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Response to referee comments # 1  

 

Dear anonymous referee # 1,  

Thank you very much for your feedback to improve our manuscript! 

In this document, the authors’ responses are added in cursive. 5 

 

Abstract: At the end of the abstract, you might want to mention you reduced the amount of data by 50% instead of just 

referring to a reduction. 

The abstract has been updated to include the 50 % reduction. 

 10 

Figure 1: there seem to be an error in the graph: shouldn’t the most left block say “Eight months” instead of “Partial load”? 

Figure 1 has been updated. 

 

General comment about the results: Although it is a big improvement to include the results, some thought might be giving to 

the visualisation of them. In my opinion, the tables can be made more compact and therefore easier to compare if the 15 

different parameters are given in the columns and the different statistics in the rows for example. Then in each cell, different 

colours or symbols can be given for different operation modes or techniques. Such a visualisation makes it possible to easily 

deduct from the tables which parameters (disregarding the statistics) or which statistics (disregarding the parameters) are 

most important. 

The table A 1 has been updated and merged into a single table for a better overview of  the features selected for 20 

each operational mode. 

 

P. 9 line 8: you depict the maximum and mean windspeed as being highly correlated, which is true. But this statements 

makes the reader think these are the only two statistics of windspeed that are high correlated. Which is not true, because 

range and std seem to be even higher correlation than the mean value. Consider to rephrase the sentence. E.g. Several 25 

statistics of wind speed, such as the mean value, and power are also highly correlated. 

The sentence has been rephrased. 

 

P. 9, Figure 2: It is a bit confusing both graphs don’t show the same time interval. Moreover, I suppose the purpose of this 

figure is to illustrate the correlation between (mean) wind speed and measured DEL. In my opinion, this is not clear from the 30 

graph. A graph of Measured DEL vs mean windspeed would make this better visible I suppose. Another option is to zoom in 

on a period (of the same length for both) where this correlation is very obvious. 

Figure 2 has been updated to reflect the same time interval. An additional figure (Figure 2 (c)) plotting mean wind 

speed vs. measured DELs in the three operational modes has been added.   

                       35 

P. 9: I’m missing a discussion about the results for pitch angle, since this a parameter that is generally important. So even 

though the results for pitch angle are not high, it might be useful to point that out and explain. 

The pitch angle is held at the most efficient lift-to-drag ratio during the partial load and, therefore, not many 

variations can be observed during standstill and partial load. During full load, the turbine pitches constantly 

continuously to keep the rotational speed nearly constant. 40 

We updated the text: “Relationships between sensor signals and the estimated DELs can vary depending on the 

operational mode of the wind turbine i.e. the pitch angle operates mainly during startup and full load. Methods with 

an underlying linear assumption, such as the correlation analysis, can lead to misinterpretation of feature 

importance when observing the complete dataset.” 

 45 

P. 9, line 19-...: The placement of this paragraph is a bit confusing. You start the section with 56 features and all of a sudden 

you have more features (63) at a certain point while you expect a decreasing number for features. Consider to move this 

paragraph (or at a least a part of it) to the beginning of the section. 

This has been clarified and section 3.1.1 has been updated. 

 50 
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P. 10, line 5-6: Although correct, the compactness of the sentence “After removing ... included in the model.” might be 

difficult to understand. Splitting it up into the removal of features due to Pearson correlation and the combining of the 

remaining features due to PCA might help. 

This has been clarified and updated. 

 5 

P. 11, line 19: I think there might be an error and it should be “mean generator speed” instead of “mean wind speed”. 

This was a mistake. We have changed the text to mean generator speed.  

 

P. 13, Figure 4: the caption might be adjusted a bit with some information on which features were used for the model giving 

these results. E.g. the resulting features when applying Pearson correlation on the entire dataset. 10 

The caption has been updated. 

 

P. 14, Figure 5: typo in the caption: “bottom” instead of “button” 

The caption has been corrected.  

 15 

P. 16, line 6-8: It is not clear to me what is meant with “The maximum absolute error ... confirm the results”. Which results 

are confirmed? Those of Vera-Tudela and Kühn? How? 

This might have been misleading, we wanted to point out that the results are comparable in general. By saying 

“confirming the results” we wanted to highlight that they are in similar ranges. We can see now why this is 

misleading and we have rephrased the sentence.  20 

 

P. 16 line 13: I think something went wrong here: half a sentence is written and there seem to be a title of a section missing. 

If this is not a mistake, I do think it is better to have a separate section on the reduced data set for modelling. 

It was a formatting mistake and is a new subsection. 

 25 

P. 17, line 6: “from the model trained with the remaining data”. This part seems to indicate two models were trained, one 

with the first part of the data and one with the second part. Is this the case? Because the remainder of the paper seem to 

indicate this is not the case. 

We see now the misunderstanding. We were trying to explain, that we have the model trained with the first 50 % of 

the data and are predicting the remaining 50 % of the data (how we would consider doing it in a continuous 30 

monitoring system). We have rephrased the sentence. 

 

 

 

  35 
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Response to referee comments #2  

 

Dear anonymous referee # 2,  

We thank you for providing valuable comments to improve our manuscript. 

In this document, the authors’ responses are added in cursive. 5 

 

 

General comments 

 

1) As stated in the paper, the novel aspects of the paper, for example in relation to work carried out by Vera-Tudela et. al., is 10 

the application of NCA. However, this is not sufficiently reflected in the paper in my opinion. It seems to focus on 

reproduction of results from other studies instead. For example, the paper does not use the opportunity to compare strength 

and weakness of NCA against the other approaches applied. In addition, interpretation of results from NCA is missing while 

results from correlation analysis are discussed in detail for example. I addressed this discrepancy between justification of the 

paper and the actual content already in my last review, i.e. comment p.7, comment p.10, l.19-20 and general comment on 15 

literature survey which were not taken into account. 

In this round of comments, we have tried to highlight NCA as the novelty of the paper and have elaborated on the results 

and performance of this technique in more detail. The discussion of the results from the complete dataset has been 

expanded to include the following text: 

- “NCA did not select features such as the variance of the acceleration in y-direction and the minimum windspeed 20 

during a 10 min timeseries that had been selected by the correlation analysis and stepwise regression. This shows 

that to model the DELs with NN, these features are not relevant and can be omitted without compromising the 

model’s performance as suggested by the mean error of 2.07 % in Table 2.” 

The discussion of the results for the different operational modes has been updated to include the following: 

- “NCA outperformed all other methods in terms of mean error in standstill and full load (see Table 4). In partial 25 

load, NCA still performed well, however, correlation and correlation & PCA yielded slightly lower mean errors 

(see Table 4).” 

Additionally, we have added a table to compare the methods and highlight their corresponding strengths and 

limitations.  

 30 

2) I also made a general comment regarding presentation quality. I still find that the language is imprecise at times and some 

of my comments in the last review addressed such issues. However, this was not taken sufficiently into account and some of 

my comments below still relate to imprecise language. In that respect my comments below are not comprehensive and I 

recommend to carefully revise the paper in this respect. 

 We have revised a large number of statements and significantly reduced the linguistic inaccuracy in the text. 35 

 

Specific comments: 

 

page 20, line 30: 

Rapid growth is not an explanation for a fierce competition in my opinion. Maybe it could be stated instead that there is still 40 

the need to reduce the cost of wind energy further and that improved monitoring solutions can potentially decrease O&M 

costs? 

Agree, this paragraph has been rephrased.  

“To ensure the cost-competitiveness of this technology in the future, it is important to seize the potential cost 

reductions related to operation and maintenance (O&M). This includes improving monitoring solutions and life 45 

extension strategies.” 

 

p.24,Table 1: 

Thanks for your answer. Shouldn't the description of the dependent variables then read "Bending moment derived from 

gauge sensor located..." instead of "Gauge sensor located...", especially as the unit is given as kNm? 50 
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The definition has been corrected. 

 

p. 24, line 10: 

I suggest to write "This calculation..." instead of "This transformation..." because in the sentence before "transformation" 

refers to deriving bending moments from strains. 5 

We agree, it has been updated. 

 

p. 26, line 6: 

Is the reason to split the data set into partial and full load operation also that some of the applied methods (Regression, PCA) 

are linear methods, i.e. cannot handle non-linear relations? If so, this could be mentioned either here or in the section where 10 

the methods are explained briefly. 

Updated to: “Relationships between sensor signals and the estimated DELs can vary depending on the operational 

mode of the wind turbine i.e. the pitch angle operates mainly during startup and full load. Methods with an 

underlying linear assumption, such as the correlation analysis, can lead to misinterpretation of feature importance 

when observing the complete dataset.” 15 

 

p. 28, line 20: 

Thanks for your explanation. I agree that there is no general rule how to chose the network topology. Because of that, testing 

different network topologies is usually required important. I understand from your reply that this was done at least regarding 

the number of neurons in the single hidden layer and that can be mentioned in the text. If I misunderstood you reply, you 20 

should at least justify the choice of the network by the satisfying prediction accuracy that you experienced during testing. 

Currently this sections reads as if you did not care about the network topology which according to your reply was not the 

case. 

Yes, we have tried different amount of neurons but the performance has not improved. We have now mentioned it in 

the text and included a reference to a similar study where 25 neurons were chosen to model tower fatigue loads by 25 

Lind et al. (2017). We had initially used this study as reference for our configuration. We have updated the text to 

include the following: 

“The NN was initially set to 25 neurons in the hidden layer and 1 neuron in the output layer as per Lind et al. 

(2017). However, we tested different configurations and found that the results remain consistent. Therefore, the 

number of neurons in the hidden layer are set to 10 neurons and 1 neuron in the output layer. This simple 30 

configuration reduces the computational complexity and time while enabling the modelling of non-linear 

relationships.” 
 

p. 30, line 21: 

In the paper the term 'feature' relates to an explanatory variable. I recommend to replace the word 'feature' by 'principal 35 

component' in this sentence to distinguish between these two. 

Has been changed. 

 

p. 32, line 21: 

Thanks for your explanation. I still think that the sentence is imprecise. What do yo mean by deviation? Do you mean a 40 

change of wind speed? Also the next sentence does not make sense. 

Has been rephrased. 

“For example, fluctuations of the rotational speed during full load have a significant effect on the tower movement 

which explains the high correlation between the standard deviations of the rotational speed with the DELs. 

Additionally, several descriptive statistics of the pitch angle are correlated with the DEL exhibiting correlation 45 

coefficients greater than 0.5.” 

 

p. 32, line 30: 
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Thanks for your reply. However, it does not address my comment. I was wondering why the pitch angle was selected by 

stepwise regression at all, as it does not correlate with the DEL. Same holds true for air density an wind direction. Please 

clarify. 

By the nature of stepwise regression a feature addet to the stepwise regression process has to improve the overall 

accuracy which highly depends on the previous features added already. If a particular feature does not improve the 5 

overall accuracy then it will be dropped. The method is not very reliable, also it is biast twards the previous 

features which have been added to the model. We have created a table summerizing the pros and cons of each 

feature selection / dimention reduction technique.  

 

p.34, line 3: 10 

Do you refer to Figure 4 or Figure 5 here? 

Yes, we meant Figure 5. We have corrected this.   

 

p.34, line 6: 

A few lines above you already mentioned that normalized predicted vs measured DELs is shown in Figure 5. 15 

We agree and have removed the redundant sentence.  

 

p. 35, line 5: 

It seems that the turbine is in operation also at wind speeds lower than 5 m/s. Units should be corrected from m/s^2 to m/s. 

It is a wind speed of 3 m s-1. We have confused it with the power of 5 kW under which the wind turbine is in 20 

standstill (see our definitions for standstill, partial load, and full load).  

 

p. 35, line 9: 

What to you mean by 'significantly higher results'? 

We have included the ranges of variations of the mean error. 25 

 

Appendix 1-3: 

Many thanks for this additional information. For a better overview and comparison of the methods there could be one table 

only, where a cell contains "0.9, b, c" if this variable was used by all approaches and "0.9, c" if it was used by correlation and 

NCA for example. In that way only one table is needed and it could maybe be integrated into the main body of the paper (not 30 

Annex). 

Please also change 'still stand' to ' stand still' for consistency with the rest of the paper. 

It is updated and merged into one table. 
 

 35 
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Feature selection techniques for modeling tower fatigue loads of a 

wind turbine with neural networks 

Artur Movsessian1, Marcel Schedat2, Torsten Faber2 

1Institute for Infrastructure and Environment, School of Engineering, University of Edinburgh, United Kingdom 
2Wind Energy Technology Institute, University of Applied Sciences Flensburg, Flensburg, 24943, Germany 5 

Correspondence to: Marcel Schedat (marcel.schedat@hs-flensburg.de) 

Abstract. The rapid development of the wind industry in recent decades and the establishment of this technology as a mature 

and cost-competitive alternative have stressed the need for sophisticated maintenance and monitoring methods. Structural 

health monitoring has risen as a diagnosis strategy to detect damage or failures in wind turbine structures with the help of 

measuring sensors. The amount of data recorded by the structural health monitoring system can potentially be used to obtain 10 

knowledge about the condition and remaining lifetime of wind turbines. Machine learning techniques provide the opportunity 

to extract this information, thereby improving the reliability and cost-effectiveness of the wind industry as well. This paper 

demonstrates the modeling of damage equivalent loads of the fore-aft bending moments of a wind turbine tower highlighting 

the advantage of using the neighborhood component analysis. This feature selection technique is compared to common 

dimension reduction/feature selection techniques such as correlation analysis, stepwise regression, or principal component 15 

analysis. For this study, recordings of data were gathered during a period of approximately 11 months, pre-processed, and 

filtered by different operational modes, namely standstill, partial load, and full load, and partial load. The results indicate that 

all feature selection techniques were able to maintain a high accuracy when trained with artificial neural networks. The 

neighborhood component analysis yields the lowest number of features required while maintaining the interpretability with an 

absolute mean squared error of around 0.07 % for full load. Finally, the applicability of the resulting model for predicting loads 20 

in the wind turbine is tested by reducing the amount of data used for training by 50 %. This analysis shows that the predictive 

model can be used for continuous monitoring of loads in the tower of the wind turbine. 

1 Introduction 

Wind power is becoming the electricity-generating technology with the lowest costs in several areas of the world (REN21, 

2018). To ensure the cost-competitiveness of this technology in the future, it is important to seize the potential cost reductions 25 

related to operation and maintenance (O&M). This includes improving monitoring solutions and life extension strategies. 

Given the fierce competition in the industry due to the rapid growth of wind energy installed capacity globally it is important 

to continuously look for alternatives to make this technology more cost-effective. The possibility of monitoring with sensors 

has enabled the gathering and supervision of data regarding the  condition of a structure to, e.g. detect failures. Particularly, 
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structural health monitoring (SHM) in wind turbines (WTs) allows monitoring the structural behaviour and stresses of 

structures such as blades, towers, and foundations. 

While machine learning techniques are widely applied in industries such as the automotive, information technology, and 

communication, the wind industry is starting to explore the suitability of these promising methods for its their benefits. 

Although data-driven attempts have been made to estimate the loads acting on the turbine using available information from 5 

the SCADA system, there is no consensus yet on the type of a relationship existent between these data and actual load 

measurements. In the last years, the focus on this topic increased. This section aims to review available scientific literature 

regarding modeling loads with existing SCADA data for WTs.  

SHM systems could be used to verify structural safety and determine the remaining useful lifetime (RUL) of WTs (Schedat et 

al., 2016). Moreover, information gathered through SHM during the lifetime of WTs can potentially be used to identify 10 

structural weaknesses and feed this information back to the manufacturers, ultimately improving the design of new turbines 

(Ziegler et al., 2018). Another potential benefit of SHM is a decrease in maintenance costs. Typically, operation and 

maintenance costs (including both fixed and variable costs) represent approximately 20 to 25 % of the total levelized cost of 

electricity (LCOE) (IRENA, 2015). SHM could reduce this share by allowing the implementation and set in placeestablishment 

of more efficient maintenance practices such as predictive maintenance while enabling better spare-parts inventory 15 

management. Consequently, downtime is reduced, and production is increased. 

Currently, the assessment and evaluation of the structural condition of WTs without a load measurement system can be 

challenging. Particularly, the estimation of fatigue loads can be difficult due to a lack of information (Melsheimer et al., 2015; 

Schedat and Faber, 2017). Therefore, exploring the ways to mine data from SHM systems and extract valuable information 

becomes an interesting and high demanded field of research. 20 

The reconstruction or estimation of loads using statistics from SCADA data was already presented and tested in the mid-2000s. 

Cosack and Kühn (Cosack and Kühn, 2006) developed a stepwise regression model for estimating the rotor thrust. Despite the 

good results (i.e. deviations between the calculated and the estimated loads ranged from 5.4 % to 7.3 % in the worst case), the 

presented model was too complex and time-consuming with further restrictions. In a new development of the model, an 

estimation method for the corresponding target values (damage-equivalent loads and the load magnitude distributions) used 25 

neural networks (Cosack, 2010; Cosack and Kühn, 2007). 

Ziegler et al. (2018) have recently performed a literature review and have assessed the development of the lifetime-extension 

market of onshore WTs. The alternative of extending the lifetime of a WT, as opposed to repowering or decommissioning, is 

appealing given the potential increase of returns on investments (ROIs), however, not much public research has been done on 

this matter. The authors contributed, then, by comparing updated load simulations and inspections for lifetime extension 30 

assessments in Germany, Spain, Denmark, and the United Kingdom. Particularly, fFor lifetime extension to be a feasible 

alternative, the structural integrity of the turbine should not compromise the level of safety. In this regard, the survey performed 

by the authors determined that, apart frombeyond the use of SCADA systems, no short-term load measurements or monitoring 

are carried out in the countries surveyed (a few exceptions were identified in the UK, where load reassessment is performed). 
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They found that most interviewees focus on practical assessments for cost reasons. Nevertheless, these practical inspections 

are no guarantee that the safety level can be maintained during the lifetime extension. The authors concluded that new operation 

and maintenance strategies and data-processing methodologies are necessary for lifetime extension purposes. MoreoverIn this 

regard, data-driven approaches may contribute to the cost reduction of lifetime extension assessments.  

In line with the findings of Ziegler et al. (2018), other authors have worked on the aforementioned data-driven approaches. 5 

Noppe et al. (2018), for example, reconstructed the thrust loads history of a WT based on both simulated and measured SCADA 

data. The data gathered corresponded to operational 1 s and 10 min. Moreover, the data is segregated into different operational 

modes. The selection of explanatory variables that the authors performed was based on a Pearson correlation analysis. The 

first two weeks of operational data were used to model the thrust loads using neural networks and validated by one year of 

data. The model has the following input features: wind speed, blade pitch angle, rotor speed, and generated power. The results 10 

of this paper study showed that the constructed model was able to estimate thrust loads with a relative error that does not 

exceed 15 %. The authors also concluded that the use of simulated data yielded slightly better results and that adjustments in 

the hyperparameters of the neural networks had no significant impact on the estimated thrust loads.  

Relatedly, Vera-Tudela and Kühn (2014) focused on the selection of variables to be used for fatigue load monitoring and 

attempted to define an optimum set of explanatory variables for that purpose. The authors identified 117 potential variables 15 

(13 statistics of 9 SCADA signals) used in related scientific literature. Among them, the mean of generator speed, electrical 

power, and pitch angle have been the most commonly used. The authors decided to apply several feature selection methods to 

six sets of variables. The methods chosen included Spearman coefficients, stepwise regression, cross-correlation, hierarchical 

clustering, and principal components. To evaluate the outcomes of the feature selection methods a feedforward neural network 

was employed. The authors concluded that principal components yielded the best set of variables, however, the resulting set 20 

lost expertise knowledge about the relation between the variables. In this sense, ranking the variables by their corresponding 

Spearman coefficients resulted in a fair compromise between the number of features required to monitor the damage equivalent 

load for blade out of plane bending moment and the available expert knowledge.  

Smolka and Cheng (2013) examined the amount and type of data necessary to determine a fatigue estimator for the operational 

lifetime of a WT. The inputs for the neural network are selected by means ofthrough a correlation analysis applied to standard 25 

data statistics of available SCADA signals such as electrical power, generator speed, pitch angle, among others. The authors 

concluded that the minimum training data sample size required is approximately half a month worth of measurements.  

Seifert et al. (2017), acknowledging the complexity and cost of handling extra measurements, assessed the minimum needed 

size of a training sample to predict fatigue loads using 10 min statistics of SCADA signals and neural networks. In a sense, 

Seifert et al.’s work is an extension or continuation of Vera-Tudela and Kühn’s (2014) and Smolka et al.’s (2013). Seifert et 30 

al. (2017) tested different sample sizes varying between one day (i.e., 144 records) and four months (i.e., 4032 records) of 

measurements. They determined that a sample of 2016 records of 10 min statistics are sufficient to predict flap wise blade root 

bending moments of a WT independent of seasonal effects. 
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The reconstruction or estimation of loads using statistics from SCADA data was already presented and tested in the mid-2000s. 

Cosack and Kühn (2006) developed a stepwise regression model for estimating the rotor thrust. Despite the good results (i.e. 

deviations between the calculated and the estimated loads ranging from 5.4 % to 7.3 % in the worst case), the presented model 

was too complex and time-consuming with further restrictions. In a new development of the model, an estimation method for 

the corresponding target values (i.e. damage-equivalent loads and load magnitude distributions) used neural networks (Cosack, 5 

2010; Cosack and Kühn, 2007). 

The performance  of  

Aartificial neural networks depends on the quality of the can only perform as good as the information provided to them, thus, 

the features used to train them are key to obtaining high accuracy in the results with a parsimonious model. So far, little little 

research has been done regarding feature selection for modeling tower fatigue loads. The available literature has focused on 10 

techniques such as correlation analysis, principal component analysis (PCA), and stepwise regression to select the best subset 

of information. This paper aims to contribute to this body of literature by assessing assess the use of Neighbourhood 

Component Analysis (NCA) as a feature selection technique to extract relevant information from SCADA data in order to train 

artificial neural networks and model fatigue loads.  

The paper is organized as follows: Section 2 outlines the applied methodology followed in this study, section 3 summarizes 15 

the results, and, finally, section 4 presents the conclusions derived from the obtained results.  

2 Data and Methodology 

2.1 Wind turbine and SCADA data 

This paper seeks to model the tower fatigue loads of a commercial wind turbine with a rated power of 2.05 MW, a hub height 

of 100 m, and a rotor diameter of 92.5 m located in the northern part of Germany. The turbine is used for research purposes 20 

by the Wind Energy Technology Institute at the Flensburg University of Applied Sciences. For this study, the readings from 

the SCADA and a load measurement system in the previously mentioned turbine were recorded for around 11 months and 

collected in 10 min files. The tower bottom bending moment is measured by strain gauges. These were installed and wired as 

full full-bridge (Wheatstone) with temperature compensation. A Wheatstone bridge is widely used in strain gauge applications 

because of its ability to measure small deviations in resistance. The calibration factors were determined from the results of the 25 

shunt-resistor-calibration, tower geometry, and the thickness of the tower wall at the strain gauge positions (provided by the 

turbine manufacturer). The offsets are determined by means ofthrough a yaw round. The sensors used to extract features for 

the model are described in Table 1 and were selected based on a literature review and consultations with an application 

engineer. 
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Table 1 – Description of SCADA sensors selected 

Feature name Description 
Unit of 

measurement 

Frequency 

 [Hz] 

Explanatory variables  

Omega Rotational speed at the rotor rpm 20 

acc_x Acceleration fore-aft (x-direction) mm s-2 20 

acc_y Acceleration side-side (y-direction) mm s-2 20 

v_wind Wind speed m s-12 20 

v_dir Relative wind direction degree 10 

omega_gen Rotational speed at the generator rpm 20 

air_density Air density kg m-3 20 

Pitch Ppitch angle degree 20 

ACpow Active power output kW 20 

Dependent variables 

Bieg1_060_240 
Gauge Bending moment derived from a gauge sensor located at 

60° & 240 degrees ° inside the tower bottom 
kNm 50 

Bieg2_150_330 
Bending moment derived from a Ggauge sensor located at 150° 

& 330 degrees ° inside the tower bottom 
kNm 50 

 

The strain gauge measurements at the turbine were transformed into a resultant fore-aft tower bending moment, which was 

later used to calculate the short-term damage equivalent load (DEL) for every 10 min time series. This transformation 

calculation was performed by means ofthrough a rainflow counting algorithm and, later, the resulting load spectrum was further 5 

reduced to a constant load range. After a number ofseveral equivalent cycles, this load range results in the same equivalent 

accumulated damage as the spectrum of loads previously calculated through the rainflow counting algorithm. The short-term 

DELs were calculated following Equation (1): 

�� = �∑ ��∗��	�
�
� �



	

            (1) 

where ���  is the equivalent number of cycles, �� the different load ranges, �� the corresponding cycle numbers and � is given 10 

by the slope of the Stress-Cycle (S-N) curve of the material used for the tower (DNV/Risø, 2002). In this case, it is assumed 

an inverse slope � = 3 for the steel tower and ��� = 9.5064 for the 10 min time series (equivalent to 10�cycles in 20 years). 

The DELs were then used as the dependent variable of the model. 
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2.2 Methods 

The methodology used followed in this paper study is graphically described in Figure 1. First, the sensors which provide 

relevant information to model resultant fore-aft tower bending moments were selected (see Table 1). In the next step, the 

resulting records were analyzed for missing data (e.g. zero values) and outliers as. Tthere were periods where the turbine was 

out of service or measurement failures with no registered data. Subsequently, affected records have beenwere removed. The 5 

process of outlier detection in this study was not automated but done through visual inspection of the descriptive statistics 

calculated from the time series for each operational mode. To determine the relationship between the dependent and nine 

explanatory variables described previously, each of the 10 min files was summarized by estimating the following descriptive 

statistics for every explanatory variable: i) minimum value, ii) maximum value, iii) arithmetic mean, iv) range, v) mode, vi) 

standard deviation, and vii) variance. 10 
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Figure 1 – Main methodologicaly steps  

In this way, the dataset was reducedconsists of to 63 features or (i.e. explanatory variables, see appendix A  1). Excluding the 

time where no SCADA data was were recorded, the total amount of data results in 36266 (77.1 %) observations. This 

corresponds to a little over eight months of usefull information.  5 

Relationships between sensor signals and the estimated DELs can vary depending on the operational mode of the wind turbine, 

e.g. the pitch angle operates mainly during startup and full load. Methods with an underlying linear assumption, such as the 

correlation analysis, can lead to misinterpretation of feature importance when observing the complete dataset. Furthermore, 

the data was filtered by operational modes, namely standstill, partial load, and full load. Therefore, the data were filtered by 

operational modes, namely standstill, partial load, and full load to study the relevance of the different potential features for 10 

these operational modes. Additionally, this filter enables the construction of individual models to account for the particularities 

of each operational mode, thereby improving the accuracy of the monitoring system. The filtering was done by means 
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ofemploying the feature “ACpow” which refers to active power output. In this sense, standstill corresponds to 10 - min mean 

“ACpow” readings below or equal to 5 kW (0.25 % of nominal power); partial load to readings higher than 5 kW and below 

or equal to 2000 kW (97.56 % of nominal power); and full load to readings above 2000 kW. 

Research by Sharma and Saroha (2015) concluded that a reduction of dimensions possibly leads to a better performance of the 

mining algorithms while maintaining a good accuracy, therefore, it is important to eliminate potential redundant data and select 5 

the variables with most predictive power for the model. For this, three different feature selection techniques and one dimension 

reduction technique were applied to the entire dataset and the datasets resulting from filtering the data by operational mode.  

These techniques include Pearson correlation, stepwise regression, NCA, and PCA. Pearson correlation measures the linear 

correlation between two variables and maps the result to an interval between -1 and 1, where 0 indicates no linear relationship 

(Boslaugh and Watters, 2008). It can be calculated as per Eq. (2): 10 

��� =  ∑ !��" �#$��%
 !��" �#$
&∑ !��" �#$'��%
 &∑ !��" �#$'��%


          (2) 

where � is the sample size, (� and  )�  are the observations with index * and (+ represents the arithmetic mean of all samples. A 

threshold value of 0.5 was set to define the level strength of the correlation. In this sense, a correlation coefficient between 0 

and 0.49 is weak and a correlation coefficient between 0.5 and 0.95 is strong. Correlation among all features of a particular 

sensor above 0.95 was considered as a redundant sensor and, therefore, eliminated fromor further analysisanalyses. 15 

Stepwise regression is an iterative method where features are added and removed from a multilinear model based on their 

statistical significance in the regression (Draper and Smith, 1998). The algorithm begins by constructing an initial model with 

one feature (forward selection) or all the features (backward selection) and continues adding or removing features by 

comparing the explanatory power of the larger or smaller models. At each step, the p-value of the corresponding F-statistic is 

estimated and compared to a threshold p-value to decide which features are included in or excluded from the model. P-value 20 

is used as a probability measure to identify if a particular feature is significant for the outcome of the model. If a p-value is 

larger than 0.05 the null hypothesis is true and the feature is selected for further modeling. The algorithm repeats this process 

until the added feature does not improve the model or until all features that do not improve the explanatory power of the model 

are removed. This method is considered to be locally optimal, yet not globally optimal given that the selection of features 

included in the initial model is subjective and there is no guarantee that a different initial model will not lead to a better fit. 25 

NCA is a non-parametric classification model used for metric learning and linear dimensionality reduction (Goldberger et al., 

2005). It is based on a modeling technique known as k-Nearest Neighbours (k-NN), which is a supervised learning algorithm 

used for classification or regressions (Han and Kamber, 2006; Parsian, 2015). In its simplest form, the k-NN approach looks 

for the closest k = 1 observation to the query observation xq within the training dataset by measuring the distances to the 

neighbouring data points and selecting the one that satisfies mini distance (xi, xq). The output is then predicted by applying a 30 

function y = h(x) where h is the trained k-NN prediction function. In a multidimensional dataset, the k-NN approach requires 

to differentiate between the “relevance” of the explanatory variables for the intended output. For the learning process, different 

weights can be assigned to the features of the model using the “Scales Euclidian Distance” estimation detailed in Eq. (3): 
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,*-./�01!2� , 2�$ = &/45 2�617 − 2�6179: + ⋯ + /=5 2�6>7 − 2�6>79:      (3) 

where 2* is a vector of input values, 2? is the query vector, / is the scaling number that defines the relevance of each explanatory 

value, and > the total number of features. The weights are assigned randomly and then adjusted by solving a minimization 

problem (minimizing the prediction error). Other distance metrics can be used, namely Mahalanobis, Manhattan, rank-based, 

correlation-based, and Hamming (Hazewinkel, 1994). 5 

Lastly, PCA is a statistical method to reduce the dimensions of a dataset that presumably contains a large number of irrelevant 

features while retaining the maximum information possible (Vidal et al., 2016). This is done by transforming the original set 

of multidimensional data into a new set referred to as components by means ofemploying eigenvectors and eigenvalues. A pair 

of eigenvector and eigenvalue indicate respectively the direction and how much variance is there in the data in that direction. 

The eigenvector with the highest eigenvalue is the first principal component. In this sense, the transformation allows reducing 10 

the dimensions of the dataset to a few components with relatively low loss of information.  

Table 2 summarizes the strengths and limitations of all the methods considered for feature selection and dimension reduction 

in this study. 

Table 2 – Comparison of strengths and limitations of methods used 

Method Description Strengths Limitations 

Pearson 

correlation 

Measures of the strength of a linear 

association between two variables 

- Measures the degree and direction of 

correlation between the variables 

through a coefficient 

- Widely used and easily interpretable 

- Computationally inexpensive 

- Supervised 

- Affected by extreme values in the data 

- Assumes a linear relationship between 

variables 

- Prone to misinterpretation in case of 

homogeneous data 

Principal 

component 

analysis 

Dimensionality reduction technique 

through linear transformation 

- Unsupervised  

- Well-established technique 

- Reduces overfitting  

- Reduces redundancy of a feature set 

given the orthogonal components 

 

- Assumes that the principal components 

are a linear combination of the features 

- Low interpretability  

- Uses variance as the measure of 

importance 

- Prone to loss of information as high 

variance axes are treated as principal 

components, while low variance axes are 

treated as noise 

Stepwise 

regression 

Step-by-step iterative construction of 

a regression model that involves the 

selection of independent variables to be 

used in a final model 

- Able to manage large amounts of 

potential predictors 

- Easily interpretable and tractable  

- Computationally inexpensive  

- Supervised 

- Sensitive to collinearity  

- Highly dependent on the order in 

which features are added or removed to 

the model 

Neighborhood 

component 

analysis 

Feature weighting approach which 

optimizes the nearest neighbour 

classifier performance to address the 

issue of high dimensionality of the 

training data 

- Rarely leads to overfitting due to cross-

validation 

- Non-parametric 

- Performance does not degrade as 

training data size increases 

- Supervised  

- Usually necessary to select a value of 

the regularization parameter 

- Sensitive to the choice of loss function 

 

 15 
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In this way, 16 neural networks (NN) were developed corresponding to for four datasets (all operational modes, standstill, 

partial load, and full load),  and three feature selection techniques, and one dimension reduction technique. Each dataset is 

divided into training, validation, and testing subsets. For this, 70 % of a dataset is randomly chosen and used by NN for training 

the model, 15 % are used to for testing, and 15 % for validation, i.e., this subset is used to adjust the model by means ofthrough 

the mean squared error (MSE). This adjustment stops when the MSE does not significantly improve. The validation subset is 5 

used as a measure to avoid overfitting the NN and generalize the prediction model. After that, the model can be appliesd to 

new datasets. The test subset does not affect on training or validation, it is only used to measure the performance of the trained 

NN. 

The NN models used in this paper are trained with the Neural Network Toolbox from MATLAB (MathWorks, 2019). The 

standard settings consist of a two-layers feed-forward NN with a sigmoid transfer function in the hidden layer and a linear 10 

transfer function in the output layer. The NN was initially set to 25 neurons in the hidden layer and one neuron in the output 

layer as per Lind et al. (2017). However, we tested different configurations and found that the results remain consistent. 

Therefore, the number of neurons in the hidden layer is set to 10 neurons and one neuron in the output layer. This simple 

configuration reduces the computational complexity and time while enabling the modelling of non-linear relationships.The 

number of hidden neurons in the hidden layer are kept, as suggested by MATLAB, at 10 neurons. The Levenberg-Marquardt 15 

algorithm is selected as the training algorithm. No changes have been made to the standard configurations suggested by 

MATLAB. The results from the 16 models were compared to derive conclusions about the relationship between operational 

data and tower loads acting on WTs. 

Finally, the predictive capability of the model for continuous monitoring is tested. For this purpose, the neural networkNN is 

trained using only the first 50 % of the data gathered during partial load. The prediction error is estimated to determine the 20 

accuracy of the model. 

 

3 Results and discussion 

This section describes the sensors identified by different methods as potential predictors of tower fatigue loads of the WT and 

presents the results of using a predictive model for continuous monitoring. 25 

3.1 Feature selection and dimension reduction 

Before building a model to predict the desired output, it is important to define which variables could act as predictors. The 

feature selection methods described in Sect. 2.2 were applied to four different datasets: i) an eight months dataset, ii) a full-

load dataset, iii) a partial load dataset, and iv) a standstill dataset. The results of the feature selection methods are described 

below. For detailed information on selected features for each operational mode, the reader is referred to appendix A 1 to A 3. 30 
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3.1.1 Complete dataset: eight months data 

A Pearson correlation analysis was applied to the pre-selected features for predicting the DELs of the fore-aft bending moment 

of the tower. Before using the features with the strongest correlation in a model, it is necessary to check for collinearity, i.e., 

the correlation between independent variables. A high correlation between two explanatory variables suggests that these 

variables should be excluded from the model to avoid collinearity issues. From this analysis, it was determined that rotational 5 

speed at the rotor should be excluded from the model and only rotational speed at the generator should be included given that 

these two features are a factor away from each other and, thus, may add bias to the model due to redundancy. This resulted in 

56 features from the initial 63 (see Sect. 2.2).  

The correlation analysis shows that only 27 of the 56 features are strongly correlated and should be used as independent 

variables in the model. Tthe accelerations in both directions (i.e., x- and y-axis) are highly correlated with the DELs. The 10 

standard deviation of the acceleration in the x-direction presents the highest correlation with a coefficient of 0.97, depicting 

an almost linear relationship between this feature and the dependent variable. Additionally, several statistics of wind speed 

and power output are also highly correlated with the DELs. As an example, the bilinear relationship between the mean wind 

speed and the calculated DEL (Fig. 2) is graphically shown over the complete measurement campaign and for all operational 

modes in Fig. 2c below.   15 

 

 

 

(a) 

 

(c) 

 

(b) 

 

Figure 2 – Time series corresponding to (a) normalized measured DELs, (b) mean wind speed and (c) scatterplot of both mean 

wind speed and measured DELs with a correlation coefficient of 0.74 when data is not filtered by operational modes. 20 

A Pearson correlation analysis was applied to the pre-selected features for predicting the DELs of the fore-aft bending moment 

of the tower finding that only 27 of the 56 features are correlated and used as independent variables in the model. The results 
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indicate that the accelerations in both directions (i.e., x and y-axis) are highly correlated with the DELs. The standard deviation 

of the acceleration in the x-direction presents the highest correlation with a coefficient of 0.97, depicting an almost linear 

relationship between this feature and the dependent variable. The maximum and mean windspeed, and power output are also 

highly correlated with the DELs. As an example, the relationship between the mean wind speed and the calculated DEL is 

graphically shown in Figure 2. 5 

 

Figure 2 – Normalized DELs and mean wind speed 

These results suggest that these features fluctuate together with the dependent variable, and they could potentially be used to 

build a model that can estimate the DELs of the fore-aft bending moments of the tower without installing strain gauge sensors. 

Furthermore, the results show that air density and relative wind direction, along with all their corresponding descriptive 10 

statistics, have a very low correlation with the DELs and should be, therefore, disregarded in the model based on this feature-

selection technique. The mean wind direction, in particular, has a correlation coefficient close to zero, indicating an 

insignificant linear relationship with the DELs.  

Many of the remaining variables are highly correlated with each other, nevertheless, they add potentially valuable information 

to the model.Before using the features with the strongest correlation in a model, it is necessary to check for collinearity, i.e., 15 

correlation between independent variables. By observing the correlation between the explanatory variables, it can be 

determined which variables are highly correlated with each other and, therefore, should be excluded from the model to avoid 

collinearity issues. From this analysis, it was determined that rotational speed at the rotor should be excluded from the model 

and only rotational speed at the generator should be included given that these two features are a factor away from each other 

and, thus, may add bias to the model due to redundancy. This resulted in 56 features from initial 63.  20 

 

Many of the remaining variables are also highly correlated with each other, nevertheless, they add potentially valuable 

information to the model.  
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An alternative would be the use of a method such as PCA which could contribute to avoiding multicollinearity by transforming 

the data while maintaining the information contained in it. After using PCA on the remaining 27 features, removing the 

rotational speed at the rotor and eliminating all variables with a correlation below 0.5, 12 Principal Components are identified 

feature are remaining after using PCA and that couldcan be used to build included in thea model. This data was transformed 

as explained in Sect. 2.2 estimating the variance explained by each of the first components as seen in Figure 3. It can be 5 

observed that 99 % of the information contained in the features is now stored in the first 12 components. The remaining 15 

components explain less than 1 % of the cumulative variance. A model could be built using the first 12 components and the 

results should be almost as accurate as using the 27 features selected after the correlation analysis. The biggest disadvantage 

with this method is that given the transformation of the data, it is no longer possible to interpret it. The results, nevertheless, 

remain interpretable and are free of the influence of multicollinearity. 10 

 

Figure 3 – Cumulative variance explained by principal components 

Alternatively, an interactive stepwise regression was built using the pre-selected 56 features. Different combinations of features 

were tested to identify those that should not be included in the model given that they do not contribute to the predictive power 

or they result in an increase in the error of the model. The features with a p-value above 0.1 should be omitted from the model. 15 

The results suggest excluding a total of 30 variables from the regression model. Among these can be found the minimum, 

maximum, mean, and range of the rotational speed at the generator, most descriptive statistics of air density, with the exception 

ofexcept for the standard deviation, and range, mode, and standard deviation of the acceleration in y-direction. 

It is important to highlight that the variable that represents the range of the acceleration sensor in the x-direction was identified 

as statistically insignificant despite its high correlation with DELs. As mentioned earlier, the possible models explored with 20 

the stepwise regression are limited. The algorithm builds different models from the 56 features depending on the order in which 

these features are added to (in the case of forward selection) or removed from (in the case of backward elimination) the models. 

In this sense, the range of the sensor “acc_x” and the variance of “acc_x”, which are correlated with a factor of 0.90, could be 

considered mutually exclusive. The decision as to which of these variables to include in the model would depend solely on 
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which variable is added or removed first in the stepwise regression. In this case, the algorithm suggests excluding the range of 

“acc_x”, a highly correlated feature, based on the search for the local minimum instead of evaluating all combinations. 

Ultimately, this method identified 33 features as statistically significant and, thus, these should beare included in the model. 

The last feature selection method, NCA, was applied as well to the dataset with 56 initial 63 features dataset. 13 features were 

identified by this method as relevant for the prediction of DELs, a significantly smaller number than those selected by applying 5 

the correlation analysis and stepwise regression. 

To summarize, mean values and standard deviations are the descriptive statistics that can best describe the data according to 

the three feature selection methods applied. Features selected by all three methods include wind speed, acceleration, and power 

output. 

3.1.2 Data filtered by operational modes 10 

The dataset was divided by operational modes into 10 min samples with  resulting in 7825  10 -min samples (21.6 %) of the 

data measurements corresponding to standstill, 25604 (70.6 %) to partial load2837 10 -min samples (7.8 %) to full load, and 

2837 (7.8 %) to full load 25604 10 -min samples (70.6 %) to partial load. Each dataset contains 56 features and the 

corresponding DELs.  

The first feature selection method used in these new datasets is again the Pearson correlation analysis. The results show that 15 

most of the descriptive statistics for wind speed and acceleration are highly correlated with the DELs in all operational modes. 

The first differences appear in the generator speed. As expected, the generator speed is not relevant during standstill since the 

rotor is not moving or is only idling. The mean wind generator speed is not as relevant in full load as it is in partial load. During 

full load, the rotational speed is around a specified number and must be kept as stable as possible. Therefore, the mean rotational 

speed does not change significantly during full load. During partial load, the mean rotational speed is within a higher range, 20 

therefore, it has a higher correlation with the corresponding DELs.  

During full load, the standard deviation and variance of the rotational speed are highly correlated with the DELs. The standard 

deviation explains how the values differ from the mean, thus, conclusions about the dynamics of the turbine can be derived 

based on these spreads. For example, a large deviationfluctuations of in the rotational speed around the mean during full load 

haves a significant effect on the tower movement which explains the high correlation between the standard deviations of the 25 

rotational speed with the DELs. Additionally, several descriptive statistics of the pitch angle are correlated with the DEL 

exhibiting correlation coefficients greater than 0.5. The features of the pitch angle are correlated with the output of a factor 

greater than 0.5 with the output. This correlation is only significant during full load. The pitch angle is held at the most efficient 

lift-to-drag ratio during the partial load and, therefore, not many variations can be observed during standstill and partial load. 

During full load, the turbine pitches constantly continuously to keep the rotational speed nearly constant. For each operational 30 

mode, PCA was performed to account for potential collinearity in the feature-set. This was done consistently with an explained 

variance of 99 % remaining. 
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The second feature selection method applied is stepwise regression. The results are not consistent with the correlation analysis. 

Air density and wind direction did not correlate with the DELs, however, they were chosen by the stepwise regression during 

standstill and partial load as potential predictors. Also, the pitch was chosen as a significant variable during standstill, even 

though the turbine is not pitching. In general, the modeler needs to be careful when interpreting the results from a stepwise 

regression as described in Sect. 2.2. 5 

NCA was applied to the three datasets. Examining the results, one significant difference to the correlation analysis is that the 

wind direction was identified as significant during standstill and partial load by the NCA, whereas the correlation analysis 

showed no correlation of these features with the output during any operational mode. Furthermore, the range of the pitch angle 

was identified as relevant during partial load, which was not the case in the correlation analysis. Mean acceleration in the x-

direction and the standard deviation were the only two features identified as significant by the NCA in all three operational 10 

modes. 

3.2 Modeling fatigue loads 

Once the features with predictive power have been identified for the different datasets, NN are built to evaluate the predictions. 

The outcomes of these models are described hereafter. 

3.2.1 Eight Eight-month data with all operational modes 15 

The first analysis is conducted on eight eight-month data without filtering by operational modes. To illustrate the results, 

features used for training the NN are selected by using the correlation analysis and can be examined in appendix A 1. The data 

is randomly split into training, testing, and validation sets. The regression model of the NN in Figure 4 shows a similar R-

value in all regressions indicating that there is no overfitting in the model.  

 20 
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Figure 4 – Linear regressions between the normalized neural networks prediction and the measured DELs. The NN are built using 

the complete data set (i.e., eight months) and 27 features selected after the Pearson correlation analysis. 

The R-value for the complete data-set is 0.99564 which can be confirmed by observing the top plot in Figure 5Figure 4 where 

the predicted DELs overlaps with the measured DELs with a mean prediction error of 2.22 % (see Table 3Table 2). 5 

Nevertheless, the prediction error, shown in the bottom plot in Figure 5, can be as high as 685.79 %. Values close to zero can 

have a significant impact in terms of the mean error in percent due to a high ratio of prediction and measured DELs. Figure 5 

shows the normalized predicted vs. measured DELs and the corresponding prediction error.  



 

24 

 

 

 

(a) 

 

(b) 

 

Figure 5 – NN prediction: The top plotPlot (a) presents the normalized predicted and the measured DELs by NN. The button pPlot 

(b) is the prediction error. 

Plotting the error against the wind speed for all operational modes in Figure 6, it can be concluded that the mean prediction 5 

error is significantly higher at low wind speeds. If the wind speed is below 5 approximately 3 m  s-1,2 the WT is in at a standstill. 
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Figure 6 – Wind speed against prediction error 

Comparing the results in Table 3Table 2Fehler! Verweisquelle konnte nicht gefunden werden., it can be seen that the model 

using features selected by NCA results in the lowest mean error. Overall, these results are significantly higher with the mean 5 

error ranging from 2.07 to 2.94 % than those obtained by Vera-Tudela and Kühn (2014) with the mean error ranging from 0.01 

to 0.22 %. This can be explained by the high prediction error during low wind speeds as seen in Figure 6. AdditionallyHowever, 

the our results indicate that it is possible to significantly reduce the number of features used in the model by applying NCA 

while maintaining a low prediction error. NCA did not select features such as the variance of the acceleration in y-direction 

and the minimum windspeed during a 10 -min time series, which had been selected by the correlation analysis and stepwise 10 

regression. This shows that to model the DELs with NN, these features are not relevant and can be omitted without 

compromising the model’s performance as suggested by the mean error of 2.07 % in Table 3. Furthermore, the non-parametric 

nature of NCA enabled this technique to outperform the other techniques such as correlation and stepwise regression which 

are based on the assumption of linear relationships. 

 15 
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Table 3 – Summary of results from Neural Networks for the complete one-year considering all operational modes 

3.2.2 Data filtered by operational modes 

This section explores the performance of the NN when built with data subsets from different operational modes. It can be 

observed that the mean error in percentpercent error is significantly high in standstill compared to other operational modes as 

shown in Table 4Table 3. Nevertheless, the mean absolute error in kNm is the lowest. The high maximum error observed 5 

previously when using the complete eight eight-month dataset (i.e., when using “all operational modes”) for the different 

training sets could be explained by the poor predictive power of the data from the standstill mode. When the NN was built 

using filtered data for partial and full load, the errors of the predictions decreased significantly. Thus, it can be concluded that 

the data from the standstill mode adds uncertainty to the model. This can be observed in Figure 7. 

Presumably, the small variations observed in the readings from the sensors during standstill do not provide enough information 10 

to predict the DELs. This is consistent with the R-values of the model during standstill mode. These values are the lowest 

among the different operational modes. A more detailed look at this case would be necessary to derive valuable insight. 

 

(a) (b) (c) 

N° 
Feature 
subset 

No. of 
features 

(% of 
total) 

R 
Mean 
error 
[%] 

Std 
dev 
[%] 

Max 
abs 
error 
[%] 

Mean 
abs.  
Error 
[kNm] 

Training Validation Test 

1 Correlation 27 0.99576 0.99535 0.99536 2.22 22.85 685.79 237 

2 
Correlation 

& PCA 
12 0.99393 0.99400 0.99365 2.94 18.93 410.33 276 

3 Stepwise 33 0.99555 0.99523 0.99476 2.24 7.23 671.48 224 

4 NCA 13 0.99581 0.99593 0.99568 2.07 26.09 525.20 228 
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Figure 7 – Normalized measured vs. predicted DELs. Figures correspond to a model built with features from the correlation 

analysis. Subfigure (a): Standstill. Subfigure (b): Partial load. Subfigure (c): Full load. 

Moreover, Table 4Table 3 shows that the partial and full-load models constructed using smaller sets of features derived from 

the application of methods such as PCA or NCA have approximately the same predictive power as those models constructed 

using larger sets of features derived from applying methods such as stepwise regression or correlation analysis. This can be 

observed in the comparison of the measures of goodness-of-fit (i.e. R-values) among the models. Nevertheless, it is important 

to mention that to apply PCA the complete feature-set is needed to transform all the information in the first few components. 5 

This is not the case when applying NCA, where the most relevant features are directly identified.  

Thus, tThe application of feature-selection and dimension-reduction methods can be considered a good practice. NCA 

outperformed all other methods in terms of the mean error in standstill and full load. In partial load, NCA still performed well, 

however, correlation and correlation & PCA yielded slightly lower mean errors.  

The results can be compared to the existing work from Vera-Tudela and Kühn (2014). In the case of the full load model, the 10 

mean error, the maximum absolute error, and standard deviation of the error are in similar ranges. However, the accuracy of 

the results from the partial load model is slightly worse for all features-sets.  

The results from the full load model can be compared to the existing work from Vera-Tudela and Kühn (2014) where the mean 

error is below 0.22 for all feature-sets. The maximum absolute error and standard deviation of the error also confirm the results. 

The accuracy of the results from the partial load model is slightly worse for all features-sets.  15 
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Table 4 – Summary of results from Neural Networks for different operational modes 

 

3.2.3 Continuous monitoring with a predictive model  

Nevertheless, it is important to mention that to apply PCA the complete feature-set is needed to transform all the information 

in the first few components. This is not the case when applying NCA where the most relevant features are directly identified. 5 

Continuous monitoring with a predictive model In this section, the results of using a predictive model for continuous 

monitoring are presented. The aim is to identify if and how the errors in the outcomes of the model vary when using only the 

first 50 % of data gathered. The model is tested by predicting the DELs corresponding to the remaining share of the data. The 

majority (i.e., 70.6 %) of all data gathered corresponds to the partial load mode, therefore, this subset was selected for this 

analysis. As in the previous analysis, four models are built using the feature-sets from the correlation analysis, correlation and 10 

PCA, stepwise regression, and NCA.  

Figure 8 shows the prediction error from the model using the feature-set from the correlation analysis. It can be seen that the 

mean absolute prediction error from the model trained using the first 50 % of the data gathered is 211 kNm (see Table 5Table 

4). This value is lower than the mean absolute error from using this trained model to predict the remaining 50 % of the data, 

which yields 244 kNm (see Table 6)the model trained with the remaining data which yields 244 kNm in Table 5. Nonetheless, 15 

N° Subset 
No. of 

features 

R 
Mean 
error 
[%] 

Std dev 
[%] 

Max 
abs 
error 
[%] 

Mean 
abs.  
Error 
[kNm] 

Training 
Valida-

tion 
Test 

Standstill 

1.1 Correlation 18 0.96884 0.96598 0.96962 9.89 37.46 472.83 189 

1.2 Correlation & PCA 7 0.96211 0.96776 0.95255 14.13 40.01 432.56 199 

1.3 Stepwise 35 0.98781 0.98352 0.97053 7.21 46.51 828.72 138 

1.4 NCA 16 0.98369 0.98163 0.97891 6.60 39.77 505.83 145 

Partial Load 

2.1 Correlation 28 0.99322 0.99228 0.99212 0.70 8.77 82.34 242 

2.2 Correlation & PCA 12 0.99045 0.99034 0.99040 0.69 9.74 89.06 256 

2.3 Stepwise 37 0.99330 0.99295 0.99217 1.21 9.03 71.16 239 

2.4 NCA 11 0.99282 0.99236 0.99218 0.72 9.33 79.02 240 

Full Load 

3.1 Correlation 28 0.99186 0.98858 0.98389 0.06 3.07 56.28 276 

3.2 Correlation & PCA 12 0.98759 0.98568 0.98636 0.11 3.58 53.35 290 

3.3 Stepwise 23 0.99175 0.99011 0.98953 0.07 2.79 16.29 272 

3.4 NCA 8 0.99048 0.98847 0.99084 0.07 3.09 54.85 273 
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the contrary is true for the mean error (in percentage). This variation can be explained by the same relationship observed 

previously in Figure 6 and Fig. 7Figure 7 where the prediction error decreases at high wind speeds. As can be seen in Figure 

9, the average mean wind speed is higher in the second half of the partial load dataset, which was used for testing. 

 

 

(a) 

 

(b) 

 5 

Figure 8 – (a) A Ccomparison of normalized predicted  and measured DELs  and (b) the corresponding prediction error for the 

model using the feature-set from the correlation analysis. 
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Figure 9 – Mean wind speed during partial load 

The same behavior is observed in the remaining models. Overall, the mean error is lower in the results from the models trained 

using the second half of the datasets as can be seen when comparing Table 5 and Table 6Table 4 and Table 5. 5 

 

Table 5 – Summary of results of the partial load model trained with the first 50 % of the data 

 

N° 
Feature 
subset 

No. of 
features 

(% of 
total) 

R 
Mean 
error 
[%] 

Std 
dev 
[%] 

Max 
abs 
error 
[%] 

Mean 
abs.  
Error 
[kNm] 

Training Validation Test 

1 Correlation 27 (48%) 0.99276 0.99011 0.99182 0.92 9.60 76.44 211 

2 
Correlation 

& PCA 
9 (16%) 0.99393 0.99400 0.99365 1.44 11.03 94.23 229 

3 Stepwise 38 (68%) 0.99555 0.99523 0.99476 2.45 11.24 75.56 231 

4 NCA 13 (23%) 0.99581 0.99593 0.99568 1.32 10.21 75.09 213 
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Table 6 – Results from using the trained model to predict the remaining 50 % of the data 

 

 

 

 5 

 

4 Conclusions 

This paper used available SCADA data as well as strain gauge measurements from a research WT to develop a predictive 

model to estimate the DELs of the fore-aft bending moments of a WT tower. The dataset included a period of over eight 

months of useful data. Different feature selection methods and a dimension reduction technique were applied to choose the 10 

sensors with the strongest predictive power. The data were then inputted into a feedforward neural network. The methodology 

and data used reproduces and enhances the approaches of similar studies in the field of SHM. 

The results indicate that using all data and applying neighborhood component analysisNCA for feature selection yields an 

interpretable and low dimensional feature-set while maintaining high accuracy.  Additionally, dimension reduction techniques 

such as principal component analysisPCA can contribute to a more parsimonious model reducing the number of features 15 

needed, however, compromising the interpretability of the inputs given the transformation of the data. 

The results were significantly better, i.e., yielded lower mean absolute errors, when the dataset was divided by operational 

modes. Particularly, tThe models were significantly more accurate when analyzing the operation of the turbine at full load and 

partial load. The outcome of the model using signals from when the turbine was standing still was rather inaccurate with mean 

errors  ranging from 6 % to 14 %. In partial load, the errors vary between 0.69 % to 1.21 % and in full load between 0.07 % to 20 

0.11 %. It can be concluded that the performance of NN is influenced by the operational mode of the WT.  

Finally, a model was built for continuous monitoring was built. For this, the first 50 % of partial load data was used for training 

and shows stable results in terms of prediction accuracy for the remaining data. All feature selection techniques showed similar 

results when predicting DELs for continuous monitoring. The feature set resulting from the application of correlation analysis 

and PCA yielded the lowest mean error, yet the second largest standard deviation for these errors. Since the results are not 25 

significantly different for each feature selection technique, the use of NCA is preferred for the following reasons:  

- A Ssignificant reduction of features with (up to 86 % during full load), which also leads to faster modeling of the 

DELs 

N° 
Feature 
subset 

No. of 
features 

(% of 
total) 

Mean 
error 
[%] 

Std 
dev 
[%] 

Max 
abs 
error 
[%] 

Mean 
abs.  
Error 
[kNm] 

1 Correlation 27 (48%) 0.19 8.98 60.86 244 

2 
Correlation 

& PCA 
9 (16%) 0.07 9.54 83.67 229 

3 Stepwise 38 (68%) 0.84 9.55 88.64 248 

4 NCA 13 (23%) 0.46 8.81 96.51 234 
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- The Iinterpretability of features is maintained. 

This study showed that NCA can be included as a reliable and efficient feature selection method for modelling tower fatigue 

loads with NN, particularly due to its non-parametric nature. Nevertheless, the performance of this technique relative to other 

techniques such as correlation analysis or stepwise regression will depend on the particularities of the case study (operational 

conditions, availability and location of the sensors, characteristics of the WT, etc.). The decision of which technique should be 5 

used to build the NN model should be based on the knowledge of the strengths and limitations of the techniques in 

consideration. 

preffered due to its interpretable and low dimention of features. 

This paper study was limited to examined data from only one WT. To be able to generalize the results obtained from this study, 

the NN model requires validation with data collected from a different wind turbine with the same specifications. By doing this, 10 

it will be possible to determine the relationship between SCADA data and fatigue loads with more precision, thereby 

eliminating the need to install expensive gauge sensors to estimate these loads and contributing to more efficient structural 

health monitoringSHM methods.  

Furthermore, the methodology developed during this study could be further tested by means ofthrough an analytical aero-

elastic model. Such a model would provide larger datasets from for standstill and full load to test the predictive capabilities 15 

for continuous monitoring without the significant costs that this would imply if done empirically. The results of the NN trained 

with information from the aero-elastic model can be compared to the results presented in this paper to derive conclusions on 

the reliability and accuracy of this methodology. Finally, the results could benefit from exploring alternative machine learning 

algorithms such as support vector machine and k-Nearest Neighbors. 

5 Appendix A 20 

A 1 Feature selected by the different methods and for the different operational modes  

Note:The numbers correspond to the Pearson correlation coefficient. 

The small letters next to the coefficients indicate that the feature has been selected by the method: a corresponds to correlation 

analysis, b to stepwise regression and c to NCA. 

Correlation Analysis by operational modes  25 

Chosen values are highlighted in red for the correlation analysis. 

 

 Number Feature Stands Still Partial Load Full Load All MModes 

A
cc

el
er

a
ti

o
n

 

fo
re

-a
ft

 (
x-

d
ir

ec
ti

o
n

) 

1 acc_x_min -0.09 0.06, b -0.05 -0.16, b 

2 acc_x_max 0.92, a, b, c 0.92, a, b 0.88, a, b 0.96, a, b 

3 acc_x_mean 0.91, a, b, c 0.93, a, b, c 0.96, a, b, c 0.96, a, b, c 

4 acc_x_range 0.92, a, c 0.92, a 0.88, a 0.96, a 

5 acc_x_mode 0.53, a, b 0.08, b 0.25, b 0.19, b 
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 Number Feature Stands Still Partial Load Full Load All MModes 

6 acc_x_std 0.93, a, b, c 0.94, a, b, c 0.97, a, b, c 0.97, a, b, c 

7 acc_x_var 0.77, a, b 0.85, a, b 0.94, a, b 0.86, a, b 
A

cc
el

er
a

ti
o

n
 s

id
e-

si
d

e 

(y
-d

ir
ec

ti
o

n
) 

8 acc_y_min 0.04 0.04 0.03 -0.08 

9 acc_y_max 0.81, a, b, c 0.90, a 0.82, a 0.86, a, b, c 

10 acc_y_mean 0.80, a, b 0.88, a, b 0.81, a, b 0.85, a, b 

11 acc_y_range 0.81, a, b, c 0.90, a 0.82, a 0.86, a, c 

12 acc_y_mode 0.35 0.14 0.00, b 0.06 

13 acc_y_std 0.80, a, c 0.90, a, b 0.83, a 0.85, a 

14 acc_y_var 0.70, a, b 0.77, a, b 0.82, a 0.75, a, b 

W
in

d
 s

p
ee

d
 

15 v_wind_min 0.65, a 0.53, a, b 0.59, a, b 0.64, a, b 

16 v_wind_max 0.76, a, c 0.90, a 0.87, a 0.80, a 

17 v_wind_mean 0.74, a, b 0.83, a, b, c 0.84, a, b 0.74, a, b, c 

18 v_wind_range 0.75, a 0.92, a, b 0.77, a 0.79, a 

19 v_wind_mode 0.72, a, b 0.80, a 0.78, a, b 0.71, a, b 

20 v_wind_std 0.73, a, b 0.94, a, b, c 0.81, a 0.77, a, b, c 

21 v_wind_var 0.70, a, b 0.90, a, b 0.77, a, b 0.71, a, c 

R
el

a
ti

ve
 w

in
d

 d
ir

ec
ti

o
n

 

22 v_dir_min 0.12, b 0.08 0.12 0.16 

23 v_dir_max -0.13, b -0.05, b 0.12 -0.16 

24 v_dir_mean -0.02, b, c 0.05, b 0.03 0.00, b, c 

25 v_dir_range -0.15 -0.07 0.01 -0.19, b, c 

26 v_dir_mode 0.02, c 0.00 0.00 -0.01 

27 v_dir_std -0.15, b, c 0.07, b, c 0.11, b -0.11, b 

28 v_dir_var -0.11, b 0.04, b 0.10 -0.08, b 

R
o

ta
ti

o
n

a
l 

sp
ee

d
 a

t 
th

e 

g
en

er
a

to
r 

29 omega_gen_min -0.08, b, c 0.55, a, b -0.79, a, b 0.64, a 

30 omega_gen_max 0.19, c 0.80, a, b, c 0.81, a 0.68, a 

31 omega_gen_mean 0.04, b 0.71, a, b 0.08 0.67, a 

32 omega_gen_range 0.38, b, c 0.37, c 0.88, a 0.28, c 

33 omega_gen_mode 0.02, b 0.65, a, b -0.05 0.66, a, b 

34 omega_gen_std 0.33, b 0.29 0.94, a, b, c 0.19, b 

35 omega_gen_var 0.30, b 0.22, b 0.93, a, b 0.13, b 

A
ir

 d
en

si
ty

 

36 air_density_min -0.10 0.22 0.05, b, c 0.23 

37 air_density_max -0.11 0.22 0.06 0.23 

38 air_density_mean -0.10 0.22 0.05 0.23 

39 air_density_range -0.02, b 0.01 0.08 -0.07 

40 air_density_mode -0.10 0.22 0.05, b 0.23 

41 air_density_std -0.02, b 0.00, b 0.09 -0.07, b 

42 air_density_var -0.02, b 0.02, b 0.07 -0.03 
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 Number Feature Stands Still Partial Load Full Load All MModes 

P
it

ch
 a

n
g

le
 

43 pitch_min 0.27, b 0.03, b 0.71, a, b, c -0.35, b 

44 pitch_max 0.41 0.31, b 0.87, a -0.25, b 

45 pitch_mean 0.35 0.21, b 0.81, a, b, c -0.31, b 

46 pitch_range 0.30 0.31, c 0.55, a 0.37 

47 pitch_mode 0.36, b 0.12, b 0.66, a, b -0.32, b 

48 pitch_std 0.30 0.24, b 0.32, b, c 0.25, b 

49 pitch_var 0.26, b 0.15, b 0.28 0.09, b 

A
ct

iv
e 

p
o

w
er

 o
u

tp
u

t 50 ACpow_min -0.15 0.64, a, b, c -0.05 0.82, a, b 

51 ACpow_max 0.20, b 0.89, a, b 0.83, a, b 0.89, a, b 

52 ACpow_mean 0.04, b 0.81, a, b, c 0.29, b 0.88, a, b, c 

53 ACpow_range 0.21, c 0.92, a, c 0.17 0.70, a, c 

54 ACpow_mode 0.00, b 0.75, a, b -0.15 0.85, a, b 

55 ACpow_std 0.21, b, c 0.88, a, b -0.07, c 0.59, a, b, c 

56 ACpow_var 0.20, b 0.70, a, b -0.12 0.45, b 

 

Feature Still Stand Partial Load Full Load All Modes 

acc_x_max 0.92 0.92 0.88 0.96 

acc_x_mean 0.91 0.93 0.96 0.96 

acc_x_range 0.92 0.92 0.88 0.96 

acc_x_mode 0.53 0.08 0.25 0.19 

acc_x_std 0.93 0.94 0.97 0.97 

acc_x_var 0.77 0.85 0.94 0.86 

acc_y_min 0.04 0.04 0.03 -0.08 

acc_y_max 0.81 0.90 0.82 0.86 

acc_y_mean 0.80 0.88 0.81 0.85 

acc_y_range 0.81 0.90 0.82 0.86 

acc_y_mode 0.35 0.14 0.00 0.06 

acc_y_std 0.80 0.90 0.83 0.85 

acc_y_var 0.70 0.77 0.82 0.75 

v_wind_min 0.65 0.53 0.59 0.64 

v_wind_max 0.76 0.90 0.87 0.80 

v_wind_mean 0.74 0.83 0.84 0.74 

v_wind_range 0.75 0.92 0.77 0.79 

v_wind_mode 0.72 0.80 0.78 0.71 

v_wind_std 0.73 0.94 0.81 0.77 

v_wind_var 0.70 0.90 0.77 0.71 

v_dir_min 0.12 0.08 0.12 0.16 
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Feature Still Stand Partial Load Full Load All Modes 

v_dir_max -0.13 -0.05 0.12 -0.16 

v_dir_mean -0.02 0.05 0.03 0.00 

v_dir_range -0.15 -0.07 0.01 -0.19 

v_dir_mode 0.02 0.00 0.00 -0.01 

v_dir_std -0.15 0.07 0.11 -0.11 

v_dir_var -0.11 0.04 0.10 -0.08 

omega_gen_min -0.08 0.55 -0.79 0.64 

omega_gen_max 0.19 0.80 0.81 0.68 

omega_gen_mean 0.04 0.71 0.08 0.67 

omega_gen_range 0.38 0.37 0.88 0.28 

omega_gen_mode 0.02 0.65 -0.05 0.66 

omega_gen_std 0.33 0.29 0.94 0.19 

omega_gen_var 0.30 0.22 0.93 0.13 

air_density_min -0.10 0.22 0.05 0.23 

air_density_max -0.11 0.22 0.06 0.23 

air_density_mean -0.10 0.22 0.05 0.23 

air_density_range -0.02 0.01 0.08 -0.07 

air_density_mode -0.10 0.22 0.05 0.23 

air_density_std -0.02 0.00 0.09 -0.07 

air_density_var -0.02 0.02 0.07 -0.03 

pitch_min 0.27 0.03 0.71 -0.35 

pitch_max 0.41 0.31 0.87 -0.25 

pitch_mean 0.35 0.21 0.81 -0.31 

pitch_range 0.30 0.31 0.55 0.37 

pitch_mode 0.36 0.12 0.66 -0.32 

pitch_std 0.30 0.24 0.32 0.25 

pitch_var 0.26 0.15 0.28 0.09 

ACpow_min -0.15 0.64 -0.05 0.82 

ACpow_max 0.20 0.89 0.83 0.89 

ACpow_mean 0.04 0.81 0.29 0.88 

ACpow_range 0.21 0.92 0.17 0.70 

ACpow_mode 0.00 0.75 -0.15 0.85 

ACpow_std 0.21 0.88 -0.07 0.59 

ACpow_var 0.20 0.70 -0.12 0.45 
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A 2 Stepwise Regression results for different operation modes 

Chosen values are marked with a “x”. 

 

Feature Still Stand Partial Load Full Load All Modes 

acc_x_min  x  x 

acc_x_max x x x x 

acc_x_mean x x x x 

acc_x_range     

acc_x_mode x x x x 

acc_x_std x x x x 

acc_x_var x x x x 

acc_y_min     

acc_y_max x   x 

acc_y_mean x x x x 

acc_y_range x    

acc_y_mode   x  

acc_y_std  x   

acc_y_var x x  x 

v_wind_min  x x x 

v_wind_max     

v_wind_mean x x x x 

v_wind_range  x   

v_wind_mode x  x x 

v_wind_std x x  x 

v_wind_var x x x  

v_dir_min x    

v_dir_max x x   

v_dir_mean x x  x 

v_dir_range    x 

v_dir_mode     

v_dir_std x x x x 

v_dir_var x x  x 

omega_gen_min x x x  

omega_gen_max  x   

omega_gen_mean x x   

omega_gen_range x    

omega_gen_mode x x  x 

omega_gen_std x  x x 
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Feature Still Stand Partial Load Full Load All Modes 

omega_gen_var x x x x 

air_density_min   x  

air_density_max     

air_density_mean     

air_density_range x    

air_density_mode   x  

air_density_std x x  x 

air_density_var x x   

pitch_min x x x x 

pitch_max  x  x 

pitch_mean  x x x 

pitch_range     

pitch_mode x x x x 

pitch_std  x x x 

pitch_var x x  x 

ACpow_min  x  x 

ACpow_max x x x x 

ACpow_mean x x x x 

ACpow_range     

ACpow_mode x x  x 

ACpow_std x x  x 

ACpow_var x x  x 
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A 3 Summary of NCA for different operation modes 

Chosen values are marked with a “x”. 

 

Feature Still Stand Partial Load Full Load All Modes 

omega_min  

omega_max  

omega_mean  

omega_range  

omega_mode 

omega_std  

omega_var  

acc_x_min 

   

 

acc_x_max x    

acc_x_mean x x x x 

acc_x_range x    

acc_x_mode     

acc_x_std x x x x 

acc_x_var     

acc_y_min     

acc_y_max x   x 

acc_y_mean     

acc_y_range x   x 

acc_y_mode     

acc_y_std x    

acc_y_var     

v_wind_min     

v_wind_max x    

v_wind_mean  x  x 

v_wind_range     

v_wind_mode     

v_wind_std  x  x 

v_wind_var    x 

v_dir_min     

v_dir_max     

v_dir_mean x   x 

v_dir_range    x 

v_dir_mode x    

v_dir_std x x   

v_dir_var     

omega_gen_min x    
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Feature Still Stand Partial Load Full Load All Modes 

omega_gen_max x x   

omega_gen_mean     

omega_gen_range x x  x 

omega_gen_mode     

omega_gen_std   x  

omega_gen_var     

air_density_min   x  

air_density_max     

air_density_mean     

air_density_range     

air_density_mode     

air_density_std     

air_density_var     

pitch_min   x  

pitch_max     

pitch_mean   x  

pitch_range  x   

pitch_mode     

pitch_std   x  

pitch_var     

ACpow_min  x   

ACpow_max     

ACpow_mean  x  x 

ACpow_range x x  x 

ACpow_mode     

ACpow_std x  x x 

ACpow_var     
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