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Abstract. The rapid development of the wind industry in recent decades and the establishment of this technology as a mature 

and cost-competitive alternative have stressed the need for sophisticated maintenance and monitoring methods. Structural 

health monitoring has risen as a diagnosis strategy to detect damage or failures in wind turbine structures with the help of 

measuring sensors. The amount of data recorded by the structural health monitoring system can potentially be used to obtain 10 

knowledge about the condition and remaining lifetime of wind turbines. Machine learning techniques provide the opportunity 

to extract this information, thereby improving the reliability and cost-effectiveness of the wind industry as well. This paper 

demonstrates the modeling of damage equivalent loads of the fore-aft bending moments of a wind turbine tower highlighting 

the advantage of using the neighborhood component analysis. This feature selection technique is compared to common 

dimension reduction/feature selection techniques such as correlation analysis, stepwise regression or principal component 15 

analysis. For this study, recordings of data were gathered during a period of approximately 11 months, pre-processed, and 

filtered by different operational modes, namely standstill, full load, and partial load. The results indicate that all feature 

selection techniques were able to maintain a high accuracy when trained with artificial neural networks. The neighborhood 

component analysis yields the lowest number of features required while maintaining the interpretability with an absolute mean 

squared error of around 0.07 % for full load. Finally, the applicability of the resulting model for predicting loads in the wind 20 

turbine is tested by reducing the amount of data used for training. This analysis shows that the predictive model can be used 

for continuous monitoring of loads in the tower of the wind turbine. 

1 Introduction 

Wind power is becoming the electricity-generating technology with the lowest costs in several areas of the world (REN21, 

2018). Given the fierce competition in the industry due to the rapid growth of wind energy installed capacity globally it is 25 

important to continuously look for alternatives to make this technology more cost-effective. The possibility of monitoring with 

sensors has enabled the gathering and supervision of data regarding the  condition of a structure to, e.g. detect failures. 

Particularly, structural health monitoring (SHM) in wind turbines (WTs) allows monitoring the structural behaviour and 

stresses of structures such as blades, towers, and foundations. 
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While machine learning techniques are widely applied in industries such as the automotive, information technology and 

communication, the wind industry is starting to explore the suitability of these promising methods for its benefits. Although 

data-driven attempts have been made to estimate the loads acting on the turbine using available information from the SCADA 

system, there is no consensus yet on the type of a relationship existent between these data and actual load measurements. In 

the last years, the focus on this topic increased. This section aims to review available scientific literature regarding modeling 5 

loads with existing SCADA data for WT.  

SHM systems could be used to verify structural safety and determine the remaining useful lifetime (RUL) of WTs (Schedat et 

al., 2016). Moreover, information gathered through SHM during the lifetime of WTs can potentially be used to identify 

structural weaknesses and feed this information back to the manufacturers, ultimately improving the design of new 

turbines(Ziegler et al., 2018). Another potential benefit of SHM is a decrease in maintenance costs. Typically, operation and 10 

maintenance costs (including both fixed and variable costs) represent approximately 20 to 25 % of the total levelized cost of 

electricity (LCOE) (IRENA, 2015). SHM could reduce this share by allowing the implementation and set in place of more 

efficient maintenance practices such as predictive maintenance while enabling better spare-parts inventory management. 

Consequently, downtime is reduced, and production is increased. 

Currently, the assessment and evaluation of the structural condition of WTs without a load measurement system can be 15 

challenging. Particularly, the estimation of fatigue loads can be difficult due to a lack of information (Melsheimer et al., 2015; 

Schedat and Faber, 2017). Therefore, exploring the ways to mine data from SHM systems and extract valuable information 

becomes an interesting and high demanded field of research. 

The reconstruction or estimation of loads using statistics from SCADA data was already presented and tested in the mid-2000s. 

Cosack and Kühn (Cosack and Kühn, 2006) developed a stepwise regression model for estimating the rotor thrust. Despite the 20 

good results (i.e. deviations between the calculated and the estimated loads ranged from 5.4% to 7.3% in the worst case), the 

presented model was too complex and time-consuming with further restrictions. In a new development of the model, an 

estimation method for the corresponding target values (damage-equivalent loads and the load magnitude distributions) used 

neural networks (Cosack, 2010; Cosack and Kühn, 2007). 

Ziegler et al. (Ziegler et al., 2018) have recently performed a literature review and have assessed the development of the 25 

lifetime-extension market of onshore WTs. The alternative of extending the lifetime of a WT, as opposed to repowering or 

decommissioning, is appealing given the potential increase of returns on investments (ROIs), however, not much public 

research has been done on this matter. The authors contributed, then, by comparing updated load simulations and inspections 

for lifetime extension assessments in Germany, Spain, Denmark, and the United Kingdom. Particularly, for lifetime extension 

to be a feasible alternative, the structural integrity of the turbine should not compromise the level of safety. In this regard, the 30 

survey performed by the authors determined that, apart from the use of SCADA systems, no short-term load measurements or 

monitoring are carried out in the countries surveyed (a few exceptions were identified in the UK, where load reassessment is 

performed). They found that most interviewees focus on practical assessments for cost reasons. Nevertheless, these practical 

inspections are no guarantee that the safety level can be maintained during the lifetime extension. The authors concluded that 
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new operation and maintenance strategies and data-processing methodologies are necessary for lifetime extension purposes. 

Moreover, data-driven approaches may contribute to cost reduction of lifetime extension assessments.  

In line with the findings of Ziegler et al. (Ziegler et al., 2018), other authors have worked on the aforementioned data-driven 

approaches. Noppe et al. (Noppe et al., 2018), for example, reconstructed the thrust loads history of a WT based on both 

simulated and measured SCADA data. The data gathered corresponded to operational 1 s and 10 min. Moreover, the data is 5 

segregated into different operational modes. The selection of explanatory variables that the authors performed was based on a 

Pearson correlation analysis. The first two weeks of operational data were used to model the thrust loads using neural networks 

and validated by one year of data. The model has the following input features: wind speed, blade pitch angle, rotor speed, and 

generated power. The results of this paper showed that the constructed model was able to estimate thrust loads with a relative 

error that does not exceed 15 %. The authors also concluded that the use of simulated data yielded slightly better results and 10 

that adjustments in the hyperparameters of the neural networks had no significant impact on the estimated thrust loads.  

Relatedly, Vera-Tudela and Kühn (Vera-Tudela and Kühn, 2014) focused on the selection of variables to be used for fatigue 

load monitoring and attempted to define an optimum set of explanatory variables for that purpose. The authors identified 117 

potential variables (13 statistics of 9 SCADA signals) used in related scientific literature. Among them, the mean of generator 

speed, electrical power, and pitch angle have been the most commonly used. The authors decided to apply several feature 15 

selection methods to six sets of variables. The methods chosen included Spearman coefficients, stepwise regression, cross-

correlation, hierarchical clustering, and principal components. To evaluate the outcomes of the feature selection methods a 

feedforward neural network was employed. The authors concluded that principal components yielded the best set of variables, 

however, the resulting set lost expertise knowledge about the relation between the variables. In this sense, ranking the variables 

by their corresponding Spearman coefficients resulted in a fair compromise between the number of features required to monitor 20 

the damage equivalent load for blade out of plane bending moment and the available expert knowledge.  

Smolka and Cheng (Smolka and Cheng, 2013) examined the amount and type of data necessary to determine a fatigue estimator 

for the operational lifetime of a WT. The inputs for the neural network are selected by means of a correlation analysis applied 

to standard data statistics of available SCADA signals such as electrical power, generator speed, pitch angle, among others. 

The authors concluded that the minimum training data sample size required is approximately half a month worth of 25 

measurements.  

Seifert et al. (Seifert et al., 2017), acknowledging the complexity and cost of handling extra measurements, assessed the 

minimum needed size of a training sample to predict fatigue loads using 10 min statistics of SCADA signals and neural 

networks. In a sense, Seifert et al.’s work is an extension or continuation of Vera-Tudela and Kühn’s (Vera-Tudela and Kühn, 

2014) and Smolka et al.’s (Smolka and Cheng, 2013). Seifert et al. (Seifert et al., 2017) tested different sample sizes varying 30 

between one day (i.e., 144 records) and four months (i.e., 4032 records) of measurements. They determined that a sample of 

2016 records of 10 min statistics are sufficient to predict flap wise blade root bending moments of a WT independent of 

seasonal effects. 
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Artificial neural networks can only perform as good as the information provided to them, thus the features used to train them 

are key to obtain high accuracy in the results with a parsimonious model. So far, little research has been done regarding feature 

selection for modeling tower fatigue loads. The available literature has focused on techniques such as correlation analysis, 

principal component analysis (PCA) and stepwise regression to select the best subset of information. This paper aims to assess 

the use of Neighbourhood Component Analysis (NCA) as a feature selection technique to extract relevant information from 5 

SCADA data in order to train artificial neural networks and model fatigue loads.  

The paper is organized as follows: Section 2 outlines the applied methodology in this study, section 3 summarizes the results, 

and, finally, section 4 presents the conclusions derived from the obtained results.  

2 Data and Methodology 

2.1 Wind turbine and SCADA data 10 

This paper seeks to model tower fatigue loads of a commercial wind turbine with a rated power of 2.05 MW, a hub height of 

100 m and a rotor diameter of 92.5 m in the northern part of Germany. The turbine is used for research purposes by the Wind 

Energy Technology Institute at the Flensburg University of Applied Sciences. For this study, the readings from the SCADA 

and a load measurement system in the previously mentioned turbine were recorded for around 11 months and collected in 10 

min files. The tower bottom bending is measured by strain gauges. These were installed and wired as full bridge (Wheatstone) 15 

with temperature compensation. A Wheatstone bridge is widely used in strain gauge applications because of its ability to 

measure small deviations in resistance. The calibration factors were determined from the results of the shunt-resistor-

calibration, tower geometry and the thickness of the tower wall at the strain gauge positions (provided by the turbine 

manufacturer). The offsets are determined by means of a yaw round. The sensors used to extract features for the model are 

described in Table 1 and were selected based on a literature review and consultations with an application engineer. 20 

Table 1 – Description of SCADA sensors selected 

Feature name Description 
Unit of 

measurement 

Frequency 

 [Hz] 

Explanatory variables  

Omega Rotational speed at the rotor rpm 20 

acc_x Acceleration fore-aft (x-direction) mm s-2 20 

acc_y Acceleration side-side (y-direction) mm s-2 20 

v_wind Wind speed m s-2 20 

v_dir Relative wind direction degree 10 

omega_gen Rotational speed at the generator rpm 20 

air_density Air density kg m-3 20 
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Pitch pitch angle degree 20 

ACpow Active power output kW 20 

Dependent variables 

Bieg1_060_240 
Gauge sensor located at 60 & 240 degree inside the tower 

bottom 
kNm 50 

Bieg2_150_330 
Gauge sensor located at 150 & 330 degree inside the tower 

bottom 
kNm 50 

 

The strain gauge measurements at the turbine were transformed into a resultant fore-aft tower bending moment, which was 

later used to calculate the short-term damage equivalent load (DEL) for every 10 min time series. This transformation was 

performed by means of a rainflow counting algorithm and later, the resulting load spectrum was further reduced to a constant 

load range. After a number of equivalent cycles, this load range results in the same equivalent accumulated damage as the 5 

spectrum of loads previously calculated through the rainflow counting algorithm. The short-term DELs were calculated 

following Equation (1): 

�� = �∑ ��∗��	�
�
� �


	

            (1) 

where ���  is the equivalent number of cycles, �� the different load ranges, �� the corresponding cycle numbers and � is given 

by the slope of the Stress-Cycle (S-N) curve of the material used for the tower (DNV/Risø, 2002). In this case, it is assumed 10 

an inverse slope � = 3 for the steel tower and ��� = 9.5064 for the 10 min time series (equivalent to 10�cycles in 20 years). 

The DELs were then used as the dependent variable of the model. 

2.2 Methods 

The methodology used in this paper is graphically described in Figure 1. First, the sensors which provide relevant information 

to model resultant fore-aft tower bending moments were selected (see Table 1). In the next step, the resulting records were 15 

analyzed for missing data (e.g. zero values) and outliers. There were periods where the turbine was out of service or 

measurement failures with no registered data. Subsequently, affected records have been removed. The process of outlier 

detection in this study was not automated but done through visual inspection of the descriptive statistics calculated from the 

time series for each operational mode. To determine the relationship between the dependent and explanatory variables 

described previously, each of the 10 min files was summarized by estimating the following descriptive statistics for every 20 

explanatory variable: i) minimum value, ii) maximum value, iii) arithmetic mean, iv) range, v) mode, vi) standard deviation, 

and vii) variance. 
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Figure 1 – Main methodology steps  

In this way, the dataset was reduced to 63 features or explanatory variables. Excluding the time where no SCADA data was 

recorded, the total amount of data results in 36266 (77.1 %) observations. This corresponds to a little over eight months of 

usefull information.  5 

Furthermore, the data was filtered by operational modes, namely standstill, partial load, and full load. This was done by means 

of the feature “ACpow” which refers to active power output. In this sense, standstill corresponds to 10 min mean “ACpow” 

readings below or equal to 5 kW (0.25% of nominal power); partial load to readings higher than 5 kW and below or equal to 

2000 kW (97.56 % of nominal power); and full load to readings above 2000 kW. 

Research by Sharma and Saroha (Sharma and Saroha, 2015) concluded that a reduction of dimensions possibly leads to a better 10 

performance of the mining algorithms while maintaining a good accuracy, therefore, it is important to eliminate potential 

redundant data and select the variables with most predictive power for the model. For this, three different feature selection 
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techniques and one dimension reduction technique were applied to the entire dataset and the datasets resulting from filtering 

the data by operational mode.  

These techniques include Pearson correlation, stepwise regression, NCA, and PCA. Pearson correlation measures the linear 

correlation between two variables and maps the result to an interval between -1 and 1, where 0 indicates no linear relationship 

(Boslaugh and Watters, 2008). It can be calculated as per Eq. (2): 5 

��� =  ∑ !��" �#$��% !��" �#$
&∑ !��" �#$'��% &∑ !��" �#$'��%

          (2) 

where � is the sample size, (� and  )�  are the observations with index * and (+ represents the arithmetic mean of all samples. A 

threshold value of 0.5 was set to define the level of correlation. In this sense, a correlation coefficient between 0 and 0.49 is 

weak and a correlation coefficient between 0.5 and 0.95 is strong. Correlation among all features of a particular sensor above 

0.95 was considered as a redundant sensor and therefore eliminated for further analysis. 10 

Stepwise regression is an iterative method where features are added and removed from a multilinear model based on their 

statistical significance in the regression (Draper and Smith, 1998). The algorithm begins by constructing an initial model with 

one feature (forward selection) or all the features (backward selection) and continues adding or removing features by 

comparing the explanatory power of the larger or smaller models. At each step, the p-value of the corresponding F-statistic is 

estimated and compared to a threshold p-value to decide which features are included in or excluded from the model. P-value 15 

is used as a probability measure to identify if a particular feature is significant for the outcome of the model. If a p-value is 

larger than 0.05 the null hypothesis is true and the feature is selected for further modeling. The algorithm repeats this process 

until the added feature does not improve the model or until all features that do not improve the explanatory power of the model 

are removed. This method is considered to be locally optimal, yet not globally optimal given that the selection of features 

included in the initial model is subjective and there is no guarantee that a different initial model will not lead to a better fit. 20 

NCA is a non-parametric classification model used for metric learning and linear dimensionality reduction (Goldberger et al., 

2005). It is based on a modeling technique known as k-Nearest Neighbours (k-NN), which is a supervised learning algorithm 

used for classification or regressions (Han and Kamber, 2006; Parsian, 2015). In its simplest form, the k-NN approach looks 

for the closest k = 1 observation to the query observation xq within the training dataset by measuring the distances to the 

neighbouring data points and selecting the one that satisfies mini distance (xi, xq). The output is then predicted by applying a 25 

function y = h(x) where h is the trained k-NN prediction function. In a multidimensional dataset, the k-NN approach requires 

to differentiate between the “relevance” of the explanatory variables for the intended output. For the learning process, different 

weights can be assigned to the features of the model using the “Scales Euclidian Distance” estimation detailed in Eq. (3): 

,*-./�01!2� , 2�$ = &/45 2�617 − 2�6179: + ⋯ + /=5 2�6>7 − 2�6>79:      (3) 

where 2* is a vector of input values, 2? is the query vector, / is the scaling number that defines the relevance of each explanatory 30 

value, and > the total number of features. The weights are assigned randomly and then adjusted by solving a minimization 
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problem (minimizing the prediction error). Other distance metrics can be used, namely Mahalanobis, Manhattan, rank-based, 

correlation-based, and Hamming (Hazewinkel, 1994). 

Lastly, PCA is a statistical method to reduce the dimensions of a dataset that presumably contains a large number of irrelevant 

features while retaining the maximum information possible (Vidal et al., 2016). This is done by transforming the original set 

of multidimensional data into a new set referred to as components by means of eigenvectors and eigenvalues. A pair of 5 

eigenvector and eigenvalue indicate respectively the direction and how much variance is there in the data in that direction. The 

eigenvector with the highest eigenvalue is the first principal component. In this sense, the transformation allows reducing the 

dimensions of the dataset to a few components with relatively low loss of information.  

In this way, 16 neural networks (NN) were developed corresponding to four datasets (all operational modes, standstill, partial 

load, and full load) and three feature selection techniques and one dimension reduction technique. Each dataset is divided into 10 

training, validation, and testing subsets. 70 % of a dataset is randomly chosen and used by NN for training the model, 15 % 

are used to testing and 15 % for validation, i.e., this subset is used to adjust the model by means of the mean squared error 

(MSE). This adjustment stops when the MSE does not significantly improve. The validation subset is used as a measure to 

avoid overfitting the NN and generalize the prediction model. After that, the model applies to new datasets. The test subset 

does not affect on training or validation, it is only used to measure the performance of the trained NN. 15 

The NN models used in this paper are trained with the Neural Network Toolbox from MATLAB (MathWorks, 2019). The 

standard settings consist of a two-layers feed-forward NN with a sigmoid transfer function in the hidden layer and a linear 

transfer function in the output layer. The number of hidden neurons in the hidden layer are kept, as suggested by MATLAB, 

at 10 neurons. The Levenberg-Marquardt algorithm is selected as the training algorithm. No changes have been made to the 

standard configurations suggested by MATLAB. The results from the 16 models were compared to derive conclusions about 20 

the relationship between operational data and tower loads acting on WTs. 

Finally, the predictive capability of the model for continuous monitoring is tested. For this purpose, the neural network is 

trained using only the first 50 % of the data gathered during partial load. The prediction error is estimated to determine the 

accuracy of the model. 

3 Results and discussion 25 

This section describes the sensors identified by different methods as potential predictors of tower fatigue loads of the WT and 

presents the results of using a predictive model for continuous monitoring. 

3.1 Feature selection and dimension reduction 

Before building a model to predict the desired output, it is important to define which variables could act as predictors. The 

feature selection methods described in section 2.2 were applied to four different datasets: i) an eight months dataset, ii) a full-30 
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load dataset, iii) a partial load dataset, and iv) a standstill dataset. The results of the feature selection methods are described 

below. For detailed information on selected features for each operational mode, the reader is referred to appendix A 1 to A 3. 

3.1.1 Complete dataset: eight months data 

A Pearson correlation analysis was applied to the pre-selected features for predicting the DELs of the fore-aft bending moment 

of the tower finding that only 27 of the 56 features are correlated and used as independent variables in the model. The results 5 

indicate that the accelerations in both directions (i.e., x and y-axis) are highly correlated with the DELs. The standard deviation 

of the acceleration in the x-direction presents the highest correlation with a coefficient of 0.97, depicting an almost linear 

relationship between this feature and the dependent variable. The maximum and mean windspeed, and power output are also 

highly correlated with the DELs. As an example, the relationship between the mean wind speed and the calculated DEL is 

graphically shown in Figure 2. 10 

 

Figure 2 – Normalized DELs and mean wind speed 

These results suggest that these features fluctuate together with the dependent variable, and they could potentially be used to 

build a model that can estimate the DELs of the fore-aft bending moments of the tower without installing strain gauge sensors. 

Furthermore, the results show that air density and relative wind direction, along with all their corresponding descriptive 15 

statistics, have a very low correlation with the DELs and should be, therefore, disregarded in the model based on this feature-

selection technique. The mean wind direction, in particular, has a correlation coefficient close to zero, indicating an 

insignificant linear relationship with the DELs.  

Before using the features with the strongest correlation in a model, it is necessary to check for collinearity, i.e., correlation 

between independent variables. By observing the correlation between the explanatory variables, it can be determined which 20 

variables are highly correlated with each other and, therefore, should be excluded from the model to avoid collinearity issues. 

From this analysis, it was determined that rotational speed at the rotor should be excluded from the model and only rotational 
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speed at the generator should be included given that these two features are a factor away from each other and, thus, may add 

bias to the model due to redundancy. This resulted in 56 features from initial 63. Many of the remaining variables are also 

highly correlated with each other, nevertheless, they add potentially valuable information to the model.  

An alternative would be the use of a method such as PCA which could contribute to avoiding multicollinearity by transforming 

the data while maintaining the information contained in it. After removing the rotational speed at the rotor and eliminating all 5 

variables with a correlation below 0.5, 12 feature are remaining after using PCA that could be included in the model. This data 

was transformed as explained in section 2.2 estimating the variance explained by each of the first components as seen in Figure 

3. It can be observed that 99 % of the information contained in the features is now stored in the first 12 components. The 

remaining 15 components explain less than 1 % of the cumulative variance. A model could be built using the first 12 

components and the results should be almost as accurate as using the 27 features selected after the correlation analysis. The 10 

biggest disadvantage with this method is that given the transformation of the data, it is no longer possible to interpret it. The 

results, nevertheless, remain interpretable and are free of the influence of multicollinearity. 

 

Figure 3 – Cumulative variance explained by principal components 

Alternatively, an interactive stepwise regression was built using the pre-selected 56 features. Different combinations of features 15 

were tested to identify those that should not be included in the model given that they do not contribute to the predictive power 

or they result in an increase in the error of the model. The features with a p-value above 0.1 should be omitted from the model. 

The results suggest excluding a total of 30 variables from the regression model. Among these can be found the minimum, 

maximum, mean, and range of the rotational speed at the generator, most descriptive statistics of air density, with the exception 

of the standard deviation, and range, mode, and standard deviation of the acceleration in y-direction. 20 

It is important to highlight that the variable that represents the range of the acceleration sensor in the x-direction was identified 

as statistically insignificant despite its high correlation with DELs. As mentioned earlier, the possible models explored with 

the stepwise regression are limited. The algorithm builds different models from the 56 features depending on the order in which 

these features are added to (in the case of forward selection) or removed from (in the case of backward elimination) the models. 
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In this sense, the range of the sensor “acc_x” and the variance of “acc_x”, which are correlated with a factor of 0.90, could be 

considered mutually exclusive. The decision as to which of these variables to include in the model would depend solely on 

which variable is added or removed first in the stepwise regression. In this case, the algorithm suggests excluding the range of 

“acc_x”, a highly correlated feature, based on the search for the local minimum instead of evaluating all combinations. 

Ultimately, this method identified 33 features as statistically significant and, thus, these should be included in the model. 5 

The last feature selection method, NCA, was applied as well to the initial 63 features dataset. 13 features were identified by 

this method as relevant for the prediction of DELs, a significantly smaller number than those selected by applying the 

correlation analysis and stepwise regression. 

To summarize, mean values and standard deviations are the descriptive statistics that can best describe the data according to 

the three feature selection methods applied. Features selected by all three methods include wind speed, acceleration, and power 10 

output. 

3.1.2 Data filtered by operational modes 

The dataset was divided by operational modes resulting in 7825 10-min samples (21.6 %) of the data corresponding to 

standstill, 2837 10-min samples (7.8 %) to full load, and 25604 10-min samples (70.6 %) to partial load. Each dataset contains 

56 features and the corresponding DELs.  15 

The first feature selection method used in these new datasets is again the Pearson correlation analysis. The results show that 

most of the descriptive statistics for wind speed and acceleration are highly correlated with the DELs in all operational modes. 

The first differences appear in the generator speed. As expected, the generator speed is not relevant during standstill since the 

rotor is not moving or is only idling. The mean wind speed is not as relevant in full load as it is in partial load. During full 

load, the rotational speed is around a specified number and must be kept as stable as possible. Therefore, the mean rotational 20 

speed does not change significantly during full load. During partial load, the mean rotational speed is within a higher range, 

therefore it has a higher correlation with the corresponding DELs.  

During full load, the standard deviation and variance of the rotational speed are highly correlated with the DELs. The standard 

deviation explains how the values differ from the mean, thus conclusions about the dynamics of the turbine can be derived 

based on these spreads. For example, a large deviation in the rotational speed around the mean during full load has a significant 25 

effect on the tower movement. The features of the pitch angle are correlated with the output of a factor greater than 0.5 with 

the output. This correlation is only significant during full load. The pitch angle is held at the most efficient lift-to-drag ratio 

during the partial load and, therefore, not many variations can be observed during standstill and partial load. During full load, 

the turbine pitches constantly to keep the rotational speed nearly constant. For each operational mode, PCA was performed to 

account for potential collinearity in the feature-set. This was done consistently with an explained variance of 99 % remaining. 30 

The second feature selection method applied is stepwise regression. The results are not consistent with the correlation analysis. 

Air density and wind direction did not correlate with the DELs, however, they were chosen by the stepwise regression during 

standstill and partial load as potential predictors. Also, the pitch was chosen as a significant variable during standstill, even 
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though the turbine is not pitching. In general, the modeler needs to be careful when interpreting the results from a stepwise 

regression as described in section 2.2. 

NCA was applied to the three datasets. Examining the results, one significant difference to the correlation analysis is that the 

wind direction was identified as significant during standstill and partial load by the NCA, whereas the correlation analysis 

showed no correlation of these features with the output during any operational mode. Furthermore, the range of the pitch angle 5 

was identified as relevant during partial load, which was not the case in the correlation analysis. Mean acceleration in the x-

direction and the standard deviation were the only two features identified as significant by the NCA in all three operational 

modes. 

3.2 Modeling fatigue loads 

Once the features with predictive power have been identified for the different datasets, NN are built to evaluate the predictions. 10 

The outcomes of these models are described hereafter. 

3.2.1 Eight month data with all operational modes 

The first analysis is conducted on eight month data without filtering by operational modes. To illustrate the results, features 

used for training the NN are selected by using the correlation analysis and can be examined in appendix A 1. The data is 

randomly split into training, testing and validation sets. The regression model of the NN in Figure 4 shows a similar R-value 15 

in all regressions indicating that there is no overfitting in the model.  
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Figure 4 – Linear regressions between the normalized neural networks prediction and the measured DELs 

The R-value for the complete data-set is 0.99564 which can be confirmed by observing the top plot in Figure 4 where the 

predicted DELs overlaps with the measured DELs with a mean prediction of 2.22 % (see Table 2 below). Nevertheless, the 

prediction error can be as high as 685.79 %. Values close to zero can have a significant impact in terms of the mean error in 5 

percent due to a high ratio of prediction and measured DELs. Figure 5 shows the normalized predicted vs. measured DELs 

and the corresponding prediction error.  
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Figure 5 – NN prediction: The top plot presents the normalized predicted and the measured DELs by NN. The button plot is the 

prediction error. 

Plotting the error against the wind speed for all operational modes in Figure 6, it can be concluded that the mean prediction 

error is significantly higher at low wind speeds. If the wind speed is below 5 m s-2 the WT is in a standstill. 5 

 

Figure 6 – Wind speed against prediction error 

Comparing the results in Table 2, it can be seen that the model using features selected by NCA results in the lowest mean error. 

Overall, these results are significantly higher than those obtained by Vera-Tudela and Kühn (2014). This can be explained by 

the high prediction error during low wind speeds as seen in Figure 6. Additionally, the results indicate that it is possible to 10 

significantly reduce the number of features used in the model by applying NCA while maintaining a low prediction error. 

 

 

 



 

15 

 

Table 2 – Summary of results from Neural Networks for the complete one-year considering all operational modes 

3.2.2 Data filtered by operational modes 

This section explores the performance of the NN when built with data subsets from different operational modes. It can be 5 

observed that the mean error in percent is significantly high in standstill compared to other operational modes as shown in 

Table 3. Nevertheless, the mean absolute error in kNm is the lowest. The high maximum error observed previously when using 

the complete eight month dataset (i.e., when using “all operational modes”) for the different training sets could be explained 

by the poor predictive power of the data from the standstill mode. When the NN was built using filtered data for partial and 

full load, the errors of the predictions decreased significantly. Thus, it can be concluded that the data from the standstill mode 10 

adds uncertainty to the model. This can be observed in Figure 7. 

Presumably, the small variations observed in the readings from the sensors during standstill do not provide enough information 

to predict the DELs. This is consistent with the R-values of the model during standstill mode. These values are the lowest 

among the different operational modes. A more detailed look at this case would be necessary to derive valuable insight. 

 

(a) 

 

(b) 

 

(c) 

 

Figure 7 – Normalized measured vs. predicted DELs. Figures correspond to a model built with features from the 

correlation analysis. Subfigure (a): Standstill. Subfigure (b): Partial load. Subfigure (c): Full load. 

N° 
Feature 
subset 

No. of 
features 

(% of 
total) 

R 
Mean 
error 
[%] 

Std 
dev 
[%] 

Max 
abs 
error 
[%] 

Mean 
abs.  
Error 
[kNm] 

Training Validation Test 

1 Correlation 27 0.99576 0.99535 0.99536 2.22 22.85 685.79 237 

2 
Correlation 

& PCA 
12 0.99393 0.99400 0.99365 2.94 18.93 410.33 276 

3 Stepwise 33 0.99555 0.99523 0.99476 2.24 7.23 671.48 224 

4 NCA 13 0.99581 0.99593 0.99568 2.07 26.09 525.20 228 
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Moreover, Table 3 shows that the partial and full-load models constructed using smaller sets of features derived from the 

application of methods such as PCA or NCA have approximately the same predictive power as those models constructed using 

larger sets of features derived from applying methods such as stepwise regression or correlation analysis. This can be observed 

in the comparison of the measures of goodness-of-fit (i.e. R-values) among the models. Thus, the application of feature-

selection and dimension-reduction methods can be considered a good practice. The results from the full load model can be 5 

compared to the existing work from Vera-Tudela and Kühn (2014) where the mean error is below 0.22 for all feature-sets. The 

maximum absolute error and standard deviation of the error also confirm the results. The accuracy of the results from the 

partial load model is slightly worse for all features-sets.  

  

Table 3 – Summary of results from Neural Networks for different operational modes 10 

 

Nevertheless, it is important to mention that to apply PCA the complete feature-set is needed to transform all the information 

in the first few components. This is not the case when applying NCA where the most relevant features are directly identified. 

Continuous monitoring with a predictive model In this section, the results of using a predictive model for continuous 

monitoring are presented. The aim is to identify if and how the errors in the outcomes of the model vary when using only the 

first 50 % of data gathered. The model is tested by predicting the DELs corresponding to the remaining share of the data. The 

N° Subset 
No. of 

features 

R 
Mean 
error 
[%] 

Std dev 
[%] 

Max 
abs 
error 
[%] 

Mean 
abs.  
Error 
[kNm] 

Training 
Valida-

tion 
Test 

Standstill 

1.1 Correlation 18 0.96884 0.96598 0.96962 9.89 37.46 472.83 189 

1.2 Correlation & PCA 7 0.96211 0.96776 0.95255 14.13 40.01 432.56 199 

1.3 Stepwise 35 0.98781 0.98352 0.97053 7.21 46.51 828.72 138 

1.4 NCA 16 0.98369 0.98163 0.97891 6.60 39.77 505.83 145 

Partial Load 

2.1 Correlation 28 0.99322 0.99228 0.99212 0.70 8.77 82.34 242 

2.2 Correlation & PCA 12 0.99045 0.99034 0.99040 0.69 9.74 89.06 256 

2.3 Stepwise 37 0.99330 0.99295 0.99217 1.21 9.03 71.16 239 

2.4 NCA 11 0.99282 0.99236 0.99218 0.72 9.33 79.02 240 

Full Load 

3.1 Correlation 28 0.99186 0.98858 0.98389 0.06 3.07 56.28 276 

3.2 Correlation & PCA 12 0.98759 0.98568 0.98636 0.11 3.58 53.35 290 

3.3 Stepwise 23 0.99175 0.99011 0.98953 0.07 2.79 16.29 272 

3.4 NCA 8 0.99048 0.98847 0.99084 0.07 3.09 54.85 273 
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majority (i.e., 70.6 %) of all data gathered corresponds to the partial load mode, therefore this subset was selected for this 

analysis. As in the previous analysis, four models are built using the feature-sets from the correlation analysis, correlation and 

PCA, stepwise regression, and NCA.  

Figure 8 shows the prediction error from the model using the feature-set from the correlation analysis. It can be seen that the 

mean absolute prediction error from the model trained using the first 50 % of the data gathered is 211 kNm (see Table 4). This 5 

value is lower than the mean absolute error from the model trained with the remaining data which yields 244 kNm in Table 5. 

Nonetheless, the contrary is true for the mean error (in percentage). This variation can be explained by the same relationship 

observed previously in Figure 6 and Figure 7 where the prediction error decreases at high wind speeds. As can be seen in 

Figure 9, the average mean wind speed is higher in the second half of the partial load dataset, which was used for testing. 

 10 

Figure 8 – Comparison of normalized predicted and measured DELs and the corresponding prediction error for the model using 

the feature-set from the correlation analysis. 

 

 

Figure 9 – Mean wind speed during partial load 15 
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The same behavior is observed in the remaining models. Overall, the mean error is lower in the results from the models trained 

using the second half of the datasets as can be seen when comparing Table 4 and Table 5. 

 

Table 4 – Summary of results of the partial load model trained with the first 50 % of the data 

 5 

Table 5 – Results from using the trained model to predict the remaining 50 % of the data 

 

 

 

 10 

 

4 Conclusions 

This paper used available SCADA data as well as strain gauge measurements from a research WT to develop a predictive 

model to estimate the DELs of the fore-aft bending moments of a WT tower. The dataset included a period of over eight 

months of useful data. Different feature selection methods and a dimension reduction technique were applied to choose the 15 

sensors with the strongest predictive power. The data were then inputted into a feedforward neural network. The methodology 

and data used reproduces and enhances the approaches of similar studies in the field of SHM. 

The results indicate that using all data and applying neighborhood component analysis for feature selection yields an 

interpretable and low dimensional feature-set while maintaining high accuracy.  Additionally, dimension reduction techniques 

N° 
Feature 
subset 

No. of 
features 

(% of 
total) 

R 
Mean 
error 
[%] 

Std 
dev 
[%] 

Max 
abs 
error 
[%] 

Mean 
abs.  
Error 
[kNm] 

Training Validation Test 

1 Correlation 27 (48%) 0.99276 0.99011 0.99182 0.92 9.60 76.44 211 

2 
Correlation 

& PCA 
9 (16%) 0.99393 0.99400 0.99365 1.44 11.03 94.23 229 

3 Stepwise 38 (68%) 0.99555 0.99523 0.99476 2.45 11.24 75.56 231 

4 NCA 13 (23%) 0.99581 0.99593 0.99568 1.32 10.21 75.09 213 

N° 
Feature 
subset 

No. of 
features 

(% of 
total) 

Mean 
error 
[%] 

Std 
dev 
[%] 

Max 
abs 
error 
[%] 

Mean 
abs.  
Error 
[kNm] 

1 Correlation 27 (48%) 0.19 8.98 60.86 244 

2 
Correlation 

& PCA 
9 (16%) 0.07 9.54 83.67 229 

3 Stepwise 38 (68%) 0.84 9.55 88.64 248 

4 NCA 13 (23%) 0.46 8.81 96.51 234 
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such as principal component analysis can contribute to a more parsimonious model reducing the number of features needed, 

however compromising the interpretability of the inputs given the transformation of the data. 

The results were significantly better, i.e., yielded lower mean absolute errors, when the dataset was divided by operational 

modes. Particularly, the models were significantly more accurate when analyzing the operation of the turbine at full load and 

partial load. The outcome of the model using signals from when the turbine was standing still was rather inaccurate with mean 5 

errors  ranging from 6 % to 14 %. In partial load the errors vary between 0.69 % to 1.21 % and in full load between 0.07 % to 

0.11 %. It can be concluded that the performance of NN is influenced by the operational mode of the WT.  

Finally, a model was built for continuous monitoring. For this, the first 50 % of partial load data was used for training and 

shows stable results in terms of prediction accuracy for the remaining data. All feature selection techniques showed similar 

results when predicting DELs for continuous monitoring. The feature set resulting from the application of correlation analysis 10 

and PCA yielded the lowest mean error, yet the second largest standard deviation for these errors. Since the results are not 

significantly different for each feature selection technique, the use of NCA is preffered due to its interpretable and low 

dimention of features. 

This paper examined data from only one WT. To be able to generalize the results obtained from this study, the NN model 

requires validation with data collected from a different wind turbine with the same specifications. By doing this, it will be 15 

possible to determine the relationship between SCADA data and fatigue loads with more precision, thereby eliminating the 

need to install expensive gauge sensors to estimate these loads and contributing to more efficient structural health monitoring 

methods.  

Furthermore, the methodology developed during this study could be further tested by means of an analytical aero-elastic model. 

Such a model would provide larger datasets from standstill and full load to test the predictive capabilities for continuous 20 

monitoring without the significant costs that this would imply if done empirically. The results of the NN trained with 

information from the aero-elastic model can be compared to the results presented in this paper to derive conclusions on the 

reliability and accuracy of this methodology. Finally, the results could benefit from exploring alternative machine learning 

algorithms such as support vector machine and k-Nearest Neighbors. 

5 Appendix A 25 

A 1 Correlation Analysis by operational modes  

Chosen values are highlighted in red for the correlation analysis. 

 

Feature Still Stand Partial Load Full Load All Modes 

acc_x_max 0.92 0.92 0.88 0.96 

acc_x_mean 0.91 0.93 0.96 0.96 

acc_x_range 0.92 0.92 0.88 0.96 

acc_x_mode 0.53 0.08 0.25 0.19 
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Feature Still Stand Partial Load Full Load All Modes 

acc_x_std 0.93 0.94 0.97 0.97 

acc_x_var 0.77 0.85 0.94 0.86 

acc_y_min 0.04 0.04 0.03 -0.08 

acc_y_max 0.81 0.90 0.82 0.86 

acc_y_mean 0.80 0.88 0.81 0.85 

acc_y_range 0.81 0.90 0.82 0.86 

acc_y_mode 0.35 0.14 0.00 0.06 

acc_y_std 0.80 0.90 0.83 0.85 

acc_y_var 0.70 0.77 0.82 0.75 

v_wind_min 0.65 0.53 0.59 0.64 

v_wind_max 0.76 0.90 0.87 0.80 

v_wind_mean 0.74 0.83 0.84 0.74 

v_wind_range 0.75 0.92 0.77 0.79 

v_wind_mode 0.72 0.80 0.78 0.71 

v_wind_std 0.73 0.94 0.81 0.77 

v_wind_var 0.70 0.90 0.77 0.71 

v_dir_min 0.12 0.08 0.12 0.16 

v_dir_max -0.13 -0.05 0.12 -0.16 

v_dir_mean -0.02 0.05 0.03 0.00 

v_dir_range -0.15 -0.07 0.01 -0.19 

v_dir_mode 0.02 0.00 0.00 -0.01 

v_dir_std -0.15 0.07 0.11 -0.11 

v_dir_var -0.11 0.04 0.10 -0.08 

omega_gen_min -0.08 0.55 -0.79 0.64 

omega_gen_max 0.19 0.80 0.81 0.68 

omega_gen_mean 0.04 0.71 0.08 0.67 

omega_gen_range 0.38 0.37 0.88 0.28 

omega_gen_mode 0.02 0.65 -0.05 0.66 

omega_gen_std 0.33 0.29 0.94 0.19 

omega_gen_var 0.30 0.22 0.93 0.13 

air_density_min -0.10 0.22 0.05 0.23 

air_density_max -0.11 0.22 0.06 0.23 

air_density_mean -0.10 0.22 0.05 0.23 

air_density_range -0.02 0.01 0.08 -0.07 

air_density_mode -0.10 0.22 0.05 0.23 

air_density_std -0.02 0.00 0.09 -0.07 

air_density_var -0.02 0.02 0.07 -0.03 
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Feature Still Stand Partial Load Full Load All Modes 

pitch_min 0.27 0.03 0.71 -0.35 

pitch_max 0.41 0.31 0.87 -0.25 

pitch_mean 0.35 0.21 0.81 -0.31 

pitch_range 0.30 0.31 0.55 0.37 

pitch_mode 0.36 0.12 0.66 -0.32 

pitch_std 0.30 0.24 0.32 0.25 

pitch_var 0.26 0.15 0.28 0.09 

ACpow_min -0.15 0.64 -0.05 0.82 

ACpow_max 0.20 0.89 0.83 0.89 

ACpow_mean 0.04 0.81 0.29 0.88 

ACpow_range 0.21 0.92 0.17 0.70 

ACpow_mode 0.00 0.75 -0.15 0.85 

ACpow_std 0.21 0.88 -0.07 0.59 

ACpow_var 0.20 0.70 -0.12 0.45 
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A 2 Stepwise Regression results for different operation modes 

Chosen values are marked with a “x”. 

 

Feature Still Stand Partial Load Full Load All Modes 

acc_x_min  x  x 

acc_x_max x x x x 

acc_x_mean x x x x 

acc_x_range     

acc_x_mode x x x x 

acc_x_std x x x x 

acc_x_var x x x x 

acc_y_min     

acc_y_max x   x 

acc_y_mean x x x x 

acc_y_range x    

acc_y_mode   x  

acc_y_std  x   

acc_y_var x x  x 

v_wind_min  x x x 

v_wind_max     

v_wind_mean x x x x 

v_wind_range  x   

v_wind_mode x  x x 

v_wind_std x x  x 

v_wind_var x x x  

v_dir_min x    

v_dir_max x x   

v_dir_mean x x  x 

v_dir_range    x 

v_dir_mode     

v_dir_std x x x x 

v_dir_var x x  x 

omega_gen_min x x x  

omega_gen_max  x   

omega_gen_mean x x   

omega_gen_range x    

omega_gen_mode x x  x 

omega_gen_std x  x x 

omega_gen_var x x x x 
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Feature Still Stand Partial Load Full Load All Modes 

air_density_min   x  

air_density_max     

air_density_mean     

air_density_range x    

air_density_mode   x  

air_density_std x x  x 

air_density_var x x   

pitch_min x x x x 

pitch_max  x  x 

pitch_mean  x x x 

pitch_range     

pitch_mode x x x x 

pitch_std  x x x 

pitch_var x x  x 

ACpow_min  x  x 

ACpow_max x x x x 

ACpow_mean x x x x 

ACpow_range     

ACpow_mode x x  x 

ACpow_std x x  x 

ACpow_var x x  x 
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A 3 Summary of NCA for different operation modes 

Chosen values are marked with a “x”. 

 

Feature Still Stand Partial Load Full Load All Modes 

omega_min  

omega_max  

omega_mean  

omega_range  

omega_mode 

omega_std  

omega_var  

acc_x_min 

   

 

acc_x_max x    

acc_x_mean x x x x 

acc_x_range x    

acc_x_mode     

acc_x_std x x x x 

acc_x_var     

acc_y_min     

acc_y_max x   x 

acc_y_mean     

acc_y_range x   x 

acc_y_mode     

acc_y_std x    

acc_y_var     

v_wind_min     

v_wind_max x    

v_wind_mean  x  x 

v_wind_range     

v_wind_mode     

v_wind_std  x  x 

v_wind_var    x 

v_dir_min     

v_dir_max     

v_dir_mean x   x 

v_dir_range    x 

v_dir_mode x    

v_dir_std x x   

v_dir_var     

omega_gen_min x    

omega_gen_max x x   
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Feature Still Stand Partial Load Full Load All Modes 

omega_gen_mean     

omega_gen_range x x  x 

omega_gen_mode     

omega_gen_std   x  

omega_gen_var     

air_density_min   x  

air_density_max     

air_density_mean     

air_density_range     

air_density_mode     

air_density_std     

air_density_var     

pitch_min   x  

pitch_max     

pitch_mean   x  

pitch_range  x   

pitch_mode     

pitch_std   x  

pitch_var     

ACpow_min  x   

ACpow_max     

ACpow_mean  x  x 

ACpow_range x x  x 

ACpow_mode     

ACpow_std x  x x 

ACpow_var     
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