
Letter to editor 

Dear editor, 

Hereby we submit the revised version of our manuscript entitled “Low-level jets over the North Sea 

based on ERA5 and observations: together they do better”.  

The two anonymous reviewers were positive about the initial submission. As strengths of the paper, both 

reviewers mentioned that it provides a balanced overview of the pros and cons of the two datasets we 

used and the methods we used to overcome these limitations. Furthermore, they agreed that the 

description was mostly clear and to the point, but they also provided numerous constructive comments 

to improve the manuscript further. Overall, they agreed that the paper could be published after minor 

revisions. 

In the revised manuscript, we have implemented most of the reviewers’ feedback. The majority of the 

changes were editorial: some sentences were rewritten to clarify certain procedures, and at other points 

we added some additional information that the reviewers felt was missing. Furthermore, the figure that 

originally appeared in the appendix was moved to the main text and small changes were made to two of 

the figures, concerning readability of the tick marks in Figure 6 (now 7) and some additional quantitative 

information in Figure 3 (now 4). We also checked whether a different spatial sampling method would 

modify the results, but decided that the difference was negligible. One reviewer commented about 

Figure 3 (now 4) with which we disagreed. In our detailed response, we have explained why we thought 

that this suggestion would not improve the manuscript, and how we addressed his concern with an 

alternative modification.  

We’d like to thank you for the time you’ve invested in considering our manuscript for publication. We 

hope the revised manuscript in combination with our detailed response will support a positive decision. 

Kind regards, 

Peter Kalverla, James Duncan, Gert-Jan Steeneveld, Bert Holtslag 

 

  



Response to reviewer 1 

Dear reviewer,  

First of all, we would like to thank you for the time and effort you have invested in reviewing our 

manuscript. We appreciated your kind words and constructive feedback. In your specific comments, you 

highlighted numerous points in the manuscript where the formulation was unclear or imprecise. We have 

carefully addressed your concerns and prepared a revised version of the paper in which most of your 

feedback is implemented. Below, we have copied your specific comments and inserted our detailed 

response to each of your suggestions, including the modifications we made to the manuscript. With that, 

we trust we have adequately addressed your concerns. 

Kind regards, 

Peter Kalverla, James Duncan, Gert-Jan Steeneveld, Bert Holtslag 

 

Specific comments 

p1,ln8: ‘bias of 1m/s’ Ambiguous. Clarify that this is compared to the long-term mean. 

Response: We agree and implemented the suggestion in abstract. 

p4,ln10: Specify on what grid the ERA5 data was retrieved for the present study. 

Response: The ERA5 data was retrieved on a 0.3 degree lat/lon grid. We added this information. 

p4,ln2: Given the large variability in data availability, it would be worthwhile to have Fig A1 here in the 

main text. 

Response: We agree with the reviewer and placed this figure in the main text.  

p4,ln14: ‘gridpoint closest to meas. location’. Is this the case for the entire manuscript? I guess spatial 

gradients in ERA5 cannot be a priori ignored off the Dutch coast, in particular when plotting subtle 

differences as in Fig 2C. From suppl. inf. I note that interpolation is used, but this is good to mention 

this explicitly in the main text. 

Response: The text is correct here, we used the nearest grid point. Only vertical interpolation was 

applied. Our rationale was that since we’re considering heterogeneous terrain (especially if the next 

gridpoint is a land point with very different surface characteristics), interpolation might have adverse 

effects, and could even ‘contaminate’ the physical consistency of the model output. However, the 

reviewer brings forward a valid argument that spatial gradients can be strong, and therefore we checked 

whether interpolation would improve the results. We attach a figure illustrating the results. It appears 

that interpolation slightly improves the result, but the overall (rms) difference between the two methods 

is only 0.04 m/s, or 3%. In figure 2c (now 3c), this error margin is within the size of the marker. 

Therefore, we prefer to stick with the ‘pure’ model output, and we added a comment about this 

comparison exercise at the end of this sentence. 

p4,ln23: ‘the same ... technique’: unclear, please clarify 

Response: We have modified this sentence to “and a similar seasonality filter would result in ...” 

p4,ln30: ‘The sites with . . .’ This is a too strong statement since is depends totally on the HKZ lidars: 

ignoring them would lead to an opposite statement. Scatter is large. 

Response: This is a fair point, we may have been a bit too eager in the description of this figure. We 

modified the text so that it now reads: “For example, the HKZ lidars show a strong bias (i.e. systematic 

error), but have a relatively small standard deviation (i.e. random error).  

p5,ln1: Please add a (few) lines on the observation uncertainty. To what extent could this contribute to 

the scatter in Fig 2C? Is it all the fault of ERA5? 



Response: We have added the following: “Uncertainties in the observations can also contribute to overall 

error statistics. Based on the manufacturer information and previous validation (Poveda, 2015), the 

uncertainty in the observations can only account for about 2% of the errors. Finally, displacement in 

space or time, as well as discrepancies between point-based measurements and modelled control-

volumes can contribute to errors, although we’ve done our best to minimize these effects, e.g. by using 

appropriate time-averaging of the observations (see SI-II).” 

p5,ln5: Valuable observation! 

Response: We agree that this needs to be communicated. 

p8,ln6: ’average ... time steps’. This adds up to only 50 minutes of data, not an hour. Typo? Also, in 1 

line explain the third representation of Fig4 in the text 

Response: Good point. Actually we used 50 minutes, because we wanted to center the moving average 

with equal weight before and after the full hour, but indeed... the observation data are 10-minute 

averages over the past 10 minutes, so we need to include one more record on the ‘right’ side. We made 

this modification in both the text and the analysis. The results are not affected. With respect to the 

second part of the comment: this is actually the third representation, but we didn’t say that explicitly. 

Therefore, we modified the text to “A more permissive evaluation (the third representation) is based on 

....”  

Sect 3: Nice section clearly illustrating the non-trivial character of LLJ detection! 

Response: thanks. 

Figure 3: For clarity reasons, I suggest not to plot every single LLJ event. Suggestions: apply some form 

of colour coding depending on the number of events for a number of falloff bins per height interval, 2) 

distinguishing between the various sites has little added value in this plot. 

Response: We acknowledge the concern about clarity and appreciate the suggestion to plot the data in a 

different format. While a ‘hexbin’ or ‘density’ kind of visualization provides a more quantitative view on 

the height-falloff distribution, it also hides certain features (e.g. it is no longer obvious that the 

underlying data is aggregated over multiple sites). Moreover, since the ‘point density’ in this figure has a 

broad range, the sparser (perhaps most interesting) areas become almost invisible (unless a non-linear 

colormap is used, which is perhaps even more confusing). Finally, from a practical point of view, we can 

no longer ‘jitter’ the data, which will result in a much more ‘banded’ and less clear figure. Considering 

that our main goal is to illustrate the jet detection procedure and not so much the exact number of 

individual low-level jets that are present in the data, we prefer to stick with the original formatting of 

this figure. However, to address the concern about clarity and to facilitate quantitative interpretation, we 

added the number of jets in each panel as well as the number of jets above the falloff threshold in the 

top left corner of each panel. 

p9, l26: ‘calculated the ratio . . . ERA5 data’. Specify if this is done for each location (and each month) 

separately. Line 27: ‘months’: I don’t understand the plural form in relation to ‘this factor’ in the same 

sentence. Do you mean ’Months for which this factor is much smaller/larger than 1 are characterized by 

etc.’? Please clarify. 

Response: We modified “for each month” to “for each month and each location”. And yes, this is exactly 

what we mean, and we agree that this formulation is much clearer, so we adopted it. 

p10, ln 7. ‘fixed’ clarify: the same for all stations, for all months, or both? 

Response: Two modifications. The first is “fixed scaling factor that minimizes their difference” is modified 

to “that minimizes the difference between each pair of monthly observed and simulated low-level jet 

frequencies.” The second is that we added “We do this for each platform individually and also for their 

combined signal.”  

p14, ln13: Mention the low LLJ frequency off the British coast, even for offshore wind directions. Seems 

to behave differently that the continental coast. 

Response: This is partly true, but if we consider figure 1b, the overall jet frequency here is not exactly 



low. It seems it is just less dominated by a certain weather type. Thus, we added that “The British isles 

are different in this respect, since for westerly flows, we do not observe an increased low-level jet rate 

off the eastern coast of the UK.” 

p14, ln 13: Refer to the work of Ranjha et al. 2013, who demonstrate that this increased LLJ occurrence 

along coasts is a global phenomenon. Ranjha et al. 2013: Global distribution and seasonal variability of 

coastal low-level jets derived from ERA-Interim reanalysis, TELLUS A,  

https://www.tandfonline.com/doi/full/10.3402/tellusa.v65i0.20412 

Response: In the revised manuscript we  have extended the literature review in Section 1, which now 

includes the study of Ranjha et al. At this point in the manuscript, we added “In general, we see that 

low-level jets concentrate along the coastlines. This extends and refines the global findings of Ranjha et 

al. (2013) and Lima et al. (2018) for the North Sea domain. 

p16, ln23: ‘1%’ ambiguous in case of frequency of occurrence. I guess, also given Fig 9B, it should be 1 

percent point, meaning a relative difference of ∼10%. Please clarify. 

Response: The reviewer is absolutely right, it should be percent point and we corrected this. 

p18, ln 19: see comment p16, ln23 

Response: corrected. 

 

  



Response to reviewer 2 

Dear reviewer 

First of all, we would like to thank you for the time and effort you invested in reviewing our manuscript. 

We especially appreciated your general comment about the figure style. In a very considerate manner, 

you expressed almost exactly our own thoughts about the use of this style, including the hesitation. As 

suggested, we added a note at the end of the introduction stating that the consistent use of this style is 

in line with one of the main messages of the paper, i.e. to convey a notion of uncertainty.  

Your specific comments helped to improve the manuscript further and we have prepared a revised 

version in which most of your feedback has been implemented. To illustrate what we have done with 

each of your suggestions, we have copied your specific comments below and inserted our response to 

each comment, explaining the modifications that we made to the paper. With that, we trust we have 

adequately addressed your concerns. 

Kind regards, 

Peter Kalverla, James Duncan, Gert-Jan Steeneveld, Bert Holtslag. 

 

Specific comments 

Page 2, lines 5-11: The literature review on previous LLJ studies, in particular LLJ statistics, is a bit short 

and should be extended. 

Response: We already considered this for the initial submission, but at that time we decided to condense 

this paragraph in order to “get to the point”. However, the fact that a reviewer now raises this point 

makes us come back on our initial decision, and therefore we extended the literature review again. 

Page 3, line 32: “Observations are available from seven sites (Figure 1B).” –> Make clear that only 

LiDAR observations are used, not met mast data. 

Response: this is not completely correct as in fact, met mast observations are included, but only at 

MMIJ. We added this information immediately after the first sentence of section 2. 

Page 4, line 1-2: “More information on the quality control and post-processing of the LiDAR data can be 

found in Appendix A.” Add “data availability” to the sentence –> “More information on the data 

availability, quality control and post-processing . . .” 

Response: Another reviewer suggested to include the appendix figure in the main text. So instead of 

referring to the appendix, we now refer to this figure. With that, we think we have also addressed the 

underlying concern of this reviewer, namely that some information about data availability is appropriate 

at this point. 

Page 4, line 20: “At MMIJ (. . .) this representativity bias reaches upwards of 1 ms-1” –> In Fig. 2A the 

lines for MMIJ are only 0.4 m/s apart, not 1 m/s, and the bias for many of the other sites is much larger. 

Please correct or clarify what you mean. 

Response: Indeed, this must have been mixed up. We have modified the text to express that “for some 

stations, this bias reaches up to almost 2 m/s, and for MMIJ, for which the longest record is available, it 

still reaches up to about 0.5 m/s.”  

Page 4, line 30: “An error diagram of the wind speed in ERA5 versus observations” –> Which ERA5 

dataset is meant: The full 10-year dataset or the subsets? Please clarify also in the caption of Fig. 2. 

Response: this can only refer to the subsets, as we can only compute error statistics when observations 

are available. We have added the specification “(subsets)”  in both this sentence and the figure caption.  



Page 4, lines 31-34 and Fig. 2C (error diagram): By definition and as also obvious from the figure RMSE 

and STDE are the same, aren’t they? Your description of the figure and the figure itself suggest that 

there is a difference. 

Response: No, they are not the same, but they are related through (RMSE)2 = (STDE)2 + (BIAS)2. The 

standard deviation of the error distribution is sometimes referred to as a ‘centered’ RMSE. We have 

added this relation to the text, since it is apparently not immediately obvious.  

Page 5, lines 8-9: “We hypothesize (. . .)” –> Is there any literature available that could support your 

hypothesis?  

Response: We agree that this would strengthen our argument, but unfortunately such papers are hard 

to find. While they don’t support our hypothesis explicitly, we included the following references: “the 

difficulty of appropriately assimilating observational data within the (stable) boundary layer is discussed 

in Reen (2010) and Tran (2018)”.  

Page 6, lines 4-18 and Fig. 3: Can you add numbers to Fig. 3 (and/or to the text)? By how much is the 

data reduced from A to C or B to D? It seems as if even below 300 m much more than 50 % of the data 

is removed. 

Response: That’s a good suggestion! We added the total number of jets as well as the number of jets 

exceeding the falloff threshold in the top left corner of each panel. This allowed us to make some 

quantitative statements in the text (e.g. “in going from panel A to C, 93% of the jets above falloff 

threshold vanished”) 

Page 6, line 20: “Simple visual inspection indicates that ERA5 does not perform well.” –> Give more 

details, e.g. similar height distribution but much smaller falloffs. 

Response: We agree that this statement was a bit vague. We based it mostly on the (underestimation of 

the) amount of jets (the height distribution is shown later). To clarify this, the sentence was changed to:  

“Judging from the figure, it seems that ERA5 does not perform well. Much fewer jets are found above 

the falloff threshold in the ERA5 data as compared to the observations. Indeed, a more quantitative 

comparison in the form of a contingency table ...” and then, after “was filtered out” we added a note 

that “even though the falloff is typically much smaller (to the extent that it falls below the falloff 

threshold), the height distribution of the ERA5 jets seems similar to the observations (also see Section 

4)”.  

Page 6, lines 20-22: “A contingency table (. . .) shows a very low critical success index (. . .) and 

probability of detection (. . .)” –> Explain what this means, maybe also show the table. 

Response: We added that “In other words, only 20% of low-level jets are correctly represented by 

ERA5”. We considered showing the table here, but the number of choices involved in creating this table 

that would then also have to be explained and justified in the text would distract too much from the 

main focus of the paper. Note that this table is included in the supplementary information. Thus, we 

added a cross-reference instead. 

Page 6, line 27: “other characteristics appear to be captured quite well” –> Add “e.g. the distribution of 

LLJs with height”.  

Response: See previous comment Page 6, line 20, where we already added statement about similar 

height distribution. With that, we think the current suggestion has also been addressed. 

Footnote 2: “In contrast to model level data (. . .)” Elaborate on this: why do the model level heights 

vary (is clear to me but maybe not to every reader)? How does adding jitter work? 

Response: Quite challenging to explain this in a footnote.. Here’s our best try: “The ERA5 model levels 

are specified in terms of pressure rather than height, and can therefore exhibit small height variations in 

time. The observations, in contrast, are at fixed height, and to improve ....” However, see next 

response. 

Figure 3: Explain why the points are organized in these “bands”. I assume this is due to the discrete 

model levels which vary in height. 



Response: Indeed. So we combined this comment with the previous suggestion and move the extended 

footnote to the figure caption. Hope this makes things clearer. 

Page 9, line 14: “the ERA5 data” –> The full dataset (A) or the subset (B)? 

Response: See next comment/response 

Page 9, line 10-18: Please clarify this procedure a bit more. It is hard to follow. 

Response: Indeed, we struggled a bit to formulate all these steps succinctly. To clarify, we have 

rewritten a few lines here. The new text is: “To distill a more robust signal from the observations, we 

combined the data from all sites before computing the monthly means, and smoothed the resulting 

signal with a moving average of three months. The result is the dashed black line in panel E. We then 

repeated these steps for the ERA5 data (panels A-D), but before plotting these lines, we scaled them 

with the observations, using a fixed scaling factor that is simply the ratio between the mean low-level jet 

rate in the respective representation of ERA5 (panel A-D) and the mean of the observations (panel E).” 

Figure 5A: Is is unclear if the dashed line in Fig. 5A is derived by the procedure described on p.9, l.13-

14 or by the procedure described on p.11, l.5. 

Response: The figure is based on the first procedure, and the confusion is probably caused by our 

reference to figure 5a on p.11, l.5. We have modified the latter, and it now reads “Applying this factor of 

0.44 to the full ERA5 data provides us with a smooth seasonal cycle with reduced amplitude (similar to 

the black dashed line in Figure 5A, but this time based on an optimized scaling factor).” 

Page 10, lines 6-9: Clarify that each pair of monthly observed and simulated LLJ is considered. And 

clarify that all sites are taken together so that you obtain one single scaling factor for the combined 

dataset. 

Response: Two modifications. The first is “fixed scaling factor that minimizes their difference” is modified 

to “that minimizes the difference between each pair of monthly observed and simulated low-level jet 

frequencies.” The second is that we added “We do this for each platform individually and also for their 

combined signal.” We adopted this terminology “pairs of monthly ...” also for the other sections: pairs of 

hourly, etc. 

Page 11, lines 23-24: “It appears that the low-level jets occur throughout the day, but with a small dip 

around 11 UTC.” –> The dip is not so small, the LLJ probability is significantly reduced between 8 and 16 

UTC. Do you have explanations for this diurnal cycle and what does the literature say? 

Response: Well, the dip seems big for the ERA5 data, but it is much less pronounced in the 

observations. Especially if you compare it with a land point (e.g. Cabauw), the diurnal cycle for the 

offshore platform is much less pronounced. In the meantime, we have further analyzed the ERA5 data, 

and it seems that there are at least two mechanisms leading to the low-level jets: one related to the 

nocturnal jets onshore, and another leading to afternoon jets. This is probably related to the diurnal 

heating cycle, and especially the difference between land and sea. A third mechanism could be an 

inertial oscillation triggered by the coastal transition in offshore flows, but this would not have a diurnal 

signature. There is much more to say about these mechanisms and the literature, but we deliberately 

avoided going into too much detail here. To address the comment, we added that “From the 

observations, it appears that ...” and “The diurnal cycle in ERA5 is much more pronounced.” And ”At this 

point, we think it is good to stress that several mechanisms can lead to low-level jets in coastal areas 

(see Section1 and Section 9), and the diurnal signature should not be confused with that of the typical 

onshore nocturnal jet that is often found over land.” 

Page 11, line 26 and Fig. 7A-C: “but again, the magnitude differs” –> In Fig. 7A-C the dashed lines have 

the same magnitude. Please clarify. 

Response: Modified to “but again, we needed to scale the ERA5 signals because they differed in 

magnitude.” 

Page 13, lines 2-9: Please describe which area you used to determine the LWT – is it the area shown in 

Fig. 8? So on how many grid points is the LWT derivation based? I assume you are using the ERA5 sea-



level pressure field? How do you obtain the streamlines: Are you averaging all situations belonging to 

one LWT? 

Response: We added “To derive these weather types we used the ERA5 mean sea level pressure on a 5-

degree grid of 16 points as laid out in the appendix of Jones et al., but centered over the area of 

interest.” And indeed, the streamlines represent averages, we added this to the figure caption. 

Figure 8: “Amplitude is off by a factor of 2 (best guess)?” –> What does this mean? It becomes clear 

from the text, but I would recommend to omit this information in the figure caption. 

Response: We understand that this information is confusing; on the other hand, we think it is necessary 

to warn readers who only scroll through the figures that this amplitude should not be taken for granted. 

Therefore, instead of omitting this information, we modified the warning to “As explained in the text, the 

values shown here overestimate available observations and should be interpreted with caution.” 

Page 14, lines 23-30: Can you give references for this type of procedure? 

Response: We included the following references. Carta et al. (referenced in section 2) gives a nice 

overview of MCP. MOS forecasts are commonplace in meteorological textbooks, so we referred to Wilks, 

2006 (chapter 6.5.2), and additionally to two early papers (Glahn, 1972 and Carter, 1989).  

Page 16, line 15: “Notice that this seasonal cycle is very erratic” –> That is not surprising as it is only 

based on two years of observations. 

Response: True, but we still want to point it out. To clarify this, we added “Note that this seasonal cycle 

is very erratic. This can be expected for such a short period, but the question is whether the additional 

information contained in the predictor variables enables us to predict the other two years despite the 

unrepresentative training data. Thus, in the next step, we used our trained model ...”  

Page 16, lines 18-19: “we reconstruct the predicted seasonal cycle by grouping and aggregating the 

predicted probabilities for each month” –> Please give more details. 

Response: We agree that this is not very clear. Modified to “rather than predicting individual jet events, 

we used the predicted probabilities directly and computed the monthly mean predicted probability.” 

Page 17, lines 1-2: “This is our best estimate of the low-level jet seasonal cycle (. . .)” –> Please link to 

the results in section 6 (which give a similar results) 

Response: We added “Compared to the results presented in section 6, we can conclude that we have 

adjusted the erratic nature of the short-term observations (Figure 5E), resulting in a seasonal cycle 

similar to that shown in Figure 5A, but with reduced amplitude. Compared to this final result, the crude 

amplitude adjustment with which we started in Section 6 now appears far too strong.”  

Section 9: Very nice summary of the paper! 

Response: thanks. We hope that the discussion of mechanisms here also helps to address the reviewers 

concern about the (literature on) characteristics of the diurnal cycle. 

Figure A1A: What does the colour coding mean? 

Response: Added a short note “the color coding highlights episodes of high (yellow/green) and low 

(blue) wind speed.”  
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Abstract. Ten years of ERA5 reanalysis data are combined with met-mast and LiDAR observations from ten offshore platforms

to investigate low-level jet characteristics over the Dutch North Sea. The objective of this study is to combine the best of two

worlds: (1) ERA5 data with large spatiotemporal extent but inherent accuracy limitations due to a relatively coarse grid and

an incomplete representation of physical processes, and (2) observations that provide more reliable estimates of the measured

quantity, but are limited in both space and time. We demonstrate the effect of time and range limitations on the reconstructed5

wind climate, with special attention paid to the impact on low-level jets.

For both measurement and model data, the representation of wind speed is biased. The limited temporal extent of observa-

tions leads to a wind speed bias on the order of ±1 m s−1
:
as

:::::::::
compared

::
to

:::
the

::::::::
long-term

:::::
mean. In part due to data-assimilation

strategies that cause abrupt discontinuities in the diurnal cycle, ERA5 also exhibits a wind speed bias of approximately 0.5 m

s−1. Representation of low-level jets in ERA5 is poor in terms of a one-to-one correspondence, and the jets appear vertically10

displaced (‘smeared out’). However, climatological characteristics such as the shape of the seasonal cycle and the affinity with

certain circulation patterns are represented quite well, albeit with different magnitudes. We therefore experiment with various

methods to adjust modelled low-level jet rate to the observations or, vice versa, to correct for the erratic nature of the short

observation periods using long-term ERA5 information. While quantitative uncertainty is still quite large, the presented results

provide valuable insight into North Sea low-level jet characteristics. These jets occur predominantly for circulation types with15

an easterly component, with a clear peak in spring, and concentrate along the coasts at heights between 50-200 m. Further, it is

demonstrated that these characteristics can be used as predictors to infer the observed low-level jet rate from ERA5 data with

reasonable accuracy.

Copyright statement. TEXT

1 Introduction20

On average, wind speed increases with height above the surface and the rate of increase can be described using simple for-

mulas (e.g. power-law or logarithmic profile, see Sedefian, 1980). Due to their simplicity and ease of use, these wind profile

1



Figure 1. A. Example low-level jet profile as compared to the ‘standard’ logarithmic wind profile. B. Preliminary spatial distribution of

annual low-level jet occurrence based on 10 years of ERA5 data up to 500 m. Overlaid are the location of the 10 measurement platforms

used in this analysis: Met Mast IJmuiden (MMIJ), Hollandse Kust Noord A (HKNA) and B (HKNB), Hollandse Kust Zuid A (HKZA) and

B (HKZB), Lichteiland Goeree (LEG), Borssele Wind Farm Lots 1 (BWF1) and 2 (BWF2), Europlatform (EPL) and K13. Color coding is

consistent across all figures.

parameterizations have been widely adopted in the wind energy community. However, in some situations these formulas cannot

adequately capture the observed wind profile. During these situations, application of a simplified wind profile parameterization

can introduce error or ‘uncertainty’ into the reconstructed wind climatology. This is clearly the case for low-level jets, for

which wind speed reaches a maximum not far (i.e. roughly less than 500 m) from the surface (Figure 1A). Wind shear and

turbulence intensity associated with low-level jets also differ substantially from that assumed under ‘standard’ conditions.5

Low-level jets modify wind power performance and loading by impacting wake recovery rates and vertical profiles of wind

speed, direction and turbulence (Wharton and Lundquist, 2012; Bhaganagar and Debnath, 2014; Park et al., 2014; Gutierrez

et al., 2017). Thus, for a complete assessment of loads and power, it is important to have a broad understanding of the site-

specific low-level jet characteristics: how often do they occur, under which circumstances, at what height and with what

strength, and what mechanisms are responsible for their formation? While some studies report
:
A

::::
large

:::::
body

::
of

::::::::
literature

:::::
exists10

on low-level jetsin coastal areas (e.g. Nunalee and Basu, 2014, especially section 2.3 and references therein), a ,
:::
the

::::::::
majority

:::::::
focusing

:::
on

:::
the

:::::::
onshore

::::::::::::
phenomenon.

:::
We

:::::
refer

::
to

:::::::::::::::
Rife et al. (2010)

::
for

::
a
::::::
global

::::::::::
climatology

::::
and

::
to

::::::::::::::::::
Shapiro et al. (2016)

::
for

::
a
::::::::
synthesis

::
of

::::
the

:::::::::
underlying

:::::::::::
mechanisms.

:::
In

::::::
coastal

:::::
areas,

:::
the

::::::::::
occurrence

::
of

::::::::
low-level

::::
jets

:::
has

:::::
been

::::::::
attributed

:::
to

:::
the

::::::
thermal

:::::::
contrast

:::
and

::::::::::
differences

::
in

::::::
surface

::::::::
roughness

:::::::
between

::::
land

::::
and

:::
sea

::::::::::::::::::::::::::::::::::::::::
(Nunalee and Basu, 2014; Mahrt et al., 2014, e.g.)

:
.
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::::::::::::::::::::::
Dörenkämper et al. (2015)

:::::
linked

:::
the

:::::::::
occurrence

::
of

::::::
coastal

:::
jets

::
to

::::
their

:::::::
onshore

::::::::::
counterpart.

::
In

::::::
certain

:::::
areas,

::::
other

:::::::::::
mechanisms

:::
like

:::::::::
orographic

:::::::
forcing

::::
may

::::
play

:::
an

:::::::::
important

:::
role

:::::::::::::::::::::::::::
(Moore and Renfrew, 2005, e.g.)

:
.
::::::::::
Concerning

:::
the

::::::
spatial

::::
and

::::::::
temporal

::::::::
variability

:::
of

:::
the

::::::
coastal

::::
jets

:::
we

::::
refer

:::
to,

:::::::::::::::::
Ranjha et al. (2013)

:::
and

:::::::::::::::
Lima et al. (2018)

:
,
::::
who

::::::::
presented

::::::
global

:::::
maps

:::::
based

:::
on

::::::::
reanalysis

::::
data.

:::::
Their

::::::::
analyses

::::::::
highlight

:
a
:::::::
number

::
of

:::::::::
large-scale

::::::
global

:::::::::
‘hotspots’

::::
that,

::
in

::::::
effect,

::::::::::
overshadow

:::::
more

:::::::
regional

::::::::::
phenomena.

::::::::::::
Consequently,

:
a systematic long-term characterization

::
of

::::::
coastal

:::
jets

:
is lacking for the North Sea.5

In a previous publication (Kalverla et al., 2017), we reported on low-level jet characteristics at a prospective wind power

site 85 km off the Dutch coast (MMIJ, aka “IJmuiden ver”), using 4-years of mast and LiDAR observations. The climatology

consisted of: the diurnal and seasonal variability in low-level jet occurrence, jet speed, jet height, jet direction, et cetera.

Inherently, this low-level jet climatology is only valid for the single observation site examined. In order to generalize the

results from this study, and to improve our overall understanding of low-level jets across the North Sea, we now present a10

spatial climatology of low-level jets based on ERA5 (Section 2; Copernicus Climate Change Service (C3S), 2017) reanalysis

data and an extended set of observations.

Preliminary results based on 10 years of data in the lower 500 m of the atmosphere (Figure 1B) shows that ERA5 provides

interesting information about the spatial distribution of low-level jets. However, without observational support this information

is of little value. Therefore, we incorporate additional LiDAR observations to provide this support, but knowledge gained15

of the Dutch offshore wind climate from these measurements is inhibited by the relatively short duration of measurement

collection (i.e. typically ∼ 1 year) and the limited vertical measurement range (i.e. typically less than 300 m; see Appendix A

for details on measurement time and range). Consequently, the aim of this study appears twofold: (1) observations will be used

to validate the ERA5 climatology of wind and low-level jets and (2) ERA5 will be leveraged to infer long-term low-level jet

characteristics based on a limited set of observations. Absolute agreement in low-level jet characteristics between the two data20

sources would enable perfect execution of these objectives; however, that is unlikely. Therefore, we formulated the following

research question
::
to serve/blend both perspectives:

How can observations and reanalysis data be combined to obtain a spatial climatology of low-level jets that is both rich (in

its spatial and temporal extent) and reliable (in terms of its correspondence with available in-situ observations)?

The paper is structured as follows. A brief description of the data and an elementary evaluation of wind speed itself is25

provided to illustrate how both datasets are biased. Thereafter, low-level jet representation within both datasets is discussed,

starting with jet detection and morphology (e.g. jet height). A common thread throughout the paper is how these characteristics

are impacted by time and (vertical measurement) range limitations. Using the seasonal cycle of low-level jets as an illustrative

example, we experiment with various methods to post-process the ERA5 data and extend the observations based on identified

correspondence and/or differences. This exercise is repeated for the diurnal cycle, atmospheric stability and various circulation30

patterns. Finally, all of these characteristics are combined to demonstrate that the ‘true’ low-level jet rate can be reconstructed

with reasonable accuracy if sufficient observations are available. The paper ends with a comprehensive discussion of the

implications and future research directions.

The focus of this paper is to obtain a reliable spatial representation of the low-level jets. This provides clues as to the physical

mechanisms that govern them, but a detailed treatment of these processes is outside the scope of the current work.35
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Figure 2.
::
A.

:::::::::
Time-height

::::
plots

::
of

::::
wind

:::::
speed

::
for

::::
each

:::::::
platform,

::::::::
illustrating

:::
the

::::
data

:::::::
collection

::::::
periods,

:::::::
temporal

::::::
overlap

::::::
between

::::::::
platforms

:::
and

:::::::
episodes

::
of

::::::
missing

:::::
data.

::
B.

::::::::::
Site-specific

::::::::::
measurement

:::::::
heights.

::::::::
Reference

:::::::
elevation

:::
for

:::
the

::::::
ERA5

:::
data

:::::
have

::::
been

:::::::
included

:::
for

:::::::::
comparison.

:::
The

::::
color

::::::
coding

:
in
::
A
::::::::
highlights

::::::
episodes

::
of
::::
high

:::::::::::
(yellow/green)

:::
and

:::
low

:::::
(blue)

::::
wind

:::::
speed.

To facilitate transparency and reproducibility, a series of Jupyter notebooks is available as supplementary material to this

paper. Consequently, some technical details are left out of the main text, that is intended as a pleasant and coherent treatise of

the major
::::
most

::::::::
important

:
results.

::
In

::::
line

::::
with

:::
one

::
of

:::
the

::::
core

:::::::::
messages

::
of

:::
the

:::::
paper,

::::::
figures

:::::
have

::::
been

:::::::
rendered

:::
in

:
a
:::::::
sketchy

::::
style

::
to

::::::
convey

:::
that

:::
the

::::::
results

:::
are

::
to

:::
be

::::
seen

::::
with

::::
some

::::::::::
uncertainty.

:

2 A brief description of both datasets and their shortcomings5

Observations are available from seven sites (Figure 1B). Three of these sites had two LiDARs operating simultaneously
:::
and

:::
one

:::
site

:::::::
(MMIJ)

::::
also

::::::::
featured

:
a
:::::

90m
:::
met

:::::
mast. The temporal span of measurements ranges from six months to over four

years
::
2. Some of the LiDARs were placed in the vicinity of existing wind farms, and are appropriately filtered to remove any

potential wind farm wake effects. More information on quality control and post-processing of the LiDAR data can be found

in Appendix A. The observations are available as 10-minute averages, but to facilitate comparison with ERA5, the data were10

converted to hourly averages.

ERA5 (Copernicus Climate Change Service (C3S), 2017) is the latest reanalysis dataset from the European Centre for

Medium-range Weather Forecasts (ECMWF). Re(trospective) analysis is the procedure of fitting a state-of-the-art weather

model to historical measurements (e.g. satellites, weather stations, etc.) to obtain a long-term dataset that is both spatially
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and physically consistent and depicts the state of the atmosphere as it evolved through time. ERA5 is the successor of ERA-

interim, and similarly ERA5 is expected to be widely used for wind resource assessment studies (Olauson, 2018). Compared to

its predecessor, ERA5 has a finer horizontal grid of about 30 km and also enhanced vertical resolution
:::
(for

:::
this

:::::
study,

::::
data

::::
was

:::::::
retrieved

:::
on

:
a
::::
0.3◦

::
by

::::
0.3◦

:::::::::::::::
latitude/longitude

::::
grid). ERA5 is based on a newer model version and moreover, provides output at

hourly intervals, enabling a comprehensive analysis of sporadic features such as low-level jets. ERA5 data from the North Sea5

domain between 2008 and (end of) 2017 in the lowest 500 m demonstrates the ability of the model to resolve low-level jets

(Figure 1B).

Before analyzing the morphology of these jets, we illustrate the limitations of both datasets concerning the representation

of wind speed. Figure 3A shows averaged wind profiles for the grid points closest to each of the measurement locations
:::
(we

::::::
verified

::::
that

:::
this

:::::::::
approach

::
is

::::::::::
comparable

::
to

::::::
spatial

:::::::::::
interpolation

:::::::
between

::::::::
multiple

::::::::::
neighboring

::::
grid

::::::
points). The full lines10

represent all 10 years of ERA5 data1, whereas the dashed lines indicate averaged wind profiles derived from data subsets,

which only incorporate ERA5 data when observations are available. The full lines are all quite close together, while the data

subsets exhibit a much larger spread. Variability between the full lines can be related to physical differences between sites

(e.g. distance to coast). Dissimilarity between the ERA5 10-year datasets and the ERA5 data subsets indicates that, due to the

limited time extent of the observations, the data subsets are not representative of the site climatology. At
:::
For

:::::
some

::::
sites,

::::
this15

::::::::::::
representativity

::::
bias

::::::
reaches

::
up

::
to

::::::
almost

:
2
::
m
::::
s−1,

::::
and

::::
even

:::
for MMIJ, wherein measurements occurred for the longest period,

this representativity bias reaches upwards of 1
::
it

:::
still

:::::::
amounts

::
to
:::::
∼0.5 m s−1. The primary reason for this bias

::
at

:::::
MMIJ

:
is that

the MMIJ data contains
:::
data

::::::
contain

:
more winter than summer months, and the wind is generally stronger in winter. Because

the MMIJ data span more than 4 years, data
::::
some

::
of

::
it can be discarded in order to ensure an equal representation of the seasons

within the data. However, at the other stations, the temporal period of observation is limited. Therefore, implementing the same20

data modification techniques
:
,
:::
and

:::::
using

:
a
::::::
similar

:::::::::
seasonality

:::::
filter would result in almost half of the data being removed, which

is not desirable. Worse still, HKN observations do not encompass a complete year, and even if they did, inter-annual variability

can be substantial. Available observations therefore cannot be used to derive the long-term wind climatology directly. However,

by correlating a short-term dataset with long-term observations at a nearby site, the long-term wind characteristics at the target

site can be inferred with reasonable accuracy. This procedure is known as measure-correlate-predict (MCP, Carta et al., 2013).25

While not discussed here, application of similar techniques to the low-level jet phenomena will be examined later in this

document.

ERA5 also demonstrates bias in its representation of site winds. An error diagram of the wind speed in ERA5
:::::::
(subsets)

versus observations is provided in Figure 3C. In this diagram (co-opted from ?)
::::::::::::::::::::::::::::::
(co-opted from Kalverla et al., 2019), the mean

error (bias
:::::
BIAS) is plotted on the x-axis, the standard deviation of the error

:::::::::
distribution

:::::::
(STDE) is plotted on the y-axis ,30

andthe
:::
and,

:::
by

:::::
virtue

:::
of

:::
the

:::::::
relation

:::::::::::::::::::::::
BIAS2 +STDE2 = RMSE2,

:::
the

:
distance to the origin represents the root mean square

error (RMSE). Wind speed data from all observation levels were aggregated in this figure to evaluate the overall performance

of ERA5 at each measurement site. The sites with the largest
::
For

::::::::
example,

:::
the

:::::
HKZ

:::::
lidars

::::
show

::
a
:::::
strong

:
bias (i.e. systematic

error)have the smallest
:
,
:::
but

::::
have

:
a
::::::::

relatively
:::::

small
:
standard deviation (i.e. random error). ERA5 site-specific RMSE values,

1Some lines are exactly on top of each other because they are in the same grid point. Both are plotted, though, to preserve color coding
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Figure 3. A. Averaged wind speed profiles for each measurement location, based on 10 years of ERA5 data (full lines) and data subsets

(dashed lines). B. Mean (full lines) and standard deviation (dashed lines) of the error between ERA5
:::::::
(subsets) and the observations, for each

measurement site, as function of the time of the day. C. Error diagram of wind speed in ERA5
::::::
(subsets)

:
versus observations for all LiDAR

datasets. The color
::::
Color

:
coding is the same throughout

:
in

:
all subplots, so C can serve as legend.

ranging from 1.25 to 1.5 m s−1, can be caused by multiple model aspects such as the limited grid resolution and the incomplete

representation of physical processes.
::::::::::
Uncertainties

:::
in

:::
the

:::::::::::
observations

:::
can

::::
also

:::::::::
contribute

::
to

::::::
overall

:::::
error

::::::::
statistics.

::::::
Based

::
on

:::
the

:::::::::::
manufacturer

::::::::::
information

::::
and

:::::::
previous

:::::::::::::::::::::::::::::::
validation(Poveda and Wouters, 2015)

:
,
:::
the

::::::::::
uncertainty

::
in

:::
the

::::::::::
observations

::::
can

::::
only

::::::
account

:::
for

:::::
about

:::
2%

:::
of

:::
the

:::::
errors.

:::::::
Finally,

:::::::::::
displacement

::
in

:::::
space

::
or

:::::
time,

::
as

::::
well

::
as

::::::::::::
discrepancies

:::::::
between

::::::::::
point-based

:::::::::::
measurements

::::
and

::::::::
modelled

:::::::::::::
control-volumes

::::
can

::::::::
contribute

::
to

::::::
errors,

:::::::
although

:::
we

:::
did

::::
our

:::
best

::
to

::::::::
minimize

:::::
these

::::::
effects,

::::
e.g.5

::
by

:::::
using

:::::::::
appropriate

:::::::::::::
time-averaging

::
of

:::
the

:::::::::::
observations

:::
(see

:::::::::::::
Supplementary

::::::::
material).

:

The observed biases exhibit a strong diurnal variation. During the night (Figure 3B), the bias is roughly between 0 and -0.5

m s−1, depending on the location. However, at 10 UTC, there is a sharp decrease in the bias , downwards of -0.8
::
of

::
∼

::::
-0.5 m

s−1 for some
::::
most

:
stations. The reason for this discontinuity can be found in the IFS (Integrated Forecasting System) docu-

mentation (ECMWF, 2016). ERA5 is produced with a 4D-VAR data-assimilation algorithm that uses two 12-hourly windows10

running between 9-21 and 21-9 UTC. This means that all hourly fields up to the 9 UTC analysis are based on the nighttime

observations, while data from 10 UTC onwards are based on the daytime observations. We hypothesize that the impact of the

data-assimilation is magnified during the nighttime, because nighttime boundary layers are generally shallower
:
;
:::
the

::::::::
difficulty

::
of

:::::::::::
appropriately

::::::::::
assimilating

::::::::::::
observational

::::
data

:::::
within

:::
the

:::::::
(stable)

::::::::
boundary

:::::
layer

::
is

::::::::
discussed

::
in
::::::::::::::::::::::

Reen and Stauffer (2010)

:::
and

::::::::::::::
Tran et al. (2018). Discontinuity in the diurnal cycle is present at each model level up to 300 m, irrespective of the season15

and platform; however, it seems to be slightly stronger for those stations closer to the coast.
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3 Jet detection: a precarious procedure

Low-level jets are identified by seeking local maxima in the wind profiles. Having identified a local maximum, the jet strength,

height and falloff are analysed. Falloff, as indicated in Figure 1A, is defined as the difference between the maximum and the

subsequent (moving upwards) local minimum or, if no local minimum is present, the top of the wind profile. Most results in this

study are based on an absolute falloff threshold of 2 m s−1. Figure 4 demonstrates how this threshold influences the low-level5

jet detection rate, and further how the detection of low-level jets is influenced by both time and (vertical measurement) range

limitations. The figure consists of five scatter plots, each depicting the falloff versus the jet height for each wind profile that

was detected with a local maximum. The differences between the panels are the underlying data analysed - i.e. observatings

::::::::::
observations

:
and varying subsets of ERA5 data.

The first panel (Figure 4A) is based on 10 years of ERA5 data and the model levels contained within the lower 500 m of the10

atmosphere. The two dashed lines represent limiting factors: (1) the falloff threshold of 2 m s−1 (horizontal dashed line) and

(2) limitations due to observation height (vertical dashed line). The model data extend up to 500 m, but the observations reach

only up to about 300 m (depending on the platform). All platforms are overlaid (shorter datasets on top). Only points above the

horizontal dashed line are included in the low-level jet climatology that is presented in the next sections.
:::
The

::::::::
numbers

::
in

:::
the

:::
top

:::
left

:::::
corner

::
of
:::::
each

::::
panel

::::
give

:::
the

:::::::
number

::
of

:::
jets

::::::
above

:::
the

:::::
falloff

::::::::
threshold

:::
and

:::
the

::::
total

:::::::
number

::
of

:::
jets

:::::::
plotted.15

Figure 4B-D are based on subsets of the ERA5 dataset. In panel B, ERA5 data is incorporated only if observations are

available; as expected, this substantially limits the total number of low-level jets
::::
(85%

:::::::::
reduction). In panel C, we have retained

all 10 years of data, but only at observation heights 2 (i.e. data above 300 m were discarded and the remaining data were

vertically interpolated – using a cubic spline – between the remaining model levels to obtain the ERA5 wind speeds at the

exact observation height). This effectively filters out all
::::
The

:::::
effect

::
of

:::
this

::::
step

::
is
::::
that

::::
93%

::
of

:::
the

:
meaningful jet events from20

the ERA5 data,
:::
(i.e.

:::::
those

::::::::
exceeding

:::
the

::::::
falloff

:::::::::
threshold)

::::::
vanish,

:::
and

:
not just those above 300 m. In order to classify a wind

profiles
:::::
profile

:
as a jet, falloff above must be properly resolved. This explains why a jet at 100 m can also vanish from the

climatology if data from above 300 m are removed. The pronounced impact of this vertical range limitation on the ERA5 data

raises the question whether the observed low-level jet climatology would be much different if we could observe higher-altitude

winds. Increased measurement range might reveal not only low-level jets above hub-height, but also new low-level jets at25

hub-height that are currently not identified as such.

Height and time limitations are combined in panel D in order to develop an ERA5 dataset that is fair to compare with

observations (Panel E). Simple visual inspection indicates
::::::
Judging

:::::
from

::
the

::::::
figure,

::
it

:::::
seems

:
that ERA5 does not perform well.

A contingency table
:::::
Much

:::::
fewer

:::
jets

:::
are

:::::
found

::::::
above

:::
the

:::::
falloff

::::::::
threshold

::
in
:::
the

::::::
ERA5

::::
data

::
as

::::::::
compared

:::
to

:::
the

:::::::::::
observations.

::::::
Indeed,

::
a

::::
more

:::::::::::
quantitative

::::::::::
comparison

::
in

:::
the

:::::
form

::
of

::
a
::::::::::
contingency

::::::
table, based on one-to-one (1:1) jet correspondence30

between the two datasets, shows a very low critical success index (∼0.2) and probability of detection (∼0.2),
:::
see

:::::::::::::
Supplementary

::::::::
material).

::
In

::::
other

::::::
words,

::::
only

::::
20%

::
of

::::::::
low-level

:::
jets

:::
are

::::::::
correctly

::::::::::
represented

::
by

:::::
ERA5. Does that imply that ERA5 is useless?

2In contrast to the model level data, which display small variations in model level height, the observation level data are at fixed heights. To improve

readability of the graph, we added jitter (small random deviations) to these heights.
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Figure 4. Scatter plots of falloff versus jet height for various representations of model data, and observations.
::
In

::
A

:::
and

::
B,

:::
the

::
jet

:::::
height

::
is

::::::::
represented

:::
by

::::::
discrete

::::
model

:::::
levels.

:::::
Since

::::
these

:::
are

::::::
specified

::
in

:::::
terms

:
of
:::::::
pressure

::::
rather

::::
than

:::::
height,

::::
they

:::
can

:::::
exhibit

::::
small

:::::
height

::::::::
variations

:
in
:::::

time.
::
In

::
C,

::
D

:::
and

::
E,
:::

jet
:::::
height

::
is

:::::::::
represented

::
by

::::
fixed

::::::::::
measurement

:::::::
heights,

:::
and

::
to

:::::::
improve

::::::::
readability

::
of

:::
the

:::::
graph

::
we

:::::
added

:::::
small

:::::
random

::::::::::
perturbations

::
to
::::
these

:::::::
heights. See text for

:::::
further explanation

:
of
:::
the

:::::
figure.

No! Figure 4A indicates that potentially relevant information was filtered out.
::::
Even

:::::::
though

:::
the

::::::
falloff

::
is

::::::::
typically

:::::
much

::::::
smaller

:::
(to

:::
the

:::::
extent

::::
that

:
it
::::
falls

::::::
below

:::
the

:::::
falloff

:::::::::
threshold),

:::
the

::::::
height

:::::::::
distribution

:::
of

:::
the ERA5 jets might have been

:::::
seems

::::::
similar

::
to

::
the

:::::::::::
observations

::::
(also

:::
see

:::::::
Section

::
4).

:::::::
Perhaps

:::
the

::::::
ERA5

:::
jets

::::::
appear vertically displaced or potentially just not strong

enough? This would not come as a surprise: weather models have long been known to generate excessive vertical mixing under

stable conditions, effectively ‘smearing out’ low-level jets (Holtslag et al., 2013). If the height thresholds for the ERA5 data is5

modified to 500 m, the 1:1 correspondence is still quite poor (critical success index ∼0.2; probability of detection ∼0.5), but

despite an inability to accurately denote total number of low-level jets, other characteristics appear to be captured quite well –

e.g. the average monthly low-level jet rate. Therefore, the remainder of this paper is devoted to the analysis of such low-level

jet characteristics and methods to consolidate ERA5 and measurement data.
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4 Vertical range affects perceived jet morphology

Jet height and jet strength are of paramount importance for wind energy applications. Small variations in height can result in

either symmetric or asymmetric loads on the turbine, and typical strengths in the rated part of the power curve are probably

less critical than typical strengths in the cubic part. It turns out, though, that the concepts of ‘typical’ height and strength are

not self-evident.5

Figure 5 displays probability distributions of jet strengths (panel A) and jet heights (panel B) for various representations of

the ERA5 data and observations2. It shows that the jet height and strength distributions are sensitive to the range limitation.

The median observed jet strength is about 8 m s−1. This is quite well reflected in the ERA5 data if we consider all levels up to

500 m, but after imposing the range limitation, the jet strength is underestimated by about 3 m s−1. The observed median jet

height is around 80 m. The ERA5 jet height distribution is broader with greater jet heights for the data up to 500 m, while it is10

narrower with lower jet heights for the range-limited data. To obtain a robust result, this figure is based on the aggregated data

from all platforms. Separate figures for each individual platform show similar characteristics, although the jets near the coast

seem to be somewhat closer to the surface than jets further offshore (not shown).

Three different representations of the observations are included in Figure 5. The first one is based on the 10-minute data. The

second is based solely on the data of each full hour; in other words, we discarded 5/6th of the data. With this strategy, (small)15

discrepancies in low-level jet timing can have a disproportionate impact on the results. A more permissive evaluation
:::
(the

:::::
third

::::::::::::
representation)

:
is based on hourly averages obtained with a sliding window, where each full hour is an average including the

10-minute data from the preceding
::
two

:
and the following two

::::
three

:
time stamps. This last version of the observations is used

throughout the remainder of the paper. This figure demonstrates that the differences between various resampling methods in

terms of jet height and jet strength are small.20

5 Datasets agree: most jets in spring and summer

Figure 6 displays the seasonal cycle of low-level jets and, in a similar fashion as Figure 4, how this cycle is subject to time

and range limitations. Over 10 years’ time and 500 m (panel A), the seasonal cycle is smooth and differences between the

individual platforms are small. Ideally, we would compare this to 10 years of observations up to 500 m, but since those data

are not available we take spatial and temporal subsets of the ERA5 data instead. By investigating how this affects the seasonal25

cycle, we identify methods to extend upon the limited observations. Over the shorter measurement periods (panel B) the

seasonal cycle appears much more erratic than the 10-year climatology. Some years are not very representative, and some

datasets do not even cover a complete cycle. As we will see later on, a favourable weather pattern for low-level jets is a weak

large-scale forcing typically associated with high-pressure systems. Such ‘blocked’ weather patterns can last for several weeks,

and their occurrence can thus cause large differences in monthly low-level jet rates. In other words, the seasonal cycle based30

on only one or a few years is very sensitive to inter-annual variability. Upon vertical subsetting/interpolation to measurement

2Obviously, it is physically impossible to have a jet strength or height below zero. This is an artifact of the visualization - it has a smoothing effect. We

experimented with other visualizations (smaller bandwidth, or histograms), but found that this visualization best represented the underlying data.
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Figure 5. Kernel density estimates of the probability distribution of jet strength (A) and jet height (B) for various representations of the

ERA5 data (full lines) and the observations (dashed lines), aggregated over all stations.

heights (panel C) the seasonal cycle is still visible, albeit with a much smaller amplitude. The combined effect (D) leads to a

very uninformative climatology, because the monthly low-level jet rates are all (close to) zero except for some unrepresentative

spikes. Based on panel B, we expect that the observations are similarly affected by the limited time window of the observations.

Indeed, panel E shows an erratic seasonal cycle with an amplitude somewhere between panels B and D.

Thus, both datasets agree on the presence of an annual cycle, but the amplitude differs between (various representations5

of) ERA5 and the observations. Moreover, the observation periods are too short to obtain a reliable climatology. To distill a

more robust signal from the observations, we combined all platform data , computed aggregated
::
the

::::
data

::::
from

:::
all

::::
sites

::::::
before

:::::::::
computing

:::
the monthly means, and then used

::::::::
smoothed

:::
the

::::::::
resulting

:::::
signal

::::
with

:
a moving average of 3 monthsto obtain a

smooth signal (
::::
three

:::::::
months.

::::
The

:::::
result

::
is the dashed black line if panel E), which mostly differs from A in amplitude

::
in

:::::
panel

:
E. We then repeated this exercise for all other panels and adjusted the amplitudes by scaling

::::
these

::::
steps

:::
for

:
the resulting signal10

with the
:::::
ERA5

::::
data

::::::
(panels

::::::
A-D),

:::
but

:::::
before

:::::::
plotting

:::::
these

:::::
lines,

::
we

::::::
scaled

::::
them

:::::
with

:::
the

:::::::::::
observations,

:::::
using

:
a
:::::
fixed

::::::
scaling

:::::
factor

:::
that

::
is

::::::
simply

:::
the

:
ratio between the mean of the

::::::::
low-level

::
jet

::::
rate

::
in

:::
the

:::::::::
respective

:::::::::::
representation

:::
of ERA5 data

:::::
(panel

::::
A-D)

:
and the mean of the observed cycle

:::::::::::
observations

:::::
(panel

:::
E). The result is promising: the seasonal cycle is similar for all

datasets, peaking at about 5% in June. The crude manipulation of the data leads to a large error margin, though, and we wonder

whether we can find a more sophisticated approach to achieve a similar result. Furthermore, because valuable information is15

lost if we discard the ERA5 data above observation heights, we will continue to work with the ERA5 data up to 500 m in the

remainder of this paper.

10



Figure 6. Seasonal cycle for various representations of model data, and observations. Shading is the sensitivity to +/- 0.5 m s−1 for the LLJ

falloff threshold. The dashed lines represents an aggregated seasonal cycle of all platforms, smoothed with a rolling average of 3 months (2

at the edges) and scaled with the ratio of the mean jet frequency in the respective representations of ERA5 and the mean jet frequency in the

observations.

6 Simple scalings for the seasonal cycle

In the previous section we learned that ten years of ERA5 data lead to a smooth seasonal cycle, but shorter observation periods

lead to an erratic seasonal cycle because the months in the subset are not representative of the long-term monthly means. We

also saw that upon aggregation and smoothing, both ERA5 and observations show similar seasonal cycles that differ mostly in

their amplitudes. In this section we seek to combine the information from both data sources to reconstruct the ‘true’ seasonal5

cycle of low-level jets over the North Sea. We considered two different approaches.

The first method applies a correction to the observations, based on information about their representativity. For each month

:::
and

::::
each

::::::::
platform, we calculated the ratio between the low-level jet occurrence in the full- and subsets of the ERA5 data. If

::::::
Months

:::
for

:::::
which

:
this factor is much smaller (or larger) than 1 , the months in the subset are characterized by above(below)-

average low-level jet occurrence. We then applied these ratios as correction factors to the observed monthly means to adjust the10

outliers and obtain a more representative seasonal cycle. However, this method did not lead to satisfactory results, because the

11



correction factors were not robust: if only 1 year of data was available, and a month was very unrepresentative, the correction

factor would become very high/low and the adjustment would overcompensate. Consequently, the reconstructed long-term

seasonal cycles still appeared erratic and were deemed unreliable (this result is therefore not shown here, but is available in SI

4/6). For MMIJ the measurement period spanned more than 4 years and consequently, the monthly low-level jet occurrence

already started converging to the climatological seasonal cycle. For this platform, the correction factors were closer to 1 and5

we obtained a reasonably smooth seasonal cycle. This emphasizes that for this correction method, at least several years of

measurement data are required obtain a reliable estimates
:::::::
estimate

:
of the long-term low-level jet climatology.

Whereas the first method was aimed at correcting the observations (using ERA5 as a ‘vehicle’ to assess their representativ-

ity), with the second method we aim to correct the long-term ERA5 data based on prior evaluation of its performance during

the short-term period for which we have observations. This can be readily understood from Figure 6. We compare panels B10

and E, and seek a fixed scaling factor that minimizes their difference
::
the

:::::::::
difference

:::::::
between

::::
each

:::
pair

:::
of

:::::::
monthly

:::::::
observed

::::
and

::::::::
simulation

::::
LLJ

::::::::::
frequencies. Denoting the monthly mean low-level jet frequency in ERA5 and collocated observations with x

and y, respectively, an optimized scaling factor can be found by solving for a in y = ax (using linear least squares regression).

:::
We

::
do

::::
this

::
for

:::::
each

:::::::
platform

::::::::::
individually,

::::
and

:::
also

:::
for

::::
their

:::::::::
combined

::::::
signal.

The results are illustrated in Figure 7A. The lighter colors represent fits to the monthly means for each individual platform
:::
the15

::::::::
individual

::::::::
platforms, while the black line and scatter points represent the fit to the aggregated

::::::::
combined

:
monthly means. This

:::
The

:
overall fit, based on all available data, has slope 0.44, but there are substantial differences between the individual platforms,

with slopes between 0.15 and 0.73 and relatively large scatter. The difference between platforms could be random, due to the

limited availability of measurement data, or systematic, in which case different sites need different scaling parameters. If the

difference is random, the global optimum indicated by the black line in Figure 7A could do justice to all individual platforms,20

because it incorporates a much larger body of measurement data than any single-site regression. Applying this factor of 0.44 to

the full ERA5 data (Figure 6A) provides us with a smooth seasonal cycle with reduced amplitude
::::::
(similar

::
to

:::
the

:::::
black

::::::
dashed

:::
line

::
in

::::::
(Figure

::::
6A),

:::
but

:::
this

::::
time

:::::
based

:::
on

::
an

::::::::
optimized

:::::::
scaling

:::::
factor). In other words, the seasonal cycle of low-level jets based

on ERA5 data up to 500 m overestimates the observed cycle (based on measurement up to 300 m) by a factor of ∼2. However,

as shown in Figure 7B, there seems to be a spatial dependence in the scaling factors with larger slopes away from the coast,25

implying that the different sites need different scaling parameters. In order to cross-validate the single-platform regressions, we

need to split the measurement data in train and test datasets, but this poses a challenge. Like before, the data record at MMIJ

is long enough to obtain a reasonable prediction of the test data, but some of the other data records are very short and splitting

them would leave e.g. only 3 months of training data, which obviously leads to very poor statistics, especially since there are

hardly any low-level jets in winter. Without cross-validation more data is available for regression, but this introduces the risk of30

over-fitting and therefore quantitative evaluation will be biased. Qualitatively, the resulting seasonal cycles still appear erratic

(Suppl. Inf. 4/6).

Thus, despite similarities between the datasets, it is not straightforward to either correct the observations using ERA5 rep-

resentativity factors, or to correct the ERA5 data using a scaling factor derived from collocated observations. In this section,

12



Figure 7. A. Illustration of linear regression between monthly low-level jet rates in the ERA5 data (subset, up to 500m) and the observations.

Black line and scatter points represent aggregated data of all platforms, while the other colors correspond to fits for individual platforms.

Dashed black line indicates a 1:1 correspondence. B. Spatial distribution of the obtained fit parameters for each individual platform. Like the

color coding, marker size is scaled with the slope of the regression.

we used the seasonal cycle to obtained
:::::
obtain

:
aggregated low-level jet characteristics (i.e. monthly means), but perhaps we can

identify other characteristics that lead to better results.

7 Other jet characteristics and their scaling potential

7.1 Diurnal cycle and stability

After analyzing in-depth the seasonal cycle of low-level jets, we now briefly consider some other variables that describe relevant5

characteristics of the low-level jet climatology, starting with the diurnal cycle. Figures 8A-C are again similar to Figure 6, now

only including the ERA5 data up to 500 m. It
::::
From

:::
the

::::::::::::
observations,

:
it
:
appears that the low-level jets occur throughout the

day, but with a small dip around 11 UTC. Panels B and C, based on short temporal subsets, are so erratic that it is difficult

to distinguish this diurnal cycle by eye. After aggregating all platforms and smoothing the data (black dashed lines), we find

that the observations and ERA5 agree on the general shape, but again , the magnitude differs.
::
we

::::::
needed

::
to
:::::

scale
:::
the

::::::
ERA510

::::::
signals

:::::::
because

::::
they

:::::::
differed

::
in

:::::::::
magnitude:

:::
the

:::::::
diurnal

:::::
cycle

::
in

:::::
ERA5

::
is
:::::

much
:::::

more
:::::::::::
pronounced.

::
At

::::
this

:::::
point,

:::
we

:::::
think

::
it

:
is
:::::
good

::
to

:::::
stress

::::
that

::::::
several

::::::::::
mechanisms

::::
can

::::
lead

::
to

::::::::
low-level

:::
jets

:::
in

::::::
coastal

::::
areas

::::
(see

::::::::
Sections

:
1
::::
and

:::
9),

:::
and

:::
the

::::::::
resulting

13



::::::
diurnal

::::::::
signature

:::::
should

::::
not

::
be

::::::::
confused

::::
with

:::
that

:::
of

:::
the

::::::
typical

::::::
onshore

:::::::::
nocturnal

::
jet

::::
that

:
is
:::::

often
:::::
found

::::
over

:::::
land. As in the

previous section, we performed linear regression to identify scaling parameters
::::::
optimal

::::::
scaling

:::::::::
parameters

:::
for

:::
the

::::::
dashed

:::::
black

::::
lines

::
in

:::::
panels

::
A
::::
and

::
B. The difference

:::
with

:::
the

::::::::
previous

::::::
section is that the

::::::::
regression

::
is

::::
now

:::::
based

::
on

:::::
pairs

::
of

::::::
hourly

::::::
instead

::
of

:::::::
monthly

::::::::
observed

:::
and

:::::::::
simulated low-level jet frequencies on which the fits are based are now grouped by hour instead of

by month
::
jet

:::::::::
frequencies. The scatter in this data is larger than for the seasonal cycle, but the spatial distribution of the fitting5

parameters is similar (not shown).

The second row in Figure 8 shows the relation between low-level jet occurrence and atmospheric stability (expressed by

the bulk Richardson number based on the ERA5 surface data
:
:
::::
2-m

::::::::::
temperature,

::::
skin

:::::::::::
temperature,

::::
and

:::::
10-m

::::
wind). Scatter

points represent mean aggregated low-level jet frequencies over 50 stability bins. Both ERA5 and the observations agree that

low-level jets are typically associated with stable stratification, although for some platforms in Panel D
:::
and

::
E, there seems to10

be a substantial number of jets for unstable conditions as well. In the subsets (panel E) this distinctive behaviour is not as clear,

and in the observations it seems mostly absent. Without going into detail, we note that low-level jets can be formed by different

mechanisms, and it is possible that ERA5 represents one mechanism better than another, or perhaps one mechanism is actually

over-represented. Also note that in panels E and F there are (positive) values of the Richardson number for which no low-level

jets are observed. In panel D, this is not the case, which indicates that the measurement periods are too short to adequately15

sample the full range of stability conditions. Finally, we note that in panel D, the low-level jet rate seems to decrease again

for very stable situations. This could be an artifact of the bulk Richardson number, or a physical limit: a stable atmosphere

leads to a low-level jet, but the low-level jet produces wind shear and consequently, the bulk Richardson number decreases.

The fact that this behaviour is not reflected in the observations suggests that the true stability (that would have been observed)

was actually smaller than what ERA5 predicted. Again, we tried to scale the amplitude of the stability signature by performing20

linear regression between the
::::
pairs

::
of low-level jet frequency

:::::::::
frequencies

:
in ERA5 and observations (now aggregated over the

stability bins
:::::
based

::
on

:::::::
stability

::::
bins

:::::::
instead

::
of

:::::::
monthly

:::
or
::::::

hourly
:::::::::
groupings). The slopes are larger than those based on the

seasonal and diurnal cycle (∼1.0), but qualitatively they seem to be less robust
:::
(not

:::::::
shown).

7.2 Weather types and the spatial distribution of low-level jets

We also investigated the relation between low-level jet frequency and typical circulation patterns. We used Lamb Weather25

Types (LWT; see Jones et al., 2013, especially the appendix)
:::::::::::::::::::::
(Jones et al., 2013, LWT;) to perform this analysis. These weather

types are based on gridded fields of
::
To

::::::
derive

::::
these

:::::::
weather

:::::
types

:::
we

:::::
used

:::
the

::::::
ERA5 mean sea level pressure data

::
on

:
a
:::
5◦

::::::::::::::
latitude/longitude

::::
grid

::
of

::
16

::::::
points

::
as

:::
laid

::::
out

::
in

::
the

::::::::
appendix

::
of

::::::::::::::::
Jones et al. (2013),

:::
but

:::::::
centered

::::
over

:::
the

::::
area

::
of

:::::::
interest. The

method distinguishes three main groups: those with a dominant cyclonic (counterclockwise, low-pressure area) circulation,

those with a dominant anticyclonic (clockwise, high-pressure area) circulation, and those with a ‘pure directional’ flow. These30

three groups are further subdivided based on the main direction of the flow over the North Sea (North, NorthEast, East, etc.).

If there is no dominant direction, the LWT is ‘pure (anti)cyclonic’. Pressure fields characterized by the absence of a dominant

forcing are ‘undefined’. In total this yields 27 different circulation patterns. We computed average low-level jet rates for each

group.
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Figure 8. Average low-level jet rate for each hour of the day (A, B, C) and as function of the Bulk Richardson number (D, E, F), for the full

(10 years) of ERA5 data up to 500m (A, D), a subset of this data collocated with the observations (B, E), and the observed data (C, F). Like

in Figure 6, the black dashed lines represented a scaled and smoothed aggregated signal based on all platforms.

To illustrate the association between the circulation type and the low-level jet occurrence, Figure 9 shows the average low-

level jet rate per weather type in the North Sea domain, based on 10 years of ERA5 data up to 500 m. The streamlines show

the dominant flow pattern for each weather type: the columns represent different wind directions over the North Sea, while

the full rows represent different rotation types. In the first full row, the rotation is predominantly clockwise, in the bottom

full row, the rotation is mostly counterclockwise, and the middle full row is characterized by the absence of rotation. Notice5

how the same wind direction can be associated with different large-scale flows – and how this can impact the low-level jet

rate. Like before, we will not go in-depth on each individual feature in this figure, but we will focus on overall characteristics.

In general, we see that low-level jets concentrate along the coastlines, but they
:
.
::::
This

:::::::
extends

:::
and

::::::
refines

:::
the

::::::
global

:::::::
findings

::
of

:::::::::::::::::
Ranjha et al. (2013)

:::
and

:::::::::::::::
Lima et al. (2018)

::
for

::::
the

:::::
North

:::
Sea

:::::::
domain.

:::::::::
Low-level

::::
jets are much more dominant for certain

Lamb Weather Types. Most notably, the ‘undefined’ weather type often gives rise to the formation of jets. This makes sense,10
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as low-level jets are subtle phenomena, and the absence of a strong large-scale flow eases their development. Furthermore, we

observe that low-level jets occur frequently during large-scale flows with a pronounced easterly component. Note that easterly

flows bring in continental air, while westerly flows originate from the Atlantic. Low-level jets are uncommon for westerly

flows. Closer inspection reveals that the differences in spatial distribution of the low-level jets (e.g. comparing the Dutch ,

British and Norwegian coastlines) seems to be related to whether the large-scale flow is directed offshore.
:::
The

::::::
British

::::
isles

:::
are5

:::::::
different

::
in

:::
this

:::::::
respect,

:::::
since

:::
for

:::::::
westerly

:::::
flows

:::
we

::
do

:::
not

:::::::
observe

:::
an

::::::::
increased

::::::::
low-level

::
jet

::::
rate

:::
off

:::
the

::::::
eastern

:::::
coast

::
of

:::
the

:::
UK.

:

Like with the previous characteristics, we performed linear regression between ERA5 and observed low-level jet frequency,

this time aggregated over the various Lamb weather types. We found similar patterns in ERA5 and the observations (not

shown), but the spatial distribution of the scaling parameters is different. Most slopes are around 0.4, but LEG stands out with10

a slope of 0.65. This is not a huge difference, but it implies that our earlier hypothesis – that the slope increases with distance

to coast – does not hold for all predictors. Indeed, one could argue that with Lamb weather types as predictor, the scaling

parameters are spatially more robust. Thus, while we believe that the spatial distribution in Figure 9 is actually meaningful, the

absolute low-level jet rates
:::
rate (as indicated by the color bar) is still off by a factor of ∼2.

8 Combining multiple predictors to extend observations15

So far, we have tried to scale the low-level jet climatology with simple linear factors applied to individual characteristics (e.g.

seasonal cycle). Perhaps, we can find a more sophisticated transformation function by combining multiple predictors? In this

section we use the MMIJ data to illustrate how this could be applied in practice. In contrast to the previous sections, which

focused on aggregated low-level jet frequencies, here we consider individual wind profiles. The procedure resembles the Model

Output Statistics (MOS) forecasts that are widely used for weather forecasts
:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(e.g. Glahn and Lowry, 1972; Carter et al., 1989; Wilks, 2006, Ch. 6.5.2)20

and is similar to the Measure-Correlate-Predict methods mentioned in Section 2
::::::::::::::::
(Carta et al., 2013). We use a machine learning

package to perform this task and for readability, we will not highlight all the technical details here. However, Jupyter notebooks

are available as supplementary material to facilitate reproducibility.

The general idea is illustrated in Figure 10A: we have a short timeseries with observations and a long reanalysis dataset.

Based on the overlapping part of the data, we determine the optimal parameters of a statistical model (depicted by the red box).

We then use this model to predict the value of the observations, given the available long-term reanalysis data. In the illustration,

it seems as though one reanalysis variable is used for this purpose, but in fact, we can use as many variables as we want. In our

case, the variable we want to predict is the probability that a low-level jet will be observed, given various predictor variables

from the ERA5 data. Because this is a binary outcome (a jet either occurs, or not), our model of choice is a logistic regression

model, which predicts the probability of a positive outcome as function of one or several predictor variables. The general form

of this model is

p=
1

1+e−(β0+β1x1+β2x2+...)
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where βi are the coefficients of the corresponding predictor variables xi. In a short exploratory phase, we experimented with

various combinations of predictor variables. We found the best performance for a small set of predictor variables consisting

of: time of the year, atmospheric stability, and Lamb weather type. This makes sense, as together these variables encompass

information about wind speed, direction and history of the flow, as well as the probability of stable stratification and baroclinic

conditions. Indeed, each of these variables alone already provided valuable information in the previous sections. For optimal5

performance, these variables were preprocessed as follows: to truthfully represent its cyclic nature, time
:::
date

:
was encoded by

splitting the day of year in a sine and cosine contribution. The Lamb weather type is a categorical variable, and to make it

suitable for regression it was encoded by converting it to the binary representation of the numbers up to 27 (the total number of

weather types) and treating each digit as an individual binary variable. Stability was represented by the difference between the

two-meter temperature and sea-surface temperature, which provided better results than the bulk Richardson number. We also10

experimented with various training algorithms to determine the coefficients βi of the logistic model (intermediate results can

be found in Supplementary Material). In the end, we settled on a stochastic gradient descend algorithm.

First, we took only half of the MMIJ dataset (a bit more than 2 years) to train the model (in other words: we fitted the

parameters of our logistic regression model to the first half of the data). The light blue line in Figure 10B shows the seasonal

cycle of low-level jets in those first two years of observations. Notice
::::
Note that this seasonal cycle is very erratic; it must have15

had some very unrepresentative summer months. We then .
::::
This

::::
can

::
be

::::::::
expected

:::
for

::::
such

:
a
:::::

short
::::::
period,

:::
but

:::
the

::::::::
question

::
is

::::::
whether

:::
the

:::::::::
additional

::::::::::
information

:::::::::
contained

::
in

:::
the

::::::::
predictor

:::::::
variables

:::::::
enables

::
us

:::
to

::::::
predict

:::
the

::::
other

::::
two

:::::
years,

:::::::
despite

:::
the

:::::::::::::
unrepresentative

:::::::
training

::::
data.

:::::
Thus,

:::
in

:::
the

::::
next

::::
step,

:::
we

:
used our trained model to predict the other half of the dataset. The

::
In

::::
fact,

:::
the

:
model predicts the probability that a low-level jet occurs. An individual jet is predicted only if the probability

is higher than 50%, but this happens only occasionally. Therefore, rather than predicting individual low-level jet events, we20

reconstruct the predicted seasonal cycle by grouping and aggregating the predicted probabilities for each month
::::
used

:::
the

:::::::
predicted

:::::::::::
probabilities

:::::::
directly

:::
and

:::::::::
computed

:::
the

:::::::
monthly

:::::
mean

::::::::
predicted

:::::::::
probability

:
(Figure 10B, orange line). To evaluate

the performance, we compared the predicted seasonal cycle with that based on the true observations during the second part of

the dataset (Figure 10B, light green line). The true seasonal cycle was indeed smoother than in the first two years, but it peaked

a bit higher and earlier than predicted. To quantify this result, we computed the root mean square error between the monthly25

means of the predicted and test-data, and found it to be about 1%
:::::
-point. This result confirms that the model generalizes well to

new input data.

We then used the full MMIJ dataset to train the same model. With twice as much training data as before, we are confident

that the model will achieve at least similar performance and thus predict the seasonal cycle to within 1%
:::::
-point RMSE (but

probably better). The observed seasonal cycle averaged over these four years of training data (Figure 10B, red line) is still30

clearly affected by the unrepresentative months in the first half of the dataset. Apparently, four years of data is still not enough

for the climatology to converge. Therefore, in the final step, we used the trained model to predict the 10-year seasonal cycle.

The result (Figure 10B, purple line) is a smooth seasonal cycle which peaks in May at about 9%. This is our best estimate of

the low-level jet seasonal cycle, based on the coalescence of reliable measurements and extensive reanalysis data.
:::::::::
Compared

::
to

:::
the

:::::
results

:::::::::
presented

::
in

::::::
Section

::
6,
:::

we
::::
can

::::::::
conclude

:::
that

:::
we

::::
have

::::::::
adjusted

:::
the

:::::
erratic

::::::
nature

::
of

:::
the

:::::::::
short-term

:::::::::::
observations35
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Figure 10. A. Illustration of the MCP/MOS/ML procedure in which a (logistic) model is trained with observation data and then used to

predict long-term characteristics. B. Illustration of the MMIJ seasonal cycle of low-level jets based on: two years of observed data (train),

two years of predicted (pred) and observed data (test), four years of observed data (train) and ten years of predicted data (pred).

::::::
(Figure

::::
6E),

::::::::
resulting

::
in

:
a
::::::::
seasonal

::::
cycle

:::::::
similar

::
to

:::
that

::::::
shown

::
in

::::::
Figure

::::
6A,

:::
but

::::
with

:::::::
reduced

:::::::::
amplitude.

:::::::::
Compared

::
to

::::
this

::::
final

:::::
result,

:::
the

:::::
crude

::::::::
amplitude

::::::::::
adjustment

::::
with

:::::
which

:::
we

::::::
started

::
in

::::::
Section

::
6
::::
now

::::::
appears

:::
far

:::
too

::::::
strong.

:

The results presented in this section are intended as proof of principle, and for the purpose of illustration we tried to keep

it conceptually simple. With respect to the selection of predictor variables, choice of model, and method of cross-validation,

we realize that the possibilities are endless. The availability of sufficient measurement data is key to an exhaustive follow-up5

study.

9 Discussion

This paper has demonstrated our efforts to infer reliable low-level jet characteristics by combining observations and reanalysis

data. We have deliberately chosen to illustrate how the results are impacted by limitations of the data and choices in the analysis.

In this section we summarize our work, discuss the implications and offer an outlook to future research directions.10

We started with a general validation of the ERA5 data for the observed wind speed at measurement locations at the North

Sea. We found that the overall root mean square error is between 1.25 and 1.5 m s−1. The bias shows a clear discontinuity

at 10 UTC, which is related to the data assimilation strategy that was used to produce ERA5. Users of the ERA5 data should

consider a suitable bias correction (e.g. Staffell and Pfenninger, 2016), but we strongly suggest that future reanalysis products

use sliding or at least partly overlapping observation windows. We also demonstrated that the observations alone can neither be15

relied upon, because the limited temporal extent of the measurement data leads to biased climatologies. Thus, in the remainder

of the paper we focused on finding a suitable way to combine the two datasets. A procedure similar to measure-correlate-predict

methods but tailored to low-level jets instead.
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The low-level
::::::::
Low-level jet detection is very sensitive to the vertical extent of the data, and this has important implications

for the interpretation of all results. Typical jet characteristics like jet height and jet strength cannot be reliably inferred from

range-limited observations. With this restriction in mind, we can say that many of the observed jets occurred at heights fully

or partly in the range spanned by contemporary wind turbine blades. Moreover, typical observed jet strength is about 8 m s−1,

which is in the cubic part of the power curves of these turbines. We therefore expect that the low-level jet impact on loads and5

power can be substantial. ERA5 is not able to reliably reproduce these characteristics. There are some indications that the jets

are ‘smeared out’: they appear higher and weaker than observed. Given this vertical displacement, a fair comparison between

ERA5 and the observations is difficult. Considering the lower 300 m only, ERA5 drastically underestimates the amount of jets,

but including heights up to 500 m, ERA5 shows more low-level jets than observed. We decided to include the data up to 500

m because it gives a stronger climatological signature.10

Even though 1:1 correspondence between ERA5 and the observations is poor, both datasets agree on the following clima-

tological characteristics: most jets occur in spring and summer; the diurnal cycle is weak, only around noon the chances for

low-level jets are slightly lower; low-level jets are typically associated with stably stratified conditions; the absence of a strong

large-scale forcing, or flow regimes with a pronounced easterly or offshore component are favourable for their formation. From

the ERA5 data, we learned that low-level jets concentrate along the coasts. We then compared the frequency of low-level jets15

between ERA5 and the observations. In the most general terms, we can state that the mean low-level jet rates based on ERA5

up to 500 m typically overestimate the amount of low-level jets that would have been observed with LiDARs up to 300 m by

a factor of about 2. To improve upon this result we then illustrated how a logistic regression model was able to predict the

seasonal cycle of low-level jets at MMIJ to within 1%
:::::
-point

:
RMSE. This is a promising result, and we expect that our results

can still be improved upon. Longer measurement datasets would form a major contribution to further advancement as well.20

The characteristics identified in this paper provide some clues as to the processes that govern these jets. The academic

literature recognizes two dominant formation mechanisms, both of which are supported by our results. The first is frictional

decoupling (Blackadar, 1957; Van de Wiel et al., 2010). This theory describes a perturbed system attempting to re-establish

equilibrium. As the accelerating wind field in the lower atmosphere is deflected by the Coriolis effect, it moves about
::::::
around

its new equilibrium in a circular fashion. Over land, frictional decoupling has been linked to the decay of turbulent mixing25

around sunset and it has been suggested that a similar situation applies in coastal areas upon the abrupt surface (temperature

and roughness) transition (Smedman et al., 1993). This mechanisms
::::::::::
mechanism is supported by our results, which show that

low-level jets are frequent for winds directed offshore and in stable conditions. The second mechanism relates low-level jets

to horizontal temperature gradients (baroclinity, see Holton, 1967). According to this theory, the tilt of isobaric surfaces leads

to a thermal wind component that under certain conditions can manifest as a low-level jet. This mechanism has been coupled30

to low-level jets over gently sloping terrain, but equally applies to coastal areas where large horizontal temperature differences

can occur due to differential heating between the land and sea surface (Mahrt et al., 2014). The fact that most low-level jets

occur in spring and summer supports a baroclinic contribution, and possibly an interplay with the evolution of sea breezes,

which show a similar seasonal cycle (e.g. Steele et al., 2015). In the end, we expect that both processes are likely to contribute

to the low-level jet climatology. Finally, we note that we also spotted a low-level jet with a clear frontal structure in the ERA535
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data. It is unlikely that such events contribute significantly to the low-level jet climatology, but the characteristics of such jets

may be very different and potentially much more harmful for (offshore) wind turbines. Other causes have been described in

literature, such as orographic blocking. We don’t expect this plays a major role along the Dutch coast, but for some of the

low-level jets that are present in ERA5 along the British and especially the Norwegian coast they
::
it may play an important

role (Christakos et al., 2014). A more detailed investigation of the ERA5 data may allow us to separate these mechanisms. This5

is an interesting direction for further investigation
::::::
research.

With respect to future research
::::
work, it would also be interesting to look at other datasets. In this paper, we have used ERA5

data to analyse the spatial characteristics of low-level jets directly. However, ERA5 is currently being used to develop higher

resolution, down-scaled reanalysis datasets (e.g. the New European Wind Atlas (Petersen et al., 2013) and the Dutch Offshore

Wind Atlas), and it would be worthwhile to see if they improve upon ERA5. Another interesting alternative is COSMO-10

REA6 (Bollmeyer et al., 2015), which is down-scaled from ERA-interim, but with its resolution of 6 km it might outperform

ERA5. The current paper can serve as a guideline for the investigation of other reanalysis datasets.

Finally, a note on dealing with low-level jets in practice. It would be worthwhile to include a low-level jet case as stan-

dard inflow field for wake and load simulations. Recent papers have developed affordable methods to provide realistic inflow

fields (Gebraad et al., 2014; Englberger and Dörnbrack, 2018). Expensive CFD simulations have been used to derive param-15

eterizations to generate realistic inflow fields for wind farm simulations. The second cited paper also includes low-level jet

profiles in the early morning. These profiles can be compared with the morphology and frequency distributions detailed in the

current manuscript to optimize yield and lifetime. Since the presence of the coast line
:::::::
coastline

:
turns out to have an important

effect on the formation of low-level jets, it would be interesting to perform an additional precursor LES simulation for such a

heterogeneous terrain. This could also shed light on the mechanisms involved in jet formation.20

Code and data availability. The ERA5 data were generated by ECMWF as part of the Copernicus Climate Change Service and will in the

future be available through the Climate Data Store at https://cds.climate.copernicus.eu/#!/home. Observations were distributed by ECN part

of TNO by order of the Dutch Ministry of Economic Affairs. They can be accessed at https://windopzee.net/en/home/. A series of Jupyter

notebooks to facilitate reproducibility is available as supplementary material.

Appendix A: LiDAR data25

Vertically pointing LiDAR provides efficient and non-intrusive measurement of ABL winds. Compared to traditional meteo-

rological masts, LiDAR typically expand the height and vertical sampling frequency of offshore wind measurements. LiDAR

data from seven measurement sites were used in this study to analyse North Sea LLJ spatiotemporal behavior. LiDAR type

used included the WINDCUBE v2 pulsed LiDAR (only at LEG) and the Zephir 300s continuous-wave (CW) LiDAR (all other

platforms). The LiDAR were typically platform mounted, except within the Borssele wind farm and Hollandse Kust wind zones30

21
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(Noord and Zuid) where the LiDAR was instrumented atop a floating metocean buoy. At these locations, two LiDAR-equipped

metocean buoys were positioned simultaneously.

CW and pulsed wind LiDAR are coherent systems, meaning they both analyse Doppler shift frequencies to determine an

estimate of the radial wind speed (Peña et al., 2015). However, radial velocity and vertical wind profile extraction techniques

differ between the two LiDAR types. Whereas pulsed wind LiDAR use range gates to near-simultaneously extract radial5

velocity estimates at multiple points in space, CW wind LiDAR can only extract a radial velocity estimate at the beam focus

length. This beam focus length must be modified in time in order to measure the wind field at varying elevation levels. The

radial wind speed is defined as the motion of the wind towards or away from the remote sensing system, and therefore unless

the wind is moving along one of these radials, then the wind speed will not be fully resolved. Consequently, CW and pulsed

wind LiDAR use varying adaptations of conical scanning techniques (Banakh et al., 1995) to resolve the horizontal wind field10

at varying elevation levels. For brevity, these differences are not detailed here. However, because of these differences, the

vertical wind profile was resolved at 17-s intervals for the CW wind LiDAR and at 4-s intervals for the pulsed wind LiDAR.

These wind profiles are then analysed by the LiDAR software and outputted
:::::
output as a 10-min average vertical wind profile.

A summary of the LiDAR measurement heights and data collection periods for all sites is provided in Figure 2.

A. Time-height plots of wind speed for each platform, illustrating the data collection periods, temporal overlap between15

platforms and episodes of missing data. B. Site-specific measurement heights. Reference elevation for the ERA5 data have

been included for comparison.

Data quality control is imperative to ensure an accurate depiction of the offshore LLJ. Implementation of data quality control

varied depending upon the LiDAR type (i.e. ZephIR 300s versus WINDCUBE v2), albeit considerations were made to ensure

that data quality control was employed relatively uniformly between measurement sites. Wind LiDAR data from both the Bors-20

sele wind farm and Hollandse Kust (Noord and Zuid) wind zones have additionally had quality control measures implemented

by Fugro Oceanor. An overview of these quality control procedures can be found online (https://offshorewind.rvo.nl). The data

quality control procedures implemented are as follows. First, plausible value checks were implemented on the wind data. Any

10-min observation that met the following criteria was removed from the data record:

1. The mean wind speed was either greater than the period maximum wind speed or less than the period minimum wind25

speed.

2. The mean wind speed was less than 0.05 m s−1.

3. Turbulence intensity (TI) for the period fell below 0.10 % (i.e. 0.001).

4. At the measurement height, the value of TI was 10 standard deviations (σTI ) greater than the mean (µTI ) TI value

(i.e. TI ≥ µTI + 10σTI ); µTI and σTI were defined as the height-respective value for the entire data collection period.30

Because TI typically decreases with mean wind speed, this threshold was only imposed if the 10-min mean wind speed

exceeded 4 m s−1.
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Specific quality control measures were also applied to the LiDAR wind data. Any 10-min observation that satisfied the

following criteria were removed from the data record:

1. A LiDAR error code (e.g. 9998 or 9999) was reported.

2. The carrier-to-noise ratio (CNR) was less than -22 (the value of CNR provides a measure of signal strength [i.e. quality]).

CNR was only outputted by the WINDCUBE v2 wind LiDAR.5

3. Backscatter magnitude was less than 1e-5 or greater than 100 – backscatter served as a proxy for CNR for data reported

by the ZephIR 300s LiDAR.

Prior analyses (e.g. Poveda and Wouters, 2015) demonstrate that the ZephIR 300s LiDAR can incorrectly measure wind

direction by 180◦. Analyses of wind data at MMIJ from 1 January 2012 through 1 January 2014 indicated that approximately

3.6% of the measured wind data exhibited this flow reversal. Although mitigation (i.e. removal) of this data is possible, it re-10

quires independent wind direction measurements from a collocated meteorological mast. Because mast data was not available

at each site, these wind direction errors were not removed. However, ZephIR 300s lidar wind direction errors did not appear to

impact the measured wind speed, which is the main focus of this paper. In order to account for the wake effect of neighbour-

ing wind farms on wind speed measurements, wind direction sectors were filtered and corresponding data (wind speed and

direction) were removed. A generous estimate of 20 km was used to denote the maximum wind farm wake length.15
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