseen) theoretical vortex and an actuator line CFD simulation.

– The development of a tuning-free, dynamic and numerically robust smearing correction, that is fully coupled to the AL

model.

– A theoretical proof of the force smearing - vortex core equivalence.

– Proof of the vortex core inheritance in trailed vorticity.

– The confirmation of the missing velocity assumption by comparing LL simulations with/without viscous core and AL5

results with/without correction.

The test cases include constantly and elliptically loaded wings as well as rotor simulations of a multi-MW turbine covering the

entire operational wind speed range. As the AL model is especially attractive for wind farm simulations, the focus here is on

coarsely resolved ALs. The correct dynamic behaviour of the new correction is verified through yawed inflow and pitch step

simulations.10

2 Proof of force smearing - vortex core equivalence

The equivalence between the velocity field induced by an AL and a viscous vortex can be derived directly from the incompress-

ible Navier-Stokes (N-S) equations. This proof follows the approach by Forsythe et al. (2015) that successfully connected an

AL’s vorticity field to its force projection. Starting by taking the curl of the incompressible momentum equation, the vorticity
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transport equation is obtained (ω =∇×u)

∂ω

∂t︸︷︷︸
=0

steady

+(u∇)ω = (ω∇)u︸ ︷︷ ︸
=0
2D

+ν∇2ω︸ ︷︷ ︸
=0

inviscid

+∇f
ρ

(3)

Here ν is the viscosity, ρ density and f the body forces from the AL. Away from root and tip, the flow around a high aspect

ratio blade is nearly two-dimensional, as the span-wise flow is negligible. Viscous effects are disregarded in light of the

large Reynolds numbers encountered. Furthermore the relationship between body force and flow-field becomes quasi-steady5

assuming the flow is attached. Cancelling the respective terms and noting that in 2D flow (y− z plane) ω = ωxêx and ∇=

(0, ∂∂y ,
∂
∂z ):

(u∇)ωxêx =∇f
ρ

(4)

Assuming the drag to be negligible, the force - in the form of lift - exerted by the AL on the flow in terms of its circulation Γ

becomes10

f =−f aerog(r) (5)

f aero = L= ρu×Γêx g(r) =
1

πε2
exp(−r2/ε2) (6)

Here g represents a 2-D Gaussian force projection with r indicating the distance from the AL. Inserting these expression into

Eq. (4) and exploiting standard matrix transformation and mass conservation1

(u∇)ωxêx =∇(Γgêx×u) = (u∇)Γgêx (7)15

(u∇)ωx = (u∇)Γg (8)

Due to mass conservation the u∇ term can be inverted thus giving a direct relationship between the force projection and

vorticity:

ωx = Γg =
Γ

πε2
exp(−r2/ε2) (9)

As the body force is axially symmetric, the vorticity only induces tangential velocities20

ωx(r) =
1

r
(
∂ruθ
∂r
− ∂ur

∂θ︸︷︷︸
=0

axisymmetry

)⇒ uθ =
1

r

r∫
0

rωx(r)dr (10)

Inserting Eq. (9) and integrating gives the swirl velocity induced by a smeared body force

uθ =
Γ

2πr

[
1− exp(−r2/ε2)

]
(11)

This expression equals that of the Lamb-Oseen vortex, only with the viscous core radius replaced by the smearing coefficient2.

This marks the theoretical confirmation of the observations by Dag et al. (2017), which additionally indicates that a viscous25

core behaviour with an AL requires inviscid, two-dimensional and locally steady flow conditions.
1∇× (êx×u) = (u∇)êx− (êx∇)u+ êx(∇u)−u(∇êx) = (u∇)êx + 0 + 0 + 0
2Note that in the x-y plane the circulation would be −Γ
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3 Numerical methodology

3.1 Actuator-line simulations

The discretised incompressible Navier-Stokes equations are solved with DTU’s CFD code EllipSys3D (Sørensen, 1995;

Michelsen, 1994a, b). The flow is iteratively solved at each time instant by the SIMPLE algorithm (Patanker and Spald-

ing, 1972). Depending on the turbulence model either the third-order accurate QUICK (Leonard, 1979) scheme (RANS) or5

a fourth-order CDS scheme (LES) discretises the convective terms. As the flow variables are located at the cell centres, a

modified Rhie and Chow (Réthoré and Sørensen, 2012) algorithm avoids pressure-velocity decoupling. Further details on the

numerical techniques are given in Meyer Forsting et al. (2017). For all comparisons with the LL code, the RANS equations are

solved using the k-ω shear-stress transport turbulence closure of Menter (1993). Only the turbulent inflow cases in Sect. 5.2.4

are computed with the DES technique of Strelets (2001). The AL model was implemented by Mikkelsen (2003) in EllipSys3D.10

We employ a version utilising three-dimensional Gaussian force projection, which follows the original formulation of Sørensen

and Shen (2002). As the AL model is especially attractive for wind farm simulations, the focus here is on coarsely resolved

ALs, with either 9 or 19 sections (Ns) along the blade. They are uniformly spaced and discretise the blade starting from the

root at 1.5 m to the tip at 63 m. The smearing length scale is connected to the number of sections, such that ε= 2R/(Ns + 1)

- R defining the rotor radius - which ensures the forces in the domain to change smoothly between sections (Nathan, 2018).15

Tower and nacelle are not modelled.

Figure 2. Numerical box domain with a structured mesh and uniform spacing around the rotor at its centre. Only every eighth grid point and

half of the domain is shown.

5



The numerical domain for the rotor simulations is discretised in a verified, standard manner (Meyer Forsting et al., 2017;

Troldborg et al., 2009). It consists of a box with 25R side length that contains an inner box with a uniformly spaced refined mesh

of 3.2R edge length at its centre surrounding the rotor (see Fig. 2). To capture the velocity gradients around the AL correctly the

mesh spacing is ∆x=R/40. This is twice the recommended minimum (Troldborg et al., 2009), yet it delivers more accurate

angles-of-attack estimates at the section centres (Shives and Crawford, 2013). In total 256 cells discretise the flow domain5

along each dimension, resulting in 16.8× 106 degrees of freedom. All variables, except pressure and its correction, which

necessitate special treatment (Sørensen, 1995), obey symmetry conditions on the lateral boundaries, whereas at the inflow and

outflow faces they follow Dirichlet and Neumann conditions, respectively. The wing test cases follow the same approach only

withNs = 32 and an inner box edge length of 3b, where b is the wing’s half-span. This results in 80 cells along each dimension

and 5.1× 105 degrees of freedom. To ensure the blade tip to remain inside a single cell during one time step ∆t <∆x/(ΩR)10

- with mesh spacing ∆x and rotational speed Ω. Without rotation the term ΩR is replaced by the advection speed of the wake.

The kinematic viscosity and air density are kept constant at 1.789 ×10−5 kg/m/s and 1.225 kg/m3, respectively. Simulations

are stopped when the thrust residual reaches 10−5.

The sensitivity of the rotor thrust to the domain size, time step and grid size is explored in Fig. 3. The length of the domain

edges is doubled to 50R, the time step is halved with respect to a setup obeying the method described above. As reference acts a15

simulation of the NREL 5MW at 8 ms−1 with either 40 or 60 grid cells along the rotor depending on the smearing length scale.

With ε=R/10 and R/20, this represents four and three times the recommended resolution, respectively (Troldborg et al.,

2009). Though non-zero, the sensitivity of the results is acceptable in code comparison and should impact AL simulations with

and without correction similarly.

Figure 3. Thrust sensitivity of the NREL 5MW AL simulations at 8 ms−1 wind speed with grid size, doubling the domain size and halving

the time step at two smearing length scales. (Ns = {9,19}, Tref = {4.20,4.06}× 105 N)

3.2 Free-wake lifting-line rotor simulations20

The in-house solver MIRAS has been employed to perform the free-wake lifting-line simulations. MIRAS is a multi-fidelity

computational vortex model, which is mainly used for predicting the aerodynamic behaviour of wind turbines and its wakes. It
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has been developed at DTU during the last decade and been extensively validated for small to large size wind turbine rotors by

Ramos-García et al. (2017, 2014a, b).

The free-wake vortex method essentially models the wake of a wind turbine by a bundle of infinitely thin vortex filaments.

To avoid numerical singularities, it is required to introduce a viscous core, which represents a more physical distribution of the

velocities induced by each vortex filament, desingularizing the Biot-Savart law near the center of the filament. The velocity5

induced by each one of the elements is obtained directly by evaluating the Biot-Savart law, and by summing the velocity

induced by all filaments, the total wake induction is obtained.

u(xi) =

N∑
j=1

Kij
γj
4π

tj × rij
r3
ij

where Kij =
r2
ij(

ε2z
j + r2z

ij

)1/z (12)

whereN is total number of filaments that form the wake, rij = xi−yj is the distance vector from the vortex element yj to the

evaluation point xi. γj is the circulation of the filament, tj is the unit orientation vector of the j-th filament and rij = |rij |. εj10

is the vortex core radius of the filament and z defines the cut-off velocity profile where the Lamb-Oseen model (Lamb, 1932;

Oseen, 1911), z = 2, has been employed.

A viscous core model is applied to emulate the effect of viscosity by changing the vortex core radius as a function of time

Leishman et al. (2002)

εi(t) =
√

4αvδvνti + ε0 (13)15

Here αv is a constant set to 1.25643 (Ananthan and Leishman, 2004), ν is the kinematic viscosity and ti is the time elapsed

since the generation of the i-th filament. In order to represent the diffusive time scales, the viscous core radius is set to change

with the vortex age by adding a turbulence eddy viscosity, δv , first proposed by Squire (1965), and in this work set to 10−3.

To avoid the singular behaviour of newly released vortex elements, an initial core radius, ε0, is introduced. In accordance with

Ramos-García et al. (2017), where it was found that a small core radius is necessary to have flow convergence, a core radius of20

0.1% the local chord at the release station is used.

For the sake of the present study, two different approaches to compute the angle-of-attack have been followed.

– Inviscid (LL), where the non-regularized Biot-Savart law is used to compute the induction from the wake filaments at

the quarter-chord location. This is the standard method used in a lifting line solvers.

– Viscous (LL+core), where the regularized Biot-Savart law is used to compute the induction at the quarter-chord location.25

A viscous core with radius equal to the actuator line smearing factor is used for a direct comparison of the methods.

This enables a double validation of the models. On one hand the corrected actuator line simulations can be validated against

the LL calculations, and on the other hand the raw actuator line model, without tip correction, can be compared against the

LL+core simulations which include the smearing effect in the free-wake model.
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Figure 4. Trailed vorticity path. The blade rotates in the x-y plane and z points downstream. The vortex element δl with strength Γs−Γs+1

is shed at r and transported downstream by the local velocity. The distance from the shedding location r to a point C along the blade is h

(h= r−Cx), where δl induces tangential and axial velocities.

4 Tip/Smearing correction for the actuator line

Applying the velocity correction methodology introduced in Sect. 1.1 in three-dimensional space yields a velocity correction

vector. The viscous core behaviour of the AL bound vorticity - proven in Sect. 2 to originate from the force smearing - is

inherited by the trailing vortices, as will be demonstrated in Sect. 5.1.1. Therefore the induction from the trailed vorticity at

the blade is lower than without force smearing. Fig. 4 shows the path of trailed vorticity shed from in-between two sections of5

a blade with a strength of ∆Γ = Γs−Γs+1 with

Γs =
1

2

√
v2
s +w2

sCl(α)c (14)

Here s defines the blade section index, l is the vortex following coordinate, c the section chord and α the angle-of-attack, which

depends on the inflow angle in combination with blade pitch and twist at the section. The missing induction from this single

trailed vortex at a point C is obtained by integrating along the vortex line10

u? =

∞∫
0

fεδũ dl (15)

Here δũ is the velocity induced by an infinitesimal element δl of the vortex line at point C, which is given by the Biot-Savart

law:

δũ=
∆Γ

4π

δl×x
|x|3

(16)
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where x is the vector pointing from the element towards C. The smearing factor for this vortex element becomes

fε = exp

(
− (xê⊥)2

ε2

)
(17)

The viscous core only acts in the plane orthogonal to the vortex element δl, hence ê⊥ projects x onto this plane. This is

different to using the distance, |x|, as Dag et al. (2017) proposed, which violates the two-dimensional nature of the viscous

core.5

The total missing induction at a blade section s is obtained by summing the contribution from all trailed vortices. The number

of trailed vortices Nv is directly related to the number of blade sections Nv =Ns + 1. Discretising the vortices in time, the

missing induction at a certain blade section becomes

u?s =

Nv∑
v

Nt∑
n

fns,v∆ũ
n
s,v (18)

Here v denotes the trailed vortex index, n the time index and Nt the number of time steps. Note that n= 1 is the most recently10

shed vortex element. As a tip/smearing correction should remain computationally inexpensive, numerically solving the Biot-

Savart law in Eq. 16 to obtain ∆ũns,v is unfeasible. This would necessitateNtNvNs orNt(Ns+1)Ns evaluations. An accurate,

yet fast alternative to solving the Biot-Savart law directly is the near-wake model (NWM) for trailed vorticity by Pirrung et al.

(2016, 2017b), which also includes downwind convection. It performs well for dynamic flow cases and exhibits great numerical

stability as it was originally developed to enhance the aerodynamic accuracy of BEM models. Its formulation is based on a15

lifting line representation of the blade’s trailed vorticity as depicted in Fig. 4 and approximates the induced velocities from a

single trailed vortex line by two indicial functions. The velocity induced by a vortex element is given in the NWM as

∆ũns,v =
(
Xn
s,v +Y ns,v

)
0

sin(φn)

−cos(φn)

 (19)

with φ representing the helix angle of the voriticty shed in the CFD domain (see Fig. 4). The indicial functions take the form{
Xn
s,v,Y

n
s,v

}
= a{X,Y }

rv
4πhs|hs|

∆Γnvφ
?n

s,v

[
1− exp

(
−b{X,Y }

∆β?
n

φ?ns,v

)]
exp

(
−b{X,Y }

n−1∑
i

∆β?
i

φ?is,v

)
(20)20

The definitions of a{X,Y }, b{X,Y },β? and φ? are those of Pirrung et al. (2016, 2017b). The indicial functions allow time-

advancing the solution by a mere multiplication, considerably reducing the model evaluations to NvNs +Nv . In the original

formulation this removes the need for bookkeeping, however as the smearing factor also changes with the position of the vortex

element all previously shed elements are advanced individually in this specific implementation. This is only an experimental

feature for testing the smearing correction and should be simple to remove in a future, more practical implementation.25

Following the lifting line formulation of the NWM shown in Fig. 4 (refer to Appendix A for a detailed mathematical

description) the perpendicular distance from the vortex element to C becomes

x⊥ =
δl

|δl|
×x= r cosφ


tanφ(β cosβ− sinβ)

−tanφ(−1 +h/r+ cosβ+β sinβ)

−1 + (1−h/r)cosβ

 (21)
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Thus the smearing factor becomes

fns,v = exp

(
−|x⊥(rv,β

n,hs,φ
n)|2

ε2

)
(22)

When discretising in time, βn is taken to be at the mid-point of the vortex element.

Finally the missing velocities computed in Eq. 18 correct the original velocities from the CFD simulations

us = uCFD
s +u?s (23)5

The correction therefore influences the blade forces through the angle-of-attack and the velocity magnitude, yet its the former

that dominates. It also changes the circulation at each blade section through Eq. 14 and thus the shed vorticity and its induction.

Hence determining the correction velocity is an iterative procedure. The correction algorithm is executed after flow-field is

solved and takes the following form:

1. Interpolate the velocity vector uCFD at the section centres from the CFD flow-field.10

2. Compute the helix angles φ, where φv =−tan−1
(
wCFD

v−1+wCFD
v

vCFD
v−1+vCFD

v

)
and φ{1,Nv} =−tan−1

(
wCFD
{1,Ns}
vCFD
{1,Ns}

)
.

3. Combine the CFD velocities with the respective correction from the previous time step n− 1, such that un = uCFD
n +

u?n−1.

4. Compute the smearing factor fε for all time steps, sections and elements (Eq. 22).

5. Determine the angle-of-attack and velocity magnitude from un to determine Γs (Eq. 14).315

6. Compute the velocities from the newly released vortex element ∆ũn (Eq. 19).

7. At the first iteration of each time step, advance the previous elements in time.

8. Compute the velocity correction at the current time step u?n (Eq. 18).

9. Update the velocity at the sections with some form of relaxation un = uCFD
n +u?n.

10. Repeat steps 5.-9. until convergence is reached.20

We use the technique by Pirrung et al. (2017a) established for the NWM to accelerate and ensure its convergence. Furthermore

the activation of the correction is delayed until the starting vorticity of the rotor has been transported at least one blade length

away from the rotor plane. This enhances its numerical stability, as induction has already build up at the blades by its time of

activation.
3Strictly, the influence of the shed vorticity on the velocity at the AL should be removed as remarked by Martínez-Tossas and Meneveau (2019), however

its influence is negligible.
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Figure 5. Definition of the wing test cases with either a rectangular or elliptic planform. Vortices are trailed in-between sections and the

actuator line forces are computed and exerted at the sections’ centres.

Table 1. Input parameters common to both rectangular and elliptic wing simulations.

w∞ [ms−1] 2b [m] rv=1 [m] Ω [rads−1]

10 10 0.5 0

5 Results

5.1 Basic wing test cases

To verify the smearing hypothesis (Sect. 1.1) and the novel smearing correction (Sect. 4) two basic wing flow cases with known

theoretical solutions are modelled using CFD. Either a rectangular or elliptic wing is represented by an AL as shown in Fig.

5, where the coordinate system is unchanged from the definition in Fig. 4. The AL is discretised in uniformly spaced sections5

in-line with the underlying flow grid and the smearing parameter is twice the section width, which ensures a continuous force

distribution along the wing. The common simulation parameters are given in Table 1. Unless specifically stated the sectional

lift coefficient Cl = 1 and drag is zero along the wing, independent of the angle-of-attack. The chord of the rectangular wing

is set to 1m and the elliptical chord distribution is

c(x) = c0

√
1−

(
x− (b+ rv=1)

b

)2

(24)10

with the root chord c0 = 4m. All simulations are performed within the same computational domain, defined in Sect. 3.1.
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The theoretical predictions of the the velocity field are achieved by representing the vortex system of Fig. 5 with vortex

filaments. The velocity induced by a filament with a viscous vortex core at an arbitrary point C is

u= fε(x⊥)
Γ

4π

(x1 +x2)(x1×x2)

x1x2 +x1 ·x2
(25)

x⊥ =
|x1×x2|
|x2−x1|

and xi = |xi| (26)

where x1 points from the start of the filament to C and x2 from its end. For a definition of fε(x⊥) refer to Eq. 17; without5

viscous core fε(x⊥) = 1. The contribution from different segments is summed to give the overall velocity field. As the wing is

lightly loaded we assume all vortex segments to remain in the x-z plane.

5.1.1 Trailed vorticity smearing

The vortex smearing hypothesis assumes the trailed vorticity inheriting the smeared velocity field from the bound vortex, which

was confirmed theoretically by Martínez-Tossas and Meneveau (2019) for straight wings. We test this further by simulating a10

rectangular wing without any correction. All vorticity is shed from the wing tips, creating the well known horseshoe vortex.

For the hypothesis to be valid the velocity distribution in the plane orthogonal to the trailed vortices should thus be identical to

the one of the bound vortex .

Fig. 6 compares the velocities induced by a rectangular wing predicted by an AL and three vortex segments (one bound, two

trailed) for five different smearing parameters. Only half of the wing is presented, due to symmetry. Velocity distributions are15

shown for lines cutting the vortex segments at right angles for y = 0. Clearly the velocity smearing is identical between trailed

and bound vorticity, confirming the smearing hypothesis. Slight differences are linked to the numerical discretisation of the

Gaussian force projection (Shives and Crawford, 2013) and numerical diffusion.

5.1.2 Smearing correction verification

As mentioned in Sect. 4, the new smearing correction uses a lifting-line representation of the trailed vorticity. Thus the predic-20

tion of the velocity correction with our model or vortex segments should be identical. To simultaneously verify its numerical

implementation, our model receives solely the sampled velocities from the flow domain to compute the circulation at the sec-

tions. The body forces are not applied inside the domain, though, to avoid influencing the trailed vortex paths nor are the

correction velocities added to the CFD velocities to keep the circulation unchanged. This holds the trailed vortices in the x-z

plane, simplifying the representation of the wake with vortex segments. The segments’ circulation is exactly the same as in25

the smearing correction to avoid any numerical effects influencing the comparison. Fig. 7 compares the velocity correction

predicted by the analytical vortex segments and our model at each section along a rectangular and elliptic wing for different

smearing factors (i.e. ε= 2b/(Nv−1)). With decreasing force smearing the velocity correction concentrates towards the tips, as

the induced velocity gradients are increasing. Therefore even at higher resolution the smearing correction remains significant,

yet more localised. Generally the model slightly over-predicts the missing induction at the wing, becoming more prominent30

with increasing resolution. WithNv = 64 the difference maximally reaches 6.7% (rectangular) and 1.7% (elliptic) with respect

12



Figure 6. Velocities induced perpendicular to a rectangular wing predicted by an actuator line (AL) without correction and by vortex segments

with a viscous core (Vortex) with different smearing parameters. Velocities are shown along lines cutting the bound and trailed vorticies at

right angles and y = 0. Only half of the horseshoe vortex is depicted as x′ = x− (b+ rv=1).

Figure 7. Analytical (An.) and corresponding model prediction of the velocity correction for varying force smearing (ε= 2b/(Nv − 1))

along a rectangular and elliptic wing, where x′ = x− (b+ rv=1).

to the inflow velocity. The average error does not breach 0.5% in any case. The velocity jump towards the tip sections of the

elliptical wing is related to the equidistant discretisation of the wing (Pirrung et al., 2014).
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5.1.3 Coupled AL-smearing correction verification

The coupling between velocity correction and the flow domain is verified by comparing the corrected downwash at an elliptical

wing to the theoretical expectation. The downwash should be constant along the wing and is given by

vth =−Γ0

4b
=−w∞c0Cl

8b
(27)

where Γ0 is the circulation at the wing root. Similar to Shives and Crawford (2013) the Cl was not fixed, but instead followed5

the theoretical lift curve slope for thin airfoils Cl = 2π. For the wing to operate at a constant lift coefficient Cl = 1, its angle-

of-attack needed to include the effect of the induced velocities:

α= αeff +αi =
Cl
2π

+ tan−1

(
c0Cl
8b

)
(28)

This represents a more rigorous test of the coupled system than prescribing the loading along the wing, as only the correct

downwash leads to the desired, constant sectional lift coefficients.10

Fig. 8 shows the downwash predicted by AL simulations with different smearing parameters and active correction. The CFD

component of the velocities are shown (vCFD) separately to emphasise the contribution of the correction to arrive at the correct,

constant downwash of 1 ms−1. Clearly without the correction, the induced velocities are a function of the smearing factor

and only arrive at the theoretically expected value for Nv = 32. Including the correction greatly reduces the dependence of the

downwash on the force smearing. The insufficient correction towards the tips feeds back to the equidistant discretisation of the15

AL (Pirrung et al., 2014), which is linked to the uniform spacing of the underlying flow grid.

Figure 8. Downwash at an elliptical wing predicted by AL simulations with different smearing factors and smearing correction. The CFD

component of the velocities are shown (dashed) as well as the total downwash incorporating the correction (solid). The theoretical value acts

as reference.
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5.2 Rotor simulations - NREL 5MW

The validity of the smearing hypothesis and its correction in rotor applications is demonstrated with simulations of the NREL

5MW turbine (Jonkman et al., 2009) using actuator (AL) and lifting line (LL) models. The input parameters to these simulations

are given in Table 2.

Table 2. Input parameters to the NREL 5MW simulations.

V∞ [ms−1] Ω [rpm] Pitch [◦]

4 4.6 0.00

6 6.9 0.00

8 9.2 0.00

14 12.1 2.59

25 12.1 23.09

5.2.1 Uniform inflow5

Fig. 9 compares the AL results with and without the novel smearing correction to the LL with and without viscous core. At

this wind speed of 8 ms−1 the thrust coefficient is highest (CT = 0.84) - and hence induction - thus lending itself as a strong

verification case. Clearly, there is an equivalence between the original AL and the LL with a viscous core and the corrected

AL with the LL. The smearing correction thereby makes the AL effectively act as a LL, as originally intended by Sørensen

and Shen (2002). The impact of the viscous core is most prominent towards blade root and tip. The sudden drop in the forces10

predicted by the AL/LL+core for the tip section of the blade - located at r/R= 0.97 - is not triggered by any aerodynamic tip

effects, but relates to a pronounced reduction in chord. Fig. 10 shows the diminishing effect of the correction on the angle-of-

attack towards the root and tip. As the correction velocities are negligible with respect to the rotational velocity - they impact

the velocity magnitude by less than 0.1% in the lifting region of the blade - it is ultimately the change in the angle-of-attack that

explains the observations in the force distributions. While not greatly affecting the magnitude of the forces in the mid-section15

of the blade, the viscous core does introduce greater fluctuations in the force distribution. The missing induction introduced by

the viscous core hence reduces the coupling between neighbouring blade sections. The smearing correction also recovers this

behaviour of the LL. Surpassing rated wind speed, forces increase inboard until cut-out. Just before cut-out at 25 ms−1 loading

thus reaches a maximum towards the root, causing an equally pronounced influence of the smearing correction in this region

as demonstrated in Fig. 11. Again, the equivalence of the AL and LL implementations is remarkable. This high wind-speed20

case also demonstrates our correction is not only a tip correction.

The comparison of AL and LL is summarised in Fig. 12 in the form of local thrust and power distributions at different wind

speeds. Note that for the wind speeds below rated (< 11.4 ms−1), the coefficients are identical. The results are only presented

15



Figure 9. Normal and tangential forces on the NREL 5MW blades at 8 ms−1 predicted by AL simulations with/without smearing correction

and LL with/without viscous core. (Ns = 19, ε= 0.1R)

Figure 10. Angle-of-attack with/without smearing correction on the NREL 5MW blades at 8 ms−1. (Ns = 19, ε= 0.1R)

for simulations with Ns = 9 for visibility, but compare equally well at higher resolution. As mentioned earlier, the smearing

corrections acts predominantly towards tip and root. An additional overview of all results is given in Table 3. Here the total

rotor thrust T and power P predicted by the corrected actuator line (AL?) and the lifting line (LL) are listed as well as the

influence of adding the viscous core relative to AL? and LL, respectively. The AL and LL solutions are not directly compared to

avoid including any mean bias in the comparison. The impact of the correction on the AL forces is nearly identical to removing5

the viscous core in the LL simulations at any wind speed, which further supports our correction methodology. In light of the

large errors incurred without any correction, unsurprisingly, some form of tip correction is usually applied in AL simulations.
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Figure 11. Normal and tangential forces on the NREL 5MW blades at 25 ms−1 predicted by AL simulations with/without smearing correc-

tion and LL with/without viscous core. (Ns = 9, ε= 0.2R)

Figure 12. Local thrust and power coefficients along the NREL 5MW blades at different wind speeds predicted by AL simulations

with/without smearing correction and LL with/without core. (Ns = 9, ε= 0.2R)

5.2.2 Yawed inflow

As the smearing correction does not include yaw effects - the wake is assumed to advect normal to the rotor plane - we tested its

influence at yaw angles χ of 15,30 and 45 degrees at 8 ms−1. Again the LL with and without viscous core acted as reference.

The time steps remained the same as in uniform inflow. Here only the results for the most extreme case at 45◦ yaw are shown,

as then the differences are most severe. Fig. 13 presents the normal and tangential force variation during one rotation, averaged5

over three distinct regions of the blade, at a wind speed of 8 ms−1. Whilst the agreement is best towards the blade tip, the
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Table 3. An overview of the simulation inputs and results for the NREL 5MW in uniform inflow. Results are grouped by blade/grid resolution.

For the actuator line (AL) and lifting line (LL) the simulation time step ∆t, the total thrust T and power P and the relative change in these

quantities caused by the correction/removing the viscous core are listed. Note that AL? represents the corrected AL results and change is

expressed relative to the rotor thrust and power.

∆t×10−2 [s] T×105 [N] ∆T [%] P×106 [W] ∆P [%]

Ns ε/R V∞ [ms−1] AL LL AL? LL ∆ AL ∆ LL AL? LL ∆ AL ∆ LL

9 0.2 4 15.90 18.12 1.01 1.02 3.50 3.21 0.26 0.26 9.19 8.74

6 13.82 12.08 2.27 2.30 3.78 3.20 0.89 0.88 8.91 8.72

8 10.36 9.06 4.08 4.09 2.84 3.20 2.13 2.08 7.51 8.71

14 7.87 6.89 4.64 4.77 4.00 3.19 5.39 5.54 5.64 4.90

25 7.87 6.89 2.84 2.99 2.77 0.82 5.40 5.68 3.08 1.65

19 0.1 4 10.37 18.12 0.98 0.99 2.80 2.13 0.25 0.25 7.48 5.81

6 6.90 12.08 2.21 2.22 2.79 2.12 0.83 0.85 7.45 5.79

8 5.17 9.06 3.92 3.95 2.81 2.13 1.98 2.02 7.49 5.81

14 3.93 6.89 4.52 4.61 3.09 5.98 5.22 5.35 4.71 7.50

force variation with azimuthal position is similar between AL and LL simulations across all sections. AL results are shifted

downwards with respect to the LL predictions at the inner sections, hinting at the AL experiencing higher induction in this

region. But for the verification of the smearing correction this shift is irrelevant, instead its impact on the AL forces needs

to be judged relative to the difference between LL with and without core. In this respect the smearing correction is behaving

correctly, increasing forces in a similar fashion as a LL without core in the mid-section of the blade and reducing them towards5

the root and tip.

5.2.3 Pitch step

The pitch step is defined as

ψ = ψ0 +
∆ψ

2
[1 + tanh(k(t− t0))] (29)

with ψ0 defining the pitch angle before the step, t0 the time instant of the step and ∆ψ the pitch change. Here an extremely10

violent step is chosen - determined by k - to encourage an equally pronounced blade force response and thus tests the numerical

stability of our correction. The parameters governing this comparison are given in Table 4, which realise a pitch step of ±2◦

in 0.14 s (10% to 90% pitch). To capture the swift change in pitch, the time step is adjusted in both AL and LL simulations to

3.94× 10−2 s. The blade force response is normalised as

F̂ (t) =
F (t)−F0

F∞−F0
(30)15

with F0 and F∞ denoting the steady-state values before and after the pitch step, respectively.
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Figure 13. Normal (upper panels) and tangential (lower panels) force variation during one rotation as a function of azimuthal position of the

NREL 5MW blades at 8 ms−1 and 45◦ yaw. The forces are averaged over three sections of the blade and are predicted by AL simulations

with/without smearing correction and LL with/without viscous core. The blade is facing upwind at χ= 0◦ and is pointing vertically up at

χ= 90◦. (Ns = 9, ε= 0.2R)

Here only the tangential force response after a +2◦ step for the mid and tip blade sections are shown in Fig. 14, as they

capture the main features of the response. As the definition here is positive pitch to feather, the force decreases along the blade

for positive pitch changes. The AL simulations exhibit a faster response with a kink at 0.14 s, coinciding with the pitch change

reaching 99% of the step. The AL therefore seems to capture the pitch rate lift. The LL does not show this feature so - as in

yaw - the correct behaviour of the smearing correction on the AL force response should be assessed relative to the influence5

of removing the viscous core in the LL model. Overall, the correction has limited effect on the dynamic response, which is

also confirmed by the LL simulations, but the correction essentially acts on the forces as removing the core in the LL. In

the mid-section it reduces the forces by maximally 1% during the first 2 s, dropping to 0.5% afterwards. At the tip section it

intensifies the response by maximally 1%, diminishing to 0.3% at 4 s.
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Table 4. Inputs defining the pitch step.

V∞ [ms−1] Ω [rpm] ψ0 [◦] ∆ψ [◦] k

14 12.1 2.59 ± 2 16

Figure 14. Normalised tangential force response at two blade sections (middle and tip) of the NREL 5MW following a pitch step of +2◦ in

0.14 s at 14 ms−1 predicted by AL simulations with/without smearing correction and LL with/without viscous core. (Ns = 9, ε= 0.2R)

5.2.4 Turbulent inflow

Highly turbulent inflow should challenge the numerical stability of the new smearing correction by introducing strong and

abrupt changes in the angle-of-attack. Comparing simulations with and without inflow turbulence should furthermore reveal,

whether turbulence alters the nature of the correction. Fig. 15 shows the impact of the smearing correction on the time-averaged

normal and tangential blade forces at 8 ms−1 mean wind speed for AL simulations with uniform and turbulent inflow. With a5

turbulence intensity (TI) of 15%, the forces are unsurprisingly slightly larger (≈ 20 Nm−1) than in uniform inflow. However

the change in forces introduced by the correction is nearly identical (< 2 Nm−1). When comparing the standard deviation

of the forces with and without correction in Fig. 16 the smoothing and dampening effect of the smearing correction on the

forces also in highly turbulent inflow becomes apparent. Madsen et al. (2018) observed a corresponding reduction of the force

variations on the whole rotor blade when comparing near wake model results against BEM results for the NM 80 rotor in10

turbulent inflow. This illustrates that the smearing correction leads to the same dynamic coupling between neighbouring blade

sections as a lifting line model.
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Figure 15. Time-averaged normal and tangential forces on the NREL 5MW blades at 8 ms−1 mean wind speed and changing inflow

turbulence predicted by the AL model with and without smearing correction. (Ns = 35, ε=R/8)

Figure 16. Variation of normal and tangential forces on the NREL 5MW blades at 8 ms−1 mean wind speed and turbulence intensity of 15%

predicted by the AL model with and without smearing correction. (Ns = 35, ε=R/8)

6 Conclusions

The actuator line was intended as a lifting line technique for CFD applications. In this paper we prove - theoretically and

practically - that smearing the forces of the actuator line in the flow domain necessarily leads to smeared velocity fields. For

the typical Gaussian force projection the widely known Lamb-Oseen (Lamb, 1932; Oseen, 1911) viscous core appears in both

bound and trailed vorticity. This core reduces the velocities approaching the vortex centre compared to the inviscid solution of5

the lifting line. The trailed vorticity of an actuator line thus induces lower velocities at the blade owing to the force projection.

We recover this missing induction by combining a near-wake model of the trailed vorticity with Lamb-Oseen’s viscous core

model and coupling it with the actuator line model. Basic wing test cases with theoretical solutions verify the correction, as
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it recovers nearly all induction independent of the severity of the force smearing. Rotor simulations furthermore show the

applicability and strength of the correction over the entire operational wind speed range as well as in yaw, strong turbulence

and undergoing pitch steps. Here the correction is validated with lifting line simulations with and without viscous core, that

are representative of an actuator line with and without smearing correction, respectively. The agreement between the respective

actuator and lifting line results is remarkable.5

The current implementation of the smearing correction relies on heavy bookkeeping. In future versions the latter will be

removed without jeopardising stability nor accuracy, making it suitable for wind farm simulations in realistic atmospheric

flows. Potentially, the correction might also enable accurate rotor simulations at lower discretisation.

Code and data availability. All data and parts of the code covering the smearing correction are available on request. Commercial and re-

search licenses for EllipSys3D can be purchased from DTU.10

Appendix A: Fixed wake equations

The equations governing the fixed wake approach underlying the smearing correction (see Fig. 4) are summarised for com-

pleteness.

Direction vector from the vortex element to a control point along the blade:

x=


−r cosβ+ r−h

r sinβ

−vhβ/Ω

 (A1)15

Definition of the vortex element:

δl= δlcosφ


−sinβ

−cosβ

vh/(Ωr)

 δl =
rδβ

cosφ
(A2)

Note that

cosφ=
Ωr√

(Ωr)
2

+ v2
h

=
1√

1 +
(
vh
Ωr

)2 tanφ=
vh
Ωr

(A3)

Incremental velocity induced by the vortex element20

δũ=
∆Γ

4π

δl×x
|x|3

=Ar


(vh/Ωr)(β cosβ− sinβ)

−(vh/Ωr)(−1 +hr + cosβ+β sinβ)

[−1 + (1−hr)cosβ]

 (A4)
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with

A=
∆Γrδβ

4π

[
r2

(
1 + (1−hr)2− 2(1−hr)cosβ+

(
vhβ

Ωr

)2
)]

︸ ︷︷ ︸
|x|2

− 3
2

hr =
h

r
(A5)
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