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Abstract. The current trend toward larger wind turbine rotors leads to high periodic loads across the components due to the

non-uniformity of inflow across the rotor. [..2 ]To address this, we introduce a blade-mounted lidar on each blade to provide a

preview of inflow wind speed that can be used as a feedforward control input for the mitigation of such periodic blade loads. We

present a method to easily determine blade-mounted lidar parameters, such as focus distance, telescope position, and orientation

on the blade. However, such a method is accompanied by uncertainties in the inflow wind speed measurement, which may also5

be due to the induction zone, wind evolution, "cyclops dilemma", unidentified misalignment in the telescope orientation, and

the blade segment orientation sensor. Identification of these uncertainties allows their inclusion in the feedback–feedforward

controller development for load mitigation. We perform large-eddy simulations, in which we simulate the blade-mounted lidar

including the dynamic behaviour and the induction zone of one reference wind turbine for one [..3 ]above-rated inflow wind

speed. Our calculation approach provides a good trade-off between a fast-and-simple determination of the telescope parameters10

and an accurate inflow wind speed measurement. We identify and model the uncertainties, which then can directly be included

in the feedback-feedforward controller design and analysis. The rotor induction effect increases the preview time, which needs

to be considered in the controller development and implementation.

1 Introduction

The ongoing trend of steadily growing rotor [..4 ]diameters of wind turbines results in dynamic loads across the rotor swept15

area, which are becoming more uneven. Due to the so-called rotational sampling or eddy slicing effect, the blade samples

the inhomogeneous wind field with frequencies determined by the rotor speed. Hence, the dynamic blade loads [..5 ]are

concentrated at the multiples of the rotational frequency, i.e., 1P, 2P, 3P,...,nP (Bossanyi (2003); van Engelen (2006)).

*removed: the
2removed: On thisregard
3removed: above rated
4removed: diameter
5removed: gets

1



The scope of this paper is particularly geared to the relevance of three aspects of recent developments in controls to mitigate

such loading. First, the control surfaces on the rotor are becoming more localized and consequently [..6 ]in addition to individual

(blade) pitch control, local active or passive blade load mitigation concepts (e.g. trailing edge flaps) have been researched

for several years. Second, in addition to the proven feedback control triggered by rotor speed or the individual blade root

bending moments, feedforward control using either observer techniques or lidar-assisted preview information of the inflow is5

investigated for collective or individual pitch as well as trailing edge flap control. Third, special attention is required in the

feedback–feedforward controller design to guarantee robust stability and performance in the presence of inherent uncertainties

in the lidar measurement.

The traditional collective pitch control (CPC) is responsible for keeping the rotor speed constant near and [..7 ]at above-rated

wind speed conditions. Bossanyi (2003) extended the CPC with individual pitch control (IPC) to mitigate the 1P dynamic blade10

load. The effectiveness of the IPC in reducing the dynamic blade loads is demonstrated in this paper. Later, the function of the

IPC was extended to address the mitigation of higher harmonic dynamic blade loads (Bossanyi (2005); van Engelen (2006)),

leading to load relief across the wind turbine components, i.e., blade root bending moments, hub yaw and tilt moments, yaw

bearings, etc. Such a control design leads to the increased use of the blade pitch system. With growing blade length, the blade

mass rises with a power of two to three, and thus, increased pitch activity becomes even more undesirable, and as such results15

in wear and tear of the pitch actuators and bearings and equivalently, higher maintenance costs. One solution involves the use

of small localized control surfaces to locally influence the thrust force, e.g., close to the blade tip, which contributes greatly

to the overall blade root loadings. Pechlivanoglou (2013) conducted experimental and numerical studies to determine the most

promising setup of passive and active local flow control solutions for wind turbine blades, and he concluded that a controllable

flexible trailing edge flap close to the blade tip has the most potential to mitigate the dynamic blade loads. The individual20

trailing edge flap control (TEFC) [..8 ]has been shown to be an effective means of reducing dynamic blade loads [..9 ]in

numerical studies (Bergami and Poulsen (2015); He et al. (2018); Ungurán and Kühn (2016); Zhang et al. (2018)), wind tunnel

tests (Barlas et al. (2013); Marten et al. (2018); van Wingerden et al. (2011)), and field tests (Berg et al. (2014); Castaignet

et al. (2014)). Castaignet et al. (2014) performed a full-scale test on [..10 ]a Vestas V27 wind turbine, reporting a load reduction

of 14% at the flap-wise blade root bending moment, providing proof of the control concept and the capabilities of the trailing25

edge flap for dynamic blade loads mitigation.

Recently, feedforward control has been identified as a promising concept for wind turbine control, as [..11 ]feedback con-

troller mainly rely on indirect measurement of the disturbance, e.g., through measurement of rotor speed deviation from rated

rotor speed or measurement of the blade root bending moment. Feedback controllers are only able to react on the disturbance

after its influence on the wind turbine has been measured, which leads to a delayed control action. Several authors propose30

lidar-assisted wind turbine controllers so that control actions can be determined before the disturbance influences the turbine.
6removed: beside
7removed: above rated
8removed: is proven as
9removed: reductions

10removed: the
11removed: it mainly relies

2



When properly tuned, this so-called feedforward control strategy can mitigate fatigue loading from external disturbances. The

lidar-assisted collective pitch controller proposed by Schlipf et al. (2013) accomplished a better rotor speed tracking with

reduced pitch activity, with respect to the feedback collective pitch controller. They demonstrated the reduction of damage

equivalent loads at the out-of-plane blade root bending moment, low-speed shaft torque, and tower bottom fore-aft bending

moment through the use of lidar as feedforward collective pitch control input. Bossanyi et al. (2014); Kapp (2017) investigated5

the use of lidar for feedback–feedforward collective and individual pitch control and concluded its suitability for wind turbine

control applications. Their purpose for the IPC was to mitigate the 1P loads at the flapwise blade root bending moment. They

observed that a lidar-assisted feedback–feedforward IPC achieves marginal damage equivalent loads reduction with respect to

feedback-only IPC. Ungurán et al. (2019) achieved additional load reduction across various wind turbine components with [..12

]a combined feedback–feedforward IPC [..13 ]when compared to feedback-only IPC. They highlighted that to further reduce10

the blade root bending moment and avoid undesirable load [..14 ]increases on other wind turbine components, special care

should be taken as the feedback is combined with feedforward IPC during controller development, in terms of, for instance,

avoiding the same bandwidth for the feedback and feedforward IPC. This results in an elevated peak in the sensitivity function

around the crossover frequency. Furthermore, Bossanyi et al. (2014); Kapp (2017); Ungurán et al. (2019) studied different in-

flow wind conditions and wind turbine characteristics; they, also used different lidar systems for feedforward control purposes15

that influenced the results.

Due to obvious reasons, it is necessary to consider the uncertainties in the lidar measurements to achieve robust stability

and performance of the feedback–feedforward controller. Furthermore, the source of such uncertainties must be identified

and modeled, which can then be incorporated into the design and analysis of the controller, to ensure performance even for

uncertain lidar measurements. Several authors have already addressed this problem, e.g., Bossanyi (2013); Laks et al. (2013);20

Simley et al. (2014a, b) with their numerical investigations. Simley et al. (2016) performed field tests to assess the influence

of the "cyclops dilemma", spatial averaging error, induction zone, and wind evolution, on a hub-mounted lidar measurement.

Simley et al. (2014a) used a hub-mounted continuous-wave (CW) lidar to investigate the effect of the "cyclops dilemma," and

concluded the existence of a compromise in the preview distance. Spatial averaging increases with increasing distance from

the rotor plane, leading to correlation attenuation between the rotor-effective wind speed and the lidar-estimated inflow wind25

speed, with increasing frequency. As [..15 ]measurements are taken closer to the rotor plane, the contribution of the lateral

and vertical wind components to the line-of-sight lidar measurements also increases. [..16 ]Thus, it is not possible to accurately

reconstruct the longitudinal wind component from a single hub-mounted lidar system, which results in over- or underestimation

of the rotor effective wind speed. Laks et al. (2013) investigated how wind evolution affects controller performance; they used

a single point measurement, without spatial averaging, in front of the wind turbine blade as a feedforward IPC input. Using30

the feedback–feedforward IPC, they acquired the highest load reduction at the blade root bending moment at a preview time of
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only 0.2 s. The further the measurement was taken from the rotor plane, the more the wind evolved on high frequencies (i.e.,

the so-called "wind evolution"), leading to overactuation by the feedforward IPC. It should be noted that the required preview

time depends on many factors, e.g., wind turbine size, 1P frequency, inflow wind speed, induced phase shift by the feedforward

controller and blade pitch actuators, etc.

The blade-mounted lidar system is a novel technique that enables us to sample the wind component parallel to the rotor5

shaft axis around the swept area (Bossanyi (2013)) and has [..17 ]been demonstrated to be technologically viable (Mikkelsen

et al. (2012)). Such a feature of the system enables addressing the mitigation of higher harmonic dynamic blade loads through

feedback–feedforward individual pitch and trailing edge flap controllers (Ungurán et al. (2018, 2019)), while simultaneously

posing challenges with the presence of the induction zone. The closer the lidar measurement is taken to the rotor plane, the

higher the deficit between the measured inflow and free flow wind speeds. Additionally, this deficit depends on where the lidar10

is mounted along the blade radius, which shows the importance of [..18 ]analysing how the blade-mounted lidar measurement

is affected by [..19 ]wind evolution, the induction zone, and the assumptions made during the inflow wind speed reconstruction.

Therefore, in this study, our objective is to identify the nominal measurement transfer functions and model the uncer-

tainties of the blade-mounted lidar measurement as a frequency-dependent uncertain weight for inclusion into the feedback–

feedforward individual pitch and trailing edge flap control development, and to [..20 ]analyse the impact of the induction zone15

effect on the preview time.

The rest of the paper is organized as follows: Section 2 provides a description of the framework and methods we [..21 ]use

for identifying the uncertainties and preview time of the blade-mounted lidar measurement, [..22 ]after an introduction of the

blade-mounted lidar-based simulation setup in Section 2.1. In Section 2.2 we describe the method we use to estimate

the inflow wind speed. The method we employed for determining the blade effective wind speed to assess the efficiency of20

the blade-mounted lidar-based inflow wind speed measurement is discussed in Section 2.3. Section 2.4 describes the general

control implementation and presents the multiblade coordinate transformation and its importance in the controller design, while

Section 2.5 details how the lidar-based measurement uncertainty in considered in control development and analysis. Section 2.6

proposes a method to identify the uncertainties of the blade-mounted lidar measurement as a frequency-dependent uncertainty

weight, [..23 ]Section 2.7 presents the method [..24 ]we apply for estimating the preview time[..25 ], and Section 2.1 introduces25

a const function which we use to evaluate the initially selected lidar and telescope parameters. The results of a reference

case are presented in Section 3, [..26 ]where in Section 3.1 we analyse the effect of the multiblade coordinate transformation
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Figure 1. Block diagram of the blade-mounted lidar-based simulation setup. LOS corresponds to line-of-sight.

[..27 ]on the measurement. The simulation setup is established in Section 3.2, and we systematic analyse the uncertainties

of various telescope and control parameters [..28 ]in Section 3.3. The results are discussed in Section 4 prior to the conclusions

in Section 5.

2 Methodology

2.1 Blade-mounted lidar5

A telescope [..29 ]is mounted on each blade and [..30 ]is connected to a hub-based continuous-wave lidar with [..31 ]fibre optical

cables. The lidar [..32 ]samples the inflow wind speed in front of the rotor plane at a rate of 5 Hz, [..33 ]and we intend to use

the lidar measurements for control purposes. The lidar [..34 ]measurements are integrated into the system model according

to Figure 1, [..35 ]and we use a combination of large-eddy simulations and an aeroelastic simulation code [..36 ]to simulate

and evaluate the lidar-based inflow measurements. Thus, lidar measurements are simulated in a realistic environment,10

where the effect of the induction zone and wind evolution, as well as the dynamic behaviour of the wind turbine, [..37 ]are

taken into account. Moreover, the lidar simulator [..38 ]considers volumetric measurement, dynamics of the blade and tower,
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28removed: (Section 3.3). Results of this paper
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Figure 2. Configuration of the lidar measurement system, with a telescope mounted on each blade and connected to a continuous-wave lidar

in the hub via [..40 ]fibre optics. The line-of-sight wind speed is computed on the basis of a weighting function (W (F,ξ)), which is dependent

on the focus distance (F ) and the range along the beam (ξ).

i.e., displacement, rotation, and linear velocity in 3D space, and blade-rotation-induced velocity. Nevertheless, the rotational

effect of the blade [..39 ]is not accounted for during the accumulation of a single measurement.

Figure 2 illustrates the coordinate systems and the telescope orientation. Here, the line-of-sight (LOS) wind speed measure-

ment from blade i (ulos,i) [..41 ]is defined as

ulos,i =

ξmax∫
ξmin

W (F,ξ)Vi(ξ)dξ

ξmax∫
ξmin

W (F,ξ)dξ

, (1)5

where Vi(ξ) is defined in Equation (3), W (F,ξ) is the lidar’s weighting function, defined according to Simley et al. (2014a)

as

W (F,ξ) =
1

ξ2 +

(
1 − ξ

F

)2

R2
R
, (2)

where RR is the Rayleigh range, set at 1,573 m herein, as proposed by Simley et al. (2014a); F is the focus distance and ξ

is the range along the beam. Limits ξmin and ξmax, introduced in Equation (1), refer to the minimum and maximum range,10

39removed: was
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respectively, along the beam. For practical implementation of the lidar simulator, these values [..42 ]are chosen such that
W (F,ξ)
W (F,F ) equals 0.02 at these limits. During discretization of Equation (1), the spatial resolution [..43 ]is set empirically at

∆ξ = 0.1 m. A single-point measurement is given by

Vi(ξ) =



uh,i(ξ)

vh,i(ξ)

wh,i(ξ)

−

ẋt,h,i

ẏt,h,i

żt,h,i



T 

`x,h,i

`y,h,i

`z,h,i

 , (3)

where [uh,i vh,i wh,i]
T is the wind speed vector along the laser beam expressed in the rotating hub coordinate system; [ẋt,h,i ẏt,h,i żt,h,i]

T5

is the linear velocity vector of the blade segment where the telescope is mounted, expressed in the rotating hub frame of ref-

erence[..44 ]; and [`x,h,i `y,h,i `z,h,i]
T is the unit vector of the laser beam in the rotating hub coordinate system. The aeroelastic

simulation tool is capable of providing full kinematics information, i.e., positions, orientations, and linear and angular veloci-

ties, of any blade segment in the hub coordinate system.

2.2 Wind speed estimation10

During the inflow wind speed estimation, the velocity, displacement, and rotation of the blade segment [..45 ]are assumed to

be known; therefore, the [..46 ]wind speed component parallel with the rotor shaft axis can be reconstructed as indicated in

Equation (4).

Without loss of generality, [..47 ]in the wind speed estimation, the weighting function of W (F,ξ) from Equation (1) is

neglected, and two assumptions are made: (1) the vh,i and wh,i components are zero and (2) the mean wind [..48 ]velocity15

is parallel with the rotor axis, i.e., no tilt and no yaw [..49 ]misalignments are considered. Consequently, an estimate of the

wind speed parallel to the rotor shaft axis (uh,est,i) [..50 ]is

uh,est,i ≈
ulos,i + ẏt,h,i`y,h,i + żt,h,i`z,h,i

`x,h,i
+ ẋt,h,i . (4)

Nevertheless, such assumptions [..51 ]introduce errors in the lidar measurement that [..52 ]are presumed to exist in the identified

uncertainty weight, and thus, [..53 ]are consequently considered during the controller development.20
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Figure 3. Normalized longitudinal inflow wind speed (u(F,R)
u0

) [..58 ]as a function of focus distance (F ) and blade span position (R), with

an undisturbed inflow wind speed u0 = 13 m s−1.

2.3 [..54 ]

[..55 ]

[..56]

[..57 ]

Figure 3 illustrates the induction zone effect for the reference case defined in [..59 ]Section 3.3. Note that the lidar measure-5

ment [..60 ]is affected by the rotor induction. The reduction depends on the position of the telescope along the blade radius

(R) and the focus distance of the laser beam (F ), where the wind speed measurement takes place. To account for this effect in

the lidar-based inflow wind speed measurement, we [..61 ]construct a second-order polynomial function (f ), whose inputs [..62

]are chosen as rotor speed (ωr), blade pitch angle (βi), and blade root flapwise and edgewise moments (Mfw,i, Mew,i). Rotor

speed and blade pitch angles are easily measured, and we assumed that the blade root flapwise and edgewise moment10

sensors are also available for implementing this method. Therefore, the estimated wind speed parallel to the rotor shaft axis

54removed: Blade effective wind speed and wind speed deficit estimation
55removed: To assess the performance efficiency of the blade-mounted lidar-based inflow wind speed measurement, we introduced a new signal called the

blade-effective wind speed (ubeff,i), which is determined as the contribution of the inflow wind speed on each blade segment ui(r) to the flapwise blade root

bending moment; the inflow wind speed refers to the longitudinal wind speed in the rotor axis direction. The contribution depends on the radial distance (r)

and the local thrust coefficient (CT) of the blade segment as expressed by
57removed: The local thrust coefficients were resolved from steady-state simulations for each blade segment from cut-in to cut-out wind speeds.
59removed: Section 3.2
60removed: was
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(uh,est,i) is corrected as

ucor,i = uh,est,i + ∆uest,i , (5)

where

u0−u(F,R)≈∆uest,i = f(F,R,ωr,βi,Mfw,i,Mew,i) . (6)

The second-order polynomial function (f ) is fitted on the data extracted from 10-minute large-eddy simulations with5

laminar inflow for mean wind speeds between 4 m s−1 and 25 m s−1. The u(F,R) is the wind speed at an upstream

distance from the blade of F , and at a blade radial position of R, and u0 is taken from the same blade radial position of

R, but at an upstream distance of three times the rotor diameter (3D).

2.3 Blade effective wind speed

To assess the performance efficiency of the blade-mounted lidar-based inflow wind speed measurement, we introduce a10

new signal called the blade-effective wind speed (ubeff,i), which is determined as the contribution of the inflow wind speed

on each blade segment ui(r) to the flapwise blade root bending moment; the inflow wind speed refers to the longitudinal

wind speed in the rotor axis direction. The contribution depends on the radial distance (r) and the local thrust coefficient

(CT) of the blade segment as expressed by

ubeff,i =

√√√√√√√√√√√√

Rtip∫
Rhub

CT(r,ui(r))r
2u2i (r)dr

Rtip∫
Rhub

CT(r,ui(r))r
2 dr

. (7)15

The local thrust coefficients are resolved from steady-state simulations for each blade segment from cut-in to cut-out wind

speeds.

2.4 Multiblade coordinate transformation (MBC)

In the subsequent step, we [..63 ]introduce the multiblade coordinate transformation (MBC) that simplifies the controller design

by transforming a time-varying system into a time-invariant system and decouples the individual pitch from the collective pitch20

control. Figure 4 demonstrates the manner in which the feedforward controller [..68 ]is implemented. First, the measured

inflow wind speed [..69 ]is transformed to the non-rotating frame of reference by applying MBC transformation (Tmbc(θ+φ))

63removed: introduced
68removed: was
69removed: was
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Figure 4. Implementation of the feedforward collective and individual pitch control, where the inputs (ucor,1, ucor,2, and ucor,3) are the estimated

wind speeds parallel to the rotor shaft axis and the outputs are the blade pitch angles (β1, β2, and β3). The feedforward controller (Kff,f) [..64

]is implemented in the non-rotating (fixed) frame of the reference and [..65 ]is, therefore, denoted with an extra index f. Further, the multi-

blade coordinate transformation (Tmbc) [..66 ]is applied to the inputs, and the pseudo-inverse transformation (T+
mbc) [..67 ]is applied to the

outputs.

in accordance with Equation (8), where θ denotes the azimuth angle.
ucor,col

ucor,yaw

ucor,tilt

 = Tmbc(θ+φ)


ucor,2

ucor,3

ucor,1

 (8)

where

Tmbc(θ) =


1
3

1
3

1
3

2
3 cos(nhθ)

2
3 cos

(
nh
[
θ+ 2π

3

])
2
3 cos

(
nh
[
θ+ 4π

3

])
2
3 sin(nhθ)

2
3 sin

(
nh
[
θ+ 2π

3

])
2
3 sin

(
nh
[
θ+ 4π

3

])

 . (9)

A phase shift (φ) [..70 ]is introduced into the transformation to consider that the measured inflow wind speed hits the wind5

turbine blade after this azimuth angle change. This value varies with respect to several parameters, including the selected focus

distance, inflow wind speed, and rotor speed. Further, the control signals or the blade pitch angles (βcol, βyaw, βtilt) [..71 ]are

determined by the feedforward controller (Kff,f). If the preview time provided by the lidar [..72 ]is greater than the time delay

induced by the feedforward controller, an additional time delay (e−sTid ) [..73 ]is introduced into the system. Finally, the delayed

control signals (βcol,d, βyaw,d, and βtilt,d) [..74 ]are transformed to the rotating frame of the reference using the pseudo-inverse of10

the MBC transformation (T+
mbc(θ)). The main structure of the feedforward individual pitch controller in Figure 4 can be used

in the feedforward trailing edge flap controller as well.

The MBC transformation plays a considerably important role because it can transform a frequency component of interest,

such as 1P, 2P, or 3P (Bossanyi (2003); van Engelen (2006)), to a low-frequency component, named as 0P. It is dependent on

the selected value of nh in [..75 ]Equation (9). For example, 1P will be transformed to 0P when nh is specified as 1, and 2P will15

be transformed to 0P when nh is specified as 2.
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In this study, we focus on identifying the uncertainty weight that can be used during the feedback-feedforward individual

and collective pitch control development with an objective to mitigate the 1P loads at the flapwise blade root bending moments

and to enhance the rotor speed tracking. This indicates that the measured inflow wind speeds [..76 ]are transformed to the

non-rotating frame of reference by considering nh as 1 in [..77 ]Equation (9), where the uncertainty weight identification [..78

]is conducted. Further, the same methodology can be applied to identify the uncertainty weight for high harmonics control by5

selecting a large integer value of nh.

We have already mentioned that the measured inflow wind speeds were transformed to the non-rotating frame of

reference by applying the MBC transformation. In order to assess the performance efficiency of the blade-mounted lidar-

based inflow wind speed measurement, the blade effective wind speeds were also transferred into the non-rotating frame

using the MBC transformation as follows10 
ubef,col

ubef,yaw

ubef,tilt

 = Tmbc(θ)


ubef,1

ubef,2

ubef,3

 (10)

where Tmbc(θ) is defined in Equation (9).

2.5 System modeling with uncertain lidar measurements

We [..79 ]use the blade-mounted telescopes to measure the disturbance, or the inflow wind speed in this case. Afterward, the

three measurements [..80 ]are transformed into the non-rotating frame of reference where they [..81 ]are used as inputs to15

the feedforward individual and collective pitch controllers. Figure 5 illustrates the disturbance rejection controller setup with

uncertainty. Each block in the figure represents a three-input and three-output system. Consequently, the resulting transfer

function [..82 ]is in a 3× 3 matrix (three-input and three-output). The measurement uncertainty can vary with wind speed,

wind shear, turbulence intensity, etc. (Navalkar et al. (2015)), thus, multiplicative diagonal complex uncertainties [..83 ]are

considered.20

The control development [..84 ]is aimed at achieving disturbance rejection up to a certain frequency with measurement

uncertainties. In other words, we [..85 ]want to find a controller that satisfies Equation (11) for a chosen performance weight

Wp.∥∥∥ WpSfbSff,p

∥∥∥
∞
< 1, (11)
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Figure 5. Block diagram of the disturbance rejection control design with performance weight and uncertain input measurement. Kfb,f, Kff,f

are the feedback and feedforward controllers,Gwt,f is the wind turbine model from the control input to output,Gd,f is the wind turbine model

from the disturbance to the output, Gn,f is the nominal disturbance measurement model, ∆` is the uncertainty, W` is the measurement

uncertainty weight, and Wp is the performance weight. The f in the index refers to the non-rotating (fixed) frame of reference.

where the frequency-dependent feedback (Sfb) and feedforward sensitivity (Sff,p) functions with [..86 ]additive uncertainty are

given by

Sfb = (I +Gwt,fKfb,f)
−1

Sff,p = I +Gwt,fKff,f (Gn,f + ∆`W`)G
−1
d,f

(12)

and

∆` =


δ`,1 0 0

0 δ`,2 0

0 0 δ`,3

 ∈ C3×3 [..87] (13)5

[..88 ]and satisfies the property ||∆`||∞ ≤ 1. This equation highlights the importance of knowing the frequency-dependent un-

certainty weightW`(j ω) in advance, so as to ensure that the closed-loop system is stable and that the objective in Equation (11)

is satisfied for all perturbations (||∆`||∞ ≤ 1). For control development, only the identification of the frequency dependent un-

certainty weight of W`(j ω) [..89 ]and the nominal disturbance measurement model of Gn,f(j ω) are missing, which [..90

]are identified for the reference [..91 ]cases in Section 3.3.10

[..92 ]Remark: [..93 ]Only one objective [..94 ]is introduced in Equation (11); nevertheless, other objectives can be added,

such as penalizing the control signal magnitude at high frequencies (Ungurán et al. (2019)). [..95 ]

[..96]

86removed: multiplicative
88removed: for
89removed: was
90removed: was
91removed: case
92removed: Remarks
93removed: (1)
94removed: was
95removed: (2) To avoid the disturbance model acting as a scaling factor of the objective function, as in
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[..97 ]

[..98]

[..99 ]

2.6 Uncertainty modeling for control development

We [..100 ]employ black box system identification to establish the transfer functions (G`) from the blade effective wind speeds5

(ubeff) to the corrected [..101 ]lidar-based inflow wind speeds (ucor) in the non-rotating (fixed) frame of reference

ucor,f = G`ubeff,f (14)

with

G` =


G`,col 0 0

0 G`,yaw 0

0 0 G`,tilt

 ∈ C3×3 . (15)

The system identification is performed via the ssest function from MATLAB (2018) with a 15th-order state-space model,10

which can capture all the relevant information. The order of the state-space model [..102 ]is found empirically.

We separately [..103 ]identify the nominal disturbance measurement model (Gn,k(j ω)) and the [..104 ]

[..105]

[..106 ]

[..107]15

uncertainty weight (w`,k(j ω)), where

[..108]

[..109 ]k ∈ {col, yaw, tilt}, as a 5th-order minimum phase filter for each of the inputs in such a way as to satisfy the following

inequalities

|Gn,k(j ω)| < |G`,k(j ω)| , ∀ω, (16)20

97removed: Figure 5 was extended with the inverse of the disturbance model (G−1
d,f ) (shown in a dashed rectangle), so that

99removed: which ensures that z1 is not affected by the disturbance model. Hence, in the control synthesis and analysis, z1 is a direct indicator of the

controller performance in the presence of uncertainties.
100removed: employed
101removed: lidar based
102removed: was
103removed: identified the uncertainty weight for each of the inputs (w`,k(j ω)) in such a way as to ensure that the relative error between the nominal
104removed: identified systems (G`,k(j ω)) is below each uncertainty weight
106removed: The uncertainty weight is modeled as a first-order minimum-phase filter
109removed: Here,wDC,k = w`,k(j 0) andw∞,k = w`,k(j∞) represent the DC and high-frequency gains of the filter, and correspond to the uncertainties

at low and high frequencies, respectively. The crossover frequency ω0,k is defined as the frequency where the magnitude of the filter crosses 1 from below

(|w`,k(j ω0,k)|= 1), or 0 dB, and with
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and

|Gn,k(j ω) +w`,k(j ω)| > |G`,k(j ω)| , ∀ω, (17)

leading to the [..110 ]diagonal nominal disturbance measurement model matrix of

Gn =


Gn,col 0 0

0 Gn,yaw 0

0 0 Gn,tilt

 , (18)

[..111 ]and [..112 ]uncertainty weight matrix of5

W` =


w`,col 0 0

0 w`,yaw 0

0 0 w`,tilt

 . (19)

The order of the transfer functions are determined empirically during the analysis of the data. Lower orders could be

selected as well, however, these would lead to higher uncertainties at high frequency.

The ideal case would be to measure with a telescope, the exact inflow wind speed hitting the rotor blades, to result in a

nominal disturbance measurement transfer function with a gain of 1 over the entire frequency range. [..113 ]However, not10

only the inflow condition, but also the telescope parameters are influencing the nominal disturbance measurement model

and the measurement uncertainty weight. In Section 3.3 we identify these transfer functions (Gn,k [..114 ]and w`,k) which

then can be used for control development and analysis. Furthermore, we analyse how much the low-frequency gains of

G` deviate from 1 for several cases.

We neglect the cross-coupling between the yaw and tilt components in the system identification, but these [..115 ]are con-15

sidered in the wind turbine and disturbance transfer functions in line with Lu et al. (2015), so that the cross-coupling between

the yaw and tilt components is included in the controller development.

2.7 Preview time estimation

Preview time plays an important role in the development of feedforward control. It must be larger than or equal to the time delay

introduced by the feedforward controller and actuator dynamics. It is preferable to be equal, but a larger value is acceptable, as20

additional time delay can be easily introduced into the feedforward controller, as shown in Figure 4. To determine the optimal

preview time for a given focus distance, we [..116 ]evaluate the cross-correlation between the blade effective (ubeff,k) and the

110removed: frequency-dependent diagonal weighting matrix of
111removed: which can be used in the feedback–feedforward IPC control development and analysis. The expressions wDC,k , w∞,k ,
112removed: ω0,k are identified for several cases in Section 3.3
113removed: Therefore, we chose a first-order Butterworth low-pass filter with a cut-off frequency of 10 Hz and a gain of 1, as the nominal system
114removed: ). With the lidar having a sampling rate of 5 Hz, we ensured that the gain up to 2.5 Hz was close to 1. Higher frequencies were not studied in

this work. We neglected
115removed: were
116removed: built three functions (Jk) based on the coherence (γ2

k) and phase shift (ϕk)
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corrected inflow (ucor,k) wind speeds, with k ∈ {col, yaw, tilt}[..117 ]

[..118]

[..119 ], and we choose the index of the peak value as the available preview time.

3 [..120 ]

2.1 [..121 ]Telescope parameters estimation5

[..122 ][..123 ][..124 ]

[..125 ]We introduce a cost function which is based only on the coherence (γ2k) between the blade effective (ubeff,k) and

the corrected inflow (ucor,k) wind speeds, with k ∈ {col, yaw, tilt}:

Jlp =
∑
k

Jlp,k =
∑
k

γ2k(f) . (20)

By evaluating Jlp for the [..126 ]discrete set of sampled lidar and telescope parameters, the maximum of the objective10

function results in the optimal telescope parameters within the discrete set of sampled lidar and telescope parameters. In

this way, we are able to judge the initially chosen telescope parameters.

117removed: . The power spectral density (Sk) of the blade effective wind speeds gives more weight to the relevant frequencies where power is concentrated.

The final function J is the sum of the three functions Jk
119removed: A near-optimal preview time is obtained by delaying the corrected inflow wind speed measurement through an assumption of a preview

timerange and evaluation of ?? for each delayed case.
120removed: Result
121removed: Simulation setup
122removed: The reference case we used in this investigation was based on the NREL 5 MW generic wind turbine (Jonkman et al. (2009)) . We used an

actuator line model through the coupling between FASTv7 (Fatigue, Aerodynamics, Structures, and Turbulence) aeroelastic simulation code (Jonkman and

Buhl (2005)) and PALM (Parallelized Large-Eddy Simulation Model) (Maronga et al. (2015)) as explained by
123removed: Bromm et al. (2017)
124removed: . The operating conditions corresponded to a resulting hub-height mean wind speed of 13.06 m s−1, which is above the rated value of

11.4 m s−1. Furthermore, the simulation resulted in a turbulence intensity of 8.5 %, and a wind shear corresponding to a power law description with an

exponent of approximate 0.12. The baseline controller of the wind turbine ensured that the generator speed is kept at 1173.7 rpm (Jonkman et al. (2009)),

thereby resulting in a mean rotor speed (ωr) of 11.74 rpm and further leading to a 1P frequency of f0 = 0.195 Hz.
125removed: For an analysis of the induction zone effect, we set the range of the focus distance and telescope position along the blade radius at F ∈

[10m,40m], R ∈ [20m,and60m], based on a previous investigation (Ungurán et al. (2018)). The range of the other input variables were determined by the

results
126removed: simulations with laminar inflow and power law wind shear with coefficients of 0.1, 0.2, and 0.3. An approximation of the induction zone effect

introduced some uncertainties into the measurement, but they were included in the identified uncertainty weight
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Figure 6. Time series of three generic wind speed measurements at the same amplitude, used for analyzing the impact of the multiblade

coordinate transformation. The first, second, and third signals have a phase shift of 30◦, 150◦, and 270◦, respectively. The signals are

constructed to include harmonics up to 6P.
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Figure 7. Power spectral [..128 ]densities of the generic signals in the rotating (ucor,1) and non-rotating (ucol, uyaw, utilt) frames of reference

during the application of the multiblade coordinate transformation.

3 Result

3.1 Multiblade coordinate transformation effect on the blade-mounted lidar measurement

To perform an analysis of the MBC transformation, we [..127 ]create three generic wind speed measurement signals with

ucor,i = u0 +

6∑
j=1

1

j3
sin

(
j

[
2πf0t+ (i− 1)

2π

3
+
π

6

])
, (21)

where u0, i, f0, and t are the offset, blade index, 1P frequency, and time, respectively. Here, we considered harmonics of5

up to 6P (j = 1 . . .6). Figure 6 shows a sample time series of the generated signals. Figure 7 presents the power spectral

[..129 ]densities of the wind speed measurement obtained from the first blade (ucor,1) and the collective (ucol), yaw (uyaw), and

tilt (utilt) components after the MBC transformation, which [..130 ]is applied on the generic wind speed measurement signals

(ucor,1, ucor,2, ucor,3). The figure [..131 ]highlights the MBC transformation keeping only 0P, 3P, and multiples of 3P. As Lu et al.

127removed: created
129removed: density
130removed: was
131removed: highlighted
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Figure 8. Power spectral [..136 ]densities of collective, yaw, and tilt components of the generic signals with partial DC offset. The expression

u...,e indicates the case where the DC offset (u0 in Equation (21)) of one of the signals differs from the other two in the rotating frame of

reference.

(2015) [..132 ]describes, the frequency (f ) in the non-rotating frame of reference arises from f ±f0 from the rotating frame of

reference, e.g., the 3P in the non-rotating frame of reference arises from the 2P and 4P contributions in the rotating frame of

reference.

Several cases may illustrate the transfer of the measurement errors from the rotating to the non-rotating reference frame.

First, we should consider the effect of over- or underestimation of the measured wind speed with one of the blade-mounted5

lidar systems, due to e.g., different radial positions of the telescope along the blade radii or one of the telescopes having a

different orientation, which [..133 ]reduces the DC offset (u0 in Equation (21)) for one of the three generic signals. Next, the

signals [..134 ]are transformed into the non-rotating frame of reference, which can be compared to the case where all the DC

offsets [..135 ]are maintained for each of the three signals at the same level. As Figure 8 highlights, an undesired peak [..137

]appears at 1P in the yaw and tilt components in the non-rotating frame of reference, due to the presence of asymmetries in10

the signals in the rotating frame of reference (Petrović et al. (2015)).

Second, aside from the reduction of the DC offset for one of the signals, a 1◦ of phase shift [..139 ]is added to the 1P

harmonics in the rotating frame of reference, which represents the case, for example, where one of the blade-mounted lidar

focus distances differs from the other two. Figure 9 reveals that after applying the MBC transformation to the three generic

signals, undesired higher harmonic peaks [..140 ]arise in the non-rotating frame of reference. Interestingly, the phase shift that15

132removed: described
133removed: reduced
134removed: were
135removed: were
137removed: appeared
139removed: was
140removed: rose
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Figure 9. Power spectral [..138 ]densities of collective, yaw, and tilt components of the generic signals with partial DC offset and phase shift.

The expression u...,e indicates the case where a different DC offset is set and a 1◦ of phase shift is added to the 1P harmonics of one of the

blade signals in the rotating frame of reference.

[..141 ]is introduced to one of the signals in the rotating frame of reference [..142 ]results in different higher harmonics in the

components in the non-rotating frame of reference, e.g., a peak observed at 1P of the collective component and at 2P of the tilt

and yaw components.

3.2 [..143 ]Simulation setup

The reference case we used in this investigation is based on the NREL 5 MW generic wind turbine (Jonkman et al. (2009)).5

We used an actuator line model through the coupling between the FASTv7 aeroelastic simulation code (Jonkman and

Buhl (2005)) and PALM (Parallelized Large-Eddy Simulation Model) (Maronga et al. (2015)) as explained by Bromm et al.

(2017). The operating conditions correspond to a hub-height mean wind speed of 13.06 m s−1, which is above the rated

value of 11.4 m s−1. Furthermore, the 10-minute simulation results in a turbulence intensity of 8.5 % and a wind shear

corresponding to a power law description with an exponent of approximately 0.12. The baseline controller of the wind10

turbine ensures that the generator speed is kept at 1173.7 rpm (Jonkman et al. (2009)), thereby resulting in a mean rotor

speed (ωr) of 11.74 rpm and further leading to a 1P frequency of f0 = 0.195 Hz.

For an analysis of the induction zone effect, we set the range of the focus distance and telescope position along the

blade radius at F ∈ [10m,40m], R ∈ [20m,60m], based on a previous investigation (Ungurán et al. (2018)). The range

of the other input variables are determined by the results of simulations with laminar inflow and power law wind shear15

with coefficients of 0.1, 0.2, and 0.3. An approximation of the induction zone effect introduces some uncertainties into the

measurement, but they are included in the identified uncertainty weight.

141removed: was
142removed: resulted to
143removed: Uncertainty weight identification
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Table 1. The cases investigated in this study, along with the lidar and telescope parameters for each case. If one or more parameters in the

third column are not specified, then the parameters defined in the first case are used. F is the focus length, R is the radial position of the

telescope along the blade, and Φ`,i and Γ`,i are the orientation angles of the telescope.

Case Uncertainties for: Parameters

C1 telescope parameters from

[..144 ]literature, assuming:

– no induction

– no wind evolution

– no blade flexibility

F = 22.2 m

R= 44 m

Φ`,i =−3.7◦

Γ`,i = 7.0◦

C2 telescope parameters within

prescribed range

F ∈ [20.2m,30m]

[..145 ]R ∈ [42m,47m]

[..146 ]Φ`,i ∈

[−6.7◦,−0.7◦]

[..147 ]Γ`,i ∈ [4◦,10◦]

C3 different telescope focus

length

F ∈ [20.2m,30m]

C4 different position of the

telescope along the blade

radius

[..148 ]R ∈ [42m,47m]

C5 different orientation angles

of the telescope

Φ`,i ∈ [−6.7◦,−0.7◦]

Γ`,i ∈ [4◦,10◦]

C6

telescope orientation mis-

alignment

Φ`,i = Φ`,1± 5◦

Γ`,i = Γ`,1± 5◦

with i= 2,3
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3.3 Nominal plants and uncertainty weights identification

Ungurán et al. (2019) [..149 ]stress that an elevated peak around the crossover frequency (just below the 1P frequency) of

the feedback–feedforward controller sensitivity function leads to increased loads across the wind turbine components. Here,

the crossover frequency of the controller [..150 ]is defined where the sensitivity function first crosses [..151 ]-3 dB from be-

low. Uncertainties pose limitations on the achievable performance (Skogestad and Postlethwaite (2005)), e.g., the peak of the5

sensitivity function may increase due to uncertainties in the system. Therefore, it is important to [..152 ]analyse how the li-

dar measurement uncertainty is affected by e.g., mounting misalignment of the telescope on the blade, or in cases where the

focus distance or position of the telescope along the blade span differs from the optimal parameters, etc. Identifying the lidar

measurement uncertainty as a frequency-dependent [..153 ]minimum-phase filter enables the inclusion of such parameters in

the control development, allowing an analysis of its impact on the stability and performance of the closed-loop system. A10

straightforward solution to determine the telescope and lidar parameters, such as focus distance, telescope position along the

blade radius, telescope orientation on the blade, etc., is to assume that the blades are rigid, that the rotor speed and pitch angle

are constant, and that Taylor’s frozen turbulence hypothesis (Taylor (1938)) holds (Ungurán et al. (2018)). We [..154 ]perform

large-eddy simulation (LES) in the succeeding sections to examine the usefulness and limitations of these assumptions, and

further [..155 ]analyse the uncertainties in the blade-mounted lidar measurement as well as the measurement sensitivity with15

respect to lidar and telescope parameter changes. The investigated cases are described in Sections 3.3.1 to 3.3.5 [..156 ]and

summarized in Table 1. Section 3.3.6 describes how the measurement uncertainties are affected when one or two telescopes

are aligned differently than the others. First, we [..157 ]assume that the orientation angle misalignment [..158 ]is unknown.

Second, we [..159 ]assume that this orientation angle misalignment can be identified, so that the lidar-based inflow wind speed

measurement can be corrected. [..160 ]20

For each case, [..166 ]first the transfer functions (G`,k) from the blade effective wind speeds (ubeff,k) to the corrected

lidar-based inflow wind speeds (ucor,k) are identified. Next, the [..167 ]nominal disturbance measurement models (Gn,k)

and the uncertainty weights (w`,k) for each of the inputs are estimated to satisfy [..168 ]Equations (16) and (17). Figure 10

149removed: stressed
150removed: was
151removed: the
152removed: analyze
153removed: first-order
154removed: performed
155removed: analyzed
156removed: ,
157removed: assumed
158removed: was
159removed: assumed
160removed: were
166removed: the relative error between the nominal (Gn,k(j ω)) and the identified (G`,k(j ω)) systems were first determined
167removed: uncertainty weight parameters from Equation (17) were
168removed: ??
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Figure 10. Identified [..161 ]low-frequency (DC) gain upper (Gn,k +w`,k) and [..162 ]lower (Gn,k) bounds of the [..163 ]transfer functions

(G`,k) from the blade effective wind speeds (ubeff,k) to the corrected lidar-based inflow wind speeds (ucor,k), with k ∈ {col, yaw, tilt}; C1,

C2, C3, C4, and C5 represent the investigated cases ([..164 ]outlined in [..165 ]Table 1).

provides a summary of the [..169 ]identified low-frequency (DC) gain upper (Gn,k +w`,k) and lower (Gn,k) bounds of the

transfer functions (G`,k) from the blade effective wind speeds ([..170 ]ubeff,k) to the corrected lidar-based inflow wind speeds

([..171 ]ucor,k)

We would like to act only below the 1P (0.195 [..172 ]Hz) frequency, therefore, below this frequency, it is desired that the

gain of Gn,k is 1, and that the measurement uncertainty is small, but still covers the worst case. A higher percentage of5

measurement uncertainty can be tolerated at frequencies above 1P by designing the feedforward controller accordingly,

e.g. a model inversion-based feedforward controller with a low-pass filter with a crossover frequency below 1P. With

Figure 10, we show how wide of a low-frequency gain variation of G`,k is covered with the identified nominal disturbance

measurement models and the additive uncertainty weights.

3.3.1 Telescope parameters for no-induction case (C1)10

The basic concept of the feedforward controller is the use of measured inflow wind speed from blade i to control the blade

and trailing edge flap angles at blade i− 1. Assuming [..173 ]rigid blades, constant rotor speed and pitch angle, and that

Taylor’s frozen turbulence hypothesis (Taylor (1938)) holds, [..174 ]results a minimum preview time of 1.7 s (= 2π
3

30
πωr

, ωr =

11.74 rpm)[..175 ], which is the time needed for blade i− 1 to reach the position of blade i, i.e. 120◦ azimuth angle change.

169removed: estimated parameters. The DC(wDC,k) and high-frequency gains (w∞,k) of the filter were expressed in percentage, representing the normalized

system perturbation away from 1 on that frequency. Thus, 0 % of uncertainty indicates that the identified transfer function (G`
170removed: ubeff
171removed: ucor) can have a gain of 1 in that frequency. Moreover, 10
172removed: % of uncertainty means that the identified transfer function (G`) can have a gain of either 0.9 or 1.1 in that frequency.
173removed: that the blades are rigid
174removed: resulted in a
175removed: of preview time, or
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Figure 11. A sample time series of the blade effective wind speed from blade 1 (ubeff,1) and the estimated (uh,est,2) and corrected (ucor,2)

inflow wind speeds from blade 2 in the rotating frame of reference shown in the upper plot. The power spectral [..181 ]densities (PSD) of the

three signals is displayed in the lower plot.

The simulation setup presented in Section 3.2 [..176 ]results in a hub-height mean wind speed of 13.06 m s−1. The assumption

that the wind evolves according to Taylor’s frozen turbulence hypothesis, and with the induction zone effect being negligible,

a focus distance of 22.2 m (= 1.7s · 13.06ms−1) [..177 ]is determined. In accordance with Bossanyi (2013) and Simley et al.

(2014a), the inflow at 70 % (≈ 44 m) of the blade radius could be assumed as most representative of the blade effective wind

speed; hence, the telescope [..178 ]is located at this radial position. [..179 ]The telescope orientation angles Φ`,i and Γ`,i [..1805

]are found through aeroelastic-simulation where laminar inflow is considered. The telescope orientation angles are the

counter rotation of the blade segment angular orientation so that the lidar beam becomes parallel with the rotor shaft axis

(see Figure 2).

Figure 11 (upper plot) shows a sample time series of the blade effective wind speed from blade 1 (ubeff,1), as well as

the estimated (uh,est,2) and corrected (ucor,2) inflow wind speeds from blade 2. The three signals are in the rotating frame of10

reference. The lower plot displays the power spectral [..182 ]densities (PSD) of the three signals. The dominant frequencies

[..183 ]are clearly visible, as a result of the rotational sampling of the inflow wind speed by the blade-mounted telescope. The

176removed: resulted
177removed: was
178removed: was located in
179removed: Specifically, the
180removed: were found through the simulation, as
182removed: density
183removed: were
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Figure 12. Power spectral [..187 ]densities of the blade effective wind speeds (ubeff,k) and the corrected inflow wind speeds (ucor,k) in the

non-rotating frame of reference, with k ∈ {col, yaw, tilt}.

PSD analysis [..184 ]highlights these dominant frequencies as 1P, 2P, and 3P. Moreover, the plot [..185 ]reveals a good match at

1P between ubeff,1 and ucor,2, although ucor,2 [..186 ]is slightly underestimated at higher harmonics.

We [..188 ]transform the different blade effective and corrected inflow wind speeds from the rotating to the non-rotating

frame of reference via the multiblade coordinate transformation (Tmbc(θ)) [..189 ]as discussed in Section 2.4. Afterward, we

[..190 ]evaluate the PSD for the collective, yaw, and tilt components of the signals[..191 ], and the results are displayed in5

Figure 12. The plot highlights the absence of 1P and 2P components (as observed in the rotating frame of reference, see

Figure 11) in the non-rotating frame of reference, in line with Section 2.4. Below 0.1 Hz, a good match between the collective

and tilt components [..192 ]are observed, but [..193 ]the yaw component of the corrected inflow wind speed (ucor,yaw) is slightly

underestimated. Furthermore, the 3P component of ucor,k (with k ∈ {col, yaw, tilt}) in the non-rotating frame of reference,

which is the contribution of 2P and 4P from the rotating frame of reference, [..194 ]is likewise underestimated in all three10

components.

184removed: highlighted
185removed: revealed
186removed: was
188removed: transformed
189removed: according to
190removed: evaluated
191removed: . Figure 12 displays the result
192removed: could be
193removed: with
194removed: was
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Figure 13. Coherences (γ2) between the blade effective wind speeds (ubeff,k) and the corrected inflow wind speeds (ucor,k) in the non-rotating

frame of reference, with k ∈ {col, yaw, tilt}.

Figure 13 reveals a good coherence [..195 ]at the frequencies where the [..196 ]power is concentrated, i.e., below 0.1 Hz,

and at 3P and 6P. Additionally, the [..197 ]plots disclose the declining coherence with [..198 ]increasing frequency i.e., higher

coherence [..199 ]is achieved at 0P than at 3P; the same could be implied between 3P and 6P. With Figure 11 highlighting the

low-power content of the signals between 0P and 3P, and between 3P and 6P, low coherences [..200 ]are similarly seen at the

same frequencies in Figure 13.5

Furthermore, we [..208 ]determine the disturbance measurement models (G`,k(j ω)), the nominal disturbance measure-

ment models (Gn,k(j ω))[..209 ], and the measurement uncertainty weights (w`,k(j ω)), shown in Figure 14, which can be

incorporated in the feedback–feedforward individual pitch control development and analysis. This case is labelled as C1

in Figure 10. [..210 ]Figure 14 underline that this case only covers very small gain variations. The figure highlights that

the mean value of the corrected inflow wind speed measurement is slightly underpredicted on the collective and yaw10

components, the low-frequency gain is below 1, and is slightly overpredicted on the tilt component, the low-frequency

gain is above 1.

195removed: on
196removed: powers were
197removed: plot discloses
198removed: frequency increase
199removed: was
200removed: were
208removed: determined the measurement uncertainty weights for the feedback–feedforward individual pitch control development and analysis. The blue

lines in Figure 14 show the relative error between the resulting nominal
209removed: and identified (G`,k(j ω))plants, in accordance with ??. The uncertainty weight was approximated with a first-order minimum-phase filter

(shown by dashed line), whose parameters from Equation (17) were labeled
210removed: Figure 14 shows a low uncertainty on the frequencies where the power of the signals were concentrated. Note that these uncertainties increased

at higher harmonics.
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Figure 14. [..201 ]The identified disturbance measurement transfer functions (G`,k(j ω)). The dashed-dotted lines indicate the estimated

nominal [..202 ]disturbance measurement models (Gn,k(j ω))[..203 ]. The dashed [..204 ]lines show the sum of the estimated [..205 ]nominal

disturbance measurement models and uncertainty [..206 ]weights ([..207 ]Gn,k(j ω) +w`,k(j ω)), where k ∈ {col, yaw, tilt}.
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Figure 15. The identified disturbance measurement transfer functions (G`,k(j ω)) for a discrete set of sampled telescope parameters.

The dashed-dotted lines indicate the estimated nominal disturbance measurement models (Gn,k(j ω)). The dashed lines show the

sum of the estimated nominal disturbance measurement models and uncertainty weights (Gn,k(j ω)+w`,k(j ω)), where k ∈ {col, yaw,

tilt}.
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3.3.2 Uncertainties around the no-induction telescope parameters (C2)

In this section, we [..211 ]investigate the impact on the uncertainty weights when the telescope parameters cannot be selected

as defined for the no-induction case, but are somewhere close to these values. We carried out simulations involving a discrete

set of sampled values for the focus distance, radial position of the telescope along the blade radii, and orientation angles of the

telescope. The identified [..212 ]5

[..213 ] [..214 ]disturbance measurement transfer functions (G`,k(j ω)) for the discrete set of sampled values [..215 ]are

shown as overlapping blue lines in Figure 15. The plot [..216 ]underscores that the disturbance measurement transfer

functions are influenced by the telescope parameters[..217 ]. The low-frequency gain variation is different at each of the

three components, which is also seen in Figure 10, where it is labelled as C2. The highest low-frequency gain variation is

observed on the tilt component.10

3.3.3 Optimal focus distance and available preview time (C3)

[..218 ] [..219 ]We determine the preview time in accordance with Section 2.7. We keep the telescope parameters constant

as defined in Section 3.3.1, except for the focus distance, which [..220 ]is allowed to vary between 20.2 and 30 m. [..221 ]We

211removed: investigated
212removed: uncertainty weight parameters are labeled as C2 in Figure 10. The plot shows that the crossover frequencies (ω0,k) for this case (C2) either

remain the same or decreasing slightly with respect to C1. A significant increase was observed at the low-frequency (DC) uncertainties for the yaw and tilt

components, i.e., the low-frequency uncertainties at the yaw and tilt components were changed from the no-induction case values of 8 % and 25 % to 20 % and

43 %, respectively. The high-frequency uncertainties remained nearly the same.
213removed: Relative errors between the nominal plants (Gn,k(j ω)) and those identified (G`,k(j ω)) for a discrete set of sampled telescope parameters,

where k ∈ {col, yaw, tilt}. The relative errors are represented with overlapping grey lines on the plot. The blue line with diamonds is the relative error found

for the no-induction case (C1).
214removed: In Figure 15, the overlapping grey lines represent the relative errors
215removed: . The blue line with diamonds represents the relative error found for the no-induction case (C1)
216removed: underscored the occurrence of both a better and a worse set of telescope parameters that yield a lower or higher low-frequency uncertainty. For

example, after performing a search, we found that the telescope parameters of F = 20.2 m, R= 44.0 m, Φ`,i =−5.7◦, and Γ`,i = 9◦ would result in the

minimum value of
∑

kω0,k , and
217removed: of F = 28.2 m, R= 45.0 m, Φ`,i =−1.7◦, whereas Γ`,i = 5◦ would result in the maximum value of

∑
kω0,k , where k ∈ {col, yaw, tilt }

218removed: The optimal preview time for a given focus distance. The maximum frequency (fmax) in the objective function (J) is set at 0.06 Hz. The

green line with the stars is the calculated preview time for the no-induction case. The blue line with the diamonds is a linear fit of the optimal preview time

determined for a given focus distance by considering fmax at 0.06 Hz in J .
219removed: To determine the optimal preview time , we kept
220removed: was
221removed: Subsequently, we performed a search at assumed preview times from 1.6 to 2.3 s, with a resolution of 0.2
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determine a preview time of 1.9 s for [..222 ]all the [..223 ]focus distances, which is slightly higher than the initially calculated

value of 1.7 [..224 ]s in Section 3.3.1.

[..225 ]

[..226 ]This case is denoted as C3 [..227 ]in Figure 10, and that figure highlights that there is a smaller low-frequency gain

variation for this case compared to the previous case (C[..228 ]2).5

[..229 ]

3.3.4 Telescope position along the blade span (C4)

Bossanyi (2013) proposed that a blade-mounted lidar placed at 70 % of the blade radius is most suitable for feedforward control

input. We [..230 ]assess in this subsection whether placing the blade-mounted lidar at 70 % (≈ 44 m) of the blade radius would

result in the [..231 ]maximum of the objective function in [..232 ]Equation (20). We set fmax in [..233 ]Equation (20) as 0.1 Hz,10

while we maintained a focus distance of 22.2 m. [..234 ]

We find that the telescope placed at a radial position of 46 [..235 ]m leads to the maximum value of the objective function

in Equation (20), in other words, the telescope positioned at a radial position of 46 m results in the highest coherence

between the blade effective [..236 ]
222removed: each focus distance. Afterward, we evaluated the objective function from ?? for all combinations of the focus distance and preview time. ??

displays a plot, as a color map, of the result. Accordingly,
223removed: green line with the stars indicates the calculated preview time for the no-induction case, as determined by dividing the focus distance (F ) with

the hub-height mean wind speed (uhh = 13.06 m s−1). From Figure 14 in the no-induction case, the uncertainties (w`,k) at the components were either close

or above 100 % around 0.06 Hz; therefore, we considered an fmax of 0.06
224removed: Hz in ??. The optimal preview time could be determined for a given focus distance with the minimized objective function (J) in ??. The blue

line with the diamonds shows the resulting optimal preview time for a given focus distance
225removed: ?? shows these observations: (1) The values of the objective function increased with measurement distance from the rotor position. (2) The

blue line with the diamonds emphasized that a higher preview time was available with respect to the no-induction case (green line with the stars), where the

assumptions were (a) the blades are rigid, (b) Taylor’s frozen turbulence hypothesis holds, and (c) induction effect is absent. (3) The preview time and focus

distance were closely coupled; e.g., a changing focus distance implied a varying preview time.
226removed: To estimate the uncertainty weights for this case , we varied the focus distance of the lidar between 20.2 and 30 m with 1 m steps, while the

other parameters were kept constant. A summary of the parameters of the uncertainty weights is given in Figure 10,
227removed: . By increasing the focus distance, the uncertainties at low-frequencies (wDC,k) were increased to almost as much as at C2 and were almost

double those in the no-induction
228removed: 1).
229removed: As such, the results in this subsection highlight the following points:(1) A focus distance close to the rotor is more beneficial, and (2) the inflow

wind slows down in front of the rotor due to the induction zone effect, which leads to a higher preview time with respect to the no-induction case.
230removed: assessed
231removed: minimization
232removed: ??
233removed: ?? as 0.06
234removed: As such, the corresponding optimal preview time was 1.8
235removed: s, which is consistent with that of Section 3.3.3. Selection of the preview time plays an important role, as it affects the phase shift between the

two signals in ??. The corrected inflow wind speed measurement delayed with the preview time to align it with
236removed: wind speed.
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Figure 16. Optimal angular orientation of the telescope. The maximum frequency (fmax) in the objective function ([..247 ]Jlp) is set at [..248

]0.1 Hz. The [..249 ]blue diamond marks the initially chosen parameters; and the [..250 ]red dot marks the [..251 ]maximum point [..252 ]of the

[..253 ]function from Equation (20).

[..237 ]and the corrected inflow (ucor,k) wind speeds. This corresponds to 73 % of the blade span[..238 ]. The found

value is quite close to the findings of Bossanyi (2013). [..239 ]Varying the telescope radial position in a fairly small range

([..240 ]42–47 m) [..241 ]results in a higher low-frequency uncertainty on the tilt component than on the collective and yaw

components (see C4 in Figure 10)[..242 ]. In this case, at the yaw and tilt components, the low-frequency gain variation is

higher than in C3, but still smaller than in C2.5

3.3.5 Telescope orientation (C5)

In this section, we evaluate whether the initially selected telescope orientation angles (Φ`,i and Γ`,i, with i= 1,2,3) would

result in a [..243 ]maximised objective function in [..244 ]Equation (20). For this purpose, we fixed the telescope parameters

as described in Section 3.3.1, with the exception of the orientation angles (Φ`,i and Γ`,i). The two angles [..245 ]are changed

around the initially selected values. We [..246 ]simulate the lidar measurements with each new set of parameters. [..254 ]We10

237removed: Indeed, with the telescope placed at 70
238removed: , the objective function in ?? was minimized, confirming
239removed: Moreover, varying
241removed: yielded a marginal increase (0.004) in the objective function value. A similar effect was observed on the identified uncertainty weight (marked

as
242removed: , which apparently obtained similar weights parameters as for the no-induction case (C1), both of which below
243removed: minimized
244removed: ??
245removed: were
246removed: simulated
254removed: We used a preview time of 1.8 s for the post-processing, as discussed in Section 3.3.3, which was expected to result in a phase shift of

approximately zero between the lidar measurement and the blade effective wind speed at low frequency, below the 1P frequency. We determined

28



determine the optimal orientation of the telescope in Figure 16 based on the objective function in [..255 ]Equation (20). In the

plot, the blue diamond marks the initial telescope orientation based on the no-induction calculation, where Φ`,i =−3.7◦ and

Γ`,i = 7.0◦. The [..256 ]red dot indicates the obtained optimal value, where [..257 ]Φ`,i =−2.6◦ and [..258 ]Γ`,i = 8.1◦, which

is only marginally different from the no-induction [..259 ]values.

The identified [..260 ]G`,k low-frequency (DC) gain upper and lower (Gn,k) bounds are labelled as C5 in Figure 10. [..2615

]This case results in a similar low-frequency gains variation as C2 at the yaw and tilt components, however, it has a

smaller gain variation at the collective component than C2.

3.3.6 Telescope orientation misalignment (C6)

In this subsection, [..262 ]transfer functions (G`,k) from the blade effective wind speeds (ubeff,k) to the corrected lidar-based

inflow wind speeds (ucor,k) are identified for the cases where a single or two of the telescopes have been aligned differently,10

[..263 ]where their values corresponding to the no-induction case [..264 ]are obtained. Such cases could occur, for example,

during telescope installation. Initially, we [..265 ]assume this misalignment as unknown but detectable to allow for the accurate

correction of the lidar-based inflow wind speed measurement. To simulate these cases, we fixed the telescope parameters as

described in Section 3.3.1, except for the orientation angles of Φ`,i and Γ`,i of the telescopes mounted on the second and third

blades. The angular values [..266 ]are changed around the no-induction values by ±5◦ (Φ`,i = Φ`,1± 5◦ and Γ`,i = Γ`,1± 5◦15

[..267 ]for i= 2,3) as follows. First, the value [..268 ]is changed only for the telescope mounted on the second blade, then for

the telescopes mounted on the second and third blades.

We [..275 ]evaluate such setups via simulations. Figure 17 displays the [..276 ]identified transfer functions (G`,k) from the

blade effective wind speeds (ubeff,k) to the corrected lidar-based inflow wind speeds (ucor,k). Figure 17a reveals a 1P peak at

the collective component and 1P and 2P peaks at the yaw and tilt components. As shown in Section 3.1, adding a phase shift of20

255removed: ??
256removed: orange star
257removed: Φ`,i =−4.8◦ and Γ`,i = 1.45◦. The discrepancy in Φ`,i was quite small, however, with a higher degree of difference between the no-

induction value of Γ`,i and the found optimal value of Γ`,i. To understand such occurrence, we neglected the phase shift (ϕk) in ??, as marked with a white

dot, where
258removed: Γ`,i = 8.0◦. Thus, the values became considerably closer to the values based on
259removed: calculations.
260removed: frequency-dependent uncertainty weights parameters were labeled
261removed: After the orientation angles were changed by ±3◦ around the no-induction values, the identified uncertainty weight parameters for this case

were still close to the values found for the no-induction case
262removed: the uncertainty weight parameters were
263removed: whereas
264removed: were
265removed: assumed
266removed: were
267removed: with
268removed: was
275removed: evaluated such setups in the
276removed: relative errors between the nominal and the identified systems
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(b) Known telescope orientation misalignment.

Figure 17. [..269 ]Identified transfer functions (G`,k) from the [..270 ]blade effective wind speeds ([..271 ]ubeff,k) [..272 ]to the corrected lidar-

based inflow wind speeds ([..273 ]ucor,k) for the discrete set of sampled telescope parameters with unknown and known telescope orientation

misalignment, where k ∈ {col, yaw, tilt}.[..274 ]

1◦ to the 1P harmonic and reducing the DC offset for one of the signals in the rotating frame of reference [..277 ]results in such

undesired higher harmonic peaks at the collective, yaw, and tilt components in the non-rotating frame of reference. Figure 17b

underlines that, by assuming that the misalignment angles [..278 ]are identifiable and that the lidar-based inflow wind speed

measurement is corrected accordingly, the undesired peak at 1P [..279 ]is reduced by a factor of ten, although existent on all

the components. [..280 ]5

4 Discussion

We [..281 ]have shown that the determined telescope parameters with assumptions of rigid blades, absence of induction, and

Taylor’s frozen turbulence hypothesis[..282 ], provide a good trade-off between simplicity and accuracy [..283 ](see C1 in

Figure 10). First, the [..284 ]low-frequency gains of the identified disturbance measurement models (G`,k(j ω)) have only

small absolute deviations from 1, which are found to be 3 %, 2.5 %, and 3.1 % for collective, yaw, and tilt components,10

respectively. Second, the found telescope parameters in C4 and C5 by means of optimizing a cost function based on the

277removed: would result
278removed: is
279removed: was reduced almost with one decade
280removed: Furthermore, the low-frequency uncertainties were reduced significantly on all three components.
281removed: showed
282removed: hold
283removed: . However, we would like to emphasize the presence of uncertainties in all three components, as the result of the wind evolution, the simplicity

of the induction zone correction, "cyclops dilemma", and using only a single-point measurement for
284removed: estimation of

30



coherence between the blade effective [..285 ](ubeff,k) and the corrected inflow (ucor,k) wind speeds are close to the initially

calculated parameters in C1. Such a small deviation is expected with respect to the assumptions we made during the

calculation of the values for the no-induction case (see Section 3.3.1).

By evaluating the cross-coorelation between the blade effective (ubeff,k) and the corrected inflow (ucor,k) wind speeds

for a discrete set of sampled values of the focus distance in Section 3.3.3, we found that the preview time is constant for5

all the selected focus distances. It is closely coupled to the time needed for blade i− 1 to reach the position of blade i,

i.e. [..286 ]

[..287 ]120◦ azimuth angle change. For example, by considering laminar inflow with wind shear, no matter what the

focus distance is, the [..288 ]delay time between the corrected inflow wind speeds from blade 1 and the blade effective

wind speed from blade 3, will always be the same, which is the time needed for blade i− 1 to reach the position of10

blade i. If the focus distance has changed, the φ in the MBC transformation also has to be changed, furthermore, the

control signal should be delayed accordingly. Note that control development must proceed with sufficient attention so as to

ensure that the feedforward controller does not result in higher time delay than the available preview time. For example, a

feedforward controller with a crossover frequency of [..289 ]0.1 Hz may result in higher time delay compared to that with a

crossover frequency of [..290 ]0.2 Hz (Dunne and Pao (2016)). With this, we want to point out that the feedforward controller15

crossover frequency and the focus distance are coupled. Hence, defining the former typically leads to a minimal selectable

focus distance.

As stated above, the lidar and telescope parameters based on the assumptions we made in Section 3.3.1 provide a good

trade-off between simplicity and accuracy. They are close to the optimal parameters we found for the discrete set of sampled

values of the focus distance, the radial position of the telescope along the blade, and the orientation angles of the telescope20

[..291 ]in [..292 ]Sections 3.3.3 to 3.3.5. Nevertheless, this is not the case for the preview time; the [..293 ]available preview time

is slightly increased from 1.7 s to [..294 ]1.9 s, as we demonstrated in Section 3.3.3. This could be due to the assumptions

we made: (a) the blades are rigid, (b) Taylor’s frozen turbulence hypothesis holds, and (c) the induction effect is absent

during our calculation in Section 3.3.1. Furthermore, the signals were sampled with a sampling time of 0.2 s, which also

poses limitations on the resolution of the preview time. Note that LES simulations with lower sampling time are resource25

285removed: wind speed at assumed zero value of vh,i and wh,i components (see Section 2.1) , etc. Therefore, it is important to consider the uncertainties

in the controller development; e.g. , uncertainty at the yaw and tilt components was already approximately 150 % at 0.195 Hz (1P frequency) , which could

have affected the performance of the controller
286removed: , it can lead to increased values of the sensitivity function, causing load increase on the non-rotating components of the wind turbine, as was

asserted by Ungurán et al. (2019).
287removed: The results show that the measurement uncertainties increase with distance from the rotor plane. Therefore, a closer measurement of the inflow

wind speed to
288removed: rotor plane is preferred
289removed: 0.06
290removed: 0.1
291removed: , as shown in
293removed: rotor blocking effect increases the
294removed: 1.8
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and time expensive. The crossover frequency of the feedforward controller affects the time delay. With a higher preview

time available, we can select a lower crossover frequency, e.g., where uncertainty is still below 100 %, for the feedforward

controller. Note that such uncertainty is defined as the normalized system perturbation away from [..295 ]the nominal system

at that frequency; hence, it can be higher than 100 %. This understanding gives us more room during the feedback–feedforward

control development. [..296 ]The available preview time [..297 ]could be determined online in field tests [..298 ]and used to5

delay the feedforward control signal accordingly. This can be done [..299 ]online by, for example, [..300 ]storing ten minutes

of blade effective (ubeff,k) and corrected inflow (ucor,k) wind speed measurements, and evaluating the cross-correlation

between them.

We found that the blade-mounted lidar placed at the [..301 ]73 % span of the blade radius results in a [..302 ]maximum of

the objective function in [..303 ]Equation (20). This finding is [..304 ]close to the value (70 % of the blade radius) found by10

Bossanyi (2013) for a [..305 ]blade-mounted lidar and Simley et al. (2014a) for the hub-mounted lidar system. [..306 ]

Any unknown orientation angle misalignment for one of the telescopes leads to an unknown contribution of the rotational

speed to the lidar-based line-of-sight wind speed measurement. This is the reason [..307 ]why the low-frequency gain can vary

between 0.7 and 1.2. Nevertheless, this can be reduced to [..308 ]a low-frequency gain variation between 0.96 and 0.98,

by assuming that we are able to detect the angular offset. By detecting the angular offset, we are able to better estimate15

what is the mean value of the blade effective wind speed, and the resulting G`,k low-frequency gain lower bound is

0.96, which is very close to 1. In addition, an undetected misalignment of the telescope orientation angle results in a phase

shift of the 1P harmonic and a reduction or increase of the DC offset of the signal in the rotating frame of reference. This

subsequently leads to undesired peaks at 1P and 2P frequencies at the collective, yaw, and tilt components in the non-rotating

295removed: 1 on
296removed: We established a method for estimating the
297removed: , which can be extended
298removed: for that purpose, as well as
299removed: by an online evaluation of ??
300removed: using the last ten minutes estimated blade effective wind speeds and the corrected inflow wind speeds, and then carrying out a similar search

we proposed in Section 3.3.3
301removed: 70
302removed: minimum
303removed: ??
304removed: consistent with the conclusion of
305removed: blade mounted lidar and is in line with the findings of
306removed: The phase shift in the objective function in ?? acts as a fine tuning of the available preview time. We aligned the two signals with the assumption

that the measured inflow wind speed hits the wind turbine after 1.8 s, as we found in Section 3.3.3. The signals were sampled with a sampling time of 0.2 s,

which limits the fine tuning of the available preview time. Note that LES simulations with lower sampling time are resource and time expensive. When we

neglected the phase shift from the objective function, the obtained orientation angles were considerably closer to the orientation angles, based on the no-

induction case. Such a small deviation was expected with respect to the assumptions we made during the calculation of the values for the no-induction case

(see Section 3.3.1).
307removed: for the increase in the uncertainty in the collective component from 3 % to 27 %
308removed: 4 %
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frame of reference, [..309 ]which we were able to reduce [..310 ]by a factor of ten for both the yaw and tilt components, but we

could not completely eliminate these peaks. Thus, the question as to whether robust stability and performance can be ensured

with such [..311 ]peaks still remains. To avoid such a peak, the telescopes need to be well aligned with each other, and the

blade segment orientation angles and linear velocities should be measured well. We showed in Sections 3.1 and 3.3.6 that an

unknown orientation angle misalignment leads to a 1P peak at the yaw and tilt components in the frequency domain. Therefore,5

the orientation angles of the telescope can be identified by formulating an optimization problem, whose main objective is to

minimize the 1P peaks at the yaw and tilt components with orientation angles of the telescopes as the decision variables.

[..312 ]The nominal measurement transfer functions and uncertainty weights identified for the no-induction case can be

directly included into robust feedback–feedforward individual pitch and trailing edge flap control development to guarantee

robust stability and performance. However, this would be a very optimistic approach, as we considered only one reference10

wind turbine with a single inflow wind condition and, we need to assess how the measurement uncertainties change for other

wind turbines with different wind speeds, turbulence intensities, yaw misalignments, etc. The [..313 ]nominal measurement

transfer functions and uncertainty weights found in Section 3.3.2 might cover these cases, and may [..314 ]be helpful in the

control development rather than that found in the no-induction case in Section 3.3.1. [..315 ]

[..316 ]15

[..317 ]C2 covers a wide range of telescope parameter variations, hence, if for some reason one or more lidar and telescope

parameters cannot be selected as for the no-induction case, but are close to these values, the [..318 ]established transfer

functions from C2 can be used for robust feedback–feedforward control development. [..319 ]In addition, C2 also covers the

situations where the mean blade pitch angle is increased or decreased because of the wind turbine is operating at a

different point. The final selection of the nominal measurement transfer functions and uncertainty weights depends on20

whether the lidar and telescope parameters are varied dynamically with the operating points of the wind turbine and the

wind speed, or are kept constant over the entire operating range. Nevertheless, this may further reduce the gains of the

feedforward controller[..320 ] (see Ungurán et al. (2019)) with respect to the controller developed by using the nominal

309removed: or to nearly 10,000 % of high-frequency uncertainties,
310removed: to 1,000 %, but
311removed: a high uncertainty still remains, i.e., Ungurán et al. (2019) assumed only 300 % of high-frequency uncertainties on the yaw and tilt components
312removed: As
313removed: uncertainty weight
314removed: serve
315removed: Nevertheless, this may further reduce the gains of the feedforward controller (see Ungurán et al. (2019)) with respect to the controller developed

by using the uncertainty weight found for the no-induction case, thus limiting the benefits of the lidar system.
316removed: We modeled the uncertainty weight as first-order minimum-phase filters. On this regard, if robust performance and stability is not ensured by

the use of this weight, then a higher order filter could be studied to observe the relative error over the frequency more closely, e.g., for the tilt component in

Figure 14.
317removed: The uncertainty weight identified for the no-induction case can be directly included into robust feedback–feedforward individual pitch and

trailing edge flap control development to guarantee robust stability and performance. If
318removed: uncertainty weight
319removed: However, this might lead to a conservative feedforward controller with respect to performance, i.e. , the low-frequency
320removed: will be reduced, as highlighted by Ungurán et al. (2019)
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measurement transfer functions and uncertainty weights found for the no-induction case, thus limiting the benefits of the

lidar system.

The methodology we presented in this paper can be applied in identifying the uncertainty weight for higher harmonics

control development, i.e., selecting nh as 2 in Equation (8) can be used to identify the uncertainty weight for the controller

developed to mitigate [..321 ]2P dynamic blade loads.5

5 Conclusion

Our paper aimed to identify the nominal measurement transfer functions and model the uncertainties of the blade-mounted

lidar measurement [..322 ]as a frequency-dependent [..323 ]uncertainty weight for inclusion into the feedback–feedforward

individual pitch and trailing edge flap control development[..324 ]

[..325 ], and to analyse the impact of the induction zone effect on the preview time[..326 ].10

We found that the preview time [..327 ]with the lidar mounted on the blade is more linked to the time it takes the previous

blade to reach the position of the blade from which the measurement took place rather than the focus distance. [..328 ]For

a given focus distance, the preview time can be estimated online; hence, the feedforward control signal can be delayed

accordingly. While, the selected focus distance should provide sufficient preview time[..329 ], it is desirable that the time delay

introduced by the feedforward controller and actuators [..330 ]be eliminated. This sets the lower limit for the selectable focus15

distance.

Accordingly, we introduced a simple method, based on steady-state data, to calculate the telescope and lidar parameters.

Nevertheless, we showed in a large-eddy [..331 ]simulations, that such an approach provides a good trade-off between [..332 ]an

efficient determination of the telescope parameters and accurate inflow wind speed measurement. [..333 ]The low-frequency

gains of identified disturbance measurement transfer functions had a small absolute deviation from 1, which were due20

to wind evolution, the "cyclops dilemma", using a single-point measurement to estimate the blade effective wind speed, and

the assumptions we made to correct the measurements. The [..334 ]nominal measurement transfer functions and uncertainty

321removed: the
322removed: uncertainties as
323removed: uncertain weights that can be employed in
324removed: and analysis.
325removed: Typically, induction zone increases
326removed: , thus, the latter must be taken into account in the control development and implementation. We presented a method that can estimate
327removed: online; hence, the control signal can be delayed accordingly. We found that an inflow wind speed measurement close to the rotor plane is

preferable, which emphasizes the influence of the wind evolution, the further the measure takes place from the rotor plane the more the wind develops until it

reaches the rotor.
328removed: However
329removed: so
330removed: could
331removed: simulation
332removed: a fast-forward
333removed: Measurement uncertainties were present
334removed: uncertainty weight
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weights, as we have identified in this paper for several cases, can be directly included in the robust feedback–feedforward

individual pitch and trailing edge flap control development to ensure robust stability and performance. However, to prevent the

transfer functions (G`) from the blade effective wind speeds (ubeff) to the corrected lidar-based inflow wind speeds (ucor) from

having a large high-frequency gain [..335 ]at 1P and 2P in the non-rotating frame of reference, the telescopes must be well

aligned with each other and the blade segment orientation angles and linear velocities should be measured well.5
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