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Anonymous Referee #2
The following are points the authors could consider.

Authors’ response:

We kindly thank the reviewer for the time he / she spent with the review of the manuscript. Please 
find our answers to your comments below.

Page 2, line 18. “There are”, rather than “There is”. Line 25. “performance will be addressed”. Page
3, line 3. “variation of spatially separated sensors”.  Line 5. “between sensor and reference” or 
“between the sensor and the reference” 

Authors’ response:

The phrases were updated as suggested by the reviewer.

Page 6, line 15. “The remaining ... remained infinite.” What does this mean? And ‘infinite’ – is this 
something to worry about? 

Authors’ response:

The statement was updated to the following.

“The integration range of the other integrals of the analytical solution remained infinite.”

The value of the integral with infinite integration range is well defined for the investigated 
integrand in the present case.

Page 7. Would a physical argument also help? “Physically, as the points move sufficiently far apart 
the variance must cease to change, simply because the turbulence is no-longer correlated. It is the 
fact that the turbulence is correlated (over a distance less than order the integral length scale) that 
the variance will be reduced below an asymptotic level, necessarily falling to zero at zero 
separation. The form of Fig 1 is therefore as expected.” Qualitative physical arguments are worth 
having.

Authors’ response:

We have extended the physical argument along the comment of the reviewer as follows.

“At large separation distances, typically in the order of the integral length scale l, the second-order
moment of wind speed at the points a and b becomes uncorrelated.“



Also, could a boundary layer scale – e.g. an overall height – be given in association with Fig 1 and 
Table 1?

Authors’ response:

The boundary layer height does not directly enter into the Mann model, only indirectly through the 
length scale parameter. The length scale parameter is taken from the paper by Sathe et al (2013) and
are believed to be representative of the neutral offshore boundary layer.

And it would still be interesting to know how the asymptotic levels change with T. Could some 
example be given? – of halving or doubling?

Authors’ response:

The impact of the measurement duration T on the asymptotic level of the normalized spatial 
variance of the second-order moment of wind speed can be understood from Eq. 14. As such, for 
instance, halving the duration T will result in an increase of the asymptotic level by the square root 
of two. 

Page 8, line 27. “Thereby the local realizations of turbulent structures can be taken into account.” Is 
this really the case? There is not much structural information, is there?

Authors’ response:

The statement was rephrased to the following.

“Thereby the local realization of turbulent flow can be taken into account.”

Page 9, line 1. Suggest “between turbines arises from the spatial”. Line 2. “, an investigation was 
made on the”. 

Authors’ response:

The phrases were updated as suggested by the reviewer.

Case of Fig 2. Presume ABL conditions of Fig 1, Table 1 are typical of those relevant here. Should 
this be said? (Some overall ABL height would be useful.) 

Authors’ response:

The ABL conditions in the Lillgrund study are classified implicitly using turbulence intensity, as 
shown in Figure 2 and 3. The impact of ABL conditions on the comparison of the observations from
the Lillgrund study with the analytical solution from Figure 1 is discussed on page 10, line 12 to 
page 11 line 27.



Page 10+11. What level of turbulence intensity is taken to be indicative of neutral conditions? 7%?

Authors’ response:

Based on the observations in Figure 3, the measured turbulence intensity of 7% to 8% could 
indicate neutral conditions, as discussed on page 10 line 13 ff. Given that the turbulence intensity is 
measured at the turbines the ambient turbulence intensity is likely to be lower at neutral conditions. 

Page 11. Line 22 and line 24. ‘more unstable conditions’ Repetition. This needs tidying up.

Authors’ response:

The phrase was adjusted to circumvent word repetition. The statement now reads as follows.

“First, according to Sathe et al. (2013) the integral length scale is larger in unstable conditions
than in stable ones, and based on Eq. 14 this results in a larger value of the asymptote.”

Fig 4, right hand fig. Could not the misalignment angle be indicated by a circular arc, and so look 
nicer?

Authors’ response:

We believe the design of Figure 4 is clear and aesthetic.

Figs 3 and 5. Should not the vertical axis have same label as Fig 1?

Authors’ response:

We thank the reviewer for the comment. We are convinced that the y-axis label of Figure 3 is 
sufficiently clear given the definitions provided in the paper. To increase clarity of Figure 5, the y-
axis label was updated as suggested by the reviewer.

Page 16, line 14. I don’t understand this paragraph.

Authors’ response:

The explanation to page 16 line 14 is given in the subsequent paragraph.

Page 14. Paragraph from line 8. Should not wind direction appear explicitly in the list? 

Authors’ response:

Wind direction becomes relevant in case turbine performance is wind direction dependent due to, 
for example, topographical effects. The following statement was added to the discussion to clarify 
this.

“In case turbine performance is wind direction-dependent, due to, for instance, topographical
effects, the classification also needs to be performed with respect to wind direction.”



Anonymous Referee #3
Very interesting paper, which I recommend for publication after improving some minor aspects.

Authors’ response:

We would very much like to thank the reviewer for the time he / she spent with the review of the 
manuscript. Please find our answers to your comments below.

A citation for further information on Lillgrund wind farm should be provided.

Authors’ response:

A selected citation was added to Section 3.2.1 on page 9 line 4 to provide further information on 
Lillgrund wind farm.

Fig 3 (and 5?) would be nice to write for the y-Axsis that this is again \delta M(…)

Authors’ response:

We thank the reviewer for the comment. We are convinced that the y-axis label of Figure 3 is 
sufficiently clear given the definitions provided in the paper. To increase clarity of Figure 5, the y-
axis label was updated as suggested by the reviewer.

There is a principal aspect of presentation which should be improved: The notation introduced in 
Chapter 2 should be taken as basis of the whole paper. Later on there are several quantities (related 
to the quantities of Chart 2.) which are not well introduced - mainly clear definitions are missing.

** for RMS of Fig 5 (and corresponding text)

** for TI , \rho and \sigma close to equ. 17

** The Pearson correlation - was already nearly used in equation 4.

Authors’ response:

We thank the reviewer for the comment. The discussion of Figure 5 has been extended to provide an
improved and more coherent understanding to the reader. Along with Eq. 17, the following 
definition was added on turbulence intensity TI and σ.

“… where turbulence intensity TIL,a(T) at a point a is defined as the ratio of the standard deviation
of wind speed σL,a(T) to the mean wind speed uL.”

ρT I ,a,b is the Pearson correlation coefficient defined above Eq. 17 in line 2 on page 15.



The Pearson correlation coefficient in Eq. 17 and the spatial variance of the second-order moment 
in Eq. 4 are similar, nonetheless different. This can be seen from the derivations of Eq. 17 – 20, 
which are required to relate these two quantities.

The results and presentations of Chapter 3.2.3 and Chapter 2 should be revised in the way that a 
common notation is used.

Authors’ response:

The notations in Chapter 2 and Chapter 3.2.3 are coherent, as quantities are expressed using the 
same notation. This can be observed, for instance, in Eq. 18.

A simple explanation of the limits of \detla M for totally correlated and totally uncorrelated should 
be given. (Here I run in some problems with the results, if the signals at a und b are uncorrelated I 
expect that \delta M become sqrt{2} (see equ. 10) How can you explain the saturation of Fig 1 for 
35%??.) I suggest that the authors discuss this in combination with equations. 21. also \rho should 
be related to \delta M.

Authors’ response:

The asymptotic value of the normalized spatial variance δM2,L,∞ depends on the atmospheric 
conditions. As can be seen from Eq. 13, δM2,L,∞ does usually not yield the square root of two, since 
the standard deviation of the second-order moment σ(μ2,L(T )) typically differs from the expected 
second-order moment of wind speed ⟨μ2,L(T) .⟩

Are equations 14 and 15 is valid for \tau <= T and const for tau> T? in these equations I expected 
sort (2) and not 2

Authors’ response:

The format of Eq. 14 and 15 is correct and is valid for τ << T. The latter was added to the 
manuscript as follows.

“This approximation is valid for τ << T and L<< l.”

My suggestion to revise the paper with respect to the used symbols and formulas. Bring all in a 
consistent way. I have the feeling this can be done best in Chap2 (or you may use an appendix for 
the formal relations)

Authors’ response:

As suggested by the reviewer, the use of symbols and formulas was align within the paper.
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Abstract. For the first time an analytical solution for the quantification of the spatial variance of the second-order moment

of correlated wind speeds was developed in this work. The spatial variance is defined as random differences in the sample

variance of wind speed between different points in space. The approach is successfully verified using simulation and field data.

The impact of the spatial variance on three selected applications relevant to the wind energy sector is then investigated including

mitigation measures. First, the difference of the second-order moment between front-row wind turbines of Lillgrund wind farm5

is investigated. The variance of the difference ranges between 25% and 48% for turbulence intensities ranging from 7% to 10%

and a sampling period of 10min. It is thus suggested to use the second-order moment measured at each individual turbine as

input to flow models of wind farm controllers in order to mitigate random error. Second, the impact of the spatial variance of

the measured second-order moment on the verification of wind turbine performance is investigated. Misalignment between the

mean wind direction and the line connecting the meteorological mast and wind turbine is observed to result in an additional10

random error in the observed second-order moment of wind speed. In the investigated conditions the random error was up to

34%. Such random error adds uncertainty to the turbulence intensity-based classification of the fatigue loads and power output

of a wind turbine. To mitigate the random error it is suggested to either filter the measured data for low angles of misalignment,

or to quantify wind turbine performance using the ensemble averaged measurements of the same wind conditions. Third, the

verification of sensors in wind farms was investigated with respect to the impact of distant reference measurements. In case15

of a misalignment between the wind direction and the line connecting sensor and reference, an increased random error will

hamper the comparison of the measured second-order moments. The suggested mitigation measures are equivalent to those for

the verification of turbine performance.

1 Introduction

The wind energy market has been growing rapidly at a rate of 16% throughout the past decade reaching 539,123MW of20

global, installed capacity in 2017 (Global Wind Energy Council (GWEC), 2017). Many areas of the wind energy sector require

measurements of the wind turbulence in the atmospheric boundary layer (ABL), which is typically quantified as turbulence

intensity. Turbulence intensity is defined according to the IEC norm (International Electrotechnical Commission, 2005) as the

ratio of the square root of the second-order moment of axial wind speed to the mean axial wind speed of the same 10-min period.

Common devices for the measurement of the second-order moment of wind speed are sonic anemometers, cup anemometers25
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and lidars. These devices provide an estimate of the second-order moment covering a confined volume of the ABL, that is at

the sensor location, or in the case of lidars, along the laser beam. However, out of economical and/or technical considerations,

these measurements are, at times, performed spatially separated from the desired location. Typically, then extrapolation is used

to estimate the second-order moment of wind speed at the desired location. In other applications, measurements from multiple

locations are aggregated to obtain statistical measures. However, second-order moments of wind speed measured at different5

locations over a finite period will be different, even under homogeneous conditions. This is because the coherence of turbulence

decreases with distance, particularly the larger the cross-flow separation (Sørensen et al., 2012). To quantify and analyze the

spatial variance of the second-order moment of wind speed, an analytical approach is therefore developed. The spatial variance

is defined as random differences in the sample variance of wind speed between different points in space.

The spatial variance is relevant to a variety of areas in the wind energy sector. This work focuses on three areas, that is10

wind farm control, the verification of wind turbine performance, and sensor verification. In wind farm control the operation of

wind turbines in a wind farm is coordinated with the objective to either (i) maximize the total power production of the wind

farm (Kazda et al., 2016), or (ii) to follow a target level for the total power output of the wind farm, while optionally reducing

fatigue loads of wind turbines (Kazda et al., 2018). Advanced wind farm controllers typically employ models of wind farm

operation (Gebraad et al., 2016; Kazda and Cutululis, 2018) to predict the impact of the control on the flow within the wind15

farm. Increasingly, turbulence intensity is used as input to flow models (Niayifar and Porté-Agel, 2016; Göçmen et al., 2018).

The most common turbulence-related input is ambient turbulence intensity, which is typically obtained from measurements at

upstream turbines of the wind farm. There are two commonly-employed approaches to process these measurements for use in

the flow model. In one approach, the turbulence measurements at each upstream turbine define the ambient turbulence intensity

at the respective turbine. In the other approach, the ambient turbulence intensity is defined as the average of the turbulence20

intensity at all upstream turbines. Because of the distance between wind turbines, the measured second-order moment of wind

speed however varies between the turbines. The present work thus investigates the impact of the spatial variance on the two

above described approaches for defining ambient turbulence intensity.

Next, it is increasingly common to use turbulence intensity measurements for the classification of turbine performance.

Having been discussed in literature over the past decade, the impact of turbulence intensity on turbine performance will be25

addressed in the next revision of the IEC standard (IEC, 2005). This is because the turbulence intensity in the flow that

approaches a wind turbine influences its fatigue loads (Eggers et al., 2003; Saranyasoontorn and Manuel, 2008) and power

output (Elliott and Cadogan, 1990; Gottschall and Peinke, 2008; Clifton and Wagner, 2014). In the process of verifying wind

turbine characteristics, the turbulence intensity in the free flow is typically measured at a meteorological mast adjacent to the

wind turbine. As a result of the distance between mast and wind turbine, the spatial variance of the second-order moment30

can impact the accuracy of the measured turbulence intensity. Uncertainty in the measured turbulence intensity propagates

into the uncertainty of the measured power curve and fatigue loads of the wind turbine. When the mast location is directly

upstream, the random error due to the spatial variance of turbulence can be regarded as small assuming Taylor’s hypothesis

of frozen turbulence. The assumption may lead to an underestimation of the difference in variances in the situation where one

measurement position is more or less directly downstream from the other. In case of an offset of the mast location orthogonal35
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to the direction of wind flow, a random error results, because of the spatial variance of turbulence. The magnitude of the impact

and approaches for its mitigation are therefore investigated in the present work.

The third application area discussed in the present work is the verification of spatially separated sensors for the measurement

of the second-order moment of wind speed. In such case, the measurements of the to-be-verified sensor are compared to a

spatially distant reference measurement. Due to the distance between sensor and reference, the result of the verification can be5

corrupted by the spatial variance of the second-order moment of wind speed. This phenomenon is discussed in the present work

on the example of the verification case in Mittelmeier et al. (2016). Here turbine-based measurements of turbulence intensity

are verified with reference measurements at an adjacent meteorological mast.

The remainder of this paper is structured as follows. In section 2 the developed analytical solution for the quantification of

the spatial variance of the second-order moment of wind speed is detailed. In section 3, first, the analytical solution is verified,10

and thereafter, the mitigation of the impact of the spatial variance of the second-order moment of wind speed is discussed for

three selected applications. The paper is concluded with a summary of the key findings in section 4.

2 Analytical Solution to Spatial Variance of Second-order Moment of Wind Speed

In the following the first analytical solution is derived for the quantification of the expected spatial variance of the second-order

moment of wind speed measured over a time period T at two spatially-separated points a and b. The expected spatial variance15

of the second-order moment of wind speed δµ2
2,L,a−b in an arbitrary directional component projection L is defined as

δµ2
2,L,a−b(T ) = 〈[µ2,L,a(T )−µ2,L,b(T )]2〉 (1)

where µ2,L,a(T ) and µ2,L,b(T ) are second-order moments measured at the points a = (ax,ay,az) and b = (bx, by, bz) in

the ABL. The direction of the component projection L of the measurement is assumed to be the same at the points a and b. x,

y, and z are the coordinates of the Cartesian coordinate system. x is set to the mean direction of wind flow, y is the horizontal20

coordinate orthogonal to x, and z the vertical coordinate. The measured second-order moment of wind speed µ2,L(T ) is defined

as

µ2,L(T ) =
1

T

T
2ˆ

−T
2

(uL(t)−uL)2dt (2)

where uL(t) is the wind speed in an arbitrary component projection L and uL is the wind speed in the same direction

averaged over the time interval [−T/2,T/2]. The wind speed in an arbitrary component projection L is defined as25

uL = nL ·u (3)
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where nL = (nL,x,nL,y,nL,z) is the unit-directional vector in the direction of the projection, and u = (u,v,w) is the wind

velocity.

Assuming a homogeneous turbulent field, the expected spatial variance of the second-order moment (Eq. 1) can be reformu-

lated as

δµ2
2,L,a−b(T ) = 2[〈µ2,L(T )2〉− 〈µ2,L,a(T )µ2,L,b(T )〉] (4)5

Next, it is assumed that the mean wind speed uL is zero. This assumption is not necessary since assuming a non-zero mean

wind speed gives the exact same results, but it makes the equations much more compact. Furthermore, it is assumed that

uL(t) can be represented by a Gaussian process. Consequently, Isserlis’ Theorem (Isserlis, 1916, 1918) can be applied to Eq.

4 resulting in

δµ2
2,L,a−b(T ) =

4

T 2

[ T
2̈

−T
2

〈uL(t)uL(t′)〉2dtdt′−

T
2̈

−T
2

〈uL,a(t)uL,b(t′)〉2dtdt′
]

(5)10

The expected spatial and temporal correlation of wind speeds can be expressed using the two-point correlation tensor of

wind velocity R(r,∆t). r is a three-dimensional vector connecting the two points, and ∆t the time delay. Hence, Eq. 5 can be

transformed into

δµ2
2,L,a−b(T ) =

4

T 2

[ T
2̈

−T
2

(nTLR(0, t− t′)nL)2dtdt′−

T
2̈

−T
2

(nTLR(a− b, t− t′)nL)2dtdt′
]

(6)

The correlation tensor can be obtained from the infinite volume integral of the spectral tensor Φ(k) as15

T
2̈

−T
2

(nTLR(a− b, t− t′)nL)2dtdt′ =

T
2̈

−T
2

[ ∞̊

−∞

nTLΦ(k)nL exp
(
ik(a− b+

(
U 0 0

)
(t− t′))

)
dk1dk2dk3

]2
dtdt′ (7)

The spectral tensor Φ(k) can be obtained using the model of Mann (1994). k is the three-dimensional wave number vector.

The three dimensional infinite integral over the wavenumber space is denoted as
´
dk =

˝∞
−∞ dk1dk2dk3 in the following.

The time delay ∆t is eliminated using Taylor’s hypothesis of frozen turbulence as the spatial separation ∆x= U(t−t′) in axial

flow direction. U is the mean wind speed in axial flow direction when averaging over the time interval [−T/2,T/2]. Expanding20

above equation and solving the time integral yields
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T
2̈

−T
2

(nTLR(a− b, t− t′)nL)2dtdt′ =

ˆ ˆ
(nTLΦ(k)nL)(nTLΦ(k′)nL)exp

(
i(k+k′)(a− b)

)
sinc2

( (k1 + k′1)TU

2

)
T 2dkdk′ (8)

The derived equation 8 is used in the original problem (Eq. 6) yielding an analytical solution for the spatial variance of the

second-order moment5

δµ2
2,L,a−b(T ) = 4

ˆ ˆ
(nTLΦ(k)nL)(nTLΦ(k′)nL)

[
1− cos

(
(k+k′)(a− b)

)]
sinc2

( (k1 + k′1)TU

2

)
dkdk′ (9)

In the following, the normalized spatial variance of the second-order moment δM2,L,a−b is defined as

δM2,L,a−b =

√
δµ2

2,L,a−b

〈µ2,L(T )〉
(10)

The normalization is performed using the ensemble second-order moment of wind speed 〈µ2,L(T )〉, which is calculated as

〈µ2,L(T )〉=

∞̊

−∞

nTLΦ(k)nL

[
1− sinc2

(k1TU
2

)]
dk (11)10

3 Results & Discussion

In the following, the analytical solution is compared to the spatial variance observed in a simulated wind field in order to

demonstrate its validity. Thereafter, the mitigation of the impact of the spatial variance is investigated for three selected appli-

cations, that is wind farm control, verification of turbine performance and sensor verification.

3.1 Verification of Analytical Solution15

The analytical solution (Eq. 9) is successfully verified in the following against a simulated wind field.

3.1.1 Simulation Set-up

The turbulent wind field is created using the simulation approach of the Mann model (Mann, 1998). The simulation domain

has the dimensions of 5000m × 600m × 600m in the x, y, and z direction, respectively. The geometric characteristics of the

simulation domain and grid are summarized in Table 1.20
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Direction x y z

Dimension 5000m 600m 600m

Grid points 1024 128 128

Grid spacing 4.88m 4.69m 4.69m
Table 1. Key characteristics of domain and grid of simulated wind field.

3.1.2 Atmospheric Conditions

The ABL is characterized by the following conditions in both the simulations and the analytical solution. The stability of the

ABL is neutral, and hence, the spectral parameters of the Mann model are set to αε
2
3 = 1, l = 50m, Γ = 3.2, according to

Sathe et al. (2013). The value of αε
2
3 is arbitrary and irrelevant, since the spatial variance is only considered in a normalized

manner. The mean wind speed in the mean wind direction is 8m/s. The duration of averaging T is set to 10min, as it is used for5

turbulence measurements in the IEC norm (International Electrotechnical Commission, 2005).

3.1.3 Comparison with Simulation

Figure 1 compares the spatial variance of the second-order moment obtained using the analytical solution with the results from

the simulations. The comparison was conducted for the second-order moment of axial wind speed u for spatial separation

of measurement points a and b in the y and z direction. The spatial variance of the second-order moment was normalized10

by the expected second-order moment, as described in equation 10. The analytical solution was evaluated using adaptive

multidimensional numerical integration (Genz and Malik, 1980; Berntsen et al., 1991). The integration range in the analytical

solution was adjusted to the simulation domain and grid spacing with the aim to mimic the conditions of the simulations. As

such the integration range of k1 of k was set to [− 2π
lspacing

,− 2π
ldomain

]∪ [ 2π
ldomain

, 2π
lspacing

]. ldomain and lspacing are the domain

size and grid spacing, respectively. The integration range of the other integrals of the analytical solution remained infinite.15

The overall agreement of the results shown in Figure 1 demonstrates the validity of the analytical solution. The agreement is

better for close separation distances of up to 50m. Here, the mean absolute difference is only 2.6% and 0.55% for separation in

y and z direction, respectively. It can further be observed that the spatial variance is generally larger in the simulation results

than in the analytical solution. The difference is the result of the underlying assumptions of the simulations and the numerical

integration. The numerical error in the integration of the analytical solution is 1% of the result, and hence considered too small20

to explain the difference. A possible explanation can be that the adjusted integration range in the analytical solution did not

fully capture the effects of the simulation grid. Generally, the simulation grid causes a lower ensemble variance of axial wind

speed 〈µ2,u〉 in the simulations. A lower value in 〈µ2,u〉 results because turbulent eddies smaller than the grid spacing cannot

be captured. Since 〈µ2,u〉 is used to normalize the spatial variance, a lower value in 〈µ2,u〉 results in a larger value of the

normalized spatial variance in the simulations.25

The same trend of the spatial variance can be observed in the results of the analytical solution and of the simulation. As

such, the spatial variance of the second-order moment of wind speed increases with larger distance between the measurement
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Figure 1. Simulation-based validation of analytical calculation of spatial variance of second-order moment of ABL wind flow. Comparison

is conducted for second-order moment of axial wind speed u for spatial separation of two points in the cross-axial and vertical direction.

points. This is due to a decreasing coherence of wind turbulence with larger separation distance (Sørensen et al., 2012). At

large separation distances, the spatial variance converges to an asymptotic value. The simulation results converge to 0.37 and

0.35 for separation in y and z direction, respectively. The results of the analytical solution converge to 0.34. The asymptotic

behaviour can be understood from the analytical solution, particularly from the behaviour of the term [1−cos((k+k′)(a−b))]

in equation (9). For large distances between the measurement points a and b, the oscillations of the cosine term are much faster5

than the change of the remainder of the integrand. As a result, the integral over one period of one minus the cosine is well

approximated by the remainder of the integrand. Consequently, the cosine term can be neglected for large separation distances.

As a result, the spatial variance of the second order moment converges to an asymptote. Furthermore, when neglecting the

cosine term for large separation distances, the integrand becomes independent of the direction of the spatial separation. Hence,

the value of the asymptote is the same for separation in the y direction and the z direction, as observed in the results of the10

analytical solution in Figure 1 at a distance of 300m.

The asymptotic behaviour of the spatial variance can also be understood from the statistics of uncorrelated variables. At

large separation distances, typically in the order of the integral length scale l, the second-order moment of wind speed at the

points a and b becomes uncorrelated. As a result, the variance of the difference between the second-order moment at the points

a and b, that is δµ2
2,L,∞, is twice the variance of the second-order moment of wind speed σ(µ2,L(T ))2. Hence, the asymptotic15

value of the normalized spatial variance can be calculated as
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δM2,L,∞ =

√
δµ2

2,L,∞

〈µ2,L(T )〉
(12)

=

√
2σ2(µ2,L(T ))

〈µ2,L(T )〉
(13)

The variance of the second-order moment of wind speed σ2(µ2,L(T )) can be approximated according to Lenschow et al.

(1994). Eq. 12 can thus be approximated using the integral time scale τ or the integral length scale L as

√
2σ2(µ2,L(T ))

〈µ2,L(T )〉
≈ 2

√
τ

T
(14)5

= 2

√
L
l

(15)

This approximation is valid for τ << T and L<< l. The length scale l is obtained from the measurement duration T and

the average axial wind speed U as l = TU . For the case shown in Figure 1, the asymptotic value of the normalized spatial

variance results as 41%, and hence, is comparable to the results of the analytical solution and of the simulation.

In addition to the effect of the separation distance, Figure 1 shows that the spatial variance of the second-order moment10

increases faster in the cross-axial direction y than in the vertical direction z. This is the result of stronger spectral-coherence of

turbulence in the z-direction than in the y-direction.

3.2 Mitigation of Impact in Applications

The spatial variance of the second-order moment of wind speed impacts a variety of applications in the wind energy sector.

For the present work, three areas were selected for more detailed discussion, that is wind farm control, the verification of wind15

turbine performance, and sensor verification.

3.2.1 Wind Farm Control

In wind farm control, recent flow models (Kazda et al., 2018; Göçmen et al., 2018; Niayifar and Porté-Agel, 2016), increas-

ingly use measurements of turbulence intensity as input, particularly ambient turbulence intensity. An approach to obtain an

estimate of ambient turbulence intensity is to average turbulence intensity measured at upstream turbines of the wind farm.20

Such approach, however, introduces a random error into the flow modelling due to the difference of the measured turbulence

intensity between the turbines. Using the average, ambient turbulence intensity as input to the flow model results in a deviation

of the modelled turbulence intensity from the actual turbulence intensity at a wind turbine. It can be shown using the standalone

Dynamic Wake Meandering (sDWM) wind farm operation model (Keck, 2015) that the thereby resulting error in the prediction

of power at a downstream turbine can be in the same order of magnitude as the deviation in turbulence intensity. To mitigate25

this error, the turbulence measured at each turbine location can be used as input to the flow model, as in Göçmen et al. (2016);

Kazda et al. (2018). Thereby, the local realization of turbulent flow can be taken into account.
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The difference in turbulence intensity between turbines arises from the spatial variance of the second-order moment of wind

speed. To demonstrate the magnitude of the spatial variance in a real wind farm, an investigation was made on the westerly,

front row of turbines of Lillgrund wind farm. Lillgrund wind farm is located offshore, south-east of Copenhagen, Denmark

(Nilsson et al., 2015). A schematic of the westerly front row turbines and the adjacent meteorological mast is shown in Figure 2,

together with the investigated sector of wind direction, wind speed and turbulence intensity. The front row comprises five wind5

turbines spaced by approximately five rotor diameters, that is 450m. In the following, the spatial variance is first investigated

using the analytical solution, and thereafter using measurements. Given a wind direction from west, that is 270°, the spacing

of wind turbines orthogonal to the average direction of wind flow is more than 400m. Hence, the turbulence measurements at

wind turbines in the front row are separated with at least that distance. For the atmospheric conditions investigated with Figure

1 and the separation distance of more than 400m, the spatial variance is at the asymptotic value of 34% given an averaging10

time T of 10min.
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Figure 2. Top view of westerly front row of Lillgrund wind farm and investigated range of wind conditions. Variance of second-order moment

of nacelle wind speed between wind turbines is investigated with turbine no. D08 for reference.

A similar, spatial variance can also be observed in measurements from Lillgrund wind farm. The spatial variance was

investigated using data from more than 7 years of measurements. The ensemble average of the second-order moment of wind

speed at the turbines was obtained for ensembles of the following wind condition. The 10min-average wind speed is between

7.5m/s and 8.5m/s, and hence comparable to the wind speed used in the results of the analytic solution above. The 10min-15

average wind direction is in the 15° westerly sector between 262.5° and 277.5°. The measured 10min-average wind speed

and the 10min-based second-order moment of wind speed are obtained from the nacelle anemometry of wind turbines. The
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wind direction is measured at the meteorological mast south of the wind turbine row on turbine hub height. The measurements

are filtered according to the above described sectors of average wind speed and wind direction. The spatial variance of the

second-order moment of axial wind speed δM2,u,X−D08 is defined with reference to wind turbine D08 as

δM2,u,X−D08 =

√
〈(µ2,u,X −µ2,u,D08)2〉

〈µ2,u,D08〉
(16)

where µ2,u,D08 and µ2,u,X are the second order moments of axial wind speed measured at wind turbine D08 and one of the5

other front-row wind turbines, respectively.

Figure 3 shows the spatial variance of the second-order moment between the front-row wind turbines E07, F06, G05, H04 and

wind turbine D08. The spatial variance is normalized by the ensemble variance of axial wind speed at wind turbine D08. The

results are binned with respect to turbulence intensity. The results of each bin are based on at least 33 distinct measurements,

and hence are considered statistically significant.10

E07 - D08 F06 - D08 G05 - D08 H04 - D08
0

10

20

30

40

50
7% < TI <= 8%

8% < TI <= 9%

9% < TI <= 10%

Figure 3. Effect of separation distance and atmospheric stability on variance of second-order moment of nacelle wind speed between the

western front-row turbines of Lillgrund wind farm. Atmospheric stability is implicitly characterized using turbulence intensity.

Figure 3 shows the effect of separation distance and atmospheric stability on the spatial variance of the second-order moment.

Atmospheric stability is implicitly characterized by turbulence intensity. Larger turbulence intensity is likely to correspond to

more unstable atmospheric conditions. For turbulence intensities ranging between 7% and 8%, the spatial variance remains

similar with larger distance between the turbulence measurement location, except for the spatial variance between turbines

G05 and D08. It is thus likely that the spatial variance has reached the asymptotic value already for the separation distance15

between turbines E07 and D08. The observed behaviour is thus in line with the result of the analytical solution, which predicts

10



reaching the asymptotic value in neutral conditions at a separation of 300m. The magnitude of the spatial variance is similar

between the measurements and the analytical solution. The spatial variance calculated using the analytical solution is 30% for

neutral ABL conditions. The spatial variance observed in the measurements is 25%, except between turbines G05 and D08. The

lower spatial variance observed in the field data is due to differences in the power spectrum of wind speed, which mainly occurs

out of two reasons. First, it is likely that the turbulence length scale L of the ABL conditions differ between the measurements5

and the analytical solution. The ABL conditions in the measurements are implicitly characterized by turbulence intensity, yet

cannot be attributed to a specific condition. The ABL conditions used for the analytical solution is neutral. Second, the Mann

model, that is used in the analytical solution, provides spectra of undisturbed atmospheric flow. The measurements, however,

are made on the nacelle of a wind turbine, where the rotor and nacelle of the wind turbine disturb the flow. The spectrum

of wind speed measured at the nacelle of a wind turbine is expected to contain more energy at higher frequencies than the10

free flow. In (Crespo and Hernández, 1996) this is shown for the near wake, where the energy in the spectrum of wind speed

is increased particularly at higher frequencies. Thus, in the nacelle-based measurements an increased share of the energy of

higher frequency eddies is expected in the second-order moment. In case of a larger share of energy at high frequencies the

integral length scale L is smaller. According to Eq. 14 a smaller integral length scale results in a smaller spatial variance, and

thus confirms the reasoning for the observed difference between measurements and analytical solution.15

For turbulence intensities ranging between 8% to 10%, the spatial variance converges to an asymptotic value with larger

separation between the turbine pairs. The asymptote is reached at the separation distance of 1400m between turbines G05 and

D08. It is concluded that the asymptote is reached, since the spatial variance stays constant with the larger separation distance

of 1850m between turbines H04 and D08. This asymptotic behaviour observed in the measurements verifies the convergence

of the spatial variance to an asymptotic value, as it is observed in the analytical solution and the simulations. The value of the20

asymptote is however up to 90% larger than for the results on turbulence intensities ranging between 7% and 8%. The larger

value of the asymptote is attributed to more unstable ABL conditions, which is underpinned by the following two observations.

First, according to Sathe et al. (2013) the integral length scale is larger in unstable conditions than in stable ones, and based on

Eq. 14 this results in a larger value of the asymptote. Second, the higher turbulence intensity of 8% to 10% indicates a more

unstable condition of the ABL. In general, when moving across the stability spectrum from stable to unstable the integral length25

scale increases (Sathe et al., 2013). As a result of this increase, the asymptotic value of the spatial variance of the second-order

moment of wind speed increases, according to Eq. 14.

To conclude, the up to 48% spatial variance observed in the measurements demonstrates that using the average turbulence

intensity as input to flow models would result in a considerable random error from the actual turbulence intensity at each

upstream turbine. Hence, it is of advantage to use the locally measured turbulence intensity as input to flow models.30

3.2.2 Verification of Wind Turbine Performance

The turbulence intensity in the flow approaching a wind turbine influences its fatigue loads (Eggers et al., 2003; Saranyasoon-

torn and Manuel, 2008) and power output (Elliott and Cadogan, 1990; Gottschall and Peinke, 2008; Clifton and Wagner, 2014).

It is therefore increasingly investigated to classify wind turbine performance, that is, in the present work, power output and
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fatigue loads, in terms of turbulence intensity levels. To do so, turbulence intensity is typically obtained from measurements of

wind speed upstream of the respective wind turbine. Uncertainty in the upstream measurements of turbulence intensity results

in uncertainty in the classification of wind turbine performance.

It is therefore of interest to understand the factors driving the uncertainty in such turbulence intensity measurements and

to develop mitigation measures. Turbulence intensity is the ratio of the second-order moment of wind speed and its mean.5

Due to the distance between measurement location and wind turbine, a source of uncertainty can be the spatial variance of

the second-order moment of wind speed. The magnitude of the spatial variance is therefore investigated in the following for

a typical set-up used for the verification of wind turbine performance. The results give insight into the impact of the spatial

variance on the uncertainty in power output and fatigue loads, and demonstrate the need for mitigation measures.

Figure 4 shows a typical experimental set-up used for the verification of the performance of a wind turbine. A meteorological10

mast adjacent to the wind turbine is used for the measurement of the flow that approaches the wind turbine. In the present study,

the distance between the mast and the wind turbine is set to 200m, which is a magnitude comparable to real set-ups. Two cases

on the alignment between the mean wind direction and the mast and the wind turbine are shown in the figure. In the case of

alignment, the spatial variance of turbulence can be regarded as small assuming Taylor’s hypothesis of frozen turbulence.
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Figure 4. Effect of inflow angle on lateral offset of meteorological mast from wind turbine. Lateral offset is distance orthogonal to direction

of wind flow.
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In the case of misalignment, the spatial variance of the second-order moment of wind speed between mast and turbine

increases with increasing misalignment. Figure 5 shows the effect of the misalignment angle on the normalized spatial variance

of the second-order moment of wind speeds u, v and w. The misalignment angle is defined as the angle between the wind

direction and the line connecting mast and turbine. The results are obtained from simulations based on the Mann model. The

simulation set-up and atmospheric conditions are the same as described in section 3.1.1.5

Figure 5. Effect of misalignment angle on normalized spatial variance of the second-order moment of wind speeds u, v and w averaged over

10min. Distance between wind turbine and meteorological mast is 200m, as described in Figure 4.

With misalignment, the flow measured at the mast is offset to the flow, that the wind turbine faces, in the cross-axial direction.

As shown in Figure 1, such offset results in a spatial variance of the second-order moment of wind speed. As a result, the

second-order moment of wind speed measured at the mast is associated with a random error compared to the second-order

moment present at the wind turbine for reference.

It can be observed that the random error increases rapidly with increasing misalignment. The error reaches 90% of the10

asymptotic value at a misalignment of 22°, 22°, and 11° for the second-order moment of the wind velocity components u, v

and z, respectively. The asymptotic value of the error is 36%, 18% and 16% for the second-order moment of the wind velocity

components u, v and z, respectively.

It is therefore of interest to investigate the impact of such random error on the uncertainty of the measured fatigue loads and

power output of the wind turbine. In Eggers et al. (2003) it is reported that a 70% increase in turbulence intensity resulted in an15

approximately tenfold increase in the fatigue damage fraction of the flapwise blade-root bending moment. In Saranyasoontorn
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and Manuel (2008) a variance of turbulence intensity of 22.8% resulted in a variance of the damage-equivalent load (DEL) of

the yaw moment of 12.7%. It is therefore concluded that uncertainty in the measured turbulence intensity can have a significant

impact on the uncertainty in the measured fatigue loads. The impact of turbulence intensity on the power curve depends on

the operational region of the wind turbine. In Clifton and Wagner (2014) it can be observed that the sensitivity of the power

curve to turbulence intensity is small when the turbine is operating below the rated rotational speed. In operation at the rated5

rotational speed, the sensitivity is larger.

To mitigate the effect of the random error in the measured second-order moment on the classification of wind turbine perfor-

mance, we recommend use of either or both of the following methods. First, the measurements of wind turbine performance

can be filtered to only contain data for small angles of misalignment between wind direction and the line connecting mast and

wind turbine. As shown in Figure 5, the error increases rapidly with misalignment. Thus, to limit the error to, for example,10

below 15%, the misalignment angle could be filtered for the range of ±5°.

In the second approach, the random error is mitigated by averaging turbine performance over ensembles of the same wind

conditions. As such, the measured turbine performance is classified according to mean wind speed, turbulence intensity and

atmospheric stability. In case turbine performance is wind direction-dependent, due to, for instance, topographical effects, the

classification also needs to be performed with respect to wind direction. As a result, in each bin the wind conditions can be15

assumed to be on average the same at the meteorological mast and the wind turbine. Thus, the average wind conditions at

the mast can be related to the average performance of the wind turbine for each wind condition bin. Consequently, the spatial

variance of the second-order moment of wind speed is mitigated successfully.

3.2.3 Spatially Separated Sensor Verification

As a result of physical and economic constraints, sensors for the measurement of the second-order moment of wind speed20

are often verified using spatially separated reference measurements. Due to the distance between the sensor and reference, the

result of the verification can be corrupted by the spatial variance of the second-order moment of wind speed.

This phenomenon is discussed in the following on the example of the verification case in Mittelmeier et al. (2016). The

study compares turbine-based measurements indicative of turbulence intensity with reference measurements at an adjacent

meteorological mast. The measurements at the wind turbine are wind speed, obtained from the nacelle anemometry, and the25

turbine power output. Turbulence intensity is directly calculated from the wind speed measurements. In the case of turbine

power, the ratio of the standard deviation of power to its mean is considered as a measure related to turbulence intensity. One

of the investigated wind farms is the Nordsee Ost wind farm with layout of wind turbines and meteorological mast as shown

in Figure 6. The comparison of turbulence intensity measurements is conducted between the meteorological mast and wind

turbine NO47. The study reports a Pearson correlation coefficient of 0.68 between turbulence intensity measurements at the30

meteorological mast and the nacelle anemometry of the wind turbine. The observed low correlation coefficient originates from

the spatial variance of the second-order moment of wind speed, as is shown in the following.
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Figure 6. Nordsee Ost (blue cycles) with neighbouring wind farm Meerwind Süd (green triangles) and meteorological mast (red square)

(Mittelmeier et al., 2016).

Assuming that in the investigated scales the largest spatial variance lies in the variability of wind speed and not its mean, the

Pearson correlation coefficient of turbulence intensity ρTI,a,b can be approximated as

ρTI,a,b =
cov
(
TIL,a(T ),T IL,b(T )

)
σ2(TIL(T ))

≈
1
u2
L

cov
(
σL,a(T ),σL,b(T )

)
1
u2
L
σ2(σL(T ))

=
cov
(
σL,a(T ),σL,b(T )

)
σ2(σL(T ))

(17)

where turbulence intensity TIL,a(T ) at a point a is defined as the ratio of the standard deviation of wind speed σL,a(T )

to the mean wind speed uL. Next, a linear relation of the second-order moment of wind speed and its square root is assumed5

in the proximity of its mean value. As a result, the Pearson correlation coefficient of the standard deviation of wind speed
cov
(
σL,a(T )σL,b(T )

)
σ2(σL(T )) can be approximated by the correlation coefficient of the second-order moment of wind speed as

ρTI,a,b =
cov
(
σL,a(T ),σL,b(T )

)
σ2(σL(T ))

≈
cov
(
µ2,L,a(T ),µ2,L,b(T )

)
σ2(µ2,L(T ))

(18)

For a homogeneous turbulent field the covariance of the second-order moment of wind speed can be formulated as

cov
(
µ2,L,a(T ),µ2,L,b(T )

)
σ2(µ2,L(T ))

=
〈µ2,L,a(T )µ2,L,b(T )〉− 〈µ2,L(T )〉2

σ2(µ2,L(T ))
(19)10

Above Eq. 19 can be related to the spatial variance of the second-order moment of wind speed using Eq. 4 as

ρTI,a,b ≈
〈µ2,L,a(T )µ2,L,b(T )〉− 〈µ2,L(T )〉2

σ2(µ2,L(T ))
=
〈µ2

2,L(T )〉− 1
2δµ

2
2,L,a−b(T )−〈µ2,L(T )〉2

σ2(µ2,L(T ))
(20)
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Figure 7. Impact of horizontal cross-flow separation distance between points a and b on correlation coefficient of turbulence intensity

between these points.

Consequently, the Pearson correlation coefficient of turbulence intensity can be related to the spatial variance of the second-

order moment of wind speed as

ρTI,a,b ≈ 1− 1

2

δµ2
2,L,a−b(T )

σ2(µ2,L(T ))
(21)

Above Eq. 21 shows the impact of the spatial variance on the correlation coefficient. As such, larger spatial variance results

in a smaller correlation coefficient and vice versa. Due to the large spatial distance between measurement locations in the case5

of the work of Mittelmeier et al. (2016), we can argue that a major contributor for the low correlation coefficient is the large

spatial variance of the second-order moment of wind speed.

To demonstrate this the correlation coefficient was quantified by calculation of the components of Eq. 21 from a simulated

turbulent field. The simulated field was generated as described in section 3.1.1. The simulated conditions are neutral atmo-

spheric boundary layer stability, a mean wind speed U of 8.33m/s and a wind direction perpendicular to the line connecting10

turbine and meteorological mast. Neutral atmospheric boundary layer stability is characterised using the Mann model with

parameters αε
2
3 = 1, l = 50m, Γ = 3.2, according to Sathe et al. (2013). The averaging duration T is set to 600s.

Figure 7 shows the impact of the horizontal cross-flow separation distance between points a and b on the correlation co-

efficient of turbulence intensity between these points. It can be observed that the correlation coefficient declines rapidly with

increasing separation distance. For a distance greater than 200m it is smaller than 0.1. In the Nordsee Ost wind farm, the15

cross-flow distance between mast and turbine is larger than 400m. Hence, a low correlation coefficient of similar magnitude

as in the simulations would be expected. The larger correlation coefficient observed in the measurements is likely because the
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correlation coefficient was obtained from measurements of various conditions of atmospheric boundary layer stability. This

can be understood from the definition of the correlation coefficient as follows.

ρTI,a,b =

〈(
TIL,a(T )−〈TIL,a(T )〉

)(
TIL,b(T )−〈TIL,b(T )〉

)〉
σ2(TIL(T ))

(22)

Turbulence intensity differs more between unstable and stable atmospheric boundary layer conditions than due to spatial

separation of measurement locations. As a result, spatially separated measurements of turbulence intensity of the same atmo-5

spheric condition appear correlated with respect to the average turbulence intensity of all stability conditions. Consequently,

the blending of measurements from different atmospheric conditions results in a larger correlation coefficient, as observed in

the Nordsee Ost case.

Overall, the results demonstrate the low correlation of measurements of turbulent flow in case of separation in cross-flow dis-

tance. It is therefore of interest to develop more accurate approaches for the verification of sensors in case of spatially-separated10

reference measurements. Our recommended approach is to filter for direction misalignment, that is the angle between the wind

direction and the line connecting sensor and reference, or to average over ensembles of the same atmospheric conditions.

The approach is equivalent to the mitigation measures discussed with regards to the verification of wind turbine performance,

described in section 3.2.2. The interested reader is thus referred to that section for more details on the approach.

4 Conclusions15

The first analytical solution for the quantification of the spatial variance of second-order moment of wind speed was developed

in this work. The spatial variance is defined as random differences in the sample variance of wind speed between different

points in space. The approach is successfully verified using simulation and field data. The impact of the spatial variance of

the second-order moment of wind speed is then investigated in three, selected applications of the wind energy sector including

mitigation measures. First, the variance of the second-order moment between front-row wind turbines of Lillgrund wind farm20

is investigated. The variance ranges between 25% and 48% for turbulence intensities ranging from 7% to 10%. Using the

average turbulence intensity at front-row turbines as estimate for ambient turbulence intensity would thus result in a random

error in flow model inputs. It is thus suggested to use the second-order moment measured at each individual turbine as input to

flow models in order to mitigate the random error. This is particularly of importance for dynamic flow models used for wind

farm control as these aim to capture the dynamics of flow rather than average properties. Second, the impact of the spatial25

variance of the measured second-order moment on the verification of wind turbine performance is investigated. Misalignment

between the mean wind direction and the line connecting the meteorological mast and wind turbine results in a random error

in the observed second-order moment. Such random error results in uncertainty in the turbulence intensity-based classification

of the fatigue loads and power output of the wind turbine. To mitigate the random error, it is suggested to either filter the

measured data for low angles of misalignment or to quantify wind turbine performance using the ensemble average over the30

same wind conditions. Third, the verification of sensors in wind farms can involve distant reference measurements. In case
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of a misalignment between the wind direction and the line connecting sensor and reference, a random error will hamper the

comparison of second-order moments measured at distant locations. Similar to the verification of turbine performance, filtering

the measured data for low angles of misalignment or using the ensemble average, can mitigate the random error.

To conclude, the comparison or combination of measurements of the second-order moment of wind speed from spatially

separated locations can result in a random error. Assuming Taylor’s hypothesis of frozen turbulence, the random error is5

particularly prominent for the separation in the cross-axial and vertical direction of measurement locations. This work shows

that knowledge of the drivers of the random error allows for mitigation measures.
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Abstract. For the first time an analytical solution for the quantification of the spatial variance of the second-order moment

of correlated wind speeds was developed in this work. The spatial variance is defined as random differences in the sample

variance of wind speed between different points in space. The approach is successfully verified using simulation and field data.

The impact of the spatial variance on three selected applications relevant to the wind energy sector is then investigated including

mitigation measures. First, the difference of the second-order moment between front-row wind turbines of Lillgrund wind farm5

is investigated. The variance of the difference ranges between 25% and 48% for turbulence intensities ranging from 7% to 10%

and a sampling period of 10min. It is thus suggested to use the second-order moment measured at each individual turbine as

input to flow models of wind farm controllers in order to mitigate random error. Second, the impact of the spatial variance of

the measured second-order moment on the verification of wind turbine performance is investigated. Misalignment between the

mean wind direction and the line connecting the meteorological mast and wind turbine is observed to result in an additional10

random error in the observed second-order moment of wind speed. In the investigated conditions the random error was up to

34%. Such random error adds uncertainty to the turbulence intensity-based classification of the fatigue loads and power output

of a wind turbine. To mitigate the random error it is suggested to either filter the measured data for low angles of misalignment,

or to quantify wind turbine performance using the ensemble averaged measurements of the same wind conditions. Third, the

verification of sensors in wind farms was investigated with respect to the impact of distant reference measurements. In case15

of a misalignment between the wind direction and the line connecting sensor and reference, an increased random error will

hamper the comparison of the measured second-order moments. The suggested mitigation measures are equivalent to those for

the verification of turbine performance.

1 Introduction

The wind energy market has been growing rapidly at a rate of 16% throughout the past decade reaching 539,123MW of20

global, installed capacity in 2017 (Global Wind Energy Council (GWEC), 2017). Many areas of the wind energy sector require

measurements of the wind turbulence in the atmospheric boundary layer (ABL), which is typically quantified as turbulence

intensity. Turbulence intensity is defined according to the IEC norm (International Electrotechnical Commission, 2005) as the

ratio of the square root of the second-order moment of axial wind speed to the mean axial wind speed of the same 10-min period.

Common devices for the measurement of the second-order moment of wind speed are sonic anemometers, cup anemometers25

1



and lidars. These devices provide an estimate of the second-order moment covering a confined volume of the ABL, that is at

the sensor location, or in the case of lidars, along the laser beam. However, out of economical and/or technical considerations,

these measurements are, at times, performed spatially separated from the desired location. Typically, then extrapolation is used

to estimate the second-order moment of wind speed at the desired location. In other applications, measurements from multiple

locations are aggregated to obtain statistical measures. However, second-order moments of wind speed measured at different5

locations over a finite period will be different, even under homogeneous conditions. This is because the coherence of turbulence

decreases with distance, particularly the larger the cross-flow separation (Sørensen et al., 2012). To quantify and analyze the

spatial variance of the second-order moment of wind speed, an analytical approach is therefore developed. The spatial variance

is defined as random differences in the sample variance of wind speed between different points in space.

The spatial variance is relevant to a variety of areas in the wind energy sector. This work focuses on three areas, that is10

wind farm control, the verification of wind turbine performance, and sensor verification. In wind farm control the operation of

wind turbines in a wind farm is coordinated with the objective to either (i) maximize the total power production of the wind

farm (Kazda et al., 2016), or (ii) to follow a target level for the total power output of the wind farm, while optionally reducing

fatigue loads of wind turbines (Kazda et al., 2018). Advanced wind farm controllers typically employ models of wind farm

operation (Gebraad et al., 2016; Kazda and Cutululis, 2018) to predict the impact of the control on the flow within the wind15

farm. Increasingly, turbulence intensity is used as input to flow models (Niayifar and Porté-Agel, 2016; Göçmen et al., 2018).

The most common turbulence-related input is ambient turbulence intensity, which is typically obtained from measurements at

upstream turbines of the wind farm. There are two commonly-employed approaches to process these measurements for use in

the flow model. In one approach, the turbulence measurements at each upstream turbine define the ambient turbulence intensity

at the respective turbine. In the other approach, the ambient turbulence intensity is defined as the average of the turbulence20

intensity at all upstream turbines. Because of the distance between wind turbines, the measured second-order moment of wind

speed however varies between the turbines. The present work thus investigates the impact of the spatial variance on the two

above described approaches for defining ambient turbulence intensity.

Next, it is increasingly common to use turbulence intensity measurements for the classification of turbine performance.

Having been discussed in literature over the past decade, the impact of turbulence intensity on turbine performance will be25

addressed in the next revision of the IEC standard (IEC, 2005). This is because the turbulence intensity in the flow that

approaches a wind turbine influences its fatigue loads (Eggers et al., 2003; Saranyasoontorn and Manuel, 2008) and power

output (Elliott and Cadogan, 1990; Gottschall and Peinke, 2008; Clifton and Wagner, 2014). In the process of verifying wind

turbine characteristics, the turbulence intensity in the free flow is typically measured at a meteorological mast adjacent to the

wind turbine. As a result of the distance between mast and wind turbine, the spatial variance of the second-order moment30

can impact the accuracy of the measured turbulence intensity. Uncertainty in the measured turbulence intensity propagates

into the uncertainty of the measured power curve and fatigue loads of the wind turbine. When the mast location is directly

upstream, the random error due to the spatial variance of turbulence can be regarded as small assuming Taylor’s hypothesis

of frozen turbulence. The assumption may lead to an underestimation of the difference in variances in the situation where one

measurement position is more or less directly downstream from the other. In case of an offset of the mast location orthogonal35

2

Jonas Kazda

Jonas Kazda



to the direction of wind flow, a random error results, because of the spatial variance of turbulence. The magnitude of the impact

and approaches for its mitigation are therefore investigated in the present work.

The third application area discussed in the present work is the verification of spatially separated sensors for the measurement

of the second-order moment of wind speed. In such case, the measurements of the to-be-verified sensor are compared to a

spatially distant reference measurement. Due to the distance between sensor and reference, the result of the verification can be5

corrupted by the spatial variance of the second-order moment of wind speed. This phenomenon is discussed in the present work

on the example of the verification case in Mittelmeier et al. (2016). Here turbine-based measurements of turbulence intensity

are verified with reference measurements at an adjacent meteorological mast.

The remainder of this paper is structured as follows. In section 2 the developed analytical solution for the quantification of

the spatial variance of the second-order moment of wind speed is detailed. In section 3, first, the analytical solution is verified,10

and thereafter, the mitigation of the impact of the spatial variance of the second-order moment of wind speed is discussed for

three selected applications. The paper is concluded with a summary of the key findings in section 4.

2 Analytical Solution to Spatial Variance of Second-order Moment of Wind Speed

In the following the first analytical solution is derived for the quantification of the expected spatial variance of the second-order

moment of wind speed measured over a time period T at two spatially-separated points a and b. The expected spatial variance15

of the second-order moment of wind speed δµ2
2,L,a−b in an arbitrary directional component projection L is defined as

δµ2
2,L,a−b(T ) = 〈[µ2,L,a(T )−µ2,L,b(T )]2〉 (1)

where µ2,L,a(T ) and µ2,L,b(T ) are second-order moments measured at the points a = (ax,ay,az) and b = (bx, by, bz) in

the ABL. The direction of the component projection L of the measurement is assumed to be the same at the points a and b. x,

y, and z are the coordinates of the Cartesian coordinate system. x is set to the mean direction of wind flow, y is the horizontal20

coordinate orthogonal to x, and z the vertical coordinate. The measured second-order moment of wind speed µ2,L(T ) is defined

as

µ2,L(T ) =
1

T

T
2ˆ

−T
2

(uL(t)−uL)2dt (2)

where uL(t) is the wind speed in an arbitrary component projection L and uL is the wind speed in the same direction

averaged over the time interval [−T/2,T/2]. The wind speed in an arbitrary component projection L is defined as25

uL = nL ·u (3)
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where nL = (nL,x,nL,y,nL,z) is the unit-directional vector in the direction of the projection, and u = (u,v,w) is the wind

velocity.

Assuming a homogeneous turbulent field, the expected spatial variance of the second-order moment (Eq. 1) can be reformu-

lated as

δµ2
2,L,a−b(T ) = 2[〈µ2,L(T )2〉− 〈µ2,L,a(T )µ2,L,b(T )〉] (4)5

Next, it is assumed that the mean wind speed uL is zero. This assumption is not necessary since assuming a non-zero mean

wind speed gives the exact same results, but it makes the equations much more compact. Furthermore, it is assumed that

uL(t) can be represented by a Gaussian process. Consequently, Isserlis’ Theorem (Isserlis, 1916, 1918) can be applied to Eq.

4 resulting in

δµ2
2,L,a−b(T ) =

4

T 2

[ T
2̈

−T
2

〈uL(t)uL(t′)〉2dtdt′−

T
2̈

−T
2

〈uL,a(t)uL,b(t′)〉2dtdt′
]

(5)10

The expected spatial and temporal correlation of wind speeds can be expressed using the two-point correlation tensor of

wind velocity R(r,∆t). r is a three-dimensional vector connecting the two points, and ∆t the time delay. Hence, Eq. 5 can be

transformed into

δµ2
2,L,a−b(T ) =

4

T 2

[ T
2̈

−T
2

(nTLR(0, t− t′)nL)2dtdt′−

T
2̈

−T
2

(nTLR(a− b, t− t′)nL)2dtdt′
]

(6)

The correlation tensor can be obtained from the infinite volume integral of the spectral tensor Φ(k) as15

T
2̈

−T
2

(nTLR(a− b, t− t′)nL)2dtdt′ =

T
2̈

−T
2

[ ∞̊

−∞

nTLΦ(k)nL exp
(
ik(a− b+

(
U 0 0

)
(t− t′))

)
dk1dk2dk3

]2
dtdt′ (7)

The spectral tensor Φ(k) can be obtained using the model of Mann (1994). k is the three-dimensional wave number vector.

The three dimensional infinite integral over the wavenumber space is denoted as
´
dk =

˝∞
−∞ dk1dk2dk3 in the following.

The time delay ∆t is eliminated using Taylor’s hypothesis of frozen turbulence as the spatial separation ∆x= U(t−t′) in axial

flow direction. U is the mean wind speed in axial flow direction when averaging over the time interval [−T/2,T/2]. Expanding20

above equation and solving the time integral yields
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T
2̈

−T
2

(nTLR(a− b, t− t′)nL)2dtdt′ =

ˆ ˆ
(nTLΦ(k)nL)(nTLΦ(k′)nL)exp

(
i(k+k′)(a− b)

)
sinc2

( (k1 + k′1)TU

2

)
T 2dkdk′ (8)

The derived equation 8 is used in the original problem (Eq. 6) yielding an analytical solution for the spatial variance of the

second-order moment5

δµ2
2,L,a−b(T ) = 4

ˆ ˆ
(nTLΦ(k)nL)(nTLΦ(k′)nL)

[
1− cos

(
(k+k′)(a− b)

)]
sinc2

( (k1 + k′1)TU

2

)
dkdk′ (9)

In the following, the normalized spatial variance of the second-order moment δM2,L,a−b is defined as

δM2,L,a−b =

√
δµ2

2,L,a−b

〈µ2,L(T )〉
(10)

The normalization is performed using the ensemble second-order moment of wind speed 〈µ2,L(T )〉, which is calculated as

〈µ2,L(T )〉=

∞̊

−∞

nTLΦ(k)nL

[
1− sinc2

(k1TU
2

)]
dk (11)10

3 Results & Discussion

In the following, the analytical solution is compared to the spatial variance observed in a simulated wind field in order to

demonstrate its validity. Thereafter, the mitigation of the impact of the spatial variance is investigated for three selected appli-

cations, that is wind farm control, verification of turbine performance and sensor verification.

3.1 Verification of Analytical Solution15

The analytical solution (Eq. 9) is successfully verified in the following against a simulated wind field.

3.1.1 Simulation Set-up

The turbulent wind field is created using the simulation approach of the Mann model (Mann, 1998). The simulation domain

has the dimensions of 5000m × 600m × 600m in the x, y, and z direction, respectively. The geometric characteristics of the

simulation domain and grid are summarized in Table 1.20
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Direction x y z

Dimension 5000m 600m 600m

Grid points 1024 128 128

Grid spacing 4.88m 4.69m 4.69m
Table 1. Key characteristics of domain and grid of simulated wind field.

3.1.2 Atmospheric Conditions

The ABL is characterized by the following conditions in both the simulations and the analytical solution. The stability of the

ABL is neutral, and hence, the spectral parameters of the Mann model are set to αε
2
3 = 1, l = 50m, Γ = 3.2, according to

Sathe et al. (2013). The value of αε
2
3 is arbitrary and irrelevant, since the spatial variance is only considered in a normalized

manner. The mean wind speed in the mean wind direction is 8m/s. The duration of averaging T is set to 10min, as it is used for5

turbulence measurements in the IEC norm (International Electrotechnical Commission, 2005).

3.1.3 Comparison with Simulation

Figure 1 compares the spatial variance of the second-order moment obtained using the analytical solution with the results from

the simulations. The comparison was conducted for the second-order moment of axial wind speed u for spatial separation

of measurement points a and b in the y and z direction. The spatial variance of the second-order moment was normalized10

by the expected second-order moment, as described in equation 10. The analytical solution was evaluated using adaptive

multidimensional numerical integration (Genz and Malik, 1980; Berntsen et al., 1991). The integration range in the analytical

solution was adjusted to the simulation domain and grid spacing with the aim to mimic the conditions of the simulations. As

such the integration range of k1 of k was set to [− 2π
lspacing

,− 2π
ldomain

]∪ [ 2π
ldomain

, 2π
lspacing

]. ldomain and lspacing are the domain

size and grid spacing, respectively. The integration range of the other integrals of the analytical solution remained infinite.15

The overall agreement of the results shown in Figure 1 demonstrates the validity of the analytical solution. The agreement is

better for close separation distances of up to 50m. Here, the mean absolute difference is only 2.6% and 0.55% for separation in

y and z direction, respectively. It can further be observed that the spatial variance is generally larger in the simulation results

than in the analytical solution. The difference is the result of the underlying assumptions of the simulations and the numerical

integration. The numerical error in the integration of the analytical solution is 1% of the result, and hence considered too small20

to explain the difference. A possible explanation can be that the adjusted integration range in the analytical solution did not

fully capture the effects of the simulation grid. Generally, the simulation grid causes a lower ensemble variance of axial wind

speed 〈µ2,u〉 in the simulations. A lower value in 〈µ2,u〉 results because turbulent eddies smaller than the grid spacing cannot

be captured. Since 〈µ2,u〉 is used to normalize the spatial variance, a lower value in 〈µ2,u〉 results in a larger value of the

normalized spatial variance in the simulations.25

The same trend of the spatial variance can be observed in the results of the analytical solution and of the simulation. As

such, the spatial variance of the second-order moment of wind speed increases with larger distance between the measurement
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Figure 1. Simulation-based validation of analytical calculation of spatial variance of second-order moment of ABL wind flow. Comparison

is conducted for second-order moment of axial wind speed u for spatial separation of two points in the cross-axial and vertical direction.

points. This is due to a decreasing coherence of wind turbulence with larger separation distance (Sørensen et al., 2012). At

large separation distances, the spatial variance converges to an asymptotic value. The simulation results converge to 0.37 and

0.35 for separation in y and z direction, respectively. The results of the analytical solution converge to 0.34. The asymptotic

behaviour can be understood from the analytical solution, particularly from the behaviour of the term [1−cos((k+k′)(a−b))]

in equation (9). For large distances between the measurement points a and b, the oscillations of the cosine term are much faster5

than the change of the remainder of the integrand. As a result, the integral over one period of one minus the cosine is well

approximated by the remainder of the integrand. Consequently, the cosine term can be neglected for large separation distances.

As a result, the spatial variance of the second order moment converges to an asymptote. Furthermore, when neglecting the

cosine term for large separation distances, the integrand becomes independent of the direction of the spatial separation. Hence,

the value of the asymptote is the same for separation in the y direction and the z direction, as observed in the results of the10

analytical solution in Figure 1 at a distance of 300m.

The asymptotic behaviour of the spatial variance can also be understood from the statistics of uncorrelated variables. At

large separation distances, typically in the order of the integral length scale l, the second-order moment of wind speed at the

points a and b becomes uncorrelated. As a result, the variance of the difference between the second-order moment at the points

a and b, that is δµ2
2,L,∞, is twice the variance of the second-order moment of wind speed σ(µ2,L(T ))2. Hence, the asymptotic15

value of the normalized spatial variance can be calculated as
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δM2,L,∞ =

√
δµ2

2,L,∞

〈µ2,L(T )〉
(12)

=

√
2σ2(µ2,L(T ))

〈µ2,L(T )〉
(13)

The variance of the second-order moment of wind speed σ2(µ2,L(T )) can be approximated according to Lenschow et al.

(1994). Eq. 12 can thus be approximated using the integral time scale τ or the integral length scale L as

√
2σ2(µ2,L(T ))

〈µ2,L(T )〉
≈ 2

√
τ

T
(14)5

= 2

√
L
l

(15)

This approximation is valid for τ << T and L<< l. The length scale l is obtained from the measurement duration T and

the average axial wind speed U as l = TU . For the case shown in Figure 1, the asymptotic value of the normalized spatial

variance results as 41%, and hence, is comparable to the results of the analytical solution and of the simulation.

In addition to the effect of the separation distance, Figure 1 shows that the spatial variance of the second-order moment10

increases faster in the cross-axial direction y than in the vertical direction z. This is the result of stronger spectral-coherence of

turbulence in the z-direction than in the y-direction.

3.2 Mitigation of Impact in Applications

The spatial variance of the second-order moment of wind speed impacts a variety of applications in the wind energy sector.

For the present work, three areas were selected for more detailed discussion, that is wind farm control, the verification of wind15

turbine performance, and sensor verification.

3.2.1 Wind Farm Control

In wind farm control, recent flow models (Kazda et al., 2018; Göçmen et al., 2018; Niayifar and Porté-Agel, 2016), increas-

ingly use measurements of turbulence intensity as input, particularly ambient turbulence intensity. An approach to obtain an

estimate of ambient turbulence intensity is to average turbulence intensity measured at upstream turbines of the wind farm.20

Such approach, however, introduces a random error into the flow modelling due to the difference of the measured turbulence

intensity between the turbines. Using the average, ambient turbulence intensity as input to the flow model results in a deviation

of the modelled turbulence intensity from the actual turbulence intensity at a wind turbine. It can be shown using the standalone

Dynamic Wake Meandering (sDWM) wind farm operation model (Keck, 2015) that the thereby resulting error in the prediction

of power at a downstream turbine can be in the same order of magnitude as the deviation in turbulence intensity. To mitigate25

this error, the turbulence measured at each turbine location can be used as input to the flow model, as in Göçmen et al. (2016);

Kazda et al. (2018). Thereby, the local realization of turbulent flow can be taken into account.
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The difference in turbulence intensity between turbines arises from the spatial variance of the second-order moment of wind

speed. To demonstrate the magnitude of the spatial variance in a real wind farm, an investigation was made on the westerly,

front row of turbines of Lillgrund wind farm. Lillgrund wind farm is located offshore, south-east of Copenhagen, Denmark

(Nilsson et al., 2015). A schematic of the westerly front row turbines and the adjacent meteorological mast is shown in Figure 2,

together with the investigated sector of wind direction, wind speed and turbulence intensity. The front row comprises five wind5

turbines spaced by approximately five rotor diameters, that is 450m. In the following, the spatial variance is first investigated

using the analytical solution, and thereafter using measurements. Given a wind direction from west, that is 270°, the spacing

of wind turbines orthogonal to the average direction of wind flow is more than 400m. Hence, the turbulence measurements at

wind turbines in the front row are separated with at least that distance. For the atmospheric conditions investigated with Figure

1 and the separation distance of more than 400m, the spatial variance is at the asymptotic value of 34% given an averaging10

time T of 10min.
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Figure 2. Top view of westerly front row of Lillgrund wind farm and investigated range of wind conditions. Variance of second-order moment

of nacelle wind speed between wind turbines is investigated with turbine no. D08 for reference.

A similar, spatial variance can also be observed in measurements from Lillgrund wind farm. The spatial variance was

investigated using data from more than 7 years of measurements. The ensemble average of the second-order moment of wind

speed at the turbines was obtained for ensembles of the following wind condition. The 10min-average wind speed is between

7.5m/s and 8.5m/s, and hence comparable to the wind speed used in the results of the analytic solution above. The 10min-15

average wind direction is in the 15° westerly sector between 262.5° and 277.5°. The measured 10min-average wind speed

and the 10min-based second-order moment of wind speed are obtained from the nacelle anemometry of wind turbines. The
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wind direction is measured at the meteorological mast south of the wind turbine row on turbine hub height. The measurements

are filtered according to the above described sectors of average wind speed and wind direction. The spatial variance of the

second-order moment of axial wind speed δM2,u,X−D08 is defined with reference to wind turbine D08 as

δM2,u,X−D08 =

√
〈(µ2,u,X −µ2,u,D08)2〉

〈µ2,u,D08〉
(16)

where µ2,u,D08 and µ2,u,X are the second order moments of axial wind speed measured at wind turbine D08 and one of the5

other front-row wind turbines, respectively.

Figure 3 shows the spatial variance of the second-order moment between the front-row wind turbines E07, F06, G05, H04 and

wind turbine D08. The spatial variance is normalized by the ensemble variance of axial wind speed at wind turbine D08. The

results are binned with respect to turbulence intensity. The results of each bin are based on at least 33 distinct measurements,

and hence are considered statistically significant.10

E07 - D08 F06 - D08 G05 - D08 H04 - D08
0

10

20

30

40

50
7% < TI <= 8%

8% < TI <= 9%

9% < TI <= 10%

Figure 3. Effect of separation distance and atmospheric stability on variance of second-order moment of nacelle wind speed between the

western front-row turbines of Lillgrund wind farm. Atmospheric stability is implicitly characterized using turbulence intensity.

Figure 3 shows the effect of separation distance and atmospheric stability on the spatial variance of the second-order moment.

Atmospheric stability is implicitly characterized by turbulence intensity. Larger turbulence intensity is likely to correspond to

more unstable atmospheric conditions. For turbulence intensities ranging between 7% and 8%, the spatial variance remains

similar with larger distance between the turbulence measurement location, except for the spatial variance between turbines

G05 and D08. It is thus likely that the spatial variance has reached the asymptotic value already for the separation distance15

between turbines E07 and D08. The observed behaviour is thus in line with the result of the analytical solution, which predicts

10



reaching the asymptotic value in neutral conditions at a separation of 300m. The magnitude of the spatial variance is similar

between the measurements and the analytical solution. The spatial variance calculated using the analytical solution is 30% for

neutral ABL conditions. The spatial variance observed in the measurements is 25%, except between turbines G05 and D08. The

lower spatial variance observed in the field data is due to differences in the power spectrum of wind speed, which mainly occurs

out of two reasons. First, it is likely that the turbulence length scale L of the ABL conditions differ between the measurements5

and the analytical solution. The ABL conditions in the measurements are implicitly characterized by turbulence intensity, yet

cannot be attributed to a specific condition. The ABL conditions used for the analytical solution is neutral. Second, the Mann

model, that is used in the analytical solution, provides spectra of undisturbed atmospheric flow. The measurements, however,

are made on the nacelle of a wind turbine, where the rotor and nacelle of the wind turbine disturb the flow. The spectrum

of wind speed measured at the nacelle of a wind turbine is expected to contain more energy at higher frequencies than the10

free flow. In (Crespo and Hernández, 1996) this is shown for the near wake, where the energy in the spectrum of wind speed

is increased particularly at higher frequencies. Thus, in the nacelle-based measurements an increased share of the energy of

higher frequency eddies is expected in the second-order moment. In case of a larger share of energy at high frequencies the

integral length scale L is smaller. According to Eq. 14 a smaller integral length scale results in a smaller spatial variance, and

thus confirms the reasoning for the observed difference between measurements and analytical solution.15

For turbulence intensities ranging between 8% to 10%, the spatial variance converges to an asymptotic value with larger

separation between the turbine pairs. The asymptote is reached at the separation distance of 1400m between turbines G05 and

D08. It is concluded that the asymptote is reached, since the spatial variance stays constant with the larger separation distance

of 1850m between turbines H04 and D08. This asymptotic behaviour observed in the measurements verifies the convergence

of the spatial variance to an asymptotic value, as it is observed in the analytical solution and the simulations. The value of the20

asymptote is however up to 90% larger than for the results on turbulence intensities ranging between 7% and 8%. The larger

value of the asymptote is attributed to more unstable ABL conditions, which is underpinned by the following two observations.

First, according to Sathe et al. (2013) the integral length scale is larger in unstable conditions than in stable ones, and based on

Eq. 14 this results in a larger value of the asymptote. Second, the higher turbulence intensity of 8% to 10% indicates a more

unstable condition of the ABL. In general, when moving across the stability spectrum from stable to unstable the integral length25

scale increases (Sathe et al., 2013). As a result of this increase, the asymptotic value of the spatial variance of the second-order

moment of wind speed increases, according to Eq. 14.

To conclude, the up to 48% spatial variance observed in the measurements demonstrates that using the average turbulence

intensity as input to flow models would result in a considerable random error from the actual turbulence intensity at each

upstream turbine. Hence, it is of advantage to use the locally measured turbulence intensity as input to flow models.30

3.2.2 Verification of Wind Turbine Performance

The turbulence intensity in the flow approaching a wind turbine influences its fatigue loads (Eggers et al., 2003; Saranyasoon-

torn and Manuel, 2008) and power output (Elliott and Cadogan, 1990; Gottschall and Peinke, 2008; Clifton and Wagner, 2014).

It is therefore increasingly investigated to classify wind turbine performance, that is, in the present work, power output and
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fatigue loads, in terms of turbulence intensity levels. To do so, turbulence intensity is typically obtained from measurements of

wind speed upstream of the respective wind turbine. Uncertainty in the upstream measurements of turbulence intensity results

in uncertainty in the classification of wind turbine performance.

It is therefore of interest to understand the factors driving the uncertainty in such turbulence intensity measurements and

to develop mitigation measures. Turbulence intensity is the ratio of the second-order moment of wind speed and its mean.5

Due to the distance between measurement location and wind turbine, a source of uncertainty can be the spatial variance of

the second-order moment of wind speed. The magnitude of the spatial variance is therefore investigated in the following for

a typical set-up used for the verification of wind turbine performance. The results give insight into the impact of the spatial

variance on the uncertainty in power output and fatigue loads, and demonstrate the need for mitigation measures.

Figure 4 shows a typical experimental set-up used for the verification of the performance of a wind turbine. A meteorological10

mast adjacent to the wind turbine is used for the measurement of the flow that approaches the wind turbine. In the present study,

the distance between the mast and the wind turbine is set to 200m, which is a magnitude comparable to real set-ups. Two cases

on the alignment between the mean wind direction and the mast and the wind turbine are shown in the figure. In the case of

alignment, the spatial variance of turbulence can be regarded as small assuming Taylor’s hypothesis of frozen turbulence.

��������	�

��
��
���

��
����


�����
�
����

����

��������	�

��
��
���

��
����


�����
�
����

����

�����������
�

�����

��������������
 �����������������


Figure 4. Effect of inflow angle on lateral offset of meteorological mast from wind turbine. Lateral offset is distance orthogonal to direction

of wind flow.
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In the case of misalignment, the spatial variance of the second-order moment of wind speed between mast and turbine

increases with increasing misalignment. Figure 5 shows the effect of the misalignment angle on the normalized spatial variance

of the second-order moment of wind speeds u, v and w. The misalignment angle is defined as the angle between the wind

direction and the line connecting mast and turbine. The results are obtained from simulations based on the Mann model. The

simulation set-up and atmospheric conditions are the same as described in section 3.1.1.5

Figure 5. Effect of misalignment angle on normalized spatial variance of the second-order moment of wind speeds u, v and w averaged over

10min. Distance between wind turbine and meteorological mast is 200m, as described in Figure 4.

With misalignment, the flow measured at the mast is offset to the flow, that the wind turbine faces, in the cross-axial direction.

As shown in Figure 1, such offset results in a spatial variance of the second-order moment of wind speed. As a result, the

second-order moment of wind speed measured at the mast is associated with a random error compared to the second-order

moment present at the wind turbine for reference.

It can be observed that the random error increases rapidly with increasing misalignment. The error reaches 90% of the10

asymptotic value at a misalignment of 22°, 22°, and 11° for the second-order moment of the wind velocity components u, v

and z, respectively. The asymptotic value of the error is 36%, 18% and 16% for the second-order moment of the wind velocity

components u, v and z, respectively.

It is therefore of interest to investigate the impact of such random error on the uncertainty of the measured fatigue loads and

power output of the wind turbine. In Eggers et al. (2003) it is reported that a 70% increase in turbulence intensity resulted in an15

approximately tenfold increase in the fatigue damage fraction of the flapwise blade-root bending moment. In Saranyasoontorn
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and Manuel (2008) a variance of turbulence intensity of 22.8% resulted in a variance of the damage-equivalent load (DEL) of

the yaw moment of 12.7%. It is therefore concluded that uncertainty in the measured turbulence intensity can have a significant

impact on the uncertainty in the measured fatigue loads. The impact of turbulence intensity on the power curve depends on

the operational region of the wind turbine. In Clifton and Wagner (2014) it can be observed that the sensitivity of the power

curve to turbulence intensity is small when the turbine is operating below the rated rotational speed. In operation at the rated5

rotational speed, the sensitivity is larger.

To mitigate the effect of the random error in the measured second-order moment on the classification of wind turbine perfor-

mance, we recommend use of either or both of the following methods. First, the measurements of wind turbine performance

can be filtered to only contain data for small angles of misalignment between wind direction and the line connecting mast and

wind turbine. As shown in Figure 5, the error increases rapidly with misalignment. Thus, to limit the error to, for example,10

below 15%, the misalignment angle could be filtered for the range of ±5°.

In the second approach, the random error is mitigated by averaging turbine performance over ensembles of the same wind

conditions. As such, the measured turbine performance is classified according to mean wind speed, turbulence intensity and

atmospheric stability. In case turbine performance is wind direction-dependent, due to, for instance, topographical effects, the

classification also needs to be performed with respect to wind direction. As a result, in each bin the wind conditions can be15

assumed to be on average the same at the meteorological mast and the wind turbine. Thus, the average wind conditions at

the mast can be related to the average performance of the wind turbine for each wind condition bin. Consequently, the spatial

variance of the second-order moment of wind speed is mitigated successfully.

3.2.3 Spatially Separated Sensor Verification

As a result of physical and economic constraints, sensors for the measurement of the second-order moment of wind speed20

are often verified using spatially separated reference measurements. Due to the distance between the sensor and reference, the

result of the verification can be corrupted by the spatial variance of the second-order moment of wind speed.

This phenomenon is discussed in the following on the example of the verification case in Mittelmeier et al. (2016). The

study compares turbine-based measurements indicative of turbulence intensity with reference measurements at an adjacent

meteorological mast. The measurements at the wind turbine are wind speed, obtained from the nacelle anemometry, and the25

turbine power output. Turbulence intensity is directly calculated from the wind speed measurements. In the case of turbine

power, the ratio of the standard deviation of power to its mean is considered as a measure related to turbulence intensity. One

of the investigated wind farms is the Nordsee Ost wind farm with layout of wind turbines and meteorological mast as shown

in Figure 6. The comparison of turbulence intensity measurements is conducted between the meteorological mast and wind

turbine NO47. The study reports a Pearson correlation coefficient of 0.68 between turbulence intensity measurements at the30

meteorological mast and the nacelle anemometry of the wind turbine. The observed low correlation coefficient originates from

the spatial variance of the second-order moment of wind speed, as is shown in the following.
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Figure 6. Nordsee Ost (blue cycles) with neighbouring wind farm Meerwind Süd (green triangles) and meteorological mast (red square)

(Mittelmeier et al., 2016).

Assuming that in the investigated scales the largest spatial variance lies in the variability of wind speed and not its mean, the

Pearson correlation coefficient of turbulence intensity ρTI,a,b can be approximated as

ρTI,a,b =
cov
(
TIL,a(T ),T IL,b(T )

)
σ2(TIL(T ))

≈
1
u2
L

cov
(
σL,a(T ),σL,b(T )

)
1
u2
L
σ2(σL(T ))

=
cov
(
σL,a(T ),σL,b(T )

)
σ2(σL(T ))

(17)

where turbulence intensity TIL,a(T ) at a point a is defined as the ratio of the standard deviation of wind speed σL,a(T )

to the mean wind speed uL. Next, a linear relation of the second-order moment of wind speed and its square root is assumed5

in the proximity of its mean value. As a result, the Pearson correlation coefficient of the standard deviation of wind speed
cov
(
σL,a(T )σL,b(T )

)
σ2(σL(T )) can be approximated by the correlation coefficient of the second-order moment of wind speed as

ρTI,a,b =
cov
(
σL,a(T ),σL,b(T )

)
σ2(σL(T ))

≈
cov
(
µ2,L,a(T ),µ2,L,b(T )

)
σ2(µ2,L(T ))

(18)

For a homogeneous turbulent field the covariance of the second-order moment of wind speed can be formulated as

cov
(
µ2,L,a(T ),µ2,L,b(T )

)
σ2(µ2,L(T ))

=
〈µ2,L,a(T )µ2,L,b(T )〉− 〈µ2,L(T )〉2

σ2(µ2,L(T ))
(19)10

Above Eq. 19 can be related to the spatial variance of the second-order moment of wind speed using Eq. 4 as

ρTI,a,b ≈
〈µ2,L,a(T )µ2,L,b(T )〉− 〈µ2,L(T )〉2

σ2(µ2,L(T ))
=
〈µ2

2,L(T )〉− 1
2δµ

2
2,L,a−b(T )−〈µ2,L(T )〉2

σ2(µ2,L(T ))
(20)
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Figure 7. Impact of horizontal cross-flow separation distance between points a and b on correlation coefficient of turbulence intensity

between these points.

Consequently, the Pearson correlation coefficient of turbulence intensity can be related to the spatial variance of the second-

order moment of wind speed as

ρTI,a,b ≈ 1− 1

2

δµ2
2,L,a−b(T )

σ2(µ2,L(T ))
(21)

Above Eq. 21 shows the impact of the spatial variance on the correlation coefficient. As such, larger spatial variance results

in a smaller correlation coefficient and vice versa. Due to the large spatial distance between measurement locations in the case5

of the work of Mittelmeier et al. (2016), we can argue that a major contributor for the low correlation coefficient is the large

spatial variance of the second-order moment of wind speed.

To demonstrate this the correlation coefficient was quantified by calculation of the components of Eq. 21 from a simulated

turbulent field. The simulated field was generated as described in section 3.1.1. The simulated conditions are neutral atmo-

spheric boundary layer stability, a mean wind speed U of 8.33m/s and a wind direction perpendicular to the line connecting10

turbine and meteorological mast. Neutral atmospheric boundary layer stability is characterised using the Mann model with

parameters αε
2
3 = 1, l = 50m, Γ = 3.2, according to Sathe et al. (2013). The averaging duration T is set to 600s.

Figure 7 shows the impact of the horizontal cross-flow separation distance between points a and b on the correlation co-

efficient of turbulence intensity between these points. It can be observed that the correlation coefficient declines rapidly with

increasing separation distance. For a distance greater than 200m it is smaller than 0.1. In the Nordsee Ost wind farm, the15

cross-flow distance between mast and turbine is larger than 400m. Hence, a low correlation coefficient of similar magnitude

as in the simulations would be expected. The larger correlation coefficient observed in the measurements is likely because the
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correlation coefficient was obtained from measurements of various conditions of atmospheric boundary layer stability. This

can be understood from the definition of the correlation coefficient as follows.

ρTI,a,b =

〈(
TIL,a(T )−〈TIL,a(T )〉

)(
TIL,b(T )−〈TIL,b(T )〉

)〉
σ2(TIL(T ))

(22)

Turbulence intensity differs more between unstable and stable atmospheric boundary layer conditions than due to spatial

separation of measurement locations. As a result, spatially separated measurements of turbulence intensity of the same atmo-5

spheric condition appear correlated with respect to the average turbulence intensity of all stability conditions. Consequently,

the blending of measurements from different atmospheric conditions results in a larger correlation coefficient, as observed in

the Nordsee Ost case.

Overall, the results demonstrate the low correlation of measurements of turbulent flow in case of separation in cross-flow dis-

tance. It is therefore of interest to develop more accurate approaches for the verification of sensors in case of spatially-separated10

reference measurements. Our recommended approach is to filter for direction misalignment, that is the angle between the wind

direction and the line connecting sensor and reference, or to average over ensembles of the same atmospheric conditions.

The approach is equivalent to the mitigation measures discussed with regards to the verification of wind turbine performance,

described in section 3.2.2. The interested reader is thus referred to that section for more details on the approach.

4 Conclusions15

The first analytical solution for the quantification of the spatial variance of second-order moment of wind speed was developed

in this work. The spatial variance is defined as random differences in the sample variance of wind speed between different

points in space. The approach is successfully verified using simulation and field data. The impact of the spatial variance of

the second-order moment of wind speed is then investigated in three, selected applications of the wind energy sector including

mitigation measures. First, the variance of the second-order moment between front-row wind turbines of Lillgrund wind farm20

is investigated. The variance ranges between 25% and 48% for turbulence intensities ranging from 7% to 10%. Using the

average turbulence intensity at front-row turbines as estimate for ambient turbulence intensity would thus result in a random

error in flow model inputs. It is thus suggested to use the second-order moment measured at each individual turbine as input to

flow models in order to mitigate the random error. This is particularly of importance for dynamic flow models used for wind

farm control as these aim to capture the dynamics of flow rather than average properties. Second, the impact of the spatial25

variance of the measured second-order moment on the verification of wind turbine performance is investigated. Misalignment

between the mean wind direction and the line connecting the meteorological mast and wind turbine results in a random error

in the observed second-order moment. Such random error results in uncertainty in the turbulence intensity-based classification

of the fatigue loads and power output of the wind turbine. To mitigate the random error, it is suggested to either filter the

measured data for low angles of misalignment or to quantify wind turbine performance using the ensemble average over the30

same wind conditions. Third, the verification of sensors in wind farms can involve distant reference measurements. In case
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of a misalignment between the wind direction and the line connecting sensor and reference, a random error will hamper the

comparison of second-order moments measured at distant locations. Similar to the verification of turbine performance, filtering

the measured data for low angles of misalignment or using the ensemble average, can mitigate the random error.

To conclude, the comparison or combination of measurements of the second-order moment of wind speed from spatially

separated locations can result in a random error. Assuming Taylor’s hypothesis of frozen turbulence, the random error is5

particularly prominent for the separation in the cross-axial and vertical direction of measurement locations. This work shows

that knowledge of the drivers of the random error allows for mitigation measures.
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