Responses to Reviewer Comments on “Effect of
tip spacing, thrust coefficient and turbine spacing
in multi-rotor wind turbines and farms”

Niranjan S. Ghaisas, Aditya S. Ghate, Sanjiva K. Lele

1 Response to Reviewer 2

1. Resolution and degree of detail.

- Thanks for the clarification in terms of grid points per rotor and the addi-
tional thoughts behind. However, I'm a little surprised that this has not been
led to any changes in the article, but only explanations to me as a reviewer.
I still believe this information should be stated explicitly in the article. Using
established rule-of-thumbs are of course fine in general, but these rule-of-thumbs
are for simulating single actuator discs. Actuator disc theory is based on 1D
momentum theory, which comes with a number of assumption, e.g. the wake
can expand freely afterwards. This is not the case in the multi-rotor. The
combined induction effect of the multi-rotor is also different. My concern is
essentially that some of the basic assumptions might be violated, hence general
rule-of-thumbs are no longer valid. It is great that you have performed a grid
convergence study. However, the difference in mean velocity(Figure 3) is not
quantified, but it is discernible. If I zoom in and actually measure the difference
for the red and blue grids in Fig. 3b) for x/D=06, I get an estimated difference
of 5% in mean velocity, see attached sketch. Similar difference are seen in the
other plots for the multi-rotor as well as the single rotor. If one simply assumes
P ~ U3, that would then correspond to a difference of 1.05% ~ 15% in power.
This appears to be comparable to the differences shown in Figure 9 and larger
than your estimated errors between LES and model(Fig. 15-16), as well as the
numbers reported in Appendiz B. In general, your article would actually benefit
from quantifying the results a bit more for better comparison. So to sum up.
I understand that it is not necessarily feasible to perform the entire study on
a fully converged grid and that a 5% difference in the mean velocity might be
acceptable, if one is comparing results from the same numerical setup. However,
the setup changes here and as previously mentioned the change in tip spacing
are often less than the grid size. I believe it is good practice to discuss the limi-
tations and possible violations of fundamental assumptions, so I encourage you
to include these considerations in your article. It does not take anything away
from your otherwise interesting results, on the contrary. It shows a cautious



approach and critical sense of scientific results.

Response: We have performed simulations at two further levels of refine-
ment, labeled G4 and G5 in the revised manuscript. These simulations have
been performed for 1-rotor as well as 4-rotor turbine with s/d = 0.05. The re-
sults show that the velocity deficits and added turbulent kinetic energy (TKE)
values are better converged at these finer resolutions. It is further observed that
the convergence of velocity deficit profiles is non-monotonic, a common obser-
vation in channel flow simulations (Meyers and Sagaut, 2007). The convergence
of the resolved TKE is monotonic, as expected. Comparing the results of our
working grid G2 with grid G5, we obtain differences in velocity deficit of 3.2%
and 1.9% at z/D = 4 and 6 respectively. In view of the marginal difference
in the velocity deficits and the enormous added cost (almost 16 times), we feel
that the use of grid G2 for evaluating the effect of all problem parameters is
justified. We would like to reiterate that our grid size is in keeping with several
previous studies as outlined in our previous response. Also, as mentioned by
the reviewer himself, it is unreasonable to expect one to perform a parametric
sweep on a fully converged grid. We also agree with the reviewer about the need
to highlight possible limitations of a study. We have included all of the above
information in the revised manuscript (lines 173 - 202). We hope this addresses
the concerns of the reviewer and makes the article more useful to future readers.

- My previous comment was: ”The authors state "It is seen that P2-5 is larger
for all 4-rotor wind farms...”. This is not correct. If you look at Figure 10(c)
there is actually a cross-over for the 3rd turbine, where the single rotor pro-
duces more. Be careful, when you do the aggregate statistics, because it gets

lost. Please rephrase.”

=4 New comment: I understand that the data is aggregated, and the state-
ment itself is not wrong. But it is a little "dangerous” to simply aggregate and
conclude that the power production is larger for all multi-rotors wind farms(line
299-300) when the power difference is occassionally negative, i.e. sometimes it
is better to have a single rotor. If you included more turbines the advantage
migth disappear all together.

Response:  The text in lines 323 - 325 has been reworded to reflect the
reviewer’s concern.

Finally, I also wish to point the authors attention to a newly published paper,
which examines many of the same things and have comparable findings.

Response: A reference to this paper is included in Section 1, lines 45 -
49, in the revised manuscript.

We thank Dr. S. J. Andersen once again for his careful assessment and hope to
have addressed all concerns.
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Abstract. Large eddy simulations (LES) are performed to study the wakes of a multi-rotor wind turbine configuration com-
prising of four identical rotors mounted on a single tower. The multi-rotor turbine wakes are compared to the wake of a
conventional turbine comprising of a single rotor per tower with the same frontal area, hub height and thrust coefficient. The
multi-rotor turbine wakes are found to recover faster, while the turbulence intensity in the wake is smaller, compared to the
wake of the conventional turbine. The differences with the wake of a conventional turbine increase as the spacing between the
tips of the rotors in the multi-rotor configuration increases. The differences are also sensitive to the thrust coefficients used for
all rotors, with more pronounced differences for larger thrust coefficients. The interaction between multiple multi-rotor tur-
bines is contrasted with that between multiple single-rotor turbines by considering wind farms with five turbine units aligned
perfectly with each other and with the wind direction. Similar to the isolated turbine results, multi-rotor wind farms show
smaller wake losses and smaller turbulence intensity compared to wind farms comprised of conventional single-rotor turbines.
The benefits of multi-rotor wind farms over single-rotor wind farms increase with increasing tip spacing, irrespective of the
axial spacing and thrust coefficient. The mean velocity profiles and relative powers of turbines obtained from the LES results
are predicted reasonably accurately by an analytical model assuming Gaussian radial profiles of the velocity deficits and a
hybrid linear-quadratic model for merging of wakes. These results show that a larger power density can be achieved without

significantly increased fatigue loads by using multi-rotor turbines instead of conventional, single-rotor turbines.

Copyright statement. TEXT

1 Introduction

Wind energy is among the fastest growing sources of renewable energy worldwide. Understanding and mitigating the dele-
terious effects of interactions between wakes of multiple turbines is critical for efficient utilization of the wind resource. In

large wind farms, the wake interactions can limit the power density, or the power extracted per unit land area. The turbulent
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wake interactions also determine fatigue loads on downstream turbines, which has a direct bearing on the levelized cost of
energy. Previous work has shown that wake losses are closely tied to wind farm layout parameters such as inter-turbine spacing
(Meyers and Meneveau, 2012; Yang et al., 2012), alignment between columns and the wind direction (Stevens et al., 2014a;
Ghaisas and Archer, 2016), horizontal staggering between adjacent rows (Archer et al., 2013) and vertical staggering of similar
or dissimilar turbines (Vasel-Be-Hagh and Archer, 2017; Xie et al., 2017; Zhang et al., 2019).

The idea of mounting multiple rotors per tower has been explored in recent years (Jamieson and Branney, 2012, 2014;
Chasapogiannis et al., 2014; Ghaisas et al., 2018; van der Laan et al., 2019; Bastankhah and Abkar, 2019). For example,
Jamieson and Branney (2012) pointed out that the scaling laws for power and weight with the diameter of a turbine (the ‘square-
cube law’) pose a challenge to upscaling the design of current single-rotor turbines to very large systems, but make multi-rotor
turbines an attractive alternative. Structural considerations with designing a 20 MW multi-rotor system were investigated in
Jamieson and Branney (2014). Their results suggested that for a 45-rotor 20 MW system, the benefits due to reduced rotor
and drive train costs would outweigh potential challenges associated with a more complicated tower structure. Chasapogiannis
et al. (2014) studied the aerodynamics of a 7-rotor system, with the tips of the blades of adjacent rotors spaced 0.05 diameters
apart. Interference due to adjacent rotors was found to lead to approximately 3 % increase in power, while about 2 % increase
in the blade loading amplitude was observed.

Analysis of the wake of a 4-rotor turbine was carried out in our previous work (Ghaisas et al., 2018) using large eddy
simulation (LES). It was shown that the multi-rotor turbine wakes recover faster compared to wakes of an equivalent single-
rotor turbine. The turbulent kinetic energy added due to multi-rotor turbines was also lesser than that due to an equivalent
single-rotor turbine. Wind farms comprising of five aligned turbines spaced four diameters apart were also considered in this
study. The potential for reduced wake losses as well as reduced fatigue loads was clearly pointed out.

The results for the wake of an isolated turbine were confirmed recently in van der Laan et al. (2019) using a combination
of field observations and numerical simulations. van der Laan et al. (2019) also studied the aerodynamics of individual and
combined rotors. It was found that rotor interaction can lead to an increase of up to 2 % in the power generation, similar to
that reported in Chasapogiannis et al. (2014). Isolated multi-rotor turbines were studied in detail in van der Laan et al. (2019),
and potential benefits in multi-rotor wind farms were discussed. Bastankhah and Abkar (2019) also studied isolated multi-
rotor wind turbine wakes and found similar wake recovery characteristics. Multi-rotor configurations other than the 4-rotor
configuration studied in the present paper and elsewhere were considered. The effect of number and direction of rotation of
the individual rotors on the rate of wake recovery was also studied, and was found to be negligible by Bastankhah and Abkar
(2019).

Interactions between several multi-rotor wind turbines arranged in a 4 x 4 grid were studied using several Reynolds-Averaged
Navier Stokes (RANS) simulations and one large eddy simulation (LES) in van der Laan and Abkar (2019). The annual energy
production of multi-rotor wind farms was found to be 0.3 — 1.7% larger compared to that of equivalent single-rotor wind
farms. The benefit was confined to the first downstream turbine row and for cases where the wind direction was fully aligned

with the turbine columns. This discrepancy with the results of Ghaisas et al. (2018) can be attributed to the large tip spacings
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Figure 1. Schematic of (a) conventional 1-rotor turbine and (b) 4-rotor turbines. Tower height Hr is identical for both turbines. Diameters
are related by D = 2d. Spacing between tips is s, in horizontal and s, in vertical. (c) Schematic of the computational domain in plan view,

not to scale. Blue lines denote turbine locations.

considered in Ghaisas et al. (2018). In the present work, we study more realistic tip spacings, and observe consistent qualitative
and quantitative trends with the results of van der Laan and Abkar (2019).

In this paper, we extend our previous work (Ghaisas et al., 2018) by considering a larger number and range of multi-rotor
wind turbine and farm design parameters. A schematic of the multi-rotor turbine considered here is shown in Fig. 1(b). Four
rotors with identical diameters, d, are mounted on a tower with height H7 (Fig. 1b). The tips of the rotors are separated by s,
and s, in the horizontal and vertical, respectively. As a result, the rotors are centered at Hy =+ (s, + d)/2, and the mean hub-
height is Hp. The multi-rotor configuration (henceforth referred to as 4-rotor turbine) is compared to a conventional turbine
with a single rotor (referred to as 1-rotor turbine) with diameter D = 2d per tower with height Hp (Fig. 1a). The total frontal
rotor area is wD? /4 in each case.

The primary aim of this paper is to quantify the benefits associated with the wakes of multi-rotor turbines for a wide range
of tip spacings, thrust coefficients and inter-turbine spacings using LES. A second aim is to develop an analytical modeling
framework, combining elements from previously published studies, and to evaluate its ability to predict the mean velocity
profiles in the wakes of multi-rotor wind farms. This study differs from that of van der Laan et al. (2019) mainly in the
manner in which the undisturbed inflow profiles are imposed. The inflow in van der Laan et al. (2019) is a logarithmic profile
corresponding to the neutrally stratified atmospheric surface layer, with an effectively infinite boundary layer height, while an
ABL with a finite height is used as the inflow in the present study. Three levels of turbulence intensity at the hub-height were
considered in van der Laan et al. (2019), while all cases in the present study have a fixed turbulence intensity. Pitch and torque
controllers were adopted in the simulations of van der Laan et al. (2019), which produced realistic power curves over the entire
region of operation of the single-rotor and multi-rotor turbines. In the present study, a constant thrust coefficient is imposed,

which is a reasonably accurate representation of a turbine operating in ‘Region II” of the power curve (Stevens et al., 2014a).
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This paper is organized as follows. The LES methodology, details of the simulations and the analytical framework are
described in Sect. 2. Results of isolated 4-rotor turbines are described in Sect. 3, while results of wind farms comprised of
4-rotor turbines are described in Sect. 4. In each case, LES results are presented followed by predictions of the analytical

modeling framework. Sect. 5 presents a brief summary and the conclusions.

2 Numerical Methodology
2.1 Simulation Framework

The LES-filtered incompressible Navier-Stokes equations are solved on a structured uniform Cartesian mesh using Fourier-
collocation in x and y directions, sixth-order staggered compact finite-differences in the z direction and a total variation
diminishing (TVD) fourth-order Runge-Kutta time-stepping scheme. Non-periodicity is imposed in the x direction using a
fringe region technique (Nordstrom et al., 1999). Partial dealiasing is achieved by applying the 2/3 rule in z,y and the use
of skew-symmetric form for the convective terms in the z direction. The governing equations and numerical discretization
details may be found in Ghate and Lele (2017) (Appendix A). The effect of sub-filter scales is modeled using the Anisotropic
Minimum Dissipation (AMD) model (Rozema et al., 2015). Wind turbine forces are modeled as momentum sinks using the
actuator drag-disk model (Calaf et al., 2010). The turbine forces in the LES are defined in terms of the disk-averaged velocity
and a ‘local thrust coefficient’, C.. The local thrust coefficient (assuming validity of the inviscid actuator-disk theory) is
related to the nominal thrust coefficient, Cr, through the relation C'y = 16C7./ (C/, + 4)2, or equivalently, through the relations
Cp=Cr/(1—a)? and a= (1—+/1—Cr) /2, where a is the axial induction factor. Algebraic wall models based on the
Monin-Obukhov similarity theory are used to specify the shear stresses at the bottom wall. Viscous stresses in the rest of
the domain are smaller than the sub-filter scale stresses by around 8-10 orders of magnitude and, hence, are neglected in these
simulations. The code has been validated over several previously published studies (Ghate and Lele, 2017; Ghaisas et al., 2017;
Ghate et al., 2018).

2.2 Cases Simulated

Half-channel (HC) simulations are carried out using the concurrent precursor-simulation methodology (Stevens et al., 2014b)
on domains of length L, L,, L, in the three coordinate directions. A schematic of the simulation domain is shown in Fig. 1(c).
All simulations use (L, L.) = (w/2,1) H, while L, = 7H or 1.25mH, depending on the case. Here H is the height of the
half-channel. The flow in the ‘precursor’ simulation is driven by a constant imposed pressure gradient, —u?/ H, where u, is the
friction velocity at the bottom wall. The HC configuration is used as a model for the neutrally-stratified atmospheric boundary
layer (ABL) with the Coriolis forces neglected (Stevens et al., 2014a; Calaf et al., 2010), and we use the terms HC and ABL
interchangeably. The surface roughness height at the bottom wall is 2o = 10~*H. This corresponds to rough land, and has
been used in previous wind turbine studies (Calaf et al., 2010). The turbulence intensity at a typical hub height of 0.1H is

approximately 8%. All results are normalized using scales H and ., with typical values H = 1000 m, u, = 0.45 m/s.
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Table 1. Suite of isolated turbine (sets IT*) and wind farm (sets WF*) simulations. Domain lengths are non-dimensionalized by height
H, with label D1 denoting (7 x 7/2 x 1) and DA denoting (1.257 x 7/2 x 1). Grid sizes shown are for ‘main’ domain. Equal number
of grid points are additionally required for the ‘precursor’ domain in each case. Labels G1, G2, G3, G4 and G5 denote grids of sizes
192x96 x 128; 256 x 128 x 160; 320 x 160 x 200; 384 x 192 x 256 and 512 x 256 x 320; respectively. G2A denotes a grid with 320 x 128 x 160
points. Axial spacing is undefined for isolated turbine simulations. Local thrust coefficients are C/» = 1,4/3,2, corresponding to nominal

Cr =0.64,0.75,8/9, respectively.

Set Domain  Grid Tip Spacing, sp/d = s,/d=s/d  Thrust Coefficient, C/- Axial Spacing,
Sx

IT1-s D1 Gl1 1-Rot, 0.05 4/3 -

1T2-s D1 G2 1-Rot, 0.0, 0.05, 0.1, 0.2, 0.25, 4/3 -

0.5,1.0

IT3-s DI G3 1-Rot, 0.05 4/3 -

IT4-s D1 G4 1-Rot, 0.05 4/3

ITS-s D1 G5 1-Rot, 0.05 4/3

IT2-C’ D1 G2 1-Rot, 0.1 1.0, 2.0 -

WF2-Cf, D1 G2 1-Rot, 0.1, 0.25, 0.5 1.0,4/3,2.0 4D

WF2-SX DA G2A 1-Rot, 0.1, 0.25, 0.5 4/3 5D, 6D

Precursor simulations (without turbines and with streamwise periodicity) are carried out first for 50 time units (1 time
unit = H/u,), so as to achieve a fully-developed statistically stationary state. These velocity fields are then used to initialize
the ‘precursor’ and ‘main’ simulation domains. Turbines are introduced in the ‘main’ domain, and a portion of this domain,
of length Ly = 0.15L,, is forced with the velocity field from the ‘precursor’ domain at each time step. Simulations in this
concurrent precursor-simulation mode are carried out for a further 20 time units, with time-averaging performed using samples
stored every 10 time steps over the last 12 time units. For the typical values of H and u, mentioned above, this corresponds to
approximately 12.3 hours of simulations with turbines, out of which statistics are collected over approximately 7.4 hours.

The suite of simulations carried out is listed in Table 1. In the first set of simulations (IT1, IT2, IT3), isolated turbines
are simulated with a baseline 1-rotor configuration with D = 0.1H, and a baseline 4-rotor configuration with d = 0.05H and
sp = Sy = s = 0.05d. Six additional (set IT2) isolated 4-rotor turbine simulations are carried out with varying s to study the
effect of tip spacing in the 4-rotor configuration. The thrust coefficient is fixed for this first set of simulations. In the second
set (IT2-C%,), four isolated turbine simulations are carried out to study the effect of varying thrust coefficient. In the third set
of simulations (sets WF*), a line of five 1-rotor turbines separated by a distance Sx in the streamwise direction is compared
to a similar configuration with a line of five 4-rotor turbines separated by Sx in the streamwise direction. A total of 20 wind

farms are simulated, considering different combinations of Sy, C/. and s. The same thrust coefficient is used for all rotors
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in one simulation. All isolated turbines, and the most upstream turbine in the five-turbine cases, are located at = 0, where
the domain inlet is at z = —4D. The turbine towers are located at y = Ly/2 in the spanwise direction and the tower height is
Hp = 0.1H for all turbines. The domain size in the x-direction is increased to 1.257 to accommodate larger axial spacings for
the cases with Sx = 5D or 6D.

Field measurements and simulations reported in van der Laan et al. (2019) show that the bottom pair of rotors has a slightly
larger thrust coefficient than the top pair of rotors. However, for simplicity, the same thrust coefficient is used for all rotors in
one simulation. The methodology of keeping thrust forces identical across all rotors of the multi-rotor turbine was adopted by
van der Laan et al. (2019) as well in the part of their study that focused on comparing wakes of multi-rotor and single-rotor
turbines. The effect of variable operating conditions for the top and bottom pairs of rotors can be studied systematically in the
future. Finally, the appropriateness of considering a single-rotor turbine with the same total frontal area, thrust coefficient and

mean hub height as that of the multi-rotor turbine is evaluated in Appendix B.
2.3 Analytical Model

An analytical modeling framework based on the model by Bastankhah and Porté-Agel (2014) is evaluated for the multi-rotor
configuration in this paper. The model assumes that the velocity deficit in the wake decays in the streamwise (x) direction, and
follows a Gaussian profile in the radial directions. The deficit due to turbine rotor i located at (x;,y;, z;) at a downstream point
(z,y,z2) is given as

AG(T,2) o ex —w) ()
o) = C(z) xe p< 2(k*($xi)+0'0)2>7 M

raresizr)
8(k*(x — ;) /do +00/dp)

for x > x;. The length scale dy equals D for 1-rotor and d for 4-rotor cases. The argument of the square-root in eq. (2) is set to

C(x)

zero whenever it is less than zero, which happens very close to the turbines.

The combined effect of multiple turbine rotors has been modeled in the past using several empirical techniques. Primary
among these are addition of velocity deficits (implying linear addition of momentum deficit), square-root of sum of squares
(implying addition of kinetic energy deficit; also termed as quadratic merging), and considering the largest deficit to be domi-
nant. In this study, a hybrid between the first two approaches is found to give best results. Appendix A presents brief comments
justifying the hybrid approach. The hybrid approach involves linear merging of wakes originating at the same x location, with

quadratic merging of wakes originating at different x locations. This can be written as

Nzt 1/2 Ny (z+)
Aatat (x,y,z)z Z(Aalzn)$‘| 5 Aulzn Z Auj x, Y,z (3)
i=1

N, is the number of unique axial locations where a turbine is located. N,.(x;) is the number of rotors at the location z;. In
this paper, N, is 1 for the isolated turbine cases, and 5 for the wind farm cases. Furthermore, since we only consider either an

isolated turbine or a wind farm with one column of turbines, N, is 1 for the 1-rotor cases and 4 for the 4-rotor cases. Finally,
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Figure 2. Profiles of time- and horizontally-averaged (a) streamwise velocity, and (b) negative of total shear stress from the ABL (precursor)

simulations with varying grid sizes. Total shear stress is the sum of resolved, subgrid-scale and wall-modeled components.

the mean velocity at each point in the domain is calculated according to
ﬂ(m,y,z) :ﬂup(z) _Aﬂtot(mayaz)' (4)

The upstream velocity is assumed to follow the logarithmic profile, @,y (2) = (u./k)In(2/20), with £ = 0.4.
This modeling framework involves two empirical parameters, £* and 0o. Comments regarding selecting these parameters

are provided in the appropriate sections below.

3 Isolated Turbine Results
3.1 Grid Convergence and Baseline Cases

Precursor ABL simulation results are shown first in Fig. 2. These results are averaged over time and the horizontal directions.
As expected, the mean streamwise velocity profiles follow the logarithmic law of the wall, particularly in the lower 20% of
the domain. The total shear stress profiles also follow the expected line with slope equal to -1. This indicates that the vertical
transport of momentum by the ABL is correctly represented by the numerical method and AMD subgrid-scale model, and that
the ABL simulations are statistically stationary. Figure 2 also shows that the spatial resolution employed is adequate for these
ABL simulations, since the results are almost independent of the grid size.

Results of an isolated 1-rotor turbine and an isolated 4-rotor turbine with s/d = 0.05 are shown in Fig. 3. Vertical profiles in

the mid-span planes at several locations downstream of the turbine are shown. The mid-span plane is located at Y., = Ly /2
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Figure 3. Profiles of mean velocity deficit at the centerline and downstream of an isolated (a) 1-rotor turbine and (b) 4-rotor turbine with
s = 0.05d for five different grid resolutions. Profiles of added turbulent kinetic energy (TKE) downstream of (c) 1-rotor turbine and (d)
4-rotor turbine with s = 0.05d. Mean velocity deficit and added TKE are defined as Au(z,z) = u(—1D,Yeen,2) — u(z, Yeen, 2z) and
ATKE(z,z) =TKE(2,Yeen,z2) —TKE(—1D,Ycen, z), respectively. Yeen is Ly /2 for 1-rotor turbine and Ly /2 — (1 + sp)d/2 for

4-rotor turbine.
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for the 1-rotor configuration. The 4-rotor configuration has two mid-span planes, Y, = Ly /2 £ (1 4 s5,)d/2. Results at only
one of these, at Ly /2 — (1 + s5,)d/2, are shown, since both planes are statistically identical.

Figure 3(a) shows that the velocity deficit profiles for the 1-rotor turbine have a single peak close to z/H = 0.1. Two
distinct peaks, close to z/H = 0.1 £ (1 + s,)d/2, are seen for the 4-rotor turbine wake in Fig. 3(b) only at /D = 2. Further
downstream, at /D = 4 and 6, two distinct peaks are not easily discernible, indicating that the wakes have merged. The added
turbulent kinetic energy (TKE) profiles in Figs. 3(c-d) show similar evidence of a single large wake for the 1-rotor turbine and
two distinct wakes at x/D = 2, which merge further downstream, for the 4-rotor turbine.

Simulations with varying grid sizes (the IT*-s cases) show that the differences between the results reduce as the grid is
refined. In general, the sensitivity to grid resolution is larger for the 4-rotor case as compared to for the 1-rotor case. This is
expected because the 4-rotor configuration involves smaller length scales, associated with the smaller diameter of the individual
rotors, and the tip-spacing. The differences between the velocity deficits obtained using grids G3, G4 and G5 are not easily
discernible on the scale of Figures 3(a,b). Differences between the results of grid G2 and those of finer grids are easily apparent
only at 2:/D = 2 for the multi-rotor configuration. The double-peaked shape of the velocity deficit at this location is not fully
resolved using grid G2, and is better resolved using grids G3 and finer. The velocity deficit values, averaged over the rotor disk
regions, for different grid sizes are used to assess grid convergence. Taking the results of grid G5 as reference, the errors in
velocity deficits obtained using grid G2 are 3.2% and 1.9% at /D = 4 and 2/ D = 6, respectively.

The added TKE profiles in Figures 3(c,d) show greater sensitivity to grid size than the mean velocity deficits. The resolved
portion of the TKE is expected to increase with increasing grid resolution. It should be noted that the resolved TKE cannot be
supplemented with a subgrid contribution in an LES using an eddy-viscosity model, where only the deviatoric part of the stress
is modeled. Except for a small region close to z/H = 0.15 at /D = 6, over most of the domain, the resolved portion of the
added TKE is also found to increase with increasing resolution. The turbulence intensity averaged over the rotor area is found
to change by around 15% at 2/ D = 4 and 6 between grids G2 and G5. Between grids G2 and G3, the disk-averaged turbulence
intensity values vary by 6.5% at /D =4 and by 3.5% at /D = 6.

A change of 3.2% in the disk-averaged velocity deficit on doubling the grid resolution (from G2 to G5) implies a change
of approximately 9.9% in the averaged power. The results pertaining to estimates of power, in particular the comparisons
between LES and analytical model predictions, presented in this manuscript should be interpreted keeping this limitation in
mind. The computational costs per simulation were approximately 4400 CPU-hours and 70000 CPU-hours on grids G2 and
G5, respectively. Even with near-perfect scaling, as was obtained with very careful attention to parallel implementation in our
code, in view of the large parameter space to be evaluated, it was decided to conduct all further simulations on grid G2. For
the wind farm cases with domain size increased to 1.257 in the x direction, the number of points in the = direction is increased
to 320 to retain the same resolution. This grid is labeled as G2A in Table 1. The grids G2/G2A imply that the smaller rotor
disk (diameter d) is resolved by 4 x 8 points and the composite wake of the multi-rotor turbine (diameter D) is resolved by
8 x 16 points in the y — z plane. The details in the region between the rotor tips are obviously missed. However, as shown in
the next subsection, the overall effect of varying tip spacing is captured, because the actuator disk model appropriately adjusts

the distribution of forces across the discretization points. It should be noted that the level of resolution of the composite wake
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is in keeping with the recommendation in Wu and Porté-Agel (2011), and is comparable to the grid resolution used by several

previous studies (Calaf et al., 2010; Stevens et al., 2014a).
3.2 Effect of Tip Spacing

Isolated 4-rotor turbines with varying tip spacings, sp = s, = s, are studied in this subsection (IT2-s cases). Contours of
the mean streamwise velocity deficit and the TKE (Fig. 4) in the mid-span planes show that one large wake immediately
downstream of a 1-rotor turbine is replaced by four smaller wakes immediately downstream of the four rotors of the 4-rotor
turbines. Comparing Figures 4(a,c,e), it is clear that the wake of a 4-rotor turbine at any downstream location (e.g. at /D = 4),
is weaker in magnitude than that of the 1-rotor turbine. This is also seen in the profiles shown in Fig. 5. In other words, the
wake of a 4-rotor turbine is seen to recover faster than the wake of a 1-rotor turbine with the same thrust coefficient and rotor
area. Figure 5 also shows that greater the tip spacing of the 4-rotor turbine, faster is the wake recovery. This is also indicated
by the shortening of the contour lines corresponding to Au/u, =1 and 2.5 in Fig. 4 with increasing tip spacing.

An intuitive explanation for the increasing rate of wake recovery with increasing tip spacing is as follows. The characteristic
length scale of the wake of the 1-rotor turbine is diameter D, while that for the individual wakes of the 4-rotor turbines is
the smaller diameter d. Furthermore, the spacing between the tips of the 4-rotor turbine allows for greater entrainment of
low-momentum fluid into the 4-rotor turbine wakes. As a result, the rate of wake recovery is larger for the 4-rotor turbine as
compared to the 1-rotor turbine, and increases with increasing s.

The wakes of the individual rotors of a 4-rotor turbine expand with downstream distance, and eventually merge to form a
single wake. The axial distance where individual wakes of the four rotors may be considered to have merged increases with
increasing s. This is seen clearly in Fig. 5, where two peaks in the velocity deficit profiles are not seen at /D = 4 for the
s/d = 0.1 turbine, while two peaks are clearly visible at /D = 6 for the s/d = 0.5 turbine.

The contour plot of TKE shown in Fig. 4(b) is strikingly similar to those reported previously (e.g. Fig. 18 in Abkar and Porté-
Agel (2015)) for an isolated 1-rotor turbine. The TKE contours in Fig. 4(b) are similar in shape to those in Fig. 4(d) beyond
approximately /D = 4, but are quite dissimilar to the contours in Fig. 4(f). This is further evidence for the observation that the
wake-merging distance increases with increasing s. The rotors of the 4-rotor turbine behave independently up to increasingly
larger downstream distances with increasing s.

A succinct representation of the effect of tip spacing on the wake of an isolated 4-rotor turbine with respect to that of an
isolated 1-rotor turbine is shown in Fig. 6, where rotor-disk-averages of four quantities is plotted as a function of the axial
distance . The rotor-disk averages are calculated at each axial (z/D) location and over different regions in the y — z plane
depending on the turbine configuration. The averages are computed over one disk of diameter D, centered at (Ly /2,0.1H)
for the 1-rotor turbine, and over four disks of diameters d each, centered at (Ly /2+ (1+sp)d/2,0.1H & (1+ s,))d/2), for the
4-rotor turbines. The disk averaged T1 is actually the ratio of the square-root of the disk-averaged TKE and disk-averaged mean
streamwise velocity, being slightly different from the disk-average of the point-wise turbulence intensity. The disk-averaged

added turbulence intensity is defined as, Aly;sk(z) = Tgisk(x) — Laisk (—1D), where Iy = /(2/3)T K Eg;sk.-
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Figure 4. Contours of (a,c,e) mean velocity deficit and (b,d,f) TKE at the centerline, for (a,b) 1-rotor turbine, and 4-rotor turbines with tip
spacings (c,d) s = 0.1d and (e,f) s = 0.5d. Centerline Y., varies with turbine configuration. Black solid lines denote turbine rotors. Dashed

lines are velocity deficit contours corresponding to the levels Au/u, =1 and 2.5.

Figure 6(a) shows that the streamwise velocity deficits are always smaller for a 4-rotor turbine than for a 1-rotor turbine, and
that deficits decrease monotonically with increasing tip spacing. Interestingly, the 4-rotor turbine with no clearance between the
rotor blades (tip spacing s/d = 0) also shows reduced velocity deficits in the intermediate downstream region, i.e. /D = 4 and
x/D = 6. The curves corresponding to the s/d = 0 turbine and the s/d = 1 turbine act as bounds to the curves corresponding
to intermediate tip spacings. The disk-averaged added TKE and 7'1;j, curves (Figures 6(b) and (c), respectively) do not show
a monotonic behavior at all downstream locations with increasing s. The curves corresponding to the s/d =0 and s/d =1
turbines do not act as bounds for the curves corresponding to the intermediate tip spacings. However, in general, the second
order turbulent statistics show a decrease in magnitude with increasing tip spacing.

The disk-averaged added turbulence intensity can be compared to that reported in Figures 18(b,d,f) of van der Laan et al.
(2019). For ambient turbulence intensities of 5% and 10% investigated in van der Laan et al. (2019), Al values were found
to be larger for the 4-rotor case than for the 1-rotor case in the near-wake region, and smaller further downstream. For the largest
ambient turbulence intensity of 20%, the Al values for the 4-rotor case were always smaller than for the 1-rotor case. The
current LES results are qualitatively similar to the highest ambient turbulence intensity level results in van der Laan et al.
(2019), although the ambient turbulence intensity in our current LES is approximately 8%. The reasons for this discrepancy

are not clear and should be studied in future work.
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Figure 6. Effect of tip spacing on disk-averaged (a) mean velocity deficit, (b) added TKE, (c) turbulence intensity and (d) added turbulence
intensity. Disk averages are computed over rotor disk area(s) corresponding to each turbine configuration. Disk-averaged turbulence intensity
is the ratio of the square-root of the disk-averaged TKE to the disk-averaged velocity 1145k = \/Jm /Udisk. Added disk-averaged
turbulence intensity is Algisk = Laisk — Laisk (—1D), with Iyisr = +/(2/3)T Laisk.-

3.3 Effect of Thrust Coefficient

The IT2-C’, cases, along with two cases from the IT2-s set of simulations, are compared to study the effect of thrust coefficient.
Only one 4-rotor configuration, with tip spacing s/d = 0.1, is considered here. Figure 7 shows that the trends observed for

7. =4/3 hold for the other two thrust coefficients studied as well. The disk-averaged velocity deficits are smaller for the
4-rotor turbine than for the corresponding 1-rotor turbine. The added TKE (not shown) and 714 are also smaller for the

4-rotor turbine than for the 1-rotor turbine for all the thrust coefficients studied.
3.4 Analytical Model

The analytical modeling framework predicts the mean velocity deficits of the 1-rotor and 4-rotor turbines accurately. Empirical
parameters values k, = 0.025 and 0 /dy = 0.28 were found to lead to accurate predictions for all the cases investigated. Here,
do equals D for the 1-rotor cases and equals d for the 4-rotor cases. These values of k. and o are slightly different from

those proposed in Bastankhah and Porté-Agel (2016), but within the range mentioned in Bastankhah and Porté-Agel (2014).
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Figure 7. Effect of thrust coefficient on disk-averaged (a,b) velocity deficit and (c,d) turbulence intensity for (a,c) 1-rotor turbine and (b,d)
4-rotor turbine with s/d = 0.1.

In particular, Fig. 5 shows that the radial profiles of the velocity deficit at several downstream locations, and for turbines with
different tip spacings, are predicted quite accurately. Slight under-predictions or over-predictions are observed very close to the
turbine, but the overall predictions are accurate, particularly beyond /D = 2. Disk-averaged velocity deficit profiles are also
predicted accurately, but are not shown on Fig. 6(a) to avoid clutter. Figures 7(a-b) show that the Gaussian analytical model is
reasonably accurate at predicting the disk-averaged velocity deficit for all thrust coefficients beyond the very-near-wake region,

i.e. approximately beyond z/D = 2.

4 Multi-Turbine Simulation Results

Wind farms comprised of a line of five turbines aligned with each other and with the mean wind direction are studied here.

These cases are labeled WF* in Table 1.
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4.1 Effect of Tip Spacing

The effect of tip spacing on the contours of velocity deficit and TKE are seen in Fig. 8. The axial spacing between different
turbines in the wind farm is kept fixed at 4D and the thrust coefficient is 4/3 for all rotors of all turbines. It is clear that the
velocity deficits are significantly different between the 1-rotor and 4-rotor wind farms, as well as between 4-rotor wind farms
with different tip spacings. The single wake behind the turbines in the 1-rotor wind farm are replaced by four smaller wakes
behind the turbines in the 4-rotor wind farms. The wakes move further apart in the radial directions as the tip spacing increases.
Similar to the TKE distribution behind an isolated 1-rotor turbine, the TKE values are largest around the top-tip height of the
turbines.

The effect of tip spacing on 4-rotor wind farms is quantified in Fig. 9. Focusing on Fig. 9(a-b), the profiles of the velocity
deficits averaged over the rotor disk and 71, have local maxima close to the turbine locations, i.e. at x/D =0, 4, 8, 12 and
16. The velocity deficit profile for the 1-rotor wind farm has a maximum close to turbine 2 (located at /D = 4), as seen in
Figures 9(a) and 8(a). The velocity deficit profile saturates from turbine 3 onward, i.e. the local maxima at /D = 8,12 and 16
have approximately equal magnitudes. The 7'I ;. profiles in Fig. 9(b) show similar behavior for the 1-rotor wind farm.

The velocity deficits of the 4-rotor turbines are seen in Fig. 9(a) to be smaller than those of the 1-rotor turbine for the first two
turbines (z/D = 0,4). In this region, /D < 8, the deficits decrease with increasing tip spacing, which is consistent with the
observations for isolated turbines (Fig. 6(a)). The deficits accumulate and the disk-averaged profiles for all 4-rotor wind farms
are almost equal to that for the 1-rotor wind farm for turbine rows 3 onward (for /D > 8). The turbulent intensity profiles are
smaller for the 4-rotor wind farms than for the 1-rotor wind farm, and decrease with increasing s/d. This sensitivity to the tip
spacing persists downstream of all turbines, unlike the velocity deficits, which are sensitive only downstream of the first two
turbines.

The relative powers of the turbines are shown in Fig. 9(c). The power of the first (or front) turbine is used for normalization in
each wind farm. Thus, the relative power for turbine i is calculated as P;/ P} = ui‘?/ 17? where the overhead bar represents time-
averaging and subscript ¢ denotes the location of the turbine within the wind farm. The relative power of turbine 2 (x/D = 4)
in the 1-rotor wind farm is minimum, and the relative power profile shows a slight recovery for turbines 3-5. This is consistent
with the maximum for the velocity deficit at turbine 2, seen in Fig. 9(a). The relative powers of turbines in the 4-rotor wind
farms are sensitive to the tip spacing as well as the turbine location. For s/d = 0.1, only turbine 2 has larger relative power
than turbine 2 of the 1-rotor wind farm, while for s/d = 0.5, turbines 2-4 have larger relative powers than the corresponding
turbines of the 1-rotor wind farm. All these trends are consistent with the velocity deficit profiles seen in Fig. 9(a). These results
are consistent with the findings of van der Laan and Abkar (2019), where the benefit was restricted to only the first downstream
turbine row for tip spacing of 0.1d. Our results further quantify how far downstream into the wind farm the benefit propagates

with increasing tip spacing.
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Figure 8. Contours of (a,c,e) streamwise velocity deficit and (b,d,f) TKE at the centerline for (a,b) 1-rotor wind farm, and 4-rotor wind farms
with tip spacings (c,d) s/d = 0.1 and (e.f) s/d = 0.5. Axial spacing is 4D in each wind farm. Black lines denote turbine rotors. Dashed lines

are velocity deficit contours corresponding to levels Au/u. = 1 and 6.

4.2 Effect of Axial Spacing and Thrust Coefficient

The effect of axial spacing on the performance of 4-rotor wind farms can be studied by comparing Figures 9(d-f) to Fig-
ures 9(a-c). While the same qualitative trends are seen for axial spacings of Sy = 4D and 6D, there are significant quantitative
differences. The larger spacing between turbines in the 6D wind farms allows the wakes to recover to a greater extent before
another turbine is encountered. Thus, the disk averaged velocity deficits and turbulence intensities are, in general, smaller in
the wind farms with axial spacing of 6D. Consequently, comparing Figures 9(c) and (f), the relative power values are larger
for wind farms with larger axial spacing.

Interaction between the effects of tip spacing and axial spacing are also seen on comparing Figures 9(c) and (f). For instance,
the relative powers of turbines 2 and 3 of the wind farm with s/d = 0.5 are appreciably larger than the corresponding turbines
of the 1-rotor wind farm, when the axial spacing is 4D. However, relative power of only turbine 2 of the wind farm with tip
spacing s/d = 0.5 is appreciably larger than that of the corresponding 1-rotor wind turbine, when the axial spacing is increased
to 6.D. Thus, tip spacing has a greater effect on the relative power in a closely spaced wind farm.

Figure 10 shows that the trends observed for C/. = 4/3 hold for other values of thrust coefficient as well. The velocity deficit

and turbulence intensity are larger for cases with larger thrust coefficient. For each value of C/., the velocity deficit of the 4-
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rotor wind farm is generally smaller than that of the 1-rotor wind farm downstream of the first two turbines (for approximately
x/D < 8) and are almost equal beyon this. Since the tip spacing of the 4-rotor wind farm is s/d = 0.1, only turbine 2 shows
a larger relative power in the 4-rotor wind farm compared to the 1-rotor wind farm, consistent with the observation made in
Figure 9. For C/, = 2, the velocity deficit profiles cross over, and the 4-rotor profile is larger than the 1-rotor profile, in a
small region upstream of turbine 3. As a result, the relative power of turbine 3 is smaller in the 4-rotor wind farm compared
to the 1-rotor wind farm. However, this crossover in power is smaller in magnitude than the values for turbine 2, such that the
collective relative power of the downstream turbines is larger for the 4-rotor wind farm than for the 1-rotor wind farm.

The effect of all governing parameters (s, Sx,C’.) on the wake losses in multi-rotor wind farms is presented succinctly in
Fig. 11. Figure 11(a) shows the average power of turbines 2 through 5 (Po_5 = (1/4) E?:Q P;), normalized by the power of
the front turbine in each wind farm. Aggregation of relative powers across all downstream rows, as done here, can hide negative
power differences (associated with the crossovers referred to above) that might occur at individual turbine rows. Despite this,
the aggregated relative power is a useful measure of the overall wake losses associated with a particular wind farm. It is seen
that P,_5/ P is larger for all 4-rotor wind farms than the corresponding 1-rotor wind farm with the same thrust coefficient and
axial spacing. The benefit increases with increasing tip spacing.

Each data point in Fig. 11(a) is normalized by the power of the front turbine in the respective wind farm. The front turbine
power is expected to be similar to that of an isolated turbine, and hence, is expected to be dependent on the thrust coefficient,
but not on the axial spacing. This is seen to be the case in Fig. 11(b), where the power of the front turbine extracted from the
different wind farm cases are shown. For comparison across cases with different thrust coefficients, all powers are normalized
by the power of the front turbine in the 1-rotor wind farm with the same thrust coefficient. The front turbine powers are
independent of the axial spacing, and lines corresponding to Sx = 5D and 6D lie on top of the line corresponding to Sy = 4D.
Figure 11(b) also shows that the front turbine power in 4-rotor wind farms is weakly dependent on the tip spacing. As the tip
spacing varies over s/d = 0.1 to 0.5, the front turbine power varies by 3.5%, 2.7% and 3.2%, with the thrust coefficients fixed
at 1, 4/3 and 2, respectively. We note that this variation cannot be explained by the variation in power potential due to different
tip spacings (see Appendix B), and is likely caused by the effects of turbulent mixing in the wake (Nishino and Wilden, 2012),
which are different for different tip spacings.

To account for the differences in the front turbine power, the average power of turbines 2 through 5 is replotted in Fig. 11(c),
with only the 1-rotor front turbine powers used for normalization. The same qualitative conclusions can be drawn from
Fig. 11(c), as were drawn from Fig. 11(a), although the magnitudes of the benefit are larger. Finally, the differences be-
tween the relative powers of the 4-rotor and 1-rotor configurations are plotted in Fig. 11(d). This plot is directly derived
from Fig. 11(c) by subtracting the data points corresponding to the 1-rotor wind farm from the 4-rotor wind farm data, i.e.
APy 5=Py, 55— P21:5R°t. This quantity measures the extent by which wake losses in a 4-rotor wind farm are smaller than
wake losses in a 1-rotor wind farm with the same inter-turbine spacing and with all rotors operating with the same thrust
coefficient. The benefit of 4-rotor wind farms increases with increasing tip spacing and with decreasing thrust coefficient. The
effect of axial spacing on the benefit is slightly ambiguous. For a fixed thrust coefficient and tip spacing, the benefits are largest

for Sx = 4D, and are almost equal for Sx = 5D and 6D.

17



Turbine No.
3 4

Turbine No.
3 4

12 . 2 12 . 2
I SX=4D N SX=6D
10 10|
., 8f . 8t
3 2
2 6 2 6
2 [ 2 [
< af < 4t
i - -- 041d i
2r -—G--- 0.25d 2r
| ——%—- 0.5d i
»' 1 1 L L L 1 L L L 1 L 0 L L 1 L L 1 L L
0 8 12 16 0 6 12 18 24
(a) x/D (d) x/D
Turbine No. Turbine No.
1I 3 4 5 1I $ 4 t|'>
04l S,=6D
03}
=
0.2}
0.1
8
(b) x/D (e)
Turbine No.
1 3 4 S
1t Sy=4D —=— 1-Rot 1+
0.8} 0.8F
o nal PP
g 06/ a 06f
0.4t 0.4
0.2f 0.2f
0 4 8 _ 2 18 0 6 12 18 2%
(c) x/D () x/D
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18



350

355

Turbine No. Turbine No. — < 1-Rot, 1.0
12— 3 4 2 0.7 —! 2 3 4 | o-- 01d, 10
r S,=4D . S,=4D —o6— 1-Rot, 2.0
10} 0.6
! Q S\ f
sk ) s 0.5
E« L O\Q ®\ AR X, N Xx I
3 6l | Ooy w2 * \ %04
= / - I
2 s , 0.3
ar 77 Vv —<— 1-Rot, 1.0 .
i --<-- 0.1d, 1.0 0.2
2r ——o— 1-Rot, 2.0 :
i --0O-- 04d, 20 0.1
0 1 L L L 1 L L L 1 L L L 1 n n n 1 n n L
0 4 8 12 16
(a) x/D (b)
Turbine No.
1 . 3 4 2
1 - V" Sx= 4D ——7— 1-Rot, 1.0
AN --x7-- 01d, 1.0
o8k . —©6— 1-Rot, 2.0
el
& 0.6 :
0.4}
0.2}
0 4 8§ 12 16
(c) x/D
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Sx = 4D and varying thrust coefficient. Legend denotes the pair (s/d, C7).

Appendix C shows that the conclusions drawn above are not affected by the fact that the first turbine powers are significantly

different between the 1-rotor and 4-rotor wind farms.
4.3 Analytical Model

Predictions of the analytical modeling framework for wind farms comprised of a line of five turbines are examined in this
section. The parameter k., which controls the growth rate of the wake, is extracted from all the 1-rotor wind farm LES. First,

the wake widths in the y and z directions are calculated using the definition outlined in Bastankhah and Porté-Agel (2016).

1 o0
= —— | A9, Zeen) di,
Uy <l’) \/ﬂAﬂmax (x) _/ U (x7ya )dy (5)
1 o0
p— —_—m A_ Y, 5 5
o.(x) \/ﬂAﬂmaz(x)_/ w(x,Yeen,2)dz, (6)

where (Yeen, Zeen) = (Ly /2,0.1H) are the mid-span and mid-vertical planes of the 1-rotor wind turbine wakes, and Ay, 4. ()
is the maximum of the velocity deficit at location z. The wake width is then calculated as the geometric mean of the wake widths

in the two transverse directions, o = , /7,0.

19



0.7 —4A— (4D, 1.0) 1.3—A— (4D,1.0)
[—B— (4D, 4/3) |—&— (4D, 4/3)
—O&— (4D, 2.0) g l—&— (4D, 2.0)
- -3 -- (5D, 413) P [-- 4 -- (5D,43)

_ 0.6-.-.3.-- (6D, 4/3) = - -—- (6D, 4/3)

TiRotl 0 01 02 03 04 05 TRoty 0 041 02 03 04 05
(a) Tip Spacing [d] (b) Tip Spacing [d]
0.2
0.7F B —A—— (4D, 1.0)
I |—8— (4D, 4/3)
' =" —O— (4D, 2.0)
— ' . - -3 -- (5D, 4/3)
3 0.6f g 0151 (6D,4:3)
[ - < .,
o 0-5F - — A (4D,1.0) % -
I — 85— (4D,43) 01}
i —©&— (4D, 2.0)
0.4r --4-- (5D,413)
L 1 1 1 1 P E'i_"_' (GD’|4/3) - 1
1-Rot 0 0.1 0.2 0.3 0.4 0.5 0.1 0.2 0.3 0.4 0.5
(c) Tip Spacing [d] (d) Tip Spacing [d]

Figure 11. Effect of tip spacing, thrust coefficient and axial spacing on (a) power of turbines 2 through 5 normalized by power of front
turbine, (b) power of front turbine and (c) power of turbines 2 through 5 normalized by power of front turbine of corresponding 1-rotor wind

farm. (d) Benefit of 4-rotor wind farms over corresponding 1-rotor wind farm.
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Figure 12. (a) Wake width, o/ D, extracted from LES of 1-rotor wind farms with axial spacing Sx = 4D and varying thrust coefficient
indicated in the legend. Slopes of black fitting lines give wake growth rate parameter k.. (b) Wake growth rate parameter as a function of

disk-averaged streamwise turbulence intensity extracted from all LES of 1-rotor wind farms. Blue line is the linear fit to the LES data.
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Wake widths extracted from three 1-rotor LES with fixed Sx = 4D and varying thrust coefficient are shown in Fig. 12(a).
Turbines are located at /D = 0,4,8,12 and 16 in this plot. Moving downstream from one turbine location, the wake widths
generally increase, until the effect of the next downstream turbine is felt. The wake width profiles show dips close to the turbine
locations, followed by regions of growth. Regions where the wake widths grow approximately linearly are identified with black
solid lines in Fig. 12(a). These black solid lines are linear fits to the data, and the extents of the linear fitting region are identified
visually. The slopes of these lines yield the wake growth rate parameter, k..

The wake growth rate parameter values for all turbines in the 1-rotor wind farm simulations are compiled in Fig. 12(b).
The k. values are plotted against the streamwise turbulence intensity, I, at each turbine rotor disk. As observed in previous
studies, the wake growth rate increases with increasing turbulence intensity. The solid blue line fits the data with a correlation
coefficient of 0.8. In subsequent model runs for 1-rotor and 4-rotor wind farms, this linear regression model is used to determine
k., with I, extracted from the LES results.

Model predictions are compared to LES results for two cases in Fig. 13. The sensitivity of the model predictions to the
second tunable parameter, the initial wake width oy, is seen in this figure. Figure 13(a) shows that the disk-averaged velocity
deficit is over-predicted by the analytical model with o/ D = very close to the turbines, while it is under-predicted (to a lesser
degree) with oo/ D = 0.32. Farther away from the turbines, approximately between 1D to 3D downstream of each turbine,
using oo/ D = 0.28 yields good agreement with the LES results, while using oo/ D = 0.32 continues to yield under-predictions.
The power predictions shown in Fig. 13(b) also show sensitivity to the value of oy. The relative power of turbine 2 is captured
accurately with oo/ D = 0.28, while the relative powers of further downstream turbines are under-predicted by around 10%.
With oo/D = 0.32, the relative power of turbine 2 is over-predicted, while that of further downstream turbines is in better
agreement with the LES results. Similar conclusions can be drawn from the results of the 4-rotor turbine with s/d = 0.1,
shown in Figures 13(c) and (d). In summary, o¢/D = 0.28 leads to better prediction of the mean velocity deficit in the wake
region (1D —3D downstream), while oo/ D = 0.32 leads to better prediction at the turbine locations, as evidenced by the better
predictions of the power. Thus, the combination of model parameters which leads to accurate predictions in the wake does not
necessarily lead to accurate predictions of power, for which, the values at and very close to the turbines need to be predicted
accurately.

The influence of using spatially constant values for the wake growth rate parameter on the model predictions is shown in
Figure 14. Predictions for two values of k. (0.025 and 0.04) are shown for each of the two values of oy /D. Predictions for
intermediate values of k, are not shown but lie within the bounds shown by the lines corresponding to k. = 0.025 and 0.04.
It is seen that using a spatially non-varying k, leads to a gradual decrease in the relative power with turbine number. The
LES results show the characteristic feature of recovery of the relative power after turbine 2 in the 1-rotor wind farm and after
turbine 3 in the 4-rotor wind farm. This feature is not captured for any combination of oo/ D and non-varying k.. Comparing
Figures 14(a,b) and Figures 13(b,d) respectively, it is clear that the power degradation recovery is better captured using k. that
varies spatially depending on the local turbulence intensity. Similar observations were reported previously for 1-rotor wind
farms (Niayifar and Porté-Agel, 2016), and are seen here to hold for several 4-rotor wind farms as well. It is possible for some

cases, particularly the s/d = 0.5 wind farms, where the relative power continues to gradually decrease until the fifth turbine
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(see Figures 15 and 16), to be better predicted using a spatially constant k.. value. However, no single combination of spatially-
constant k, and o/ D values was found that resulted in good predictions for all cases. In view of the cases investigated here,
we prefer the use of a spatially-varying k. dependent on the local turbulence intensity, consistent with previous studies for
1-rotor wind farms (Niayifar and Porté-Agel, 2016).

Relative power predictions for all the wind farm cases are compared to LES results in Figures 15 and 16. The average error
in predicting the relative powers of turbines 2 through 5 are shown in each case. The k. values are obtained as outlined above,
while oq/dy = 0.28 is used for all cases, where dy equals D for the 1-rotor cases and equals d for the 4-rotor cases. The
absolute errors in relative power averaged over turbines 2 through 5 ((1/4) 320_, | (P;/P1)""® — (P,/P,)™*!|) are shown in
Figures 15 and 16. It should be noted that this level of accuracy is similar to that observed in previous studies (Stevens et al.,
2015, 2016) of wind farms that are finite in axial as well as spanwise directions, and where the wind is directed along only one
direction, or averaged over a very narrow (less than 2°) sector.

The errors are seen to be smallest for the 1-rotor cases. For 1-rotor wind farms, typically, the power of the second turbine
is smallest, and there is a slight recovery for turbines 3, 4 and 5. This behavior is reproduced well by the analytical model.
In the 4-rotor cases, the relative power saturates farther into the wind farm, typically at the third row for s/d = 0.1 and 0.25.
For s/d = 0.5, the power continues to decrease until the fifth row for most cases. The model predictions, on the other hand,
typically saturate by the second row. Thus, the errors are largest for the second row, although the relative power level of turbines
in the fourth and fifth rows is typically well captured.

In conclusion, the analytical modeling framework is capable of reproducing LES results of 1-rotor and 4-rotor wind farms
with reasonable accuracy, comparable to previous results for 1-rotor turbines (Stevens et al., 2015). Improved prediction of the
region very close to the turbine is needed to further improve the accuracy of the model at predicting the power degradation and

wake losses in wind farms.

5 Discussion and Summary

This paper is devoted to studying the turbulent wake of a multi-rotor wind turbine configuration, and to comparing it with
a conventional single-rotor wind turbine wake. The potential benefits offered by this configuration, with four rotors (with
diameters d = D/2) mounted on a single tower, over the conventional single-rotor turbine (with diameter D) are studied in
detail. Large eddy simulation is used as the primary tool for this work, Applicability of an analytical modeling framework
based on the assumption of Gaussian radial profiles of velocity deficits to the multi-rotor configuration is also examined.

The LES results outlined in Sect. 3 show that an isolated 4-rotor turbine wake recovers faster compared to an isolated 1-rotor
turbine wake. The isolated 4-rotor turbine wake also shows smaller TKE levels in the rotor disk region. A simple physical
reason for this faster wake recovery and lower TKE levels is that the greater perimeter-to-area ratio of the multi-rotor turbine
allows for greater entrainment of low momentum fluid into the wake. The behavior of the wake is sensitive to the tip spacing
(s/d), with faster wake recovery seen for for larger s/d. This is consistent with the simple physical reasoning presented above,

since if s/d is very large, each rotor of the multi-rotor turbine behaves independently of other rotors, and the wake of each
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Figure 13. LES results and model predictions of (a) disk-averaged velocity deficit and (b) relative power for 1-rotor wind farm with Sx = 4D

and C7 = 4/3. (c,d) Corresponding results for 4-rotor wind farm with s = 0.1d.
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Figure 14. LES results and model predictions of relative power using spatially constant k.. for (a) 1-rotor wind farm and (b) 4-rotor s/d = 0.1

wind farm with Sx = 4D and C, = 4/3.
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rotor is characterized by the smaller length scale, d. For realistic values of s/d ~ 0.1 — 0.5, the rotor wakes do not act entirely
independent of each other, and the wakes do interact and merge with each other beyond a certain downstream distance. The
reduced TKE levels suggest potential for reduced fatigue loads on the blades. These results for an isolated turbine are shown
to be consistent for all thrust coefficient (C7) values evaluated.

In Sect. 4, a line of 5 turbines is evaluated to study the interaction between several multi-rotor wind turbines. For these wind
farm simulations, the axial spacing (Sx) between different turbines is an important parameter, in addition to the tip spacing
and the thrust coefficient. Consistent with the results of the isolated turbine LES, the velocity deficits are smaller in 4-rotor
wind farms than in the corresponding 1-rotor wind farms until a certain distance into the wind farm. This distance increases
with increasing s/d and decreasing Sy . The turbulence intensity levels are significantly smaller for all downstream locations,
which indicates potentially smaller fatigue loads for downstream turbines, for all combinations of s/d and Sx. These results
are, again, consistent for all C{p values evaluated using LES.

The effect of smaller velocity deficits is reflected in the relative powers, or equivalently, the wake losses experienced by
wind farms. Wind farms comprised of multi-rotor turbines always show benefits over similar wind farms comprised of 1-rotor
turbines. The benefits are due to smaller wake losses only for the first downstream turbine (i.e. the second turbine in the array)
for a realistic tip spacing of 0.1 times the diameter of the smaller rotor. The benefit increases with increasing tip spacing, and
decreasing thrust coefficient. The benefit is largest for the smallest axial spacing studied here (4D), but does not decrease
monotonically as the axial spacing is increased. The benefit is slightly larger for the largest axial spacing (6.D) than for the
intermediate spacing (5D). The effect of axial spacing on the benefit should be investigated in more detail in the future.

The analytical model predictions are sensitive to the tunable parameters. The results in Sect. 3.4 and 4.3 show that with
appropriate choices, reasonably accurate predictions of the LES results can be obtained. The predictions are quite accurate
beyond approximately 2D downstream of an isolated 1-rotor or 4-rotor turbine. In multi-turbine cases, the predictions are
accurate for 1-rotor wind farms, and most 4-rotor wind farms. The model, however, fails to reproduce the trend of gradual
decrease in relative power with turbine row, which is particularly pronounced for wind farms with larger s/d. The difficulties
in accurately reproducing these trends are partly due to the fact that the Gaussian wake model is valid only beyond a certain
distance downstream of a turbine, and is not valid immediately upstream and immediately downstream of a turbine. Thus, this
study points to the need for better analytical modeling of the region very close (upstream as well as downstream) to the turbine.

The actuator drag-disk model provides a crude representation of the processes occurring very near the turbine disks. While
this crude representation is sufficient for the purposes of capturing the interactions between the turbines and the atmospheric
boundary layer, future studies should focus on using the actuator disk/line models with rotation of the blades included. Potential
benefits associated with co-rotation and counter-rotation of the rotors in the multi-rotor configuration can be studied. Recent
work by Andersen and Ramos-Garcia (2019) suggests that interaction between tip vortices of the individual rotors of the multi-
rotor turbine aids in breakdown and recovery of the wake. These beneficial interactions might be missing from multi-rotor
turbines with very large tip spacings, thus slowing down the rate of wake recovery. This issue can also be studied in the future.

Fatigue loads on individual blades of isolated multi-rotor turbines as well as multi-rotor turbines downstream of other turbines
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Figure A1. Evaluation of linear and quadratic wake merging methods for (a) isolated turbine with (s/d,C7%) = (0.1,4/3) and (b) wind farm
with (s/d,C%,Sx) = (0.1,4/3,4D). Model parameter oo/ D = 0.28, and k.. values are the same as those for Figures 5 and 13(c) for panels
(a) and (b) respectively.

should also be studied in the future. Finally, developing better analytical models for both, 1-rotor and multi-rotor, configurations

continues to be a persistent challenge in wind energy research, and will be pursued in future work.

Appendix A: Hybrid Linear-Quadratic Wake Superposition Methodology

465 A brief justification for following the hybrid linear-quadratic methodology of wake merging is provided in this appendix.
Figure Al(a) shows LES results and model predictions for the mean velocity deficit profiles for an isolated s/d = 0.1 turbine
with C/. = 4/3. Following the notation introduced in eq. (3), N+ = 1 and N,.(1) = 4 for this case. The choices evaluated here
are

N (1) 1/p
(Aalin)l = (Aﬁj (;E,y,z))p ’

Jj=1
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with p = 1 and 2 corresponding to linear and quadratic merging, respectively. It is clear that linear merging gives better agree-
ment with LES results compared to quadratic merging. Thus, for wakes originating at the same x location (i.e. ‘adjacent’
wakes), linear merging is preferred.

Figure A1(b) compares LES results and model predictions for the s/d—0.1, C/- = 4/3 and Sx = 4D wind farm. Here, linear
superposition of adjacent wakes is assumed, and superposition of these combined wakes originating at different = locations is

examined.The choices evaluated here are

Nzt

1/p
Z (Aalin)f] )

i=1

Aatat (JI,y,Z) =

with, once again, p =1 and 2 corresponding to linear and quadratic merging. For this case, N+ =5 and N,, =4 for all x;.
Figure A1(b) shows that linear merging (p = 1) leads to a continuous increase of the velocity deficits, which is unphysical.
Quadratic merging leads to velocity deficits that saturate a few turbines into the wind farm, and is in better qualitative and
quantitative agreement with the LES results. Thus, quadratic merging is preferred for wakes originating at different 2 locations.

Thus, a hybrid linear-quadratic merging strategy is seen to give best results. It should be noted that this is an empirical

choice, and a physics-based/first-principles approach for wake superposition is a topic of active research.

Appendix B: Potential Power of Multi-Rotor Wind Turbines

Finding an appropriate single-rotor turbine, which can be considered as a reference against which a multi-rotor turbine can be
compared, is not straightforward. This is because the lower and upper pair of rotors in the 4-rotor configuration are subjected
to different wind speeds and turbulence levels as compared to each other and to the single rotor in the 1-rotor configuration.
In this work, we consider a single-rotor turbine with the same total frontal area, same thrust coefficient and same mean hub
height as a multi-rotor turbine to be a reference. To test the appropriateness of this assumption, the potential power, computed
as Py = (1D?/8) CpUg” disk» 18 shown in Table B1. Here, U 4;51 is obtained by averaging the logarithmic inflow profile
(shown in Fig. 2a) over the rotor disks. The potential power normalized by that of the 1-rotor turbine, P,/ Ppl;tROt, is also
shown in Table B1. A representative value of Cp = 0.5625 is used, but this precise number does not matter when we compare
the normalized potential powers. The normalized potential powers are seen to be almost equal to 1 for all the tip spacings, and
slightly reduce as the tip spacing increases. This indicates that the net effect of shear and the chosen dimensions of the turbines
is such that the effect of the reduced wind speed seen by the lower two rotors dominates the effect of th larger wind speed seen
by the upper two rotors. This effect is not very strong, being only 2.4% for s/d = 0.5. For s/d = 1, the effect is larger, at 5.5%.
The same conclusion is reached if we use the hub height velocities instead of the disk-averaged velocities in computing ;.
For the present study, the chosen 1-rotor configuration may be considered to be appropriate as a reference, since its potential

power varies by less than 2.4% for the majority of the multi-rotor configurations.
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Table B1. Potential power and potential power normalized by 1-rotor potential power for isolated turbines with varying tip spacings.

s/d 1-Rot

0.1 0.2 0.25 0.5 1.0
Ppot 11.21 11.13 11.09 11.07 10.95 10.59
Proot/ Ppoy % 1.000 0.993 0.989 0.987 0.976 0.945
Turbine No. Turbine No. =5 1-Rot
12 2 3 - 2 3 o 1R,
r b4 S.=4D b S.=4D ---- 0.1d
vV X 05k % x -~ 0.25d

‘ 4 8 _ 0 4 12 16
(a) x/D (b) x/D
Turbine No.
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i -~ 1R-C,
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o6 g
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0.2t
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(c) x/D

Figure C1. Adding results of ‘C'r-matched’ run to Figures 9(a-c). Disk-averaged (a) velocity deficits, and (b) turbulence intensity, and

(c) relative power for wind farms with axial spacing Sx = 4D. C7 = 1.61 for simulation labeled 1R — Cr and C7 = 4/3 for all other

simulations.
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Figure C2. Adding results of ‘Cr-matched’ runs to Fig. 11. Effect of tip spacing and thrust coefficient on (a) power of turbines 2 through 5
normalized by power of front turbine, (b) power of front turbine and (c) power of turbines 2 through 5 normalized by power of front turbine of
corresponding 1-rotor wind farm. (d) Benefit of 4-rotor farms over corresponding C-matched 1-rotor wind farm. Labels indicate (Sx, C7)

pairs. C» = 1.14, 1.61 and 2.47 for the runs labeled 1R — C7, corresponding to C/» = 1, 4/3 and 2 respectively.

Appendix C: Cr-Matched 1-Rotor Wind Farms

Single-rotor and multi-rotor turbines with the same rotor area, same mean hub height and same thrust coefficient have been
considered to be equivalent in the main body of this paper. This equivalence was based on the ‘local’ thrust coefficient, C7..
Assuming validity of the inviscid actuator-disk theory, imposing a local thrust coefficient implies imposing an induction factor,

a, and a thrust coefficient, C'7. These quantities are related by

C’TZ&, aQ—a—i—C—:O.

Cl
T - (@)

The classical actuator-disk theory, however, is not valid for the turbine disks subjected to the sheared, turbulent boundary layer
inflow in this study. Consequently, given a value of C’., the implied values for a and C7 are different from those predicted by
eq. (C1). Furthermore, since the single rotor in a 1-rotor turbine and the four individual rotors in a 4-rotor turbine are subjected

to different values of shear and turbulence intensity, the implied values of a and C'p are different for the 1-rotor and 4-rotor
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turbines. As seen in Fig. 11(b), the power of the front turbine in 1-rotor and 4-rotor wind farms is different although identical
510 C’. values are used for all rotors.
In this appendix, three additional 1-rotor wind farm simulations are reported with Sx = 4D and with C’. adjusted such
that the resulting C'r is closer to those of the corresponding 4-rotor turbines. Through a trial-and-error approach, C/. = 1.14,
1.61 and 2.47 were found to yield Cr values that are within 1.5% of those of the 4-rotor wind farms with C7. =1, 4/3 and 2,
respectively. These simulations are denoted as ‘C'r-matched’ runs, and are labeled as 1 R — Cr in Figures C1 and C2 here.
515 Figure CI is a reproduction of Fig. 9(a-c) appended with the additional 1-rotor wind farm simulation with C/. = 1.61. The
disk-averaged velocity deficit and turbulence intensity profiles are larger than for the 1-rotor wind farm, particularly at z/D = 4
(turbine 2). The resulting power degradation (Fig. Clc) is more severe at turbine 2, and almost identical to the 1-rotor wind
farm for further downstream turbines.
Figure C2 is a reproduction of Fig. 11 appended with results from all three ‘Cr-matched’ runs. Focusing on the black line
520 with squares in Fig. C2(b), it is seen that the power of the front turbine in the additional 1-rotor wind farm simulation (labeled
‘1R-C7’) is much closer to the powers of the front turbines in the three 4-rotor wind farms, than the front-turbine power in the
1-rotor simulation. In particular, the front-turbine power of the 4-rotor wind farm with s/d = 0.25 exceeds the front-turbine
power of the ‘Cp-matched’ wind farm by only 4.4%, while it exceeds the front-turbine power of the 1-rotor wind farm by
almost 14%. Similarly, the front-turbine powers of the ‘1R-C'7 runs are much closer to those of the corresponding 4-rotor
525 wind farms, than the front-turbine powers of the corresponding 1-rotor wind farm. Figures C2(a), (c) and (d) show the same
qualitative behavior as Figures 11 (a), (c) and (d). In particular, the benefits of 4-rotor wind farms over the corresponding C'p-
matched 1-rotor wind farms are seen in Fig. C2(d). This figure is derived from Fig. C2(c) by subtracting corresponding ‘1R-C'p’
data point values from each of the 4-rotor data points. Although the numerical values are slightly different from Fig. 11(d), itis
clear that the qualitative conclusions do not change, viz. the benefits of 4-rotor wind farms increase with increasing tip spacing
530 and decreasing thrust coefficient.
In summary, this appendix ensures that the qualitative conclusions regarding the benefits of the 4-rotor wind farms remain

unchanged, regardless of whether ‘1-Rot’ (C/.-matched) or ‘1R-Cp’ (C'p-matched) 1-rotor wind farms are used for reference.

Code and data availability. The LES code used for these simulations is available on GitHub at https://github.com/FPAL-Stanford-University/PadeOps.

Data can be made available upon request from the corresponding author.
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