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Abstract. We examine the effect of rotor design choices on the power capture and structural loading of each major wind turbine
component. A harmonic model for structural loading is derived from simulations using the NREL aeroelastic code FAST to
reduce computational expense while evaluating design trade-offs for rotors with radii greater than 100 m. Design studies are
performed, which focus on blade aerodynamic and structural parameters as well as different hub configurations and nacelle
placements atop the tower. The effects of tower design and closed-loop control are also analyzed. Design loads are calculated
according to the IEC design standards and used to create a mapping from the harmonic model of the loads and quantify the
uncertainty of the transformation.

Our design studies highlight both industry trends and innovative designs: we progress from a conventional, upwind, 3-bladed
rotor, to a rotor with longer, more slender blades that is downwind and 2-bladed. For a 13 MW design, we show that increasing
the blade length by 25 m while decreasing the induction factor of the rotor increases annual energy capture by 11 % while
constraining peak blade loads. A downwind, 2-bladed rotor design is analyzed, with a focus on its ability to reduce peak blade
loads by 10 % per 5 deg. of cone angle, and also reduce total blade mass. However, when compared to conventional, 3-bladed,
upwind designs, the peak main bearing load of the up-scaled, downwind, 2-bladed rotor is increased by 280 %. Optimized teeter
configurations and individual pitch control can reduce non-rotating damage equivalent loads by 45 % and 22 %, respectively,

compared with fixed-hub designs.

Copyright statement. Christopher J. Bay’s copyright for this publication is transferred to Alliance for Sustainable Energy, LLC.

1 Introduction

Wind turbines are large, dynamic structures that experience significant structural loading on their component parts. Design
choices impact the loading on each of these parts. We present a model for the rapid computation of wind turbine design loads,

which we use to quantify the effect of design trade-offs associated with different rotor concepts. The economics of wind energy
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have enabled larger wind turbine sizes, generator ratings, and blade lengths. Longer blades are economical simply because they
capture more power more often. A wind turbine’s annual energy production (AEP) is the total amount of energy captured by a
wind turbine during one year. Increasing the power capture is the primary driver of reducing the cost of wind energy (COE)

CapEx + OpEx

E =
co AEP

D

where capital expenditures (CapEx) and operational expenditures (OpEx) make up the cost of building and running a wind
turbine. Our goal is to minimize the cost of wind energy, enabling the sale of more wind turbines in an effort to make low-cost
energy more available.

Operational expenditures are non-negligible, but make up roughly 15 % of the total cost, according to a study of the average
2015 offshore wind turbine (Mone et al., 2015). Capital expenditures include the wind turbine parts and balance-of-station
costs. Balance-of-station costs account for about 55 % of the total cost and include electrical infrastructure, assembly, and
substructure costs. Wind turbine parts (tower, nacelle, blades, etc.) comprise about 30 % of the overall cost of an offshore,
fixed-bottom wind plant (Mone et al., 2015). The small cost contribution of the wind turbine blades, which is only a fraction
of the cost of the wind turbine parts, and the significant effect of wind turbine blades on AEP contribute to the economics that
enable larger and larger blades.

However, longer blades require additional structural reinforcement, which increases the blade weight, resulting in larger
loads experienced by other wind turbine components: like the hub, main bearing, yaw bearing, and tower. Various innovations
have enabled lower weight blades; these innovations are then used to subsequently design larger blades that capture more power.
Still, the wind turbine components must survive extreme structural loading and last 20-30 years. Wind turbine components are
often designed by various engineering teams based on loads from aeroelastic simulations, making wind turbine design a large,
distributed design task.

The aerodynamic and structural aspects of wind turbines must be designed and controlled so that the structural loading for a
design is feasible. There is a large interdependence between these design aspects (aerodynamic, structural, and controls) and on
the various wind turbine components, which has led to numerous design optimization studies. These studies focus primarily on
blade aerodynamic and structural design, e.g., in Ning et al. (2014) and Pavese et al. (2017). Some incorporate dynamic control
effects, like Tibaldi et al. (2015) and Bortolotti et al. (2016). System engineering tools, like HAWTOpt2 (Dgssing, 2011),
WISDEM (Dykes et al., 2014), and Cp-Max (Bortolotti et al., 2016), have been developed to handle the large number of design
variables, but often compute structural loads using simplified scaling rules, conservative static calculations, or many nonlinear
aeroelastic simulations. A full set of design load cases (DLCs), specified by the International Electrotechnical Commission
(2005) (IEC) in design standards, and simplified for research purposes in Natarajan et al. (2016), can include up to 2000
simulations, which can be costly in terms of computational effort, resulting in long design cycle times. Often the results of
these simulations do not fully elucidate the root cause of problematic load cases on the affected turbine component. An attempt
to distill the DLCs into a reduced basis for design loads in an optimization framework was presented in Pavese et al. (2016).

We describe an alternative load estimation procedure, based on a set of simulations with a constant, sheared wind inflow

that reflects the main drivers of wind turbine loads and the effects of design changes on global wind turbine loads. Since both
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turbulent and constant wind effects contribute to structural loading and the effect of turbulence has been well studied recently,
e.g., in Dimitrov et al. (2018) and Robertson et al. (2018), we will focus our effort on how turbine model changes impact the
harmonic loads caused by wind shear and turbine self-weight. We do this by decomposing the turbine loads from constant,
sheared wind inputs into their harmonic components, i.e., the load amplitude of the i"-per-revolution (iP) load signal. These
signals have been used for control (Bottasso et al., 2013), stability analysis (Bottasso and Cacciola, 2015), and wind field
estimation (Bertele et al., 2017). Here, we use the same signals to develop a mapping, or transformation, from the harmonic
loads to the DLC-simulated design loads, to understand the effect that changing the underlying turbine model has on structural
loading.

The power and load estimation procedure developed in this study is used to analyze concepts for enabling rotor radii greater
than 100 m. Recently, large rotor concepts have been studied in the European projects UpWind and INNWIND. The Danish
Technical University (DTU) 10 MW Reference Wind Turbine (RWT) (Bak et al., 2013) was provided as a design basis for large
rotors to test design methods and tools. The DTU 10 MW RWT has motivated studies that focus on optimization methods (Zahle
etal.,2015) and active (McWilliam et al., 2018) and passive (Pavese et al., 2017) load control methods, but the resulting designs
from these studies do not deviate far from the base rotor model. A two-bladed, downwind, teetering hub configuration of the
DTU 10 MW RWT was developed, which shows that a teetering hub can greatly reduce the unbalanced loading on the main
shaft and blade root (Bergami et al., 2014). Bergami et al. (2014) suggest that the tower stiffness distribution needs to be
redesigned in order to avoid a resonance at the twice-per-revolution (2P) rotor harmonic and that 2-bladed rotors (without
teeter) increase loading on the main shaft significantly.

A couple of 20 MW rotor designs have been proposed in the literature. Sieros et al. (2012) and Peeringa et al. (2011) use
classical similarity scaling rules to upscale conventional turbines. Both conclude that loads due to self-weight will increase
significantly with blade length and drive component design as turbines grow larger. Specifically, edgewise blade loads and the
effect of wind shear are magnified for larger rotor sizes.

A series of design studies at Sandia National Laboratories (SNL) detailed the structural design of a 100 m blade, with the
goal of reducing the blade mass. First, a classically upscaled blade was given a detailed composite layup and tested against
DLCs (Griffith and Ashwill, 2011). Next, a series of design innovations reduced the blade mass from 76 metric tons to 49 met-
ric tons, utilizing carbon fiber reinforcement (Griffith, 2013a), advanced core materials (Griffith, 2013b), and flatback air-
foils (Griffith and Richards, 2014).

Another concept to reduce mass-scaling issues is a highly coned, downwind rotor, which has shown that blade loads can be
reduced by converting large cantilever loads at the blade root into tensile loads along the span of the blade (Ichter et al., 2016;
Loth et al., 2017b). We will analyze this concept and its effect on the structural loading of the other wind turbine components
besides the blades.

There are few openly published documents that quantify the effects of significant design changes and detailed rotor upscaling
on the various wind turbine components. We will quantify the effect of aerodynamic changes, including the blade length, axial
induction, cone angle, and number of blades, as applied to both upwind and downwind rotors. A simplified structural model

will demonstrate the effect of structural reinforcement on blade mass and loads. The upscaled structural model must provide
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enough stiffness to compensate for the increasing edgewise blade loads of large rotors. We quantify the effect of changes to the
hub by looking at 3-bladed and 2-bladed rotor configurations, and consider the relative benefits of a teeter hinge or individual
pitch control for the latter. Finally, we show how the nacelle placement atop the tower and control schemes can impact the
loads on the tower and yaw bearing.

We believe this study will contribute an early stage design model for evaluating design concepts with less computational
effort by eliminating hundreds of DLC simulations. The simplified load model provides a qualitative understanding of the
relationship between wind turbine structural loads as they progress from the blades to the substructure, highlighting the wind
speeds where peak and fatigue loads are most problematic. A designer could use the simplified model to explore the design
space and develop an initial wind turbine model for use in a more detailed load analysis. We map the harmonic loads to a set of
loads found using operational design load case simulations and quantify the uncertainty. Quantitative design studies evaluate
the effect of increased blade size and power capture on global wind turbine loads, as well as the design trade-offs associated
with 2-bladed wind turbines, teeter hinges, and individual pitch control.

We will present the baseline models used for comparison and our general design direction in Sect. 2. Section 3 will outline
the tools used for design and simulation and will also provide environmental site specifics. A description of the control scheme
used throughout the article is presented in Sect. 4. The harmonic model is described in Sect. 5 and in Sect. 6, the transformation
from harmonic loads to DLC-simulated design loads is described. The set of design studies is described in Sect. 7, leading to
studies of blade loads and power capture (Sect. 8), hub and main bearing loads (Sect. 9), yaw bearing loads (Sect. 10), and tower
loads (Sect. 11). A discussion of the model’s limitations and potential use is provided in Sect. 12, followed by conclusions in
Sect. 13.

2 Baseline models and design direction

It is useful to start from established designs when doing comparative analysis. In Sect. 8.2, in lieu of a full structural layup
design, we will use these baseline models for scaling the distributed structural properties of rotor blades. For 3-bladed rotors,
we will use a conventional rotor design (CONR-13) as a starting point. The CONR-13 is the culmination of a series of design
studies aimed at designing a lightweight 100 m blade; it utilizes flatback airfoils, carbon fiber reinforcement, and advanced core
materials to reduce the blade mass below state-of-the-art scaling trends. The full design is described in Griffith and Richards
(2014). The distributed blade structural properties of the CONR-13 will be used for all 3-bladed rotors in this study.

A downwind, 2-bladed rotor was developed with similar structural advances, but with the goal of reducing the total blade
mass by at least 25 % compared to the CONR-13 (Griffith, 2017). The blade was designed to enable segmentation, ultralight
design, and a morphing rotor; we refer to this design as the SUMR-13A. The initial aerodynamic design is presented in Ananda
et al. (2018). We have slightly modified the initial design to have a downwind cone angle of 5 deg. for the purposes of the design
studies presented later. The distributed structural parameters of the SUMR-13A blade were used as a basis for scaling all 2-
bladed rotors in this study. A summary of both baseline models is shown in Table 1 and are drawn to scale in Fig 1. Both rotors

were structurally validated to check strain limits, panel buckling, flutter, and fatigue.



Table 1. Turbine models and environmental parameters used through-

out this article.

Turbine Model CONR-13 SUMR-13A SUMR-13B
Rated Power 13.2 MW 132 MW 13.2 MW

Rated Rotor Speed  7.44 rpm 9.90 rpm 7.99 rpm

Rated Wind Speed  113ms™! 113 ms™! 103 ms™*

Hub Height 1424 m 142.4 m 1424 m

Rotor Radius 102.5 m 101.2 m 1254 m

Rotor Position Upwind Downwind Downwind
Blade Mass 49.5 Mg 51.8 Mg 83.2 Mg
Number of Blades 3 2 2

Max Chord 523 m 7.22 m 6.79 m

Cone Angle -2.5 deg. 5 deg. 12.5 deg.
Environmental Parameters

Wind Turbine Site Class Class 1IB
Cut-in, cut-out wind speed 3,25 ms™ !
Mean wind speed at 50 m, hub height 7.87,9.11 ms™!
Weibull shape, scale factor 2.17,10.3
Turbulence Intensity at 15 ms™* 0.14

In the remainder of this paper, we will evaluate designs aimed at

1. increasing the energy capture, and

2. reducing the wind turbine component loads.

Wind ’

Side View _>

NREL-5MW CONR SUMR-13A SUMR-13B
(SNL100-03)

Figure 1. Illustrations of the turbines in this study, along with
the NREL-5MW reference turbine (Jonkman et al., 2009) for
comparison. Tower heights, rotor radii, and cone angles are
drawn to scale; overhangs and nacelle center-of-masses are en-

larged for comparison.

To reduce the cost of energy in Eq. (1), it is most important to increase energy capture (AEP). Industry trends suggest a

continued increase in blade length, leading to greater loads on all turbine components. Structural loads contribute to component

design and capital cost (CapEx), but require detailed design and cost models for each individual part. Instead of a detailed cost

analysis, which is specific to the component supplier and subject to uncertainty, we will develop a larger rotor design, called

the SUMR-13B, described in Sect. 8.1, and then quantify the changes to global wind turbine loads and power capture, while

exploring techniques to reduce those loads.



10

15

20

25

30

3 Design and simulation tools, wind turbine environment

Aerodynamic design was performed using two inverse design tools: PROPID and PROFOIL. PROPID (Selig and Tangler,
1995; Selig, 1995) is an inverse rotor design tool that enables a rotor geometry to be designed based on desired performance
specifications like available power, tip speed ratio, wind speed distribution, axial induction, airfoils used, and desired lift
distribution along the blade. PROFOIL (Drela and Giles, 1987) is an inverse airfoil design tool. It allows for the design of
airfoil geometries based on prescribed velocity distributions and desired geometric (thickness and camber) and aerodynamic
properties. Airfoil geometries output using PROFOIL are analyzed using XFOIL (Drela, 1989) and iterated on using PROFOIL
until a final converged design is obtained.

Aeroelastic simulations were performed using the latest version of FAST (Jonkman, 2013). Different FAST modules couple
the wind inflow with aerodynamic and elastic solvers that compute the structural loading on the wind turbine. Turbulent wind
inputs are generated using TurbSim (Jonkman and Kilcher, 2012). A recent FAST-based, wind tunnel validated approach has
shown that, compared with turbulence, tower shadow effects are relatively small (Noyes et al., 2018). Thus, for simplicity, we
have omitted the tower shadow model from our analysis in order to focus on the influence of the more important harmonic
and turbulent loads. Control inputs are provided to FAST through a Matlab/Simulink interface that processes FAST outputs
and performs closed-loop control. Fatigue results are computed using MLife (Hayman, 2012), which uses a rainflow counting
algorithm to determine load cycles and extrapolates them over the lifetime of the wind turbine.

To properly compute lifetime fatigue and annual energy production, the wind turbine environment must be provided. The
rotors in this study are all designed to be placed off the coast of Virginia, USA. The site corresponds to a Class IIB turbine

rating (International Electrotechnical Commission, 2005), with mean and turbulent wind speed characteristics shown in Table 1.

4 Closed-loop control

To simulate turbine design loads and power capture, a closed-loop control scheme is necessary. In below-rated conditions, the
generator torque 7, is controlled so that the rotor speed w is optimal for power capture, following the typical 7, = kw? law for
most of the below-rated operating region, before transitioning to above rated (Pao and Johnson, 2011). For simplicity, this is
implemented as a look-up table, though more sophisticated methods exist. The look-up table is altered to avoid a critical rotor
speed for 2-bladed rotors only (see Fig. 2, center, and Sect. 11 provides more details). The generator rated power of 13.2 MW
and rated speed of 1173.7 rpm are assumed to be constant for all the turbines in this study. The gearbox ratio of each turbine is
changed to enable operation at the aerodynamically-optimal rated rotor speed.

In above-rated wind speeds, the pitch angle is controlled to regulate the rotor speed to its rated value using a gain-scheduled
proportional-integral (PI) controller. The gains of the PI controller are set so blade fatigue is minimized, subject to a constraint
on the maximum generator speed (Zalkind et al., 2017). We have chosen this control architecture, which is the same for all
rotors, so that it can be easily tuned for many rotors in the same way. The optimal generator torque control gain k is computed
using rotor parameters, and the PI pitch control gains are tuned using a subset of the DL.C 1.2 turbulent simulations. The control

architecture (as shown in Fig. 2, left) is adapted from the NREL-5SMW baseline controller (Jonkman et al., 2009), which is
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Figure 2. Baseline control block diagram, where 6 is the pitch angle, 74 is the generator torque, and wy is the measured generator speed
(left). The torque control signal (center) for baseline control (blue) and speed avoidance control (red) to avoid the critical generator speed.

Steady-state blade pitch angles for the SUMR-13A and SUMR-13B.

commonly used as a reference to compare new controller designs. While this baseline control may not necessarily be the best
possible controller, it allows us to focus on the power and load sensitivity to model changes.

Using closed-loop control for load simulations is important because peak loads often occur near the transition between
below- and above-rated operation. With a constant generator rating (13.2 MW), different rotors transition from below to above
rated at different wind speeds. Additional control signals, like individual pitch control (IPC) signals, are added to the baseline
control signals in Fig. 2 (left).

A controller is also necessary for computing design loads in turbulent DLC simulations, where wind speed changes, or
gusts, must be adequately controlled. Often, peak loads are caused by a negative gust, or lull, which we show in Fig. 3. During
a decrease in wind speed, the rotor slows and the pitch decreases to its optimal power position. When the decrease in wind
speed is followed by a positive gust, the pitch control must react quickly to regulate rotor speed. We model the actuator of each
rotor in this study as a 2"!-order Butterworth filter with a cut-off frequency of 0.25 Hz. The pitch actuator has a maximum pitch
rate limit of 4°s~!; maximum pitch rates between 1 and 3°s~! were recorded in the turbulent simulations that were run. This
decrease and then increase in wind speed creates a condition where there is an above-rated wind speed, but a below-rated pitch
angle setting, resulting in a large thrust force on the rotor and high loads. To capture the effect that closed-loop control has on
design loads as rotor changes are made, we use the same control architecture for computing loads using the harmonic model

(Sect. 5) and for turbulent DLC simulations (Sect. 6), updating the controller parameters based on the rotor parameters.

5 Harmonic model for load estimation

Load simulations according to the Design Load Cases (DLCs) can be time consuming, so we have developed a simplified

model to estimate the loads on wind turbine components more quickly for evaluating design trade-offs across a wide range
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Figure 3. Baseline control illustration of a problematic gust for the SUMR-13A baseline rotor in extreme turbulence (DLC 1.3) with a mean

wind speed of 14 ms ™. The peak rotor thrust near 205 s causes the peak blade flapwise load for the SUMR-13A.

of parameters. In this section, we describe harmonic loads m™ | which are derived from constant and periodic loads that arise
due to steady wind loading, wind shear, and turbine self-weight. These harmonic loads can be mapped, or transformed, into

estimates m" of design loads mPC

that are computed using operational DLC simulations in Sect. 6. The key simplification
of the harmonic load model compared to design loads computed using DLC simulations is the omission of load variations
that occur at frequencies that do not correspond to the rotor speed. These non-harmonic load variations arise because of wind
speed and direction changes, as well as the component’s natural frequencies. All frequency components of a load are required
to determine the design load for a final, detailed design, but for exploring potentially large numbers of design trade-offs,
simplified harmonic loads provide enough information about the various turbine loads.

The harmonic loads are derived from FAST simulations with a sheared wind inflow such that the wind speed u at height z is

u(z) = (h)

where zp, is the hub height, uj, is the wind speed at hub height, and « = 0.14, which is representative of an offshore wind

2

field (Jenkins et al., 2001). Because of the wind shear, the turbine’s structural load signals contain harmonic components that
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depend on the rotor azimuth %, i.e., a load signal m () can be expressed as
m(y) = mg +mFcos(¢) + mFsin(y) + ... + mF cos(iy) + mF sin(irh) + ... 3)

The components are computed by

W
1
mo=go [ mwde, @
Y—27Np
1 P
me = —— / m(y) cos (i) dip, (5)
7TNR
»—27NR
and
1 P
ip_ L sy
= [ m@)sinGiv)ae, ©
Y—27NRr

where Np is the number of rotations used in the calculation (Phillips et al., 2007). We have found that load signals can be
reconstructed closely using the first four harmonics; the most energy is usually in either the 1, 2™, or 3™ harmonic depending
on the component (see Table 2) and number of blades.

From the components in Egs. (5) and (6), the magnitude and phase of each harmonic can be computed,

m™| = /(miP)? + (miP)?, (7
and

. L (mP
#"® =tan™? (miP> . )

An example for the blade flapwise load is shown in Fig. 4; most of the load magnitude is in the constant m° and once-
per-revolution m'f load component (10'~10> MNm), with some in the 2P load component due to shaft tilt and gravity
(~ 10° MNm), and very little in the higher harmonics ( < 10~* MNm). We will use these harmonic coefficients, calculated via

Egs. (4)-(8), to estimate fatigue and extreme loads for the various wind turbine components.
5.1 Extreme and fatigue loads

The forces and moments on a component drive its design: larger loads require greater reinforcement, leading to greater com-

ponent mass and cost. We analyze component loads in terms of the maximum (or peak) load
Mpeqe = max(m® +m""), )
uclU

where 7 is the dominant harmonic signal component and U is the set of constant, sheared wind inputs used to derive the

harmonic load. We perform simulations from cut-in to cut-out (Table 1) in 0.5 ms~! increments.
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Figure 4. Load harmonic magnitude |m | and phase ¢ for the zeroth through fourth periodic harmonic of the blade root load in the flapwise

direction (left) of the SUMR-13A at 25 ms~!. Mean load (blue) superimposed with the 1P harmonic amplitude (red) with respect to wind

speed (right) used to estimate fatigue and extreme loads.

Table 2. Structural loads evaluated in this article. Each component has loads in multiple directions and experiences the peak load and greatest

contribution to fatigue loads at different wind speeds. Np denotes the number of blades on the rotor. Loads that are nearly constant across

wind speeds do not have a defined peak wind speed (N/A). The dominant wind speed contributing to fatigue is determined by analyzing the

relative fatigue contribution, p(u)m”P from (10), across wind speeds.

Component Dominant ~ Wohler  Load direction, Wind speed Dominant wind speed
harmonic  exponent name at peak load contributing to fatigue load
Flapwise, mu, rated rated
Blade 1P 10 ,
Edgewise, myq N/A below rated
3 Tilt mpy N/A rated
Hub 1P Yaw, mp, N/A rated
Main Bearing ;3 Tilt msy rated/cut-out rated
(non-rotating) NgP Yaw, ms. rated/cut-out rated
3 Tilt, myy rated/cut-out rated
Yaw Bearing NP Yaw, my. rated/cut-out rated
Fore-aft, my, rated tower natural freq.
Tower NgP

Side-to-side, mq

tower natural freq./cut-out

tower natural freq.
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Figure 5. [llustration of the load axes used in this article. The non-rotating load axes—tower, main bearing, and yaw bearing—are all parallel
and are denoted by subscripts ¢, s, and y, respectively. Note: the blade, hub, and main bearing axis origins are collocated; the blade and hub
load axes rotate with azimuth angle, as shown in Fig. 12. The CONR-13 is depicted to illustrate the rotor overhang xzou and nacelle center of

mass Zcm. The prevailing wind is positive in the same direction as the x; axis.

Fatigue loads are computed in terms of the damage equivalent load (DEL): the constant amplitude of a sinusoidal load
signal that results in the same total accumulated damage from a more complex load signal. The accumulated damage in
simulations with different wind speeds is extrapolated over the turbine lifetime using the wind speed probability distribution

p(u), characterized by the Weibull distribution in Table 1. We can relate the DEL of a component to its load harmonic by

M = apeL(n,w) Y p(u)ym™ (10)
uelU

where apgy is a tuning factor that depends on the Wohler exponent w and the dominant harmonic component n. The dominant
load harmonic nP of each component is either 1P or NgP, specified in Table 2, depending on whether the component is rotating
(1P) or non-rotating (NpP). Different load harmonics will be specified by their location, direction, and harmonic number, e.g.,

the 3P main bearing load about the y4-axis will be written m?

5. In this article we focus on the moments about the load axes
specified in Table 2 and illustrated in Fig. 5. The loads at higher harmonic and natural frequencies contribute to both fatigue and
extreme loads, but since our goal is to derive a mapping from a simplified computation (harmonic load) to a more expensive

simulation (design load), their effects are neglected and considered as part of the uncertainty of the transformation in Section 6.

11
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5.2 Harmonic versus turbulent loads

The structural loads on a wind turbine originate from constant and periodic effects, modeled by the harmonic load, as well
as from dynamics due to turbulence, which are not necessarily correlated with the azimuthal position of the rotor and are not
modeled in this transformation. In some cases, the effect of turbulence greatly outweighs the constant and periodic effects, but
in all cases, the harmonic loads can be mapped to the design loads determined by the DLCs. We quantify this relationship in
Sect. 6 by mapping the harmonic loads, computed using Egs. (9) and (10), to the design loads computed in DLC simulations. In
Sects. 7-11, we present the design load estimates and their uncertainties, transformed from harmonic loads, as various turbine

design choices are evaluated.

6 Harmonic model transformation and uncertainty

To balance the computational efficiency of the harmonic load estimation in Sect. 5 with the more expensive and realistic design
loads computed using DLC simulations, we present the following transformation procedure. In this article, we focus on the
moments on the turbine components during power producing design load cases and simulate the following DLCs specified by

the IEC standard (International Electrotechnical Commission, 2005):

DLC 1.2: normal turbulence, for fatigue loads, using 6 random seeds at mean wind speeds from cut-in to cut-out, spaced

2 ms~! apart
— DLC 1.3: extreme turbulence, for peak loads, using the same number of turbulent wind seeds and wind speeds

— DLC 1.4: extreme coherent gust with direction change, for peak loads near rated, above-, and below-rated wind condi-
tions. Different rotor azimuthal initial conditions are simulated to account for the rotor being in different positions when

the gust occurs.

— DLC 1.5: extreme wind shear, for peak loads near rated and at cut-out wind speeds. The same azimuthal initial conditions

as in DLC 1.4 are used.

Fatigue loads are computed using the DLC 1.2 simulations in MLife (Hayman, 2012); they are extrapolated using the Weibull
distribution in Table 1 to determine the lifetime DEL. The peak design load is determined using the maximum (moment) over
all the simulations in DLCs 1.3-1.5.

First, we compare the harmonic loads, calculated using the methods in Sect. 5, with the loads computed in DLC simulations.
Then, we present a method to map the harmonic loads to the design loads, producing load estimates. Finally, we analyze the
residual of the estimated loads, since not all rotors in the design studies of Sects. 7-11 will be simulated using the DLCs. Only a
subset of the rotors analyzed in this article, indicated in Table 3, are used in the following procedure to transform the harmonic
model. The design loads of a free teetering hinge will not be included in the transformation set and uncertainty analysis for

reasons described in Sect. 9.2; it is marked with an ‘x’ in Fig. 6.
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Figure 6. Peak main bearing loads computed using DLC simulations versus the harmonic load (top, left) and transformed load estimates
(top, right) for two-bladed rotors (cyan) and three-bladed rotors (magenta). The same color scheme is used to show the relative effect of
turbulence on selected component loads (bottom, left), as defined in Eq. (12), and the standard deviation of the residual normalized by the
mean load is shown for the whole transformation set (bottom, right). The loads presented in this study are specifically the moments about the

specified axis.
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In Fig. 6 (top, left) we show the design load for the peak main bearing load versus the harmonic load estimate. In general,
the harmonic load estimate is much less than the design load computed in DLC simulations. For each component, part of the
load can be attributed to the harmonic loading and part to the turbulent loading:

mDLC _ mH _|_mturb. (1 1)

turb

We quantify the turbulent load contribution m™™ of each component load using the turbulence factor

mean(m"™)

fturb — (12)

mean(mPLC)

C is attributed to turbulent versus harmonic

to compare between different turbine parts on how much of the design load mP-
loading for Class IIB turbulence.

For example, all peak main bearing loads found using DLC simulations are shown in Fig. 6 (top). The average design
load (mPC) of the 3-bladed peak main bearing loads (magenta) in Fig. 6 (top, left) is approximately 40 MNm, while the
average of the corresponding harmonic loads (m) is approximately 10 MNm. Thus, the average turbulent load (m"™) is
approximately 30 MNm by (11). Thus, using (12), f“® =~ 0.75, as shown in Fig. 6 (left, bottom) along with a selection of the
other turbine loads. Some loads, like the edgewise (Blade X) DEL and the hub DEL about the zj-axis for 2-bladed rotors,
are better represented by the harmonic model, as indicated by lower turbulence factors compared with the others. In general,
peak loads are better represented by the harmonic load than DELs and rotating component loads are better represented by
the harmonic model than non-rotating component loads. Peak loads, defined both by the harmonic model and in turbulent
simulations, depend to a large extent on the constant or mean wind speed, respectively, which is represented with the same
value in both cases. On the other hand, wind speed changes have a large effect on the fatigue DELSs, which is not modeled by
the harmonic load. Rotating component loads in turbulence are primarily driven by the 1P load, which is more clearly modeled
by the harmonic loads, due to gravity and wind shear, than the smaller NgP load component.

We also see a difference in how turbulence affects 2- vs. 3-bladed rotors, illustrated by the different lines of fit in Fig. 6 (top,
left). In general, 2-bladed rotors have a greater turbulent load component, but they also have a larger harmonic component, so
the turbulence factor is similar to 3-bladed rotors. For 3-bladed rotors, the non-rotating load component DELs are not clearly
modeled by their harmonic load, so they have a relatively high turbulence factor. Even though some turbine parts have large
turbulent components that are not directly modeled by their harmonic loads, there is still good correlation between the harmonic
and design loads.

We transform from the harmonic loads to the design loads by fitting a linear model

mDLC _ atransmH + blrans (13)

trans

and finding the linear least squares estimate of the parameters a"™" and b"™". Because 2- and 3-bladed rotors sample turbulence

trans 7 trans
,b%)

differently, we define a transformation set (a separately for each, illustrated by the different fits of Fig. 6 (top, left).

There are also different transformation sets for each design load: at each axis and for both peak and fatigue loads. To estimate

the design load, the transformation set corresponding to the desired component, axis, and number of blades is used:

mEst _ atransmH + btrans7 (14)
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which results in a transformed load estimate equal to the design load, plus some residual (Fig. 6, top, right).

We analyze the uncertainty of the transformation by computing the residual between the estimated loads, which are fit using
the linear relation (14), and design loads of the set of rotors specified in Table 3. In Fig. 6 (bottom, right), we normalize
the standard deviation of the residual by the mean load over all rotors to use a qualitative metric comparing the fit of the
transformation across different turbine parts. We present the standard deviation of the residual without this normalization for
each measure in the figures of Sects. 7-11.

In general, the standard deviation of the residual is less than 12 % of the mean value, which indicates decent agreement
between the transformed load estimates and the DLC-computed design loads. The cases with lowest uncertainty tend to have
lower turbulence factors, like the blade edgewise (Blade X) DEL and the hub zj-axis DEL. The AEP is also very well estimated
by the harmonic model, which is good for power capture predictions as long as the effects of turbulence are transformed.

The most erroneous load component is the peak yaw bearing load about the y,-axis, which has a large turbulent component
and where a subset of the transformation set (the aerodynamic trade study designs) control a problematic gust event, like the
one in Fig. 3, similarly. These rotors have design loads that are about the same for each, despite the differences predicted by the
harmonic model. The design loads for this component might be more a function of the gust event than the turbine configuration.

In the remainder of this article, we use these mapped load estimates to analyze the structural loading and power capture of

the various rotor configurations in Table 3.

7 Overview of design studies

In this section, we outline the design and simulation results of the 42 turbines shown in Table 3. The design loads for each rotor
are estimated using harmonic loads from Sect. 5 and the transformation method in Sect. 6. Additionally, gross annual energy

production (AEP) is calculated using the generator power P(u) at mean wind speed u by

AEP =8760 ) _ p(u)P(u), (15)
uelU
where p(u) is the Weibull distribution in Table 1 and 8760 is the number of hours in a year.

We first examine changes to the blade loads and power capture of the SUMR-13A due to variations in the aerodynamics,
including the blade length, axial induction, and cone angles. Both upwind (negative) and downwind (positive) cone angles are
evaluated. The aerodynamic changes lead to a larger, heavier, but more powerful SUMR-13B rotor, which we use to study the
effect of mass and stiffness scaling on blade loads. Next, non-rotating component loads will be compared for different hub
configurations, considering the number of blades, a teetering hinge, individual pitch control, and rotor placement (upwind vs.
downwind). Finally, the effect of a downwind rotor on yaw bearing design loads will be presented and the effect of a two-bladed
rotor on tower design will be investigated. A summary of the design parameters considered in this article and the process for

incorporating their interconnections is shown in Fig. 7; details are given in Sects. 8—11.
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Figure 7. Overview of the design studies performed in this paper. The loads on each component (blue) transfer from the blades to the tower
base as shown. Design studies (yellow) that affect each component are performed in Sects. 8—11 by altering the design parameters in green.

Rotor design parameters (orange) affect all aspects of turbine design.
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Table 3. Set of turbines designed and analyzed in this article. * denotes a turbine for which DLC simulations were performed and used to
map the harmonic load estimates to DLC-based design loads. Otherwise, only the harmonic load analysis is performed. T was omitted from
the transformation set. ¥ denotes the SUMR-13A rotor and * denotes a 3-bladed variation of the SUMR-13A rotor. The process for using

axial induction as an independent design variable will be described in the rotor aerodynamic trade studies section (Sect. 8.1).

Baseline Set (Sect. 2): CONR-13%, SUMR-13A*¢, SUMR-13B*

Rotor Aerodynamic Trade Studies (2-bladed, Sect. 8.1):

Available rotor power (MW): 13.9%%,14.9, 15.9, 16.9*

Axial Induction (-): 0.175%, 0.200, 0.225, 0.250, 0.275, 0.300, 0.333*%
Cone Angles (deg.): -5%, 0, 5%t 10, 15, 20%*

Rotor Aerodynamic Trade Studies (3-bladed, Sect. 8.1):

Available rotor power (MW): 13.9%%14.9, 15.9, 16.9*

Axial Induction (-): 0.175%*, 0.200, 0.225, 0.250, 0.275, 0.300, 0.333*%
Cone Angles (deg.): -5%, 0, 5+% 10, 15, 20%*

SUMR-13B Structural Parameter Analysis (Sect. 8.2)
kan=0%ky =1,krs =1, kps =1, kan = 1%

SUMR-13B Hub Configurations (Sect. 9)
SUMR-13B (3-bladed)*
Teeter: FreeT, Ideal*

IPC: Blade*, Bearing*

8 Blade loads and energy capture

We begin by analyzing the effect of changing rotor aerodynamics on blade loads and energy capture. Blade loads are computed
at the blade root in both the flapwise (1my,) and edgewise (1) directions. Blade flapwise loads are primarily aerodynamic
in nature and depend on the thrust force exerted on the blades from the wind inflow. Peak blade flapwise loads occur near
rated wind speed, which represents the worst combination of wind speed and orthogonal blade surface area, but before the
blade begins pitching to regulate power in above-rated operation. Blade pitch has a significant influence on the mean blade
flapwise load and control actions can often cause peak loads, e.g., when the pitch angle decreases towards its fine pitch angle to
maximize power and then a wind speed gust occurs. The dependence of this load on the control system highlights the necessity
of including control design at an early stage.

Flapwise fatigue loads are driven by blade thrust, wind shear, and, to a small degree, blade weight and cone angle. Edgewise
fatigue loads, on the other hand, have a nearly constant load cycle amplitude, unless the rotor torque is rapidly changing. The
load cycle amplitude of edgewise blade loads depends on the blade weight, creating a large positive and then negative load
when the blade is in each horizontal position during a rotor revolution. Edgewise fatigue loads increase with blade length and

mass and influence the design of the baseline blade structures used in this study (CONR-13, SUMR-13A). Additional stiffness
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Figure 8. Summary of aerodynamic design studies: the blade length, axial induction (in combination with blade length, chord, and twist),
and cone angle are varied while the AEP and peak blade load are calculated and compared to the base case (SUMR-13A, black dot in all).
The standard deviations of the residuals for AEP and peak flapwise load are normalized to the SUMR-13A values and apply across all design
studies. All rotors here are 2-bladed and positive cone angles correspond to downwind rotors. Unless otherwise specified, the available rotor

power is 13.9 MW, the axial induction is 0.333, and the cone angle is 5 deg.

must compensate for increased edgewise loads, but at the cost of increased blade mass, leading to even greater loads. We will

explore this relationship in Sect. 8.2.1.
8.1 Rotor aerodynamics

We evaluate rotors with longer blade lengths, lower axial induction factors, and large, downwind cone angles, using the SUMR-
13A design described in Sect. 2 as a baseline. These design studies have led us to an updated, larger, 2-bladed design, indicative
of the trends in industry towards longer, more slender blades, but with a greater downwind cone angle. We will call this new
rotor SUMR-13B (see Table 1 for more details).

Blade length is changed indirectly in PROPID, by increasing the available rotor power at 11.3 ms~! from 13.9 MW to

16.9 MW. However, all rotors are controlled to have the same rated generator power of 13.2 MW, which limits the increase in
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peak blade loads by transitioning to above-rated control at lower wind speeds.! The increased rotor swept area increases both
power capture and blade loads; a 10 % increase in rotor radius results in about a 10 % increase in AEP and 15 % increase in
peak blade flapwise load (blue, left column in Fig. 8). For the blade length design study, the axial induction factor along the
outer ¥ of the blade is fixed at /5 (theoretical Betz limit).

The rotors used to evaluate axial induction (red, center column in Fig. 8) are designed by fixing the flapwise root bending
loads to that of the SUMR-13A and fixing the available rotor power at rated wind speed to 13.9 MW. The blade length, chord,
and twist are allowed to vary as the local axial induction factor—from the 25 % radial location to the blade tip—varies from
0.175 to 0.3 in increments of 0.025. Decreasing the designed axial induction of the rotor results in longer, more slender blades
that capture more energy while constraining blade loads. In the most extreme example, a blade with a 0.175 axial induction
factor can increase the AEP by 5 %, compared to a rotor with aerodynamically optimal blades (axial induction factor of 3),
but requires 16 % longer blades.

The cone angle design study is performed using the same baseline SUMR-13A blades for each rotor, but with different cone
angles, including upwind (negative) and downwind (positive) cone angles. With a fixed blade length, downwind, highly coned
rotors decrease the rotor swept area, resulting in both reduced power capture and blade loads. The load decrease is significant:
25 % compared with a 7 % decrease in power capture. In comparison with the blade length design study, it is clear why
highly coned rotors are attractive for large rotor designs: an increased cone angle will decrease operational loads faster than an
increase in blade length will increase them.

For all the aerodynamic design studies, there is a trade-off between power capture and blade loading. Each design study is
plotted together in Fig. 9, which also indicates the DELs in the flapwise and edgewise directions. In rotor design, our goal is to
increase AEP and decrease blade loads, thus aiming to yield results in the lower-right quadrant of each plot.

The SUMR-13A blade design was found to be driven by extreme loading along a combined flapwise and edgewise direction,
where DLC 1.4 (extreme coherent gust with direction change) caused the greatest blade load. Since edgewise loads are largely
deterministic, varying with a near constant amplitude with respect to the rotor azimuth, the design goal of the next rotor
iteration, the SUMR-13B, was to constrain peak flapwise loads and increase power capture using the aerodynamic design
changes previously described. The SUMR-13B is not necessarily cost optimal. Using larger blades with both greater power
capture and structural loading could potentially result in a net cost benefit compared to the SUMR-13B. However, in the
absence of a detailed cost model, these design choices are difficult to make and depend on a wide array of factors. Larger rotors
with both increased loading and power capture will be investigated in future design iterations.

The SUMR-13B does, however, provide a demonstration for using the harmonic loads and results in Fig. 9 to guide design:
the aerodynamic design changes can be applied in combination. Since the goal of the SUMR-13B is to constrain peak flapwise
loads and increase power capture (AEP), some combination of increasing the blade length, decreasing the axial induction, and
increasing the cone angle should provide a blade with the desired properties. Looking at the peak flapwise blade load (leftmost
in Fig. 9, if we start at the SUMR-13A, the black dot at (1,1), and increase the available rotor power to 16.9 MW, we will have

a rotor with the relative power and load at the blue diamond. Then, if we decrease the axial induction to 0.2, the change in

IThe available rotor power of 13.9 MW at 11.3 ms—! and rated generator power of 13.2 MW correspond to a 95% generator efficiency.
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curve represents the variation of one design parameter. The set of 3-bladed rotor designs are represented with dotted curves. Unless otherwise
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corresponding SUMR-13A values. The vectors indicate design changes in combination: blade length increase (blue diamond), axial induction
factor decrease along with corresponding blade length increase (red, dashed vector), and cone angle increase (yellow, dashed vector) from

the SUMR-13A to the SUMR-13B (square).
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power and load is as if only the axial induction (and corresponding blade length increase) were changed by that amount (red,
dashed vector). Finally, by increasing the cone angle from 5 deg. to 12.5 deg., the change in power and load is equivalent to
the change indicated by the yellow, dashed vector. The combination of these design changes results in the AEP and structural
loading of the SUMR-13B: it increases AEP by 11 % compared to the SUMR-13A, while constraining peak blade flapwise
loads to the level of the SUMR-13A. The same changes can be applied in combination to the flapwise DELs and edgewise
DELs. The increased blade length of the SUMR-13B increases the flapwise DELs due to the enhanced effect of wind shear
and edgewise DELs due to the additional blade weight. During the SUMR-13B structural layup design, we found the design
driving blade load to be the fatigue DEL in the edgewise direction, which will be the focus of Sect. 8.2.1.

A set of three-bladed rotors (shown with dotted lines in Fig. 9) is designed similarly to the two-bladed design studies and
exhibit similar trends to the two-bladed rotors in terms of blade loads. The blades of the three-bladed rotors experience lower
loads (both peak and fatigue, edgewise and flapwise) with the same power capture due to their smaller chord and mass.

Despite the larger blade loads on 2-bladed rotors compared to 3-bladed rotors with the same power capture, we will be
analyzing the 2-bladed SUMR-13B for the remainder of this article. When comparing similarly powered rotors, e.g. the CONR-
13 and the SUMR-13A, 2-bladed rotors reduce the total blade mass by as much as 25 %, which reduces the capital expenditures
associated with blade material costs (Griffith, 2017). Given the constant AEP and decrease in CapEx of the 2-bladed rotors,
we would expect the overall LCOE of a 2-bladed rotor to be less than that of a similarly powered 3-bladed rotor. However,
periodic effects are more pronounced on the non-rotating components of 2-bladed rotors. We will analyze the load alleviating

potential of different hub configurations in Sect. 9 and structural reinforcement in Sect. 8.2.
8.2 Blade structural parameters

As a wind turbine blade increases in length, its mass and stiffness increase to account for the additional structural loading. The
structural properties of a blade are described by its distributed parameters along the blade span, which include mass-, stiffness-,
and inertia-per-unit-length. In the previous section, these distributed structural parameters were constant for different blade
lengths. In this section, we will change the distributed mass and stiffness values through various scaling rules to observe the
effect each parameter has on the blade loads. However, changes to the mass and stiffness are not necessarily independent of
each other. We will analyze the dependency between blade mass, stiffness, and load using the results of the initial parameter
study to determine an initial guess for the distributed parameters of the SUMR-13B blade. The initial guess can then be used
for the load simulations that are used to do a more detailed structural layup design and determine the final distributed structural
parameters for the blade.

To model blades with different lengths, we start with classical similarity scaling rules (Loth et al., 2017a), based on the

length scaling factor

n=L/Lo, (16)
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where L is the length of the scaled blade and L is the length of the original blade. In this study, L is the length of the baseline
blades: the SUMR-13A for 2-bladed rotors and the CONR-13 for 3-bladed rotors. We will examine the scaling of the following
parameters (Griffith and Ashwill, 2011):

mass per-unit-length, which scales with n?

stiffness per-unit-length in the flapwise, edgewise, and torsional directions, which scales with n*

stiffness per-unit-length in the spanwise direction, which scales with 2, and

inertia per-unit-length in the flapwise and edgewise directions, which scales with n*.

Once integrated over the blade length, e.g., the mass scales with 1>, while the stiffness and inertia properties scale with 7°.
These parameters can be more flexibly scaled to account for innovations or changes to the structural design. For instance,

we scale the mass-per-unit-length distribution by
M(r) = Mo(r)*™, (17

where M (r) is mass-per-unit-length at spanwise location r of the scaled blade, M, is the mass-per-unit-length of the original
blade, and k), is a tunable parameter to increase or decrease the blade mass. Based on Eq. (17), once integrated over the blade
length, kj; = 0 would produce a blade with a mass that scales linearly with blade length, while k3; = 1 would produce a blade
with a mass that scales with the cube of blade length. State-of-the-art trends show that mass scales roughly with the square of

blade length, or kj; = 0.5. A similar parameter can be defined for stiffness scaling

ks,flap = ks,flap,0n4sza (18)

where ks f1qp is the flapwise stiffness-per-unit-length of the scaled blade, kg f14p,0 is the flapwise stiffness-per-unit-length of
the original blade and kp, is a tunable flapwise stiffness scaling parameter. The edgewise stiffness will be similarly scaled
using a parameter k. Flapwise and edgewise inertia is scaled using the same mass scaling parameter &y, but to the 4™ power
as in Eq. (18). Torsional and spanwise stiffness is scaled according to the similarity scaling rules defined above, with n* and 2,
respectively. The SUMR-13B (2-bladed, n = 1.24) structural properties are scaled from the SUMR-13A blade, first separately
each for the mass and stiffness parameters, and then all together (Full Scaling) in Fig. 10.

Ultimately the final structural parameters will be determined by the structural layup, but this model could be used to more
quickly analyze trade-offs between blade mass, stiffness, loads, and power. In general, mass scaling has the greatest impact on
loads. Since this article only considers operational load cases, the effect is most apparent when analyzing fatigue loading. Loads
during shutdown events and fault cases are also expected to increase with blade mass. Increased flapwise stiffness contributes
to a small increase in energy capture (about 1 %, not shown) due to decreased blade deflection. We also observe that the change
in load due to each individual scaling parameter (kps, krs, and k) approximately sum (or combine linearly), when multiple
parameters are simultaneously scaled. This is shown in Fig. 10: the sum of the changes in load due to Mass, Flap. Stff., and
Edge Stff., is approximately equal to the change in load due to Full Scaling. The same is true for the Final Design, which is a

combination of the scaling parameters that are determined in the next section.
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Figure 10. With = 1.24 and relative to the SUMR-13B with non-scaled structural parameters (kar = krs = kgs = 0, which yield the
SUMR-13B loads in Fig. 9), these plots show the effect of independently scaling the mass (ks = 1), flapwise stiffness (krs = 1), and
edgewise stiffness (ks = 1), as well as the combined effect of scaling all of the structural parameters (Full Scaling, kar = krs = kgs = 1).

The standard deviation of the residual is computed using the transformation set in Table 3 and is normalized to the non-scaled SUMR-13B.

8.2.1 Selecting a kj; and kg for edgewise fatigue loads

The most significant impact of positive structural scaling is the increase in edgewise DELs due to the increased blade mass.
Theoretically, the additional mass increase of the larger blade would provide additional reinforcement against these loads,
through trailing edge reinforcement or increased root diameter. We see that changes to the blade mass result in a change in

edgewise load §my,, i.e.,
dmpe = arknr + by, (19)

where a; and b; are determined from FAST simulations of the SUMR-13B blade with multiple &, values from O to 1 by finding
the linear relationship between kj; and dmy,. Additional edgewise stiffness must compensate for the increase in edgewise load

by increasing the ultimate load

20FE1,

Myt = ) (20)
c

where o is the fiberglass strain limit at the trailing edge, EI, is the edgewise stiffness, and c is the blade chord; this is a
simplification that assumes the neutral axis is at mid chord (Budynas and Nisbett, 2015). In terms of the scaling coefficients, a

linearized version of Eq. (20) can be obtained

kEs :ag(smbg;‘i‘bg. (21)
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Figure 11. The relationship between blade mass, edgewise loads, and

edgewise stiffness, as well how each value was derived.

Finally, changes to the blade structural layup in the form of trailing edge reinforcement to increase edgewise stiffness will

increase the blade mass
kar = azkgs + bs, (22)

where a3 and b3 are determined through a linear regression of SUMR-13B blade designs in NuMAD (Berg and Resor, 2012)
with a target kg from O to 1. Additional trailing edge reinforcement was applied to meet the target values within 5 % and the
ks was computed using the overall mass of the resulting blade model.

The linear system determined by Egs. (19), (21), and (22) can be solved to determine the necessary structural reinforcement
for accommodating the load increase due to the increase in mass. See Table 4 for the results. These parameters can serve as
targets for a detailed SUMR-13B structural layup design. For the remainder of this study, we will evaluate the loading on other

components as a result of the mass increase shown in Table 4.

9 Hub configuration and main bearing loads

Blade loads are transferred through the blade root to the hub at the pitch actuator. In this section, we analyze the load cycle
amplitudes of the hub loads and how they transfer to the non-rotating turbine components. The hub load axes, y; and zp,
rotate with the hub (Fig. 12). About the yj,-axis, hub loads are directly related to the blade loads for both 2- and 3-bladed
configurations; they peak when the rotor is near ) = 0° due to vertical wind shear, resulting in a large cosine-cyclic component
of the hub load about the y;-axis (m}l];,c). A teeter hinge reduces the coupling between blade and hub loads, except in cases
of very large rotor deflections, where “hard” end stops increase the coupling and result in large peak loads. About the zj-axis,

the source of loading depends on whether the rotor has 2 or 3 blades (see Fig. 12). For 3-bladed rotors, the hub load about the
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Figure 12. The hub axis (h) as it rotates with the rotor azimuth angle ¢ for a 3- and 2-bladed rotor. Note that the y,-axis in Fig. 5 does not
rotate while the y,-axis in Fig. 12 does. An example timeseries of the hub loads (mp, and my.) is shown to demonstrate the difference in

the non-rotating main bearing load (ms,) for a 3-bladed (upper) and 2-bladed (lower) SUMR-13B rotor.

zp-axis is driven by the blade aerodynamic loading due to wind shear and has a similar magnitude to the load about the y;,-axis
(Fig. 12, top right). This symmetry is not inherent in a 2-bladed configuration; the m,,, load is primarily determined by the
weight of the blades unless there is a horizontal wind shear. The mismatch between the load cycle amplitudes of mp, and my,
results in larger non-rotating loads, e.g., m,, for 2-bladed rotors (Fig. 12, bottom right). The hub load about the zj-axis, for
both hub configurations, peaks when the rotor is at ¥» = 90°, resulting in a large m}};,s component. The magnitude of these
loads in relation to each other is important for determining their impact on the non-rotating load components.

The rotating hub is connected to the main shaft, which is supported by a main bearing close to the hub and also may
consist of additional bearings between the hub and gearbox. A rotation matrix models the transfer of loads from the rotating to
non-rotating frame

Mgy | [cost  —sing| |mpy (23)

- )

My siny  cosvy M2
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Table 5. Comparison of the 8.5 ms ™! hub load harmonics for 2-bladed fixed, teeter, and IPC methods, as well as 3-bladed (3b) rotors, in
upwind and downwind positions. We analyze the cosine-cyclic hub load about the y,-axis (m,l};’c, Fig. 12) and the sine-cyclic hub load about
the zp-axis (m}li,s) because of their combined effect on non-rotating component loads. The different teeter and IPC methods are presented

in Sect. 9.2.

Rotor Orientation =~ Hub Configuration Rotor Model m,ﬁ’c (kNm) m}};s (kNm)
SUMR-13A 15500 -8840

2-bladed Fixed Hub o\ 13 22500 -16200

Free Teeter 0 -16900

2-bladed Teeter Ideal Teeter 16200 -16400

Doymwind Rotors Blade IPC 12300 16200
2-bladed IPC Bearing IPC 17700 -16200

SUMR-13A (3b) 7180 7220

3-bladed Fixed Hub  g\p _13B (3b) 24900 -24700

2-bladed Fixed Hub  SUMR-13A 3780 23570

Upwind Rotors 3 10 4ed Fixed Hub  SUMR-13A (3b) -526 543

which results in the 1P hub loads mapping to large OP and 2P load components. The large 2P loads result in large fatigue DELs
on the non-rotating parts of 2-bladed turbines. The hub configuration, including the number of blades, whether a teeter hinge

is used, and IPC all have an impact on the fatigue loading of the main bearing.
9.1 Number of blades

To compare with the 2-bladed SUMR-13B, a 3-bladed SUMR-13B was designed using the same blade parameters described in
Table 4. Peak and fatigue blade loads in both the flapwise and edgewise directions are unaffected by the change in the number
of blades.

Loads on other turbine parts are, however, affected by the change in the number of blades. Hub loads on the 2-bladed SUMR-
13B are mostly about the y;,-axis (see m}f;c in Table 5), while 3-bladed rotors are balanced in both directions. The hub loads
in Table 5 can be mapped to the non-rotating frame by Eq. (23). The 1P harmonic in the rotating frame transfers to OP and 2P

harmonics according to

oP 1 1P 1P

Mgy = 3(Miyy . — M2 ) (24)
2P 1 1P 1P

Mgy, = 5(Mpy o +my, o) (25)

The 3P component is determined similarly based on the 2P harmonic load components by using (23).
Three-bladed rotors are advantageous due to these balanced hub loads, which effectively nullify the 2P load components

and only contain a small 3P load on the non-rotating turbine components. The difference in magnitude of the 1P hub load
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Figure 13. Change in peak main bearing loads (left) for the SUMR-13A cone angle study (2- and 3-bladed rotors) and the SUMR-13B fixed
hub configuration, change in main bearing DELs (middle) about the y,-axis (DELSs about the z,-axis are within 5 % of the ys-axis DELs) and
change in AEP (right) for various hub configurations of the SUMR-13B, compared with the fixed-hub, 2-bladed SUMR-13B Final Design
described in Sect. 8.2. The DEL and AEP results from different hub configurations (center and right) are design loads computed directly

from DLC simulations.

harmonics is responsible for the greater loading on the non-rotating components of 2-bladed rotors. Figure 13 shows more than
a 20 % reduction in main bearing DEL for the 3-bladed SUMR-13B, compared to the 2-bladed, fixed-hub SUMR-13B, even

though the 3-bladed rotor captures significantly more energy.
9.2 Teeter and individual pitch control

Historically, some 2-bladed turbines have used a mechanical teeter hinge, which allows for rotation about an axis perpendicular
to the main shaft at the shaft tip. Recently, with the advent of pitch regulated turbines, individual pitch controllers have been
designed in order to mimic this action by changing the aerodynamic loads on the blades as they rotate. Both solutions reduce
loading on the hub, which translates into reduced loading on the main bearing and other non-rotating components.

We have modeled a free teeter hinge in FAST by enabling the teeter degree-of-freedom and setting a zero damping coefficient
to the teeter motion. This free teeter setup would provide the best configuration for reducing blade loads. A more realistic teeter
hinge must account for friction, damping, and end stops (see, e.g., Schorbach et al. (2017)).

The free teeter hinge configuration completely eliminates the coupling between blade and hub loads, resulting in zero hub
loads about the yp-axis. The relationship in Eq. (25) and harmonic loads in Table 5 suggest that main bearing fatigue loads

(mgg) increase when compared to the fixed hub configuration. However, DLC simulations show that turbulence has a relatively
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minimal impact on the non-rotating components for this rotor with a free teeter hinge, compared with all other rotors. In other

words, the design loads for the main bearing are nearly equal to the harmonic loads, but in every other case there is a significant

turbulent component, as mentioned in Sect. 6. Since this case is an outlier and behaves differently when mapping harmonic

loads to turbulent loads, it is omitted from the transformation set of 2-bladed rotors. Instead of presenting the transformed load

estimates and power capture, we present the design loads computed directly from DLC simulations in Fig. 13. However, the

harmonic loads in Table 5 still illustrate how an optimal teeter design could mimic the balanced hub loads of 3-bladed rotors.
A more ideal teeter design could be achieved by selecting an appropriate teeter damping coefficient die.; that matches the
1P

1P
My and m

i s 10ad harmonics to minimize the main bearing load mgg Since only one damping coefficient must be designed

for all wind speeds, we minimize the main bearing load using the wind speed distribution p(u) by

: 2P
dteet,opt = argmin E P(U)msya (26)
dieet
UE Uteer

where Ul is the set of wind speeds used to analyze the teeter damping, focused on below-rated operation, where the greatest
fatigue contribution occurs. Main bearing load cycle amplitudes ng and m?2F increase with wind speed due to the increased
effect of wind shear, but lower wind speeds are far more probable than high wind speeds. Since our design goal is to reduce
fatigue loads on the main bearing and other non-rotating components, we focus on below-rated wind conditions. The ideal teeter
design greatly reduces the main bearing fatigue loads, along with the fatigue loading on the other non-rotating components,
but reduces energy capture by 1.9 %, compared with the fixed 2-bladed SUMR-13B (Fig. 13, center and right).

Alternatively, IPC can be used to mimic the rotor balancing of a teeter hinge by adding a time-varying pitch angle offset to
each blade. An IPC algorithm was initially designed to focus on blade loads, which we call Blade IPC in Table 5 and Fig. 13.
The 2-bladed IPC architecture used here was initially presented in van Solingen and van Wingerden (2015), which minimizes

the teeter load
1
Miget = i(rnby,l - mby,2)~ (27)

We have applied loop-shaping procedures (McFarlane and Glover, 1992) to fine tune the controller to reduce the 1P and 2P
blade harmonics, which results in a decrease in the blade design load for the SUMR-13B (about 10 % for flapwise peak and
fatigue loads). The IPC algorithm was designed to operate both above- and below-rated, since the bulk of the fatigue loads
occur below rated, and the IPC must be active near rated in order to reduce the peak design load. Since this Blade IPC is
designed to reduce blade loads as much as possible, hub loads about the y,-axis are less than hub loads about the zj-axis
(Table 5). Therefore, the Blade IPC algorithm is not necessarily optimal for the main bearing DELs.

Using the relationship in Eq. (25), we designed a Bearing IPC algorithm with the goal of balancing the hub load components,
such that m;" . = —m;" . to minimize 2P loading on the main bearing. Equivalently, m;5 and m;" should be equal in
magnitude and 90° out of phase. Since [m;"| changes more slowly than [mj] |, the my. signal is delayed by 90° and the

difference

Mg = Mhphy — Mp (1;0 - 900) (28)
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can be fed back using the same architecture as the Blade IPC because my,y, = 2myce;. Harmonic load estimates suggest better
load mitigation than those in Fig. 13, so we present the DLC-based design loads directly from turbulent simulations. In general,
dynamic control solutions are not as well estimated using harmonic load estimates, compared with changes to the rotor model
using the same control because dynamics due to turbulence often drive control design. Other control methods were attempted
to balance the load components in Eq. (25), which are further explored in Zalkind and Pao (2019).

If used below rated, these load mitigation techniques reduce power capture, as shown in the right of Fig. 13. IPC can be
designed so that it only operates above rated, resulting in a negligible power loss. However, this reduces its effectiveness in

constraining peak loads that occur close to rated wind speeds.
9.3 Large cone angle effects

The main bearing must support the weight of the rotor and thrust imbalance on the rotor due to shear, i.e.

o _,,0 0
msy - msy,grav + msy,shr' (29)

For downwind turbines, both components of Eq. (29) are positive, resulting in large, constant main bearing loads about the

0

sy,erav 18 negative while the load due to wind shear m?

ys-axis. For upwind turbines, the load due to gravity m sy,shr 1S positive,

which greatly reduces the steady-state main bearing load for upwind turbines compared to downwind turbines. To quantify this

P

y) for rotors with various

difference, we analyze the harmonic load estimate of the peak main bearing (15 peak = mgg + mg
cone angles (Fig. 13, left).

The harmonic loads in Table 5 suggest there would be a significant change in the mean main bearing load mgg going from
upwind to downwind rotor configurations. However, the design loads computed using DLC simulations show that turbulence
contributes a large amount to the peak load experienced by the main bearing (Fig. 6) for both configurations. A downwind
configuration, compared to the same rotor upwind (with cone angles of +5 deg., respectively) only increases the main bearing
load by about 15 %. Despite the larger total blade mass of the 3-bladed rotors, 2-bladed rotors still have a larger peak load
due to the increased 2P loading and a larger turbulent load component. We see this same effect in the fatigue loading results
of Fig. 13, which suggests that main bearing peak loads could be reduced using the same methods as in Sect. 9.2. The larger
SUMR-13B, however, has a non-negligible increase in the peak main bearing load, due to combined increases in blade mass,

blade length, and cone angle. These increased loads on the main bearing transfer to the other non-rotating components, which

we will analyze in the yaw bearing and tower design studies.

10 Yaw bearing loads and nacelle layout

The main bearing is mounted to the bedplate of the nacelle, which attaches to the yaw bearing, responsible for rotating the
entire nacelle and rotor to align with the wind direction. The yaw bearing experiences similar loads to the main bearing; they
peak near rated and at cut-out due to thrust effects and wind shear, respectively. A potential issue with downwind turbines is

a large, mean y,-axis moment leading to large peak yaw bearing loads, similar to the peak main bearing load. However, peak
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Figure 14. The tower clearance (left) resulting from upwind (negative cone angles) and downwind (positive cone angles) configurations, the

nacelle center of mass (middle) required to balance the rotors, and the peak yaw bearing loads (right) of the balanced rotors.

loads on the yaw bearing can be counteracted by properly balancing the nacelle center-of-mass atop the tower. We will study
the different cone angle designs from Sect. 8.1 for 2- and 3-bladed rotors, as well as our SUMR-13B Final Design to investigate

the effect of rotor cone angle and increased mass on nacelle design and yaw bearing loads.

opP

Large mean loads on the yaw bearing m,,,

cause large peak loads that can be overcome by properly choosing the hub-to-
tower overhang xog and the nacelle center of mass x.y (as shown in Fig. 5). We use a simple method for determining the
nacelle overhang: for upwind turbines, the nacelle overhang was set to that of the CONR-13 (-8.61 m), and for downwind
turbines, we used the minimum possible overhang (3.15 m, equal to the radius of the tower at the nacelle). These hub-to-tower
overhang values result in adequate tower clearance (the minimum perpendicular distance between the blade tip and the yaw
axis y,) when the cone angle is at least 5° away from the tower (Fig. 14, left). However, such an important design parameter
would certainly be subject to verification using a detailed tower design and the full set of DLCs before deeming the tower safe
from blade strike. Rotors with larger cone angles have large tower clearances, which is part of the motivation for their design.

To compare peak yaw bearing loads across rotors, we adjust the nacelle center of mass so that mean yaw bearing loads m%®

vy
are minimized in still air. The mean yaw bearing load is linearly dependent on the component masses and center-of-masses

oP __

myy - g(mnacxcm + mrotxcm,rot)a (30)

where g is the acceleration due to gravity, mp,. is the nacelle mass, M, is the total rotor mass, and .p 1ot is the rotor center of

mass. The nacelle center of mass ., that sets the mean overturning yaw bearing load to zero is

TNyotLem,rot

Tem =

€29

mnac
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Table 6. Component masses for placing the nacelle center-of-mass atop the tower.

Component Mass (Mg)
Nacelle 1030
Hub 245
Blade (2-bladed SUMR-13A) 51.8
Blade (3-bladed SUMR-13A) 473
Blade (2-bladed SUMR-13B) 83.8

The hub and nacelle masses are approximated using a length-to-mass scaling factor of (%) ® from the NREL 5 MW reference
turbine (Jonkman et al., 2009) and shown in Table 6. The hub and nacelle masses are constant for all rotors throughout this
study, but the rotor mass and center-of-mass vary.

Rotors with large downwind cone angles must have nacelle center-of-masses further upwind (negative values in Fig. 14,
center). Given the nacelle mass in Table 6, moving the nacelle center of mass 1 m upwind reduces the mean (and peak)
yaw moment by about 10 MNm. Due to the extra overhang necessary for upwind turbines, the center of mass location for
the downwind turbines is closer to the tower than for the upwind turbines. By designing the proper hub to tower overhang
and nacelle placement, the peak yaw loads are no more problematic for downwind rotors than upwind rotors. Once properly
balanced, the peak yaw loads are primarily driven by the thrust imbalance due to wind shear, which decreases with increased
cone angle (Fig. 14, right). However, changing the nacelle center of mass is a non-trivial task that involves a detailed drivetrain
and nacelle design. Fatigue loads (not shown) on the yaw bearing also depend on rotor thrust and decrease with increasing

cone angles. The methods presented in Sect. 9.2 also reduce yaw bearing loads.

11 Tower loads

The yaw bearing is attached to the top of the tower, which must support the rotor-nacelle assembly and withstand large mo-
ments. We focus on the effect of rotor axial induction, cone angle, and the number of blades on peak loads in the fore-aft

Peak

direction m}** and fatigue loading in the side-to-side direction mjpy "

tr

Peak fore-aft tower loading is similar to the peak blade loads described in Sect. 8.1; with a maximum near rated wind
speeds, they are largely driven by rotor thrust, which is most sensitive to changes in axial induction and cone angle. Lower
axial induction rotors and downwind rotors can both reduce the peak tower load by as much as 20 % (Fig. 15, left). Tower loads
are not as sensitive to blade length. Longer blades increase the rotor thrust in below-rated wind speeds, but with a constant
generator power, the pitch controller activates at lower wind speeds, constraining the peak tower load near rated. For rotors
that capture the same amount of power, 2-bladed rotors experience about a 30 % increase in peak tower fore-aft load when
compared to 3-bladed rotors because of a large difference in the turbulent sampling of the wind due to the increased chord

lengths, an effect that is also present when looking at the tower DELs.
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Figure 15. Peak tower loads in the fore-aft (F-A) direction (mfg“k) and side-to-side DELs (mPEr) for rotors with different axial induction

factors (and corresponding blade length changes as discussed in Sect. 8.1; red), cone angles (yellow), and number of blades. The same loads
for the SUMR-13B are also shown. Unless otherwise specified, the available rotor power is 13.9 MW, the axial induction is 0.333, and the
cone angle is 5 deg.; the SUMR-13B is specified in Table 1. The standard deviation of the residual for both load axes incorporates all of the

presented design studies.

Besides having larger chord lengths that sample more turbulence than 3-bladed rotors, 2-bladed rotors also experience a
resonance due to the tower design. Modern wind turbine towers are usually designed to be “soft-stiff””, with a natural frequency
between the 1P and 3P harmonics of the rotor (van der Tempel and Molenaar, 2003). When the 2P rotor speed interacts with
the natural frequency of the tower, there are high fore-aft and side-to-side loads. Side-to-side tower DELs increase the most,
since there is less aerodynamic damping from the rotor in this direction (Jonkman and Matha, 2011). One idea is to use a high-
compliance tower structure (Bergami et al., 2014) or a floating substructure with a natural frequency below the 1P harmonic.
However, a very low tower natural frequency causes tower motion to be perceived as a wind speed disturbance, resulting in
speed regulation issues. Several studies have considered this, given the emergence of floating wind turbines (Jonkman and
Matha, 2011), but to simplify our analysis, we have kept the same tower for all turbines: a scaled version of the NREL-SMW
3-bladed reference model (Jonkman et al., 2009).

Our solution is to implement a speed avoidance controller that reduces the rotor speed as it approaches the critical rotor speed

from below and increases it after, avoiding the critical speed as much as possible (Fig. 2, center). Similar approaches have been
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used in 2-bladed rotor field testing (Johnson et al., 2005). While this controller does reduce side-to-side fatigue loading, 2-
bladed rotors still experience 3 to 4 times the DELs that similar 3-bladed rotors experience (Fig. 15). Longer, heavier blades
with lower axial induction factors amplify this effect. Changing hub architectures also impacts the tower fatigue loads. Both
teeter and IPC decrease the fore-aft loading while increasing the side-to-side loading.

The harmonic load simulations predict the same peak tower loads for both 2- and 3-bladed rotors, but turbulent simulations
show a clear difference in the design load, as indicated in Fig. 15. Compared with other turbine parts, the transformed estimates
of the tower loads have a large amount of uncertainty (Fig. 6). This uncertainty can be attributed to the source of these tower

loads, which are highly dependent on turbulent gusts.

12 Model limitations, suggested improvements, and potential use

When analyzing the design studies of Sects. 8—11, we have come across a few sources of uncertainty in the estimates of
the transformed loads. When mapping the harmonic loads to the loads calculated using DLCs (Sect. 6), we see that a large
component of the design load is due to turbulence, which primarily depends on the number of blades on the rotor, leading to
different transformation coefficients for 2- and 3-bladed rotors in Eq. (14). However, the turbulent component is also correlated
with other model parameters, most notably rotor thrust. Highly coned downwind rotors reduce the rotor thrust and have a lower
turbulent component than upwind rotors. Different levels of turbulence, besides the Class IIB that was analyzed in this study,
would result in different turbulent components and residuals of the transformation from harmonic to design load. Additionally,
dynamic effects, like the problematic gust in Fig. 3 are not explicitly modeled in the harmonic model of Sect. 5. Thus, dynamic
control solutions that appear promising in constant wind inputs should be ultimately verified in turbulent simulations.

Several improvements to the harmonic model could be made. For instance, the problematic gust events follow a similar
profile in many instances; this could be an additional simulation added to the model’s set of simulations. While outside the
scope of this study, parked, fault, and shutdown cases can result in the largest design loads in practice, e.g., in (Griffith and
Richards, 2014); they could be added with little computational expense. The transformation procedure could be streamlined by
perhaps doing a single, exemplary turbulent simulation for each case to determine the turbulent component of each load.

The harmonic loads and their mapping to design load estimates used to evaluate design trade-offs provide a potential middle
ground for wind turbine system engineering tools. The method is more realistic than simple scaling rules and static estimates,
but requires less computational effort than full sets of DLC simulations and therefore allows for an initial optimization over a

wider range of configurations.

13 Conclusions

In this article, we presented a method for estimating wind turbine power capture and structural loads, which uses the harmonic
components of signals from aeroelastic simulations in FAST with a constant, sheared inflow. The power and load estimates

are mapped to design loads from power producing design load cases and could be used for initial wind turbine system design
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or sensitivity analyses to model changes. We designed 42 different rotors with the goal of reducing the cost of wind energy
through increased power capture and reduced capital expenditures. Power capture and structural loads are analyzed for blades
longer than 100 m in both upwind and downwind configurations, with 2- and 3-bladed rotors, leading to an updated design, the
SUMR-13B, with longer, more slender blades that align with industry trends. A series of detailed design studies was performed,

with the following conclusions:

— Low axial induction rotors using longer blades with smaller chord lengths can capture more energy while constraining

peak operational blade loads.

— As rotor size increases, due to increasing blade mass, edgewise blade loading becomes a critical design-driving load and

may ultimately constrain the size of wind turbine rotors.

— Downwind, coned rotors can significantly reduce peak operational blade loads, but capture less energy than rotors with

lower cone angles.

— Downwind, coned rotors will experience slightly larger (about 15-25 %) peak main bearing loads than upwind turbines,

but the effect is amplified with increasing blade length, mass, and cone angle.

— Peak yaw bearing and tower loads are not problematic for downwind rotors as long as the nacelle is properly balanced

on the tower.

— 2-bladed rotors experience significantly greater loading on the non-rotating parts compared to 3-bladed rotors, unless a

teeter hinge or individual pitch control is utilized. In these cases, the loading is comparable, but with a loss in power.

— 2-bladed rotors will require either speed avoidance control or a different tower design to avoid resonance with the 2P

frequency of the rotor.

We believe that our model has provided future wind turbine designers with a method for more quickly analyzing design

trade-offs, and our design studies can serve as a reference for future large rotor designs.
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