
Response to reviewers 1 and 2

We would like to thank the reviewers and public comments for their contribu-
tions to improve the article. The comments are relevant and constructive and
have contributed to increased quality and readability of the new manuscript.
Here we have responded to general and specific comments and indicated modi-
fications. A separate manuscript where changes are highlighted is also attached.

Yours Sincerely,

Jens Nørkær Sørensen, Stefan Ivanell, Björn Witha, Simon-Philippe Breton,
and Søren Juhl Andersen

Reviewer 1

General Comments

In the manuscript the authors compare the results from different large eddy sim-
ulation codes for the performance of very large wind farms. The analysis focuses
on the variability of the turbine power production in aligned and staggered wind
farms. This is a relevant topic for the community and analysis of this aspect in
large eddy simulations is still limited. As indicated at the end of the introduc-
tion this study is a continuation of the study by Andersen et al. (2015), but it
includes more data and more analysis. The topic addressed in this study, the
power variations in wind farms, is an important area that needs further study,
relevant for the scientific community, and the readers of Wind Energy Science.
Before I can recommend publication of the manuscript, I would like the authors
to consider the points indicated below.

Specific Comments

In some places the introduction feels a bit like a summary list of several previous
studies as each paragraph summarized the work of one paper. It would be nice
when the introduction can be somewhat more coherent.

We have rewritten parts of the introduction, and included additional references,
as requested below.

There are very few recent papers (last 3 / 4 years) mentioned in the in-
troduction. Please check whether some recent works need to be included in the
discussion.

Thanks for the comment, we agree. We have included the recent review pa-
per by Porté-Agel et al., 2020. In the review article there is also surprisingly
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only a single article published after 2017 with particular relevance to these sim-
ulations and the present article, see sections 3.2-3.3. The authors suspect the
low number stems from a significant focus on wind farm control across several
of the dominant institutes in recent years, and the present article is not focussed
on wind farm control. We have however added a couple of additional references
on the interaction between farm and atmosphere and vertical staggering as well
as the paper by Turner V and Wosnik, 2020.

Figure 2: The Forwind data are for a different turbulence intensity than the
other two data sets. As discussed in the manuscript this significantly affects
the results. It would be very nice when it would be possible to add one Forwind
simulation for the same turbulence intensity as the other cases to allow for a
more one to one comparison.

Thank you for the suggestion. We agree that it would add value, but this
will unfortunately not be possible because our contributor from ForWind has
changed jobs in the meantime as also indicated in the contact list.

Section 4.1.1 to 4.1.3 seem to be written rather independently. It would be
nice to indicate the connection between these different cases.

Thanks for pointing this out. A sentence explaining the connection between
the sections has been added and we have improved the segues betweeen the
sections.

Figure 4 to 6 please give the relevant information necessary to read the fig-
ure in the caption or a legend. Now one has to go back to table 1 to find the
necessary information to understand the figure. So please mention which mean
flow properties are different for each presented data set in these figures.

We have improved the captions.

Figure 4: For the blue data P/P0 = 0.32/0.33 seems a somewhat special
value, i.e. there seems to a strong drop in the occurrence of productions that are
higher/lower than this particular value. Is there a reason for this?

This is due to the controller as written briefly in the submitted article. We have
expanded the explanation in the article and included Figure 1 here, which show
the normalized power vs rotational speed. This shows that P/P0 = 0.32/0.33
occurs as the rotational speed reaches its maximum.
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Figure 1: Normalized power vs rotational speed for DTU3.

In figure 7 there is one gray data point at
√

(sysx) ≈ 16, which is much
higher than all the other data points. Can the authors discuss this particular
cases in more detail.

These two simulations(DTU4 and DTU6) are performed with a freestreem
velocity of 15m/s, which is above rated for the first turbine. They form an
upper limit, because they are right on the boundary of whether or not the deep
wind farm is above or below rated. This is already discussed in 4 lines, but we
have added another sentence, which hopefully clarifies further. The article now
reads: ”An upper limit is indicated by DTU4 and DTU6 (in grey), which have a
freestream velocity above rated (15m/s), but with different turbulence intensities.
The power productions deep inside the farm result in below rated conditions for
DTU6 due to no freestream turbulence, while the turbines in DTU4 also experi-
ence above rated velocities deep inside the farm due to the increased entrainment
from the large atmospheric turbulence. Hence, it shows the transition from be-
low rated to above rated conditions.”

Figure 8: Would it be possible to indicate the results for the high and low
turbulence intensity cases in different colors, so the effect can be observed and
discussed? The figures also have a lot of white space, which can be reduced such
that the actual data can be seen better

Thanks for a very good suggestion. We have updated the figure accordingly,
and colored the dots in green for low turbulence(0 − 3%) and red for high
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Figure 2: CDF of binned data indicating underestimation and overestimation
of the fit.

turbulence(10 − 15%). It highlights an interesting aspect that the standard de-
viation of the power seems largest for the small atmospheric turbulence. We
have reduced the white space slightly, but we prefer to keep the same scale on
all figures to facilitate easier comparison.

Line 326-329: The authors mention a difference of +-0.5W/mˆ2. The val-
ues in the corresponding plot (figure 9) seem to vary between 0 and 2.25W/mˆ2.
Can the authors discuss more how this uncertainty should be interpreted?

We have clarified our statement to quantify that ”generally” corresponds to
87%. Please see Figure 2 here in the response, which shows the CDF of under-
and overestimation.

Figure 9-11: I am wondering whether the authors can comment in more de-
tail on the uncertainty or potential bias that is introduced by the spread of the
available data points over the considered parameter space, which is indicated in
figure 12. Is this taken into account in the fitting procedure?

Thanks for the very good suggestion. We have now performed a k-fold with
k = 10 to estimate the uncertainty in fitting the response surfaces, e.g. lines
355-358. As shown the MSE is consistent throughout with only minor varia-
tions between the 10 k-folds, but it also indicates as previously stated that it is
a rather crude fit, which could be improved in future work.
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In figure 2 we have seen that the turbulence intensity influences the perfor-
mance of the wind farm significantly. In figure 9 to 11 the data for different
turbulence intensities are combined. To what degree does this affect the pre-
sented results?

Thanks for the question. The updated Figure 8, where we have now indicated
low and high turbulence, show that the influence is minor on the binned data.
The largest effect is seen in Figure 8a), but with significant more data this split
could be made.

Line 220: Do the authors have an idea on the reason for this increased vari-
ability.

This is a complex question. This setup with 50 turbines is rather unique and
comparisons are difficult. However, the authors do believe that there might be
additional deep farm effects combined possibly with a fully developed boundary
layer and potential gravity waves. However, further investigations are needed
to make any conclusions on this.

Technical corrections

line 42: Same reference is mentioned twice.

Fixed

Equation 4 seems missing.

Thanks, we have now included the equation.

Table 4: what is meant by “Data is only given for one row of 50 turbines”?

The ForWind simulations were performed with 2(two) rows of 50 turbines, how-
ever, only data from one of the rows has been used in the analysis. We have
rephrased slightly for hopefully improved clarity.

line 178: add as ”space” after turbine spacings

Fixed
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line 365: Corrected typo in ”ressources”

Fixed.

References: Several references need to be updated

Thanks, we realize there were some issues with it. It has now been cleaned
up.

line 467: please update: It is a 2015 paper that is listed as ”accepted for
publication”

Fixed

line 481: Spaces are missing in this reference

Fixed.

Reviewer 2

General notes

This article brings a comparative analysis of wind farm performances (in terms
of mean mechanical power and its variability) based on LES numerical simula-
tions. In the continuity of the work of Andersen et al. (2015), these simulations
are performed using 2 codes (EllipSys3D and PALM), 2 rotor modeling methods
(Actuator Disk and Actuator Line) and two rotors (NREL 5MW and NM80).
Different operating conditions (turbines spacing, mean wind speed, turbulence
and shear...) were tested, leading to a total of 18 wind farms cases. The first
part of the article results aims to highlight some trends in the influence of op-
erating conditions while the second part aims to show a generelized analysis
by aggregating all the results. This paper brings interesting results which are of
importance for the wind energy community. The objectives of the study are well-
posed and the methodology well described. High fidelity LES of wind farms is a
state-of-the-art methodology and the obtained results constitute a step forward
in the wind farm performances understanding. This topic, still needing further
studies, is relevant for Wind Energy Science readers. Nevertheless, some points
need to be adressed by the authors before publication.
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Specific Comments

1. Introduction: The introduction makes the impression of being a list of sum-
marized publications. Even if it is well written, some links between articles
would be welcome.

Thanks. This was also addressed by our other reviewer and we have now ex-
panded our introduction.

2.2.1 Ellipsys3D: The aeroelastic coupling may deserve a one-line descrip-
tion to undersand what is involve in the computations (even if is described in
the paper of Sorensen et al (2015)).

We have expanded the description slightly.

3. Simulation set-up: are the numerical grids cartesian structured?

Yes, the grids are cartesian. We have specified this in Section 3 Simulation
Setup.

3.1.3 Summary of Numerical Methods: the number of differences between
DTU, FW and UU methodogies may constitute a strong difficulty when com-
paring to each other, specifically between DTU and UU. Additionnaly to the
differences given in Tab 1, why are the turbulence and rotor positions different
(6R and 10R vs 13R and 30R) for DTU and UU, as well as the total simulation
time (60 min vs 30 min)? Even if the authors try to limit their consequences,
can the authors can comment on this topic? An identitcal set-up with both codes
would help to clarify the code influence for example.

The initial benchmark scenarios were defined to perform such a comparison,
but it quickly became clear that it is not trivial to perform direct code-to-code
comparisons of such large simulations, because certain models could not adhere
to the initial definitions. Code-to-code comparisons involves all model depen-
dencies of SGS model, turbine model, numerical schemes etc. So although we
agree that code-to-code comparisons are indispensable, we think it should ini-
tially be done on simpler scenarios. Hence, the aim of the present article is
rather to show the type of global analyses we can perform by combining results
from various institutes. We believe we have addressed this with our previous
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statement: ”Aggregating the statistics from different simulations and numerical
setups essentially assumes that all simulations are physically correct and corre-
spond to different farms/turbines operating under different atmospheric condi-
tions.” We think that the analyses presented in this article show that the results
are coherent, when scaled properly, despite e.g. different turbine models..

3.1.3 As the article deals with high fidelity LES and as it is clearly indicated
that such computations are expensive, informations on the computational cost
(time step, CPU hours per case, mean reduced computational time...) would be
relevant.

Most of the performed simulations were executed a few years back and we do
not think that the actual numbers would be representative anymore. However,
we have added an explanation on general levels of computational costs for the
used types of simulations relevant for today’s computer resources, see section
3.1.3.

4.1 Variability of LES: the 40% difference in mechanical power production
observed in FW results are assumed to be due to lower turbulence and differences
in shear and Coriolis effect treatment. Does the code difference can lead to such
gap also?

The large deviation is expected to mainly depend on the TI but also other
sources can affect the result. However, the aim here is not to perform a code-to-
code comparison and as stated we assume model results included in the global
analyses to be physically correct. Of course this includes some uncertainties
but these uncertainties will be decreased with more data being included into
the developed methodology here presented.

4.1 Variability in LES: What are le LES filering effects involved? The spatial
filtering from the LES approach or the one due to statistical binning?

We meant the spatial filtering effect from the turbines themselves. We have
clarified this now.

4.1 Even though both plot types is consistent, why the plot type goes from box
plot to violin plot by changing the effect influence?

We wanted to show how the distributions are capped due to the controller
in Figure 4, which would not be seen in a box plot. Please see Figure 1 and
response to other reviewer.
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4.2.2 Surface Response: all the results presented here are very interesting as
well as the type of illustration because gathering so many results is very chal-
lenging. I am more concerned on the analysis and moderate it in light of what
I indicated for the 3.1.3 point. Can the authors can discuss that?

Thanks for your questions. Motivated by your question and comment by other
reviewer we have now performed a k-fold cross-validation, which examines the
sensitivity of the fitted response surfaces. .

Technical comments

Line 42: Stevens et al. (2015) is cited twice in the same sentence.

Fixed.

Line 67: turbulence -¿ turbulent

Fixed.

Line 77: as is -¿ as it is

Fixed.

Figure 1: axes unit are missing

Fixed.

Table 1: the columns need to be explined (U0, ambient TI, shear, turbine
resolution)

We believe the referee meant Table 2-4, so we have added an explanation of
U0, TI, shear and resolution. Additionally, we have specified in Table 1 that R
is turbine radius and zhub is hub height.

Line 202: turbine for are -¿ turbine are

Fixed.
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Figure 3: the box plots are unclear compared to Figure 2. The boxes are
almost not visible.

The width of the boxes has been increased.

Table 5: units are given in the first row and shoudn’t be given with the values

Fixed.

Equation 4 is missing and why a and b are underlined in the relations just
before?

Thanks, this was a clear oversight. The equation is now included and updated
for consistency.

Figure 12: why an hexagonal binning? The white color indicates both a 0%
occurence and a lack of data. This should be more distinct.

Thanks for the feedback. We have decided to replace the hexagonal binning
by a heatmap, which more clearly shows exactly how many realizations we have
and where the lack of data is across the parameter space.

The rated power P0 should be namely written in the rotor description

P0 has been defined now in Section 2.4

space before parenthesis are often missing in the text

This has been fixed.

Public comment by Paul Pukite

Dear Paul,
Thanks for your comment and interesting reference. However, in the present
article ”global trends” refers to our efforts to extract and quantify overall be-
haviour of large wind farms simulated using LES, and not ”global” in terms of
world wide or large regions.
Best regards,
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The authors
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Abstract. A total of 18 high fidelity simulations of large wind farms have been performed by three different institutions using

various inflow conditions and simulation setups. The setups differ in how the atmospheric turbulence, wind shear and wind

turbine rotors are modelled, encompassing a wide range of commonly used modelling methods within the LES framework.

Various turbine spacings, atmospheric turbulence intensity levels and incoming wind velocities are considered. The work

performed is part of the International Energy Agency (IEA) wind task Wakebench, and is a continuation of previously published5

results on the subject. This work aims at providing a methodology for studying the general flow behavior in large wind farms

in a systematic way. It seeks to investigate and further understand the global trends of wind farm performance, with a focus on

variability.

Parametric studies first map the effect of various parameters on large aligned wind farms, including wind turbine spacing,

wind shear and atmospheric turbulence intensity. The results are then aggregated and compared to engineering models as well10

as LES results from other investigations to provide an overall picture of how much power can be extracted from large wind

farms operating below rated level. The simple engineering models, although they cannot capture the variability features, capture

the general trends well. Response surfaces are constructed based on the large amount of aggregated LES data corresponding

to a wide range of large wind farm layouts. The response surfaces form a basis for mapping the inherently varying power

characteristics inside very large wind farm, including how much the turbines are able to exploit the turbulent fluctuations15

within the wind farms and estimating the associated uncertainty, which is valuable information useful for risk mitigation.

1 Introduction

As renewable energies are expected to take an increasing share of the future electricity production, wind energy is progressing,

where wind farms are being built in ever increasing sizes, especially offshore. Wind turbines operating far downstream in very

large farms are subject to complex flow conditions, comprised of the combined interaction between the atmosphere and the20

complex wake dynamics introduced by the wind turbines. Several factors come into play and contribute to the complexity of
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the farm flow. These factors can be grouped into atmospheric conditions (e.g. stability, shear, veer and turbulence intensity)

wind farm conditions (turbine size, farm layout) and combined effects as the turbines affect the atmospheric flow. A better

understanding of how the flow develops in large wind farms is crucial in order to better plan and control the wind farms, and

to optimize their production.25

A decade ago, Barthelmie et al. (2009) observed that several CFD wake models performed adequately to predict wake losses

in small wind farms, whereas they seemed to underpredict wake losses in very large wind farms. The latter was also observed

shortly after by Rathmann et al. (2010). This was explained in both cases by a lack of these models to account for the effect

that large wind farms are expected to have on the atmospheric boundary layer, which can lead for example to a modification

of the vertical wind profile. The development of the flow is indeed very different for small wind farms when compared to30

large ones. As pointed out by Calaf et al. (2010), the difference between the upstream and downstream kinetic energy fluxes

determines the power extracted by a single turbine, while for a turbine operating in a so-called fully developed wind-turbine

array boundary-layer, the kinetic energy has to be entrained from the flow above. Under such conditions, in a regime that can

be defined as asymptotic, the important exchanges occur in the vertical direction. The fully developed flow regime is obtained

for wind farms whose length exceeds the height of the atmospheric boundary layer by an order of magnitude, according to35

Calaf et al. (2010), who studied this issue considering neutral atmospheric stability. The conditions surrounding atmospheric

stability have actually been shown to have an important effect on the flow development, see e.g. Dörenkämper et al. (2015)

and Wu and Porte-Agel (2017). The latter for example found, using LES, that much greater distances were needed to reach

the fully developed flow regime for large wind farms operating in the specific case of a conventionally-neutral atmospheric

boundary layer, characterized by the presence of a so-called thin capping inversion layer between the neutral boundary layer40

and the stable free atmosphere aloft (Allaerts and Meyers (2015)). Johnstone and Coleman (2012) define the coupling of the

wind turbine arrays with the atmospheric boundary layer as a two-way process, arguing that an understanding of the behaviour

of the arrays depends on a complementary understanding of the associated atmospheric boundary layer. Examples of the two-

way interaction include the farm blockage effect, see Meyer Forsting and Troldborg (2015) and Bleeg et al. (2018), and gravity

waves as described by Allaerts and Meyers (2018).45

This complex wake problem has attracted the interest of numerous researchers for many years, where work has been per-

formed using several numerical methods, including both engineering type models, such as those by Jensen and Frandsen and

Madsen (2003), and high fidelity Large Eddy Simulations (LES), as well as measurements, both model and full scale. The

recent review by Porté-Agel et al. (2020) gives a comprehensive overview of the developments across all fidelities and scales,

from the tip vortices to infinitely large wind farms and effects on local meteorological conditions.50

Stevens et al. (2015b) used LES to study the effect of turbine spacing on the power output of large wind farms. They showed

that the power output in the fully developed regime for a staggered wind farm depends mostly on the geometric mean of

the streamwise and spanwise turbine spacings, while it depends mostly on the streamwise spacing for an aligned wind farm.

They also mentioned that the assumptions associated with effective roughness height models are more adapted to staggered

wind farms than aligned ones. Wu et al. (2019) also found increased efficiency for staggered wind farms, and investigated55

both horizontal and vertical staggering. The power output in the farms was further found by Stevens et al. (2015b) to be well
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correlated with the vertical kinetic flux, in accordance to what is obtained by Calaf et al. (2010), who used LES of large wind

farms to quantify the vertical transport of momentum and kinetic energy across the boundary layer. Stevens et al. (2015a), in

a different work, also developed a so-called coupled wake boundary layer model of wind farms to predict the power output

in large wind farms. The model coupled a wake model for the turbines with a top-down boundary layer model. The coupled60

model is much simpler and faster than LES, and was shown to compare well with averaged LES results. LES was further

used by Stevens (2016) to study how the optimal wind turbine spacing depends on the wind farm length to find that it is

remarkably larger for large wind farms when compared to smaller, conventional wind farms. LES was also the tool used by Wu

and Porte-Agel (2013) to study turbulent flow inside and above large wind farms considering a neutral boundary layer, with

both an aligned and a staggered layout, where the staggered configuration was shown to be the more efficient for extracting65

momentum from the flow. Subsequently, Breton et al. (2014) performed LES to study the influence of imposing turbulence on

the asymptotic wake deficit along a row of 10 turbines modelled as rotating actuator discs. An asymptotic wake state appeared

to be reached near the end of the 10 turbine row when looking at for example the average of the standard deviation of the

velocity components, turbulent kinetic energy and mean power that then became more or less independent of the downstream

position. Higher turbulence intensity levels made changes towards this state happen faster. Andersen et al. (2016) found that70

the asymptotic state is reached by the 5th or 6th turbine. Continuous work by Andersen et al. (2015) focused on quantifying the

variability in LES of very large wind farms modelled as actuator discs or actuator lines, pointing out that LES are inherently

dynamic, and that performing simple averages of the various physical quantities does not capture the dynamics, which can lead

to misleading interpretations when comparing various LES models with each other or with experimental results.

The effect of the streamwise and spanwise turbine spacing on power output and turbulence intensity in the case of infinite75

aligned wind farms was for its part investigated, using LES, by Yang et al. (2012). The latter reached the same conclusion

as Stevens et al. (2015b), i.e. that using a larger streamwise spacing is more efficient than using a larger spanwise one in

increasing the power extraction of an aligned wind farm. Based on their study, they suggested an improved effective roughness

height model taking into account the various effects of the spacings in these two directions. Yang and Sotiropoulos (2014)

studied infinite staggered wind turbine arrays using the same method. The wake behaviour, which was found to be significantly80

different from the aligned cases, was classified into three wake patterns depending on how a given turbine wake interacts with

the turbine wakes downstream.

On the experimental side, work by Cal et al. (2010) based on particle-image-velocimetry (PIV) on an array of scaled model

wind turbines showed that the power extracted by the wind turbines is of the same order of magnitude as the fluxes of kinetic

energy that are related to the Reynolds shear stresses. This serves as an experimental proof of the importance of vertical85

transport in the boundary layer, as it is also obtained in various LES works mentioned above. Newman et al. (2014) also

employed PIV on a scaled model wind farm and found that the majority of the entrainment originates from scales larger than

the turbine size. The analysis was extended in the numerical work by Andersen et al. (2017b), who showed that the large

dominant length scales are associated with and limited by the turbine spacing.

The aim of the present article is to present a methodology that can be used in a systematic way to further understand the90

general flow behaviour in large wind farms. As outlined above, a number of research groups are today frequently simulating
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the flow in large wind farms using high fidelity methods to further understand basic flow features. However, since there is a

large variability of parameters, e.g., flow directions, choice of verification cases with different turbine spacings, atmospheric

conditions etc., it is often very difficult to draw general conclusions through direct comparisons. The aim with the developed

methodology is to capture key parameters from different setups to be able to investigate the global trends of wind farm perfor-95

mance. Here, results from high fidelity simulations are combined and systematically analyzed. As will be shown in this article,

the quality of the conclusions that can be drawn depends on the extent of data that can be used. By quantifying the variability

for different situations the uncertainty can be estimated.

In the present work, data derived from LES will be used, as this kind of high fidelity data has been shown to produce very

reliable results as regards to the development of the flow within wind farms, see e.g. Breton et al. (2017). In the present work,100

three different research groups are contributing with input. This results in an improved understanding of the big picture and

how production depends on turbine separation, flow angles and atmospheric conditions.

The work is a continuation of previous work that studied the variability of the flow statistics in LES performed on large wind

farms by Andersen et al. (2015). A more general analysis is performed here, where a greater quantity of results obtained under

different configurations are considered. The focus is still on variability, with an emphasis on wind power, where the effect105

from various parameters like turbulence intensity and wind turbine spacing is studied. While only aligned wind farms have

been simulated for this study, results obtained from staggered cases already published by other researchers are included for

completion. Furthermore, the large number of turbine spacings and farm configurations considered in this work is believed to

cover the conditions associated with both staggered and aligned cases as the simulated wind farms do not only have rectangular

layouts.110

The paper is arranged as follows: in section 2, the methodology used to perform this work in terms of numerical methods

is outlined, followed by the simulation setups considered to run each of these methods in section 3. Results are then presented

and discussed in section 4, where works from other researchers are also included, before the main conclusions from the work

are summarized and discussed in section 5.

2 Methodology115

In this section, an overview of the main differences as regards the methodology used by the different participants is provided.

Detailed information on the theoretical background associated to each method can be found in the publications that are referred

to.

2.1 Numerical Solvers

Results from two different CFD codes are used.120
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2.1.1 EllipSys3D

EllipSys3D is a 3D flow solver that was developed at DTU, Michelsen (1992), and the former Risø, Sørensen (1995). It solves

the discretized incompressible Navier-Stokes equations in general curvilinear coordinates using a block structured finite volume

approach. It is formulated in primitive variables (pressure-velocity) in a collocated grid arrangement. Additional details about

this code can be found in Mikkelsen (2003) and Troldborg (2008).125

2.1.2 PALM

PALM (Parallelized LES Model) was developed at Leibniz Unversity Hannover and has been applied several years for the

simulation of a variety of atmospheric and oceanic boundary layers. Recently, it has been enhanced by a wind turbine model,

see Witha et al. (2014). It is an open source, highly parallelized LES model which solves the filtered, incompressible, non-

hydrostatic Navier-Stokes equations under the Boussinesq approximation on an equidistant Cartesian grid. The sub-grid scale130

turbulence is parameterized by a 1.5th order closure after Deardorff (1980). Further details about this code can be found in

Maronga et al. (2015).

2.2 Turbine modelling

2.2.1 EllipSys3D

The wind turbines are modelled by DTU and Uppsala University (UU) by using the actuator line (AL) and actuator disc (AD),135

respectively. In the former, body forces are distributed along rotating lines, while they are distributed along a rotating disc in

the latter. Details about the implementation of the AD and AL in EllipSys3D can be found in Mikkelsen (2003) and Sørensen

and Shen (2002), respectively. Local blade forces are determined using tabulated airfoil data and the local inflow conditions.

In the DTU-AL model, the 2D airfoil data are corrected for 3D effects, see e.g. Hansen et al. (2006). The body forces in the

DTU implementation of the AL are further calculated through a coupling with Flex5, which is a full aeroelastic code used140

for calculating deflections and loads on wind turbines, see Øye (1996) for details on Flex5. The body forces are determined

using local velocities along the rotating and potentially deflecting lines, which are transferred from EllipSys3D to Flex5, see

Sørensen et al. (2015) for additional details.

2.2.2 PALM

The PALM implementation considers an AD model with rotation (FW-AD-R) in which local body forces are derived from145

airfoil data. The PALM simulations were performed by ForWind (FW). In contrast to the AL method, the forces are distributed

across the rotor plane. This model also includes tower and nacelle effects that are modelled by a drag force approach. See

Dörenkämper et al. (2015) for details of the PALM implementation.
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Figure 1. CP and CT curves for the NM80 and NREL 5MW turbines.

2.2.3 Turbine Controller

The three models used in this work include a turbine controller. This causes the applied body forces to be governed by the inflow150

conditions, meaning that the turbines are not constantly loaded, but operate as "real turbines". Larsen and Hanson (2007) or

Hansen et al. (2005) provide a general description of such controllers.

2.2.4 Turbine Data

Two different three-bladed horizontal axis wind turbines have been considered in the simulations, i.e. the NM80 and the NREL

5MW. The NM80 turbine, see e.g. Aagaard Madsen et al. (2010), has a radius R of 40 m, a hub height zhub of 80m, and a rated155

power of P0 = 2.75MW at a nominal hub height velocity of 14 ms−1. The radius of the NREL 5MW turbine is 63 m, its hub

height is 90 m, and its rated power is P0 = 5MW at 11.4 ms−1, see Jonkman et al. (2009). Figure 1 compares the CP and

CT of the two turbines, which are comparable although theCT is higher for the NREL 5MW than for the NM80 for below rated.
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3 Simulations Setup160

In the coordinate system used in this work, x, y and z correspond respectively to the streamwise, crosswise and vertical

directions. The grids used for the simulations are cartesian, and equidistant in the horizontal direction in all cases. The grids

are usually stretched in the vertical direction from a significant distance above the wind turbines.

3.1 Atmospheric Boundary Layer and Turbulence

All participants simulated a neutrally stratified atmospheric boundary layer (ABL). Details about the methods used to model165

the ABL and associated turbulence in respectively EllipSys3D and PALM are provided below.

3.1.1 EllipSys3D

EllipSys3D uses the prescribed boundary layer (PBL) method, in which body forces are used to impose any arbitrary vertical

wind shear profile, see Mikkelsen et al. (2007) and Troldborg et al. (2014). A comparison of PBL with a wall model approach

was performed by Sarlak et al. (2015). This study showed that these two approaches yield very comparable vertical profiles170

of mean streamwise velocity, shear stress, and streamwise velocity fluctuations in the rotor region when large wind farms are

modelled. Ambient turbulence is modelled by introducing pregenerated synthetic ambient turbulence using the Mann model,

see Mann (1998). Turbulence planes are imposed at an axial position of 6 R and 13 R in the DTU and UU simulations, while

the first simulated turbine is located at 10 R and 30 R from the inlet, respectively.

3.1.2 PALM175

PALM uses a no-slip bottom boundary condition and the Monin-Obukhov similarity theory between the surface and the first

grid level to model the atmospheric boundary layer. Random perturbations are initially imposed on the velocity fields until

atmospheric turbulence has developed in a precursor simulation. The latter is performed on a smaller domain with periodic

boundary conditions in the streamwise and lateral directions. The precursor results are used to initialize the full simulations

with non-periodic boundary conditions in the streamwise direction. Turbulence recycling is also applied, see Maronga et al.180

(2015) for details.

3.1.3 Summary of Numerical Methods

An overview of the numerical methods described in the previous sections are summarized in Table 1 for each of the three

contributions. The performed simulations require substantial computational resources. The AL methodology does typically

use O(105) CPU hours for each case. The AD methodology does in general require a factor 10-20 less due to the increased185

time step and decreased resolution.
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Table 1. Summary of methods.

Method DTU FW UU

CFD Solver EllipSys3D PALM EllipSys3D

Coriolis No Yes No

Turbine NM80 NREL 5MW NREL 5MW

Turbine Modelling Actuator Line Actuator Disc Actuator Disc

Turbine radius R 40 m 63 m 63 m

Hub height zhub 80 m 90 m 90 m

Controller Yes Yes Yes

3D effects correction Yes No No

Aero-elastics included Yes No No

3.2 Overview of simulations considered

A total of 18 large wind farms have been simulated and analyzed. The majority of the simulations are performed for below rated

conditions at approximately 8 m/s for a range of ambient turbulence intensities (0− 15%) and turbine spacings (12R− 20R)

in streamwise and lateral direction. Additionally, two simulations with 15 m/s are included, which corresponds to just above190

rated. The simulations are summarized in Tables 2, 3, and 3.2 for the contributions from DTU, UU, and FW, respectively. The

tables give the free stream wind speed at hub height U0, ambient turbulence intensity at hub height TI , the corresponding

shear exponent for a power law fit to the velocity profile in the ABL, and turbine resolution corresponding to the grid size in

the vicinity of the turbines. Noticeably, the simulation differences are particularly related to the difference in modelling the

atmospheric boundary layer, which gives different shear velocity profiles. The DTU simulations have previously been analyzed195

in terms of flow statistics and distribution in Andersen et al. (2016).

4 Results and Discussion

The present analysis is an extension of the previous work on the inherent variability of the flow statistics in LES as presented

by Andersen et al. (2015). The long term average velocity within large wind farms is expected to converge towards a constant

level deep inside the wind farm, where a balance between the extracted energy and the entrained energy is reached. However,200

as shown by Andersen et al. (2015) the distributions of instantaneous and even 10 min average velocities show significant

variability within the same simulation. Here, the focus of the present study is on mechanical power, as opposed to the electrical

power, which requires estimation of the electrical losses in for instance the generator. Hence, the power production calculated

as:

Pmech = T ·ω205
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Table 2. Overview of simulations performed by DTU. The simulations include 16 turbines and 60 mins of data.

Name U0 Ambient TI Shear Turbine Resolution [R] Spacing (SX ×SY )

DTU1 8 m/s 0% 0.14 0.0625 12R× 20R

DTU2 8 m/s 3% 0.14 0.0625 12R× 20R

DTU3 8 m/s 15% 0.14 0.0625 12R× 20R

DTU4 15 m/s 15% 0.14 0.0625 12R× 20R

DTU5 8 m/s 0% 0.14 0.0625 12R× 12R

DTU6 15 m/s 0% 0.14 0.0625 12R× 12R

DTU7 8 m/s 0% 0.14 0.0588 14R× 14R

DTU8 8 m/s 0% 0.14 0.0625 20R× 20R

Table 3. Overview of simulations performed by UU. The simulations include 16 turbines and 30 mins of data. The vertical shear profile

imposed within the PBL method is determined using the same equivalent roughness as the one used in the Mann algorithm to generate

turbulence, Mann (1998)

.

Name U0 Ambient TI Equivalent roughness Turbine Resolution [R] Spacing (SX ×SY )

UU1 8 m/s 15% 0.5m 0.0781 8R× 20R

UU2 8 m/s 15% 0.5m 0.0781 12R× 20R

UU3 8 m/s 15% 0.5m 0.0781 14R× 20R

UU4 8 m/s 15% 0.5m 0.0781 20R× 20R

where T is the torque and ω is the angular velocity.

First, the inherent variability of LES are described, before the effect of free stream turbulence intensity, of turbulence and

shear combined, as well as of turbine spacing is investigated using the different numerical setups. Finally, the large amount of

data is aggregated, and a more generalized analysis is performed on mechanical power production and variability within large

wind farms.210

4.1 Variability of LES

Simulations DTU3, UU2, and FW5 (cf. Tables 2, 3, and 3.2) are comparable in terms of freestream velocity at hub height,

turbulence intensity, and spacing. Box plots based on the 10 min average mechanical power production normalized by rated

power P0 of the first 16 turbines for are given in Figure 2. Box plots are a compact way to visualize the distribution in terms of

meadian and the upper and lower quartiles. The 10 min averages have been calculated for the entire time series by shifting the215

averaging window by 1 min to increase the number of samples, i.e. a total of 51 samples from 60 min simulation time and 21
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Table 4. Overview of simulations performed by FW. The simulations included two rows of 50 turbines and 60 mins of data, but only data

from one row of 50 turbines is used

.

Name U0 Ambient TI Equivalent roughness Turbine Resolution [R] Spacing (SX ×SY )

FW1 8 m/s 3% 10−8m 0.127 6R× 20R

FW2 8 m/s 3% 10−8m 0.127 12R× 20R

FW3 8 m/s 3% 10−8m 0.127 20R× 20R

FW4 8 m/s 10% 0.15m 0.127 6R× 20R

FW5 8 m/s 10% 0.15m 0.127 12R× 20R

FW6 8 m/s 10% 0.15m 0.127 20R× 20R

samples from 30 min simulation time. This approach yields more samples and hence a first indication of the distribution, albeit

not statistically independent.

The results from DTU and UU are very comparable in terms of level of mechanical power production, while the FW results

are approximately 40% lower. This is consistent with the flow results presented in Andersen et al. (2015) and presumably220

mainly due to lower turbulence in the FW results as well as difference in shear and Coriolis. The figure endorses the previous

findings of large variability within LES of large wind farms, although the spatial filtering effect of the turbines themselves

reduce the variability in power compared to velocity. Here, the mechanical power production can vary by ±10% or more

around the median. However, there are distinct regions within the farm where the variability is higher. This is particularly

evident for turbines 8-11 in the UU results. Another interesting spatial effect is seen in both the results from DTU and FW,225

where the median peaks at the 7th and 12th turbine. This "anomaly" was first reported by Andersen et al. (2017a) based on

analysis of the same simulations, where it was shown not to be related to the atmospheric turbulence. Given the difference in

numerical setup, this corroborates that the "anomaly" is a physical feature related to large scale physics dependent on turbine

spacing, as also discussed by Andersen et al. (2017b). These finding are furthermore corroborated by the recent experimental

study by Turner V and Wosnik (2020), which identified resonance related to the turbine spacing.230

The simulations performed by FW included 50 turbines, so the full spatial extent of the wind farm is given in Figure 3. The

"anomaly" appears throughout the wind farm with distinct peaks at turbines 7, 12, 16, 23, 30, 39, 42, and 45. Furthermore,

the variability clearly increases towards the end of the wind farm, where the power production ranges from 0.13-0.20 of rated

power for the NREL 5MW turbine.

The variability is investigated more specifically in terms of the turbulence intensity, shear and turbulence intensity, as well235

as turbine spacing in the following.
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Figure 2. Box plots of the 10 min averaged mechanical power production normalized by rated power P0 of the first 16 turbines in DTU3,

UU2, and FW5. All simulations have U0 = 8 m/s and SX = 12R, and SY = 20R. The turbulence intensity is TI ≈ 15% for DTU3 and

UU2, while it is TI ≈ 10% for FW5. Lines connect median values of all turbines. Outliers not shown for clarity.

4.1.1 Effect of Turbulence Intensity

The simulations from DTU and UU utilize body forces to introduce ambient turbulence into the flow. This enables direct

investigation of the isolated effects of changing the ambient turbulence by changing the forcing.

Here, the distributions of instantaneous power production of the 16 turbines are compared directly in violin plots in Figure240

4 for DTU2 and DTU3, i.e. identical setup except an approximate free stream turbulence of 3% and 15%, respectively. The

differences in the distributions are clear. An increase in freestream turbulence increases the mean level of power production

due to increased energy entrainment. Initially, the distributions are also broader for the high turbulent case than for the low

turbulent case, which appears Gaussian, in particular for the second turbine. The width of the distributions becomes more

similar further into the farm, but the difference in median level is maintained. Similar trends were reported by Andersen et al.245

(2016). The effect of the controller is also clearly seen as the distributions are capped around P
P0
≈ 0.33, corresponding to the

turbine reaching the maximum rotational speed..
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Figure 3. Box plots of all 50 turbines for FW5 with TI = 10% and SX ×SY = 12R× 20R. Outliers not shown for clarity.

4.1.2 Effect of Shear and Turbulence Intensity

Turbulence intensity and shear are inherently linked in the simulations performed by FW, as a change in equivalent roughness

yields different shear and turbulence profiles. Figure 5 shows violin plots of the instantaneous mechanical power production250

in FW2 (TI = 3%) compared to FW5 (TI = 10%) for the first 16 turbines normalized by rated power. The distribution is

once again significantly broader for the high turbulence case and the distribution for the second turbine in the lower turbulence

case is close to Gaussian. However, the median level appears to be very similar for the following turbines (3-6) with infrequent

higher tails. Further into the farm, the distributions become broader for the high turbulent case with a slight increase in the

median level. However, the increase in the median level is not as pronounced as in Figure 4, which indicates that high shear255

decreases the effects of an otherwise high turbulence intensity.

4.1.3 Effect of Spacing

The initial turbulence intensity and shear discussed in the previous sections develops through wind farms, and the flow devel-

opment is closely related to the turbine spacing. Fig. 6 shows violin plots of the instantaneous mechanical power production in

DTU5 compared to DTU7 for the first 16 turbines normalized by rated power. This allows comparing spacings of respectively260
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Figure 4. Violin plots comparing the influence on turbulence intensity on the instantaneous power production in DTU2 (black) with TI =

3% and DTU3 (blue) with TI = 15% for turbine spacings of SX ×SY = 12R× 20R.

12R× 12R and 14R× 14R. This does however also relate to the turbulence intensity and shear inside the farm, see sections

4.1.1 and 4.1.2. The fact that these simulations consider a zero level of incoming turbulence intensity explains the small spread

of power values around the mean for the first turbines in the farm. The distributions broaden as the turbulence produced by the

turbines themselves dominates further into the farm. As expected, a larger spacing is associated with greater values of mean

power, as it allows more time for the wake flow to mix with the outside flow in between the turbines and to recover. The power265

distribution associated with the greater spacing appears Gaussian for the most part, while the one related to the shorter spacing

of 12R× 12R is more irregular and seems to consist in two distinct parts, presumably due to how the turbine controller reacts

to being in the near wake.

4.2 Aggregated Data

4.2.1 Comparison to Simple Engineering Models270

The simulation data are aggregated in terms of 10 min statistics for each operating turbine. Aggregating the statistics from

different simulations and numerical setups essentially assumes that all simulations are physically correct and correspond to
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Figure 5. Violin plots comparing the influence of turbulence intensity and shear on the instantaneous power production in FW2 (black) with

TI = 3% and FW5 (red) with TI = 10% for turbine spacings of SX ×SY = 12R× 20R.

different farms/turbines operating under different atmospheric conditions. The distributions have generally converged after the

6th turbine, despite the large variability, so the mean 10 min power production of all turbines from the 6th to the end of the row

of all the 18 simulations are aggregated as representative of operating in "deep wind farm" conditions. The aggregated data275

is plotted in Figure 7 as function of a representative turbine spacing,
√
SX ×SY , as suggested by Stevens et al. (2015a). The

mean power production is normalized by the long term mean power production of the first turbine to enable a direct comparison

with results taken from Stevens et al. (2015a). The data is colored according to inflow turbulence intensity and the symbols

indicate if the results are from DTU, UU, or FW. The standard deviation for the different 10 min periods and turbines of the

current simulations have been included as error bars.280

It is clear how the 18 simulations follow the same trends as the data derived from Stevens et al. (2015a), that were obtained

for both aligned and staggered configurations. Stevens et al. only present long term averaged values without the variability.

The results are generally encompassed by the results of DTU and FW. All results fall within a clear limit showing how much

power can be extracted from a wind farm operating below rated wind speed depending on representative turbine spacing. An

upper limit is indicated by DTU4 and DTU6 (in grey), which have a freestream velocity above rated (15 m/s), but with285

different turbulence intensities. The power productions deep inside the farm result in below rated conditions for DTU6 due to
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Figure 6. Violin plots comparing the influence of turbine spacing on the instantaneous power production in DTU5 (black) with SX×SY =

12R× 12R and DTU7 (blue) with SX ×SY = 14R× 14R, where no ambient turbulence intensity have been applied.

no freestream turbulence, while the turbines in DTU4 also experience above rated velocities deep inside the farm due to the

increased entrainment from the large atmospheric turbulence. Hence, it shows the transition from below rated to above rated

conditions.

The effect of atmospheric turbulence is also clear, both when comparing the general trends of the plot and when intercom-290

paring the DTU and FW results for different turbulent intensities. A higher atmospheric turbulence yields a higher production

deep inside the farms, while low or even no atmospheric turbulence results in a lower boundary in terms of production.

Finally, the figure includes the resulting power production based on two asymptotic expressions derived by Jensen and the

IWBL model by Frandsen (1992), respectively. The Jensen model is widely used, also by the industry, although it is less

physical as it is not based on a proper momentum analysis. The model yields a velocity ratio given by:295

U∞
U0 NOJ

= 1− 2x

1−x
where x=

1

3

(
r0

r0 +αx0

)2

(1)

Here, r0 is the turbine radius, x0 is turbine spacing and hence, the original Jensen model only has a single input parameter,

α, which governs the wake decay and expansion. The recommended values of α≈ 0.04 for offshore wind farms, see e.g.

Barthelmie and Jensen and α≈ 0.075 for onshore, see e.g. Pena Diaz et al. (2016), are also plotted for reference. The model
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has previously been compared to CFD simulations in Andersen et al. (2014). The power is computed from the cube of the300

converged velocity ratio.

The model developed by Frandsen is on the other hand more physical, and involves more parameters, which are interlinked.

Here, the expression given in Frandsen and Madsen (2003) is used, which gives the converged velocity at hub height

Uh,Frandsen =
G

1+ ln
(

G
f ′·h

)√
ct+(κ/ln(h./z0))2

κ

(2)

The geostrophic wind (G) and the roughness length (z0) have an impact on the velocity at a given height. Hence, the geostrophic305

wind has been calibrated to give a mean wind speed of 8 m/s at a hub height of 90 m for two realistic roughness lengths

corresponding to turbulence intensities of 3% and 15%. A latitude of 55◦ is assumed and a modified parameter of A∗ = 4

is used for compute f ′ = 1.2 · 10−4 · exp(A∗). The geostrophic wind and roughness lengths are summarized in Table 5. The

converged velocity is then found using CT = 0.8 for various distances. The mean power production ratio is then computed

using the cube of the converged velocity ratio and assuming constant CT .310

Table 5. Calibrated geostrophic wind speeds (G) and corresponding roughness length (z0), which yield a wind speed of 8 m/s at hub height

of 90 m.

z0 [m] G [m/s]

0.001 9.99

1.0 13.59

Both models capture the general trends very well, although the Jensen model underestimates the actual power production

for the recommended values. The IWBL model by Frandsen performs very well and captures both the high and low turbulent

intensity levels as well as the gradual change for the lower turbine spacings where the data by Stevens et al. is located. The

simpler models give a good first estimate of the converged mean power production, but the simpler models do not capture the

inherent variability of the power production, as the models are merely steady state. The continued importance of developing315

and testing such analytical models to provide accurate estimates of both mean velocity and variability was discussed in detail

by Meneveau (2019).

4.2.2 Response Surfaces

The total amount of aggregated data in Figure 7 comprise 12,016 different, albeit overlapping, 10 min realizations, which

includes the variability, both within a given 10 min realization and between different 10 min realizations as shown previously.320

The power per ground area, or power density, compared to the standard deviation of power normalized by the mean power

for different relative spacings is shown in Figure 8, where each dot is a 10 min realization. The green dots show results with low

atmospheric turbulence(TI = 0−3%), while the red dots show results for high turbulence(TI = 10−15%). The bin averaged
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Figure 7. Mean power production of all turbines from the 6th to the end of the row for all simulations as function of representative turbine

spacing. The mean power productions have been normalized by the mean power production of first wind turbine. Errorbars show standard

deviation of all the 10 min periods. Simulations with turbulence intensity of 0%, 3%, 10%, and 15% are shown in green, blue, cyan, and

red, respectively. Two simulations with U0 = 15m/s are shown in gray, which have turbulence intensities of 0% and 15%. DTU results are

plotted with circles, FW with triangles and UU with squares. Data from Stevens et al. (2015a), which used a constant CT = 0.75 is included

for comparison. The underlying broken contours indicate the asymptotic expression (eq. 12) from Jensen for two different α-parameters

while the full lines are contours from Frandsen (2007) for two different z0-values.

data is shown in black with the standard error plotted as error bars. The standard error is here defined as:

εstd =
σ
(
P 10min

SX×SY

)
√
N

(3)325

i.e. the standard deviation of the power density within a given bin normalized by the square root of the number of observations.

The data show significant spread in both power per area and standard deviation of the power although all simulation results

generally cluster together. The binned values are generally very consistent except at low standard deviations, in particular

Figure 8a) and Figure 8e), where the binned values jump. The standard error is usually small as the limited number of samples

are located in small clusters, except in Figure 8a), which show large standard deviations of the binned data. Furthermore, it330

appears that the power production per ground area is not very influenced by the standard deviation normalized by mean power.
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The high atmospheric turbulence realizations (in red) generally results in larger power density, as expected. Interestingly, the

low atmospheric turbulence realizations yields larger larger standard deviations of the power within the realization, see Figure

8a), e), and g).

A multiple linear regression is applied to the full set of bin averaged data with a freestream velocity of 8m/s from Figure335

8, i.e. aggregating all data with comparable CT . The regression is fitted in a least squares sense using the Matlab function

"regress"1. The regression fits the bin averaged power production per area to the normalized standard deviation of the power

production and the relative turbine spacing. The fit is performed to second order, i.e. for combinations of S∗ =
√
SX ×SY and

σ∗ = P 10min

SX×SY
of the following matrix:

Ã= b(1)+ b(2) ·S∗+ b(3) ·σ∗ + b(4) ·S∗ ·σ∗ + b(5) ·S∗2 + b(6) ·σ∗2 (4)340

The fit gives the coefficients b, and the combined set yields a response surface of the fit.

Figure 9 shows a contour plot of the response surface. The power density found here for a freestream velocity of 8m/s is

in the range of 0.5− 2.0W/m2, which is comparable to the general range of 1− 11W/m2 reported by Denholm et al. (2009).

The power density clearly decreases when the relative turbine spacing increases, as expected, because although the power

production increases for larger spacing, the area increases faster and hence dominates the ratio. However, it is also clear how345

the power density varies with the standard deviation of the power production, i.e. how much power are the turbines able to

exploit and extract from the turbulent fluctuations. For large spacing, the power density is not influenced significantly by the

standard deviation of the power production, cf. Figure 8g). For smaller spacing, there is an increased power density for small

standard deviations in the power production, albeit related to the aforementioned small clusters of increased power density for

small spacing, particularly seen in Figure 8a).350

Figure 9 also includes circles indicating the binned data used for the fit. The circles are colored according to the difference

between the fit and the binned data. The difference is generally (87% of the binned data points) less than ±0.5W/m2 and

alternating between a positive and negative difference for different relative spacings. The fit is particularly good for larger

spacings, but it struggles for smaller spacings with large outliers. The sensitivity of the fit is examined by performing a 10-fold

cross-validation. The mean squared error(MSE) is estimated between the fitted response surface and the actual input data. The355

resulting MSE is 0.0732± 0.0011 indicating that the fit is consistent across the data, but that an improved response surface

could be created. However, this would presumably also require a larger amount of data.

As shown previously, the simple engineering models by Frandsen (2007) is capable of capturing the average trends, similar

to the response surface. However, the inherent variability of LES is important for farm performance and for improving risk

assessment during the design phase. Hence, a similar response surface can be fitted to the standard deviation and the standard360

error of the bin averaged values in Figure 8. The corresponding response surfaces are shown in Figures 10 and 11, which can

be interpreted as the variability and the uncertainty associated with the response surface of mean power density.

The variability around the mean is up to 0.4W/m2 for small relative spacings, which is comparable to the difference in the

fit and bin averaged data as shown before. The variability is higher for shorter spacings, where the amount of outliers affect the

1https://se.mathworks.com/help/stats/regress.html
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Figure 8. Power per ground area plotted against standard deviation of power normalized by mean power for a)
√

(SX ×SY ) = 10.95R,

b)
√

(SX ×SY ) = 12.00R, c)
√

(SX ×SY ) = 12.65R, d)
√

(SX ×SY ) = 14.00R, e)
√

(SX ×SY ) = 15.49R, f)
√

(SX ×SY ) =

16.73R, and g)
√

(SX ×SY ) = 20.00R. The green dots indicate results with low atmospheric turbulence(TI = 0− 3%), while the red

dots indicate results for high turbulence(TI = 10− 15%). The black dots show bin averaged values including the standard error plotted as

error bars. 19
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Figure 9. Contours based on multiple linear regression fit of bin averaged power production per area to the standard deviation of power

production normalized by mean power production and relative turbine spacing. Points mark the binned data, where blue and red shades

indicate whether the fit underestimates or overestimates compared to the binned averaged values, respectively.

fit. The outliers can be related to the significant non-linearities in the near wake before the wake breaks down into small scale365

turbulence, see Sørensen et al. (2015). The 10-fold cross validation on the variability yields MSE = 0.0276± 0.0014, which

indicates a significant uncertainty in the fit, but again very small variation within the given dataset.

The increased variability for smaller spacing also comes with an increased uncertainty as shown in Figure 11. The standard

error decreases for increasing spacing, where the fit is very good, while the discrepancy is larger for the very short distance.

The fit tends to overestimate the standard error for the shortest spacings. Again, a 10-fold cross validation is performed on370

the response surface for the uncertainty, which gives MSE = 0.0085± 0.0015. Again, a very small variation within the given

dataset, but that the chosen response surface could be improved.

The response surfaces are only fitted to second order, because the aim here is merely to provide general insights into the

global trends and hence to avoid overfitting. It should be strongly emphasized that this is a rather crude approach. However,

the response surfaces yields a first attempt at constructing global response surfaces of the power density including the inherent375

variability based on significant amounts of LES data for a wide range of wind farm layouts operating at 8m/s, which show

physical trends.
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Figure 10. Contours based on multiple linear regression fit of standard deviation of the bin averaged power production per area to the standard

deviation of power production normalized by mean power production and relative turbine spacing. Points mark the binned data, where blue

and red shades indicate whether the fit underestimates and overestimates compared to the binned averaged values, respectively.

The response surfaces can continuously be improved by adding more data. Figure 12 shows a heatmap of how the 10

min realizations are distributed for the standard deviation of power production within each 10 min period normalized by the

corresponding power production versus the relative turbine spacing. Clearly, the majority of 10 min realizations are in the range380

of σ(P10min)

P 10min
= [0.1−0.5] for

√
SX ×SY = 15.49R and

√
SX ×SY = 20R. This can be used to guide which scenarios should

be computed next essentially to fill the gaps. As such, additional LES computations should be focused around
√
SX ×SY =

16R,18R− 19R, where there is no data, and for
√
SX ×SY < 14R, where the uncertainty is large.

The response surfaces could also be made dependent on more parameters by adding more LES data. Currently, the turbine

spacings in the lateral and streamwise direction have been collapsed to a single dimension, but the dependency could be385

unfolded. Similarly, the dependency on a number of additional parameters could be investigated, for instance:

– Free wind speed

– Turbulence level

– Atmospheric stability
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Figure 11. Contours based on multiple linear regression fit of the standard error of the bin averaged power production per area to the standard

deviation of power production normalized by mean power production and relative turbine spacing. Points mark the binned data, where blue

and red shades indicate whether the fit underestimates and overestimates compared to the binned averaged values, respectively.

– Shear390

– Turbine size

However, this would obviously require substantial amounts of computing textcolorredresources.

One way to circumvent the large computational costs would be to utilize SCADA data in combination with the LES. Similar

response surfaces could be constructed based on SCADA data from operating wind farms, which would enable a more global

verification of LES and the actuator disc/line methods on wind farm scale. Such a verification would be valuable as direct395

comparison of time series of specific events between LES and actual wind farms is extremely difficult, if not impossible, to

achieve given the complexity and amount of information required on the atmospheric conditions to enable such a comparison.

A successful verification would facilitate the direct integration of LES data and SCADA data to construct more certain

response surfaces covering a larger range of scenarios and parameters. It could act as a lodestar and inform researchers in

which regions of turbine spacing and turbulence intensity to perform the expensive LES in order to fill the gaps and explain400

physical trends not captured by the simpler models.
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Figure 12. Heatmap showing number of 10 min realizations for different bins of relative spacing and standard deviation of power production

based on a total of 12,016 realizations. Values on axes show center value.

Finally, the response surface could be extended to include e.g. fatigue loads for turbines operating in wind farms. Such a

surrogate model for fatigue loads on a single wind turbine was developed by Dimitrov et al. (2018), who compared the accuracy

and performance of six different methods.

5 Conclusions405

This work aimed at providing a general overview of the global trends of power performance for large wind farms, with a focus

on variability. This was done through the analysis of Large Eddy Simulations (LES) performed on large wind farms from the

three institutions that co-authored this work. LES results of large wind farms obtained from other researchers as well as simu-

lations performed using simpler engineering models were also included to provide a more complete envelope for the results.

410

As LES require large amounts of computational resources, emphasis was made on extracting as much information possible

from the existing set of simulations performed using different setups and incoming flow conditions. As such, emphasis is not

put on comparing the simulations to each other, but rather on using as many results as possible to cover a wide range of possible

scenarios that can provide a global picture of the power characteristics within large wind farms.

415
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Parametric studies were first performed to inform about the effect from atmospheric conditions as well as turbine spacing

on the production and its variability. An increase in atmospheric turbulence intensity, by increasing energy entrainment, was

shown to raise the mean level of power production. It was also associated to wider distributions of the production values. A

larger spacing between the turbines was also associated to greater levels of production, as expected.

The analysis was extended further by aggregating the large amount of LES performed under various conditions. This was420

done in terms of 10-minute statistics for each turbine operating in deep farm conditions. LES works from other researchers as

well as simulations performed with simpler engineering models were also included in a first step when looking at the power

produced deep inside the farm as a function of a representative spacing. All results were shown to fall within a clear limit

showing how much power can be extracted from a wind farm operating below rated wind speed, as a function of representative

turbine spacing. Whereas higher turbulence levels lead to larger production levels deep inside the farms, while cases without425

incoming turbulence were shown to provide a lower power production. While LES provide more information in terms of vari-

ability, simple engineering models were shown to produce a reasonable envelope for the results obtained using the high fidelity

methods.

As a second step, response surfaces encompassing the total amount of aggregated LES data, i.e. 12,016 different albeit over-430

lapping 10-minute realizations, were created. They revealed information regarding various aspects of the power production

within large wind farms, among which the amount of power the turbines are able to extract from the turbulent fluctuations, as

well as the variability and uncertainty associated with the mean power densities.

The work presented in this paper serves to provide valuable information regarding power and its variability deep inside large435

wind farms. Nonetheless, the response surfaces presented here would gain in being complemented with more LES results to

provide an even more complete picture. This could be done by considering further turbine spacings to fill existing gaps. The

dependency of response surfaces to more parameters could also be investigated, including individually-considered spanwise

and streamwise spacings, the freestream velocity as well as the atmospheric stability. As LES are known to be very computa-

tionally demanding, SCADA data could also be used to provide more complete response surfaces. Future work could also go440

one step further by investigating the behavior of turbine loads in similar terms as what was performed here regarding power

production.

Data availability. The data can be made available on request.445
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