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Abstract. Wake redirection is an active wake control (AWC) concept that is known to have a high potential for increasing

the overall power production of wind farms. Being based on operating the turbines with intentional yaw misalignment to steer

wakes away from downstream turbines, this control strategy requires careful attention to the loads implications. However, the

computational effort required to perform an exhaustive analysis of the site-specific loads on each turbine in a wind farm is

unacceptably high due to the huge number of aeroelastic simulations required to cover all possible inflow and yaw conditions.5

To reduce this complexity, a practical loads modeling approach is based on “gridding”, i.e., performing simulations only

for a subset of the range of environmental and operational conditions that can occur. Based on these simulations, a multi-

dimentional lookup table (LUT) can be constructed containing the fatigue and extreme loads on all components of interest.

Using interpolation, the loads on each turbine in the farm can the be predicted for the whole range of expected conditions.

Recent studies using this approach indicate that wake redirection can increase the overall power production of the wind farm10

and at the same time decrease the lifetime fatigue loads on the main components of the individual turbines. As the present level

of risk perception related to operation with large yaw misalignment is still substantial, it is essential to increase the confidence

level in this LUT-based loads modeling approach to further derisk the wake redirection strategy. To this end, this paper presents

the results of a series of studies focused on the validation of different aspects of the LUT loads modeling approach. These

studies are based on detailed aeroelastic simulations, two wind tunnel tests, and a full-scale field test. The results indicate15

that the LUT approach is a computationally efficient methodology for assessing the farm loads under AWC, which achieves

generally good prediction of the load trends.

1 Introduction

When wind turbines are grouped into wind farms, they affect each other’s performance through their wakes. In the wake,

wind turbines experience a decreased wind velocity and increased turbulence. For this reason, waked turbines will produce20

less power at below rated wind speeds and suffer increased fatigue loading. Below rated, the conventional “greedy” control

approach aims at maximizing the power capture for each turbine, thereby disregarding the interactions between the turbines

through their wakes. This approach is not optimal with respect to the total power production of the whole wind farm. AWC is an
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approach to operate the turbines cooperatively with the goal of mitigating the wake effects to maximize the power production

of the whole farm, while at the same time trying to reduce the fatigue loading on the turbines (Kanev et al., 2018).

There are two concepts to AWC. The first concept, known as induction control, adjusts the axial induction of the windward

turbines below their optimum for power production in order to reduce the velocity deficit and turbulence in the wake (Corten and

Schaak, 2004; Boorsma, 2015; Annoni et al., 2016; Campagnolo et al., 2016). The second strategy, known as wake redirection5

(or yaw-based AWC), consists of redirecting the wakes aside from the downstream turbines by operating the upwind turbines at

a yaw misalignment (Corten et al., 2004; Fleming et al., 2015; Gebraad et al., 2014; Fleming et al., 2016). The implementation

of induction control relies on power down-regulation (typically by increasing the pitch angle below rated, i.e., pitch-based

AWC) which, as proven technology, is perceived as risk-free in terms of loading. Yaw-based AWC, however, requires operation

with intentional yaw misalignment which has much more pronounced implications on the structural loads turbines are not10

designed to operate this way (Boorsma, 2012; Kragh and Hansen, 2013; Fleming et al., 2013, 2015; Damiani et al., 2018;

Ennis et al., 2018). Even though the risk perception associated to yaw-based AWC is higher, it is at present well recognized by

the community that this strategy has much higher potential in terms of energy gain compared to induction control.

In (Kanev et al., 2018), the potential benefits of AWC in terms of lifetime power production and lifetime fatigue loading for

different real-life wind farms were studied through simulations. With respect to power production, it was concluded that the15

yearly power gains with yaw-based AWC are generally higher than those for pitch-based AWC. One of the conclusions from

that study was that, next to power gain, yaw-based AWC can actually result in lower fatigue loads over the lifetime of the wind

farm. The loads analysis was performed using a LUT containing loads under various environmental and operational conditions.

The LUT approach is based on “gridding”, i.e., performing simulations only for a subset of the actual range of environmental

and operational conditions that can occur. This significantly reduces the amount of aeroelastic simulations required to cover20

all possible inflow and yaw conditions and brings the total number of simulations down to an acceptable number. It should be

pointed out that there exist alternative, computationally cheaper, approaches to assessing the farm loads, such as the Frandsen

model (Frandsen, 2007), which is recommended in the international standard IEC 64100-1 edition 3. According to the Frandsen

model, an effective turbulence level is calculated for the specific site and the wind turbine is simulated for that specific reference

turbulence. The effective turbulence depends on the ambient turbulence and the farm layout and inter-turbine distances. Such25

an approach, however, is not effective for accurate assessment of the impacts of AWC on the turbine loads, because these

impacts are directional and can’t be easily translated into impacts on the effective turbulence intensity. For that reason, the

LUT approach is followed here.

The LUT contains the fatigue loads and statistics from a large number of aero-elastic simulations with different wind speeds,

turbulence intensities, wake profiles (wake deficit width, depth, and location with respect to the rotor), yaw misalignments, and30

pitch angle offsets. For given inflow conditions in front of a specific wind turbine in a wind farm, calculated using a wake model

as, e.g., FarmFlow (Özdemir and Bot, 2018), the loads on the turbine’s components are interpolated from the loads LUT. This

LUT-based approach is very attractive as it saves a huge amount of computational time when constructing predictions of the

lifetime fatigue loads for each individual turbine for a specific site. Moreover, it enables including the fatigue loading into the

AWC optimization.35
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To increase the confidence level of the loads LUT approach, it needs to be properly validated. That is the purpose of this

work, which has the following objectives:

1. Evaluate if interpolation of the loads in the LUT is an accurate enough method for predicting the loads for conditions

that are not present in the LUT.

2. Evaluate the accuracy of the loads calculated using the conventional aeroelastic simulations, using Blade element mo-5

mentum (BEM) theory. Complex turbine conditions that result from large yaw misalignments violate the assumptions of

BEM and its usual correction models.

3. Validate the predictions with respect to wake-induced loads, which are very pronounced load contributors in wind farms.

4. Evaluate if the LUT loads model predictions can be generalized for different turbine scales.

To this end, a series validations studies have been performed based on detailed simulations, wind tunnel measurements and10

full-scale field tests. These studies are outlined in Sections 3, 4 and 5, respectively. The paper continues in the next section with

a detailed explanation of the loads modeling approach, and concludes in Section 6 with some final remarks.

2 Farm loads modeling approach

This section describes the wind farm modelling used in this study, as well as the LUT table approach to fatigue loads modeling.

2.1 Wind farm model15

The wind farm model used in this study is FarmFlow (Özdemir and Bot, 2018; Bot, 2015), which has been developed by

ECN/TNO based on the UPMWAKE code (Crespo and Hernández, 1989). It is a 3D parabolised Navier-Stokes code, using a

k− ε turbulence model to account for turbulent processes in the wake. The ambient flow is modelled in accordance with the

method of Panofsky and Dutton (1984). The free stream wind as a function of height is calculated for a prescribed ambient

turbulence intensity and Monin-Obukhov length, which takes the atmospheric stability into account. The parameters of the20

k− ε turbulence model are adjusted such that the free stream turbulent kinetic energy matches the value from Panofsky and

Dutton for neutral conditions.

The wake model has been improved in van der Pijl and Schepers (2006). Thereto, the parabolization (and the subsequent

enormous reduction in computational cost) was retained but the stream wise pressure gradient is not neglected anymore but

prescribed as a source term in the flow equations. The stream wise pressure gradients are calculated via an inviscid, axisym-25

metric, free vortex wake method. The rotor is assumed to be a uniformly loaded actuator disc. From a prescribed thrust curve

of the wind turbine the average axial induction is calculated according to blade element momentum (BEM) theory. The free

vortex wake model then calculates the initial induced wake velocities that match the averaged axial velocity deficit in the rotor

plane. With this method, the pressure gradients are a function of the axial force coefficient only. To save computational effort,

the pressure gradients are calculated a priori for a large number of axial induction factors, so that the wake model only needs to30
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interpolate the pressure gradients between the two nearest induction factors in this database. This hybrid method of wake mod-

elling in the near wake region, including an adapted near wake turbulence model, gives very accurate results in an acceptable

amount of computational time.

The FarmFlow model supports simulations with active wake control (AWC), allowing that each turbine is operated at a

different power and thrust coefficient (induction control), or with different yaw-misalignment (wake redirection). Implemen-5

tation of induction control in FarmFlow is rather straightforward by applying different power and thrust curves for induction

control. The implementation of the wake redirection control is more complicated and is described below. Since FarmFlow

uses prescribed axial and radial pressure gradients in the near wake region in order to induce the wake, i.e. the deceleration and

expansion of the flow behind the rotor, implementation of yaw-misalignment is realized by prescribing these pressure gradients

with respect to the yaw angle instead of the flow direction. The effect of this deflection is validated from measurements in a10

scaled wind farm and with wind tunnel measurements (Bot, 2015). Two empirical correction factors were used to optimize the

wake deflection angle and wake deficit values. Both have the same value (fw = 2.6) and are applied to the rotational trans-

formations of the nominal (yaw-free) prescribed axial (px) and lateral (py) pressure gradients that model the effect of yawed

misalignment, i.e.

pγx = px cos(γ)− fwpy sin(γ) (1)15

pγy = fwpx sin(γ)+ py cos(γ), (2)

γ being the misalignment angle.

In addition to that, the width of the wake is reduced by a factor cos(γ). A power reduction factor of cosγ1.43 is used in

agreement with recent measurement studies on full scale wind turbines Fleming et al. (2017). In the authors’ experience with

a few other commercial wind turbines of similar sizes, this factor is representative.20

2.2 Loads modeling

In the previous subsection, the wind farm model FarmFlow was summarized. In this section, a loads module is described that

enables the estimation of the loading on each turbine at a number of locations. This allows to evaluate the effect of AWC on the

turbine loads. Besides analysis, the loads module enables to include the loads into the AWC optimization. The loads module

consists of pre-calculated database, constructed using detailed aeroelastic simulations with the software tool Focus/Phatas. The25

simulations are performed with a single fictive wind turbine model in the 4MW range operating in a wake situation that cover

the entire a wide range of operating conditions which the turbine can encounter during operation in a wind farm. To keep the

computational load manageable, only single bell-shaped wake profiles are considered. In practice, a turbine can experience

more complex wake situations resulting from wakes from multiple turbines. However, studies with several offshore wind farms

with different types of layouts indicated that, in such situations, one of the wakes hitting the rotor strongly dominates the other30

one(s) in terms of wake deficit. A situation where a turbine gets two equally strong wakes at both sides of its rotor is, clearly,

difficult to imagine as that would imply two upstream turbines to be located at the same distance upstream, and therefore they

should stand next to each other. Alternatively, they could be at a different distance but have quite different thrust coefficients,

4



Figure 1. Visualization of the parameters used for describing the wake conditions in front of a turbine

which is even less realistic to assume. Notice that extending the loads database to model, for instance, double-bell shaped wake

profiles would have given rise to a significantly larger amount of aeroelastic simulations necessary to populate the database. It

was therefore decided that the resulting increase in computational complexity does not weigh against the expected added value

in practice.

The following formulation is used for the bell-shaped wake deficit profile uwake:5

d(y,z) = (y− yb)
2 +(z− zhub)

2, (3)

uwake(y,z) = u(y,z)

(
1−ub

(
0.5+0.5cos

(
π 4

√
d(y,z)2/(d4b + d2(y,z))

)))
, (4)

wherein (y,z) are the lateral and vertical coordinates, respectively, yb is the lateral location of the wake with respect to the

rotor center, zhub is the hub height, u(y,z) is the ambient wind velocity profile (which includes vertical wind shear), ub is the

relative wake deficit depth, and db is the wake width.10

The operating conditions which have been simulated with Focus/Phatas consist of combinations of the following parameters

(see Figure 1 for visualization of these parameters):

– wind speed: due to complex dependency of the loads on the wind speed, a fine grid of points is selected: 4, 6, 8, 10, 12,

14, 16, 18, 20, 22, 25 [m/s]

– turbulence intensity: the relationship between loads and turbulence intensity is nearly linear for the whole range of wind15

speeds. Nevertheless, three values (instead of just two) are chosen due to the very pronounced impact of this parameter

on the loads. Based on FarmFlow studies with five different existing offshore wind farms, the following grid points are

selected to cover the typical range of variations of this parameter: 5, 15, 30 [%]. Values below 5% are unrealistic in

real-life environments.

– wake deficit width: this parameter can become larger in a multiple wake situation, but a value higher than 3D (D denoting20

the size of the rotor diameter) is considered unnecessary in the LUT since the simulation space in front of a wind turbine

in FarmFlow is around 4D. Wakes with width smaller than 1.2D don’t make sense either. This motivates the following
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choice of grid points: 1.2, 1.8, 3 [D]. The middle value (1.8) is chosen closer to the lowest value (1.2) to ensure higher

resolution when the wake effects are more localized.

– wake deficit depth, relative to free stream velocity. From FarmFlow simulations with several farms it is concluded

that this parameter typically remains below 0.58 even for very densely populated farms. In addition, experience with

Focus/Phatas calculations occasionally result in numerical problems when too high wake depth in combination with5

high turbulence intensity is chosen, as locally the wind velocities can become negative. Therefore, the wake deficit depth

is topped at 0.5 in the choice for grid points for this parameter: 0, 0.3, 0.5 [-]. The lowest value (zero) corresponds to

free-stream operation (no wake), in which case the choice for other wake parameters (wake deficit width, wake location)

are immaterial.

– wake location with respect to rotor: obviously and important parameter, requiring sufficiently fine grid to model its rather10

nonlinear relationship with the turbine loads. A maximum absolute value larger than 1.5D makes little sense even when

the largest considered wake deficit width of 3D is taken. The following grid is selected for the LUT: -1.5, -0.9, -0.6, 0,

0.6, 0.9, 1.5 [D]

– yaw misalignment angle: misalignments above 30-40% are considered unrealistic in a practical implementation, there-

fore the following grid is selected: -40, -30, -20, -10, 0, 10, 20, 30, 40 [deg]15

– pitch angle offset: not relevant for this study, but included into the LUT to enable load analysis under induction control

deg, motivating the following choice for grid points: 0, 1, 2, 3, 4, 5 [deg]

For each combination of these wake parameters, normal production simulations for six different wind realizations (seeds)

have been performed. The simulations are performed with complete three-dimensional wind field that is generated to match

the selected values for the wake parameters. This results in a total number of 673596 cases, which were subsequently reduced20

to 100926 simulations by skipping unnecessary and duplicate cases, such as yaw misalignments and pitch offsets at wind

speeds for which the farm operates at its rated power or different wake widths and locations for zero wake depth (implying

no wake at all). The simulations took several days of computation time on a moderate sized computer cluster of about 150

cores. The results from all these simulations are stored into a LUT that comprises the loads database module. The lookup

table contains, for each simulated scenario, the calculated fatigue loads and/or statistics (min, max, mean and std) at a large25

number of different locations throughout the turbine. These are summarized in Table 1, and have been carefully selected in

collaboration with experts from the industry to ensure that the set is representative for the complete wind turbine structure. It

is considered very unlikely that AWC could have a significant impact on a component not included into this set without this

becoming evident from the loads in the LUT.

For the simulations under yaw misalignment it needs to be pointed out that, even though the underlying BEM theory is30

generally considered as inaccurate under yawed conditions, recent studies (Boorsma et al., 2016) indicate that it captures the

load trends sufficiently well. Furthermore, since the application here is focused on the analysis of the impact of AWC on the

fatigue loads, the primary interest lies in the ability to accurately estimate the relative loads (i.e., the loads increase or decrease)
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Table 1. Signals stored in the loads database

Component Location Fatigue Statistics

Tip-tower distance tip No Yes

Blade out-of-plane moment half-span Yes Yes

Blade in-plane moment half-span Yes Yes

Blade torsion moment half-span Yes Yes

Blade resultant moment half-span Yes Yes

Blade out-of-plane moment Root Yes Yes

Blade in-plane moment Root Yes Yes

Blade torsion moment Root Yes Yes

Blade resultant moment Root Yes Yes

Shaft My rotating Hub Yes Yes

Shaft Mz rotating Hub Yes Yes

Shaft torsion moment Hub Yes Yes

Shaft resultant moment Hub Yes Yes

Axial force on drive train Hub Yes Yes

Tower acceleration (x) Top No Yes

Tower acceleration (y) Top No Yes

Tower yaw moment Top Yes Yes

Tower tilt moment Top Yes Yes

Tower torsion moment Top Yes Yes

Tower resultant moment Top Yes Yes

Tower yaw moment bottom Yes Yes

Tower tilt moment bottom Yes Yes

Tower torsion moment bottom Yes Yes

Tower resultant moment bottom Yes Yes

Power production No Yes

Pitch angle No Yes

Pitch rate No Yes

Rotor speed No Yes

Generator torque No Yes

Wind speed No Yes

Wind direction No Yes
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with AWC as compared to the reference/nominal loads without AWC. For that purpose, using standard BEM theory seems

sufficient.

During a farm simulation, FarmFlow determines the wake conditions in front of each turbine, from which the above-listed

parameters of a single bell-shaped wake are approximated using least-squares fitting. These wake parameters are subsequently

used as input to the loads database to interpolate the corresponding loads on locations. By doing this for the whole range of5

relevant ambient wind conditions (wind speeds, wind directions, turbulence intensities), and given the corresponding distribu-

tions, the lifetime fatigue loads are calculated for each component at each turbine in the farm. It should be noted that the wake

properties, calculated by FarmFlow, concern the undisturbed by the rotor inflow conditions in front of each turbine. The same

holds for the wind fields generated for the Foxus/Phatas simulations.

3 Validation by simulations10

In this section, validation by simulations is performed. Firstly, in the next section the interpolation properties of the LUT load

database are studied using conventional BEM simulations. In the section that follows, higher fidelity simulations are used to

assess the prediction capabilities of the LUT approach with respect to yaw-induced loads.

3.1 Validation of the interpolation properties of the model

The focus of this section is to evaluate if linear interpolation using the LUT load database is a suitable method for determining15

the fatigue loads of wind turbines. This would be the case if the LUT database is sufficiently populated which, therefore, is

what will be essentially evaluated here. For this purpose, Focus/Phatas aeroelastic simulations were performed for a number of

operational conditions, listed in Table 2, that differ from those in contained in the LUT, and the resulting loads are compared

against the predictions from the LUT.

The results from these comparisons are shown in Figure 2, which depicts the fatigue loads from the simulation and LUT20

interpolation predictions. The loads are compared for the following components: tower bottom resultant, tower top resultant,

main shaft resultant, and blade root resultant. The loads have been normalized with respect to the loads at 8 m/s wind speed,

5% turbulence, no wake (zero wake depth), zero yaw misalignment and zero pitch angle.

In can be seen from Figure 2 that the loads interpolated from the LUT seem to be generally in good agreement with those

from the simulations. Excellent agreement is observed for tower at top, shaft and blade results, while some relatively small25

discrepancies are present in the tower bottom loads for some cases. These are primarily attributed to the different wind field

realizations used in the construction of the LUT and the simulations performed for this comparison.

3.2 Validation by higher fidelity simulations

Next, the precision of the LUT load modeling for yawed flow conditions is studied, as those inherent for wake redirection

AWC. As explained in Section 2, the LUT has been constructed using conventional Focus/Phatas simulations in which the30

aerodynamics are computed using BEM theory. However, complex turbine conditions that result in non-uniform induction like
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Table 2. Wake parameters for validation of the interpolation properties of the farm modeling approach

Case Wind speed [m/s] Turbulence [%] Wake depth [-] Wake width [D] Wake location [D]) Yaw error [deg]

1 5 0.08 0.15 1.40 -0.30 25

2 5 0.11 0.11 1.20 -1.20 -25

3 5 0.15 0.38 2.70 -0.85 5

4 5 0.18 0.43 1.30 0.80 15

5 5 0.20 0.20 2.40 1.20 -15

6 7 0.25 0.25 2.00 -0.75 5

7 7 0.18 0.35 1.20 -0.75 -5

8 7 0.11 0.15 1.50 -0.30 -15

9 7 0.08 0.35 2.60 0.75 -25

10 9 0.10 0.15 1.40 -1.20 25

11 9 0.15 0.30 2.00 0.30 -15

12 9 0.20 0.40 2.20 -0.30 15

13 9 0.25 0.45 1.60 -1.20 -5

Figure 2. Visualization of interpolation and BEM simulation results. The loads are normalized with respect to the loads in nominal (offset-

free) free-stream operation at wind speed of 8 m/s and turbulence of 5%
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Table 3. High-fidelity simulation cases. Different yaw angles are used to evaluate the precision of BEM versus free vortex model

Case 1 2 3 4 5 6 7 8 9 10

TI [%] 5 5 5 5 5 15 15 15 15 15

Yaw [deg] 0 15 30 -30 -15 0 15 30 -30 -15

e.g. yawed inflow, pitch asymmetry, or heavily deflected rotor blades violate the assumptions of BEM and its usual correction

models (Boorsma et al., 2016).

For this reason, the Aerodynamic Wind Turbine Simulation Module (AWSM) (Boorsma et al., 2016) has been developed.

AWSM code relies on a more sophisticated approach that accounts for the complex flow phenomena on wind turbine rotors:

lifting-line theory in combination with a free vortex wake method. This approach is based on a more physics-based representa-5

tion, especially for wake-related phenomena, and is more accurate than BEM in predicting the loads induced by oblique inflow.

The higher accuracy comes, of course, at the price of much higher computational complexity. This makes the application of

free vortex wake models, such as AWSM, for the construction of the loads LUT table prohibitive at present.

In this study, the yaw-induced fatigue loads from AWSM simulations are compared to those from BEM simulations. To this

end, AWSM and BEM simulations are performed using DTU 10 MW reference wind turbine Bak et al. (2013). Notice the10

much larger scale of this wind turbine than that of the turbine used for building the LUT database. Hence, besides the load

prediction accuracy under oblique inflow, the scalability of the LUT model will be indirectly tested as well.

In the simulations, turbulent inflow at 8 m/s was used in combination with different turbulence intensities and yaw misalign-

ment angles, as listed in Table 3. Turbulence intensities of 5% and 15% are considered, as could be encountered in a free stream

and waked operation of a wind turbine in a wind farm.15

In Figure 3, the blade root resultant damage equivalent loads from the AWSM and BEM simulations are compared. The

loads have been normalized with respect to the BEM loads at zero yaw misalignment and 5% turbulence intensity. From the

depicted results, a few observations can be made.

– The higher turbulence intensity results in higher fatigue loads, both for BEM and AWSM. Moreover, by moving from

5% to 15% turbulence, the relative load increase is comparable for both models.20

– The relative load changes due to misalignment are much smaller than those due to turbulence. The results here suggest

that yaw misalignment can increase the turbine loads in the range of 10-15%. However, it can also be observed that the

impact of turbulence intensity on the loads is much more pronounced, up to 250% in this example. Since the simulated

turbulence intensities (5 and 10%) are quite representative for the turbulence levels for wind turbines operating in free

stream and a single wake, respectively, it can be stated that that wake-induced loading is more pronounced that yaw-25

induced loading. In other words, a downstream turbine operating in a wake of another turbine will experience much

higher loading than a turbine in free stream. Since wake redirection control moves the wake away from downstream

10



Figure 3. Normalized blade root DEL as a function of yaw angle for the AWSM and BEM models

turbines, it is expected to have a positive effect on the loads there since these will operated at lower turbulence levels.

This fact is seen as the reason that wake redirection control can result in lower fatigue loading, see Kanev et al. (2018).

– Taking the zero yaw angle as reference, the load trends are generally well captured by BEM for both positive and

negative misalignments. This implies that in terms of relative loads impacts by AWC, the BEM-based LUT approach

seems suitable.5

– In absolute sense, BEM significantly overpredicts the loads as compared to AWSM. This is completely in line with

earlier findings by Boorsma et al. (2016); Boorsma (2012). Therefore, using the LUT to predict the lifetime fatigue loads

on the turbines in a wind farm can be considered as a conservative, and hence, safe approach.

4 Validation by wind tunnel experiments

The focus of this section is to validate the LUT load model against wind tunnel measurements under misaligned inflow condi-10

tions. This is done using measurements gathered in the New Mexico project (Boorsma and Schepers, 2014) and CL-Windcon

project (CL-Windcon).

4.1 Mexico wind tunnel experiment

The objective of the New Mexico project (Boorsma and Schepers, 2014) was to create a database of detailed aerodynamic and

load measurements on a 4.5m wind turbine model, in a large and high-quality wind tunnel. The selected measurements are the15
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Table 4. Selected load cases from Mexico experiments. Vinf is the free stream wind speed, Nrotor is the rotational speed of the rotor, λ is

the tip speed ratio.

Vinf [m/s] Yaw [°] Pitch [°] Nrotor [rpm] λ [-]

9.97 -30 -2.3 425.1 10.042

9.97 0 -2.3 425.1 10.045

9.99 8 -2.3 425.1 10.030

10.04 15 -2.3 425.1 9.977

9.98 30 -2.3 425.1 10.038

Figure 4. Normalized blade root out-of-plane loads: Mexico wind tunnel measurements vs. LUT batabase prediction

blade forces, and the inflow conditions include different yaw misalignment angles, as shown in Table 4. All considered test cases

involve operating the turbine with its nominal pitch angle (-2.3°), rotor speed (425.1 rpm) and tip speed ratio (10). Using the

measured forces along the blade span, the blade root out-of-plane fatigue loads are calculated. These are subsequently compared

against the predictions from the loads LUT, which are interpolated for the the following inputs: 10 m/s wind speed, 0%

turbulence intensity, zero wake depth (in the New Mexico experiment the turbine operates in free stream), yaw misalignments5

in accordance with the selected cases from the New Mexico experiment (-30°, 0°, 8°, 15°, 30°), and nominal pitch angle. The

wake width and location inputs to the LUT (both set equal to zero), are irrelevant due to te zero wake depth. Notice that zero

turbulence is outside the range of turbulence intensity values stored in the LUT (see Section 2.2). Since, as already mentioned

above, the impact of turbulence intensity on the loads is very pronounced, it was decided to linearly extrapolate the loads for

zero turbulence rather than choosing the lowest turbulence values available in the LUT.10

Figure 4 depicts the measured blade root out-of-plane loads and the LUT predictions as function of the yaw misalignment,

both normalized with respect to the loads at zero yaw. Results show that the load trends (the slopes of the curves) are com-

parable. For the wind tunnel experiment, the loads are practically symmetric around the zero-degree yaw. On the other hand,
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Table 5. CL-Windcon single-turbine experiment cases

Case Wind speed [m/s] TI [%] yaw [°]

1 5.7 5 -40:10:40

2 5.7 10 -40:10:40

the LUT loads prediction achieves its minimum value at a positive, non-zero yaw angle. This is consistent with the results

in many recent studies, see e.g. Ennis et al. (2018); Kragh and Hansen (2013); Boorsma (2012). The asymmetry of the LUT

loads curve with respect to the zero-degree yaw is due to the presence of vertical wind shear in the calculation of the LUT

loads. The shear counteracts the advancing and retreating blade effect for positive yaw, leading to lowest loads at some positive

yaw angle. In the New Mexico experiment there is no wind shear, which explains the fact that the lowest load appears at zero5

yaw misalignment. This conclusion was also confirmed by BEM calculations without wind shear in Boorsma (2012). Finally,

notice that the shape of the curves in Figure 4 differs from those in Figure 3. The reason for that is the lack of turbulence in

the Mexico experiment, as a result of which the impact of yaw misalignment on the loads gets overly exaggerated as compared

to a more realistic scenario including some turbulence (see, e.g., the wind tunnel results with turbulence in the next section).

Therefore, it can be concluded that the LUT loads modeling seems a viable approach for predict the relative impact of wake10

redirection on the loads of intentionally misaligned wind turbines.

4.2 CL-Windcon wind tunnel experiments

In the CL-Windcon experiments (CL-Windcon, 2017), the first wind tunnel entry involved a series of tests on a single wind

turbine model operated with different yaw misalignment angles and power setpoints. The recorded time series of the tower base

fore-aft moment are used to calculate the corresponding DEL, which are subsequently compared to the LUT load predictions.15

In the CL-Windcon wind tunnel experiments, spires are used to generate vortices at the beginning of the test section, and

bricks were placed on the ground to represent surface roughness. As a result, two boundary layers were created, one for low

turbulence intensity (5%) and one for high turbulence intensity (10%). The wind tunnel conditions, reported in Table 5, are

used as inputs to the LUT to interpolate the tower base fore-aft moment and compare it to the measurement. Given that the

turbine model is in free stream condition, the wake depth input is set to zero (no wake).20

The results are shown in Figure 5, comparing the measured tower bottom fore-aft fatigue load to the LUT prediction for

turbulence of 5% (left plot) and 10% (right plot). The loads are normalized against the load at zero-yaw and 5% turbulence.

In the low turbulence case, a similar trend is observed between the LUT prediction and the tunnel experiment. The database

overestimates the loads and, more importantly, the tower loads decrease with yaw misalignment. For high turbulence, however,

a big discrepancy is observed with respect to the effect of the turbulence intensity on the loads: due to the much higher25

turbulence, the LUT load predictions are much higher, while the wind tunnel measurements do not share this trend. Further

analysis of the results indicated that this is due to the inertial loads being the main contributor to fatigue loads. Due to the small

scale of the turbine, the tower frequency (around 14 Hz) is well outside the bandwidth of the turbulence excitation. At the same
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Figure 5. CL-Windcon and loads module tower base fore-aft moment as a function of yaw, for low turbulence (left) and high turbulence

(right)

time it is very close to the rotational frequency of the rotor, getting excited by the rotor (aerodynamic and mass) imbalance.

This deterministic excitation outweighs by much the impact of the turbulence on the loads. As a result, the turbulence intensity

has practically no impact on the tower fatigue loading in this wind tunnel experiment.

Due to this, it is concluded that in terms of tower bottom loads these measurements are unrealistic for a real-life modern

wind turbine and are therefore considered not suitable for validation of the LUT load model.5

5 Validation by full-scale measurements

In this section, the LUT load model is compared against full scale field measurements. The measurements are performed at the

ECN’s Wind Turbine Test Site Wieringermeer (EWTW), the Netherlands. The farm consists of five research turbines which

are oriented in a single line with a mutual distance of 3.8 D (see Figure 7). The orientation of the row is 95°-275°(0 being

North). The turbines are variable speed, pitch controlled, and have a rotor diameter of 80 m and hub height of 80 m. The10

wind conditions at the site are given in Figure 6: the wind direction distribution (left plot), wind speed distribution (middle

plot) and turbulence intensity as function of wind speed (right plot). The measurements are obtained during normal operation,

without misalignment, and therefore the focus here is on validation of the wake induced load prediction capability of the LUT

approach.
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Figure 6. Wind conditions at EWTW: (left) wind rose, (middle) Weibull distribution, (right) turbulence intensity as a function of wind speed

Figure 7. EWTW’s layout

Given the wind turbines and site conditions, a FarmFlow model is built and used to estimate the inflow conditions for each

turbine for the whole range of wind speeds and wind direction. These are subsequently used to interpolate the loads from the

LUT, as explained in Section 2.2.

For the analysis, ambient wind speeds of 6, 7, 8, 9, 10 m/s are used. The loads on the tower bottom and blade root are

measured on the second turbine from the West, turbine T2. All the measured fatigue samples are filtered to match the sim-5

ulated turbulence conditions. These measurements are compared to the LUT load predictions for the different wind speeds.

Furthermore, a normalization is applied based on the loads at wind speed of 8 m/s and wind direction of 180° (free stream).

Since the farm layout consists of a single row of turbines, there are only sectors of wind directions in which the measured

turbine is in wake: around 95° and 275°. In Figures 8-9, the measured fatigue loads (based on 10 min time-series) are compared

to the LUT predictions for different wind speeds. The blade root out-of-plane loads (left plots in the figures) and tower bottom10

fore-aft loads (right plots) are given. The grey dots in the plots represent the raw (filtered and normalized) measurements,

while the red solid lines give the binned averages of these data points. The solid black lines depict the normalized LUT load

predictions.

The wind direction sectors for which the measured turbine T2 is in a wake condition are clearly identifiable in Figures 8-9

by the large peaks in the loading on the blades. The magnitude of these two peaks shows generally good agreement between15

the LUT model and the real-life measurements. This is especially valid for the blade root out-of-plane moments, for which

the LUT predictions compare very well with the measurements. With respect to the tower loads, the LUT loads predictions

are not good, especially for the lower wind speeds. It is observed that the measured tower loads seem quite insensitive to
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Figure 8. Comparison of LUT loads prediction to EWTW measurements for 6, 7 and 8 m/s
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//

Figure 9. Comparison of LUT loads prediction to EWTW measurements at 9 and 10 m/s

waked inflow conditions. This observation is similar to the one made in Section 4.2 for the wind tunnel experiments, where

the inertial loading due to rotor imbalance was suggested as the possible cause for this. Since he wake effects on the loading

are clearly seen in the blade loads here, significant rotor imbalance seems like a plausible reason here as well. However, time

series data was not readily available to verify this. In the near future, new full-scale measurements with another turbine type

will be performed on turbines with and without yaw misalignment and operating in a wake situation, which is expected to give5

new insights and further validate/improve the LUT load modelling approach.

6 Conclusions

This paper presented the results of a number of studies focused on the validation of the LUT approach to modeling the loads

on turbines in wind farms. The approach represents a computationally attractive way to study the impact of wake redirection
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AWC on the turbine loads. The validation studies included conventional (BEM) and detailed (free vortex wake) simulations,

data from two wind tunnel measurements performed under yaw misalignment, and full-scale field measurements.

The BEM simulations were used to evaluate the interpolation properties of the LUT. The results indicated that, for the chosen

resolution of the LUT, the interpolated loads accurately approximate the simulated loads.

The free vortex wake simulations with the AWSM code confirmed earlier findings that the fatigue loads predicted by BEM5

models tend to significantly overpredict the loads from AWSM simulations. This implies that using BEM models (as those used

to construct the LUT) is a conservative, though safe approach to assess the loads on turbines. Another observation, applicable

to both BEM and AWSM, the loads are shown to increase significantly for higher turbulence levels. This is also consistent with

other results showing the wake-induced loading is much more pronounced than the loading due to misalignment. This is also

the main reason that, as discussed in Kanev et al. (2018), wake redirection AWC can reduce the overall lifetime fatigue loading10

even though for some specific wind conditions the loads on some turbines may increase a bit due to misalignment. Finally, it

is seen in the comparison with AWSM that the load trends are generally well captured by BEM for both positive and negative

misalignments. This implies that in terms of relative loads impacts by AWC, the BEM-based LUT approach seems suitable.

The wind tunnel experiments proved very useful for validating the yaw LUT prediction of the yaw-induced load. The New

Mexico experiment indicated that the sensitivity of the blade out-of-plane loads to changes in the yaw misalignment angle are15

very well modeled by the LUT approach even though the tunnel test is performed with a much smaller turbine. Interesting

observation was that due to lack of wind shear in the tunnel experiment, the lowest blade loading was achieved at zero yaw

misalignment, while the present of shear in the simulations used for creation of the LUT resulted in lowest loads at non-zero,

positive yaw angle. This is also consistent with previous studies. The CL-Windcon tunnel tests involved experiments with two

levels of artificially generated turbulence. Unfortunately, the measured tower loads proved to be very insensitive to variations20

in the turbulence. The reason for that was that for this scaled turbine model, the main contributor to the tower loads is the

relatively high tower frequency, excited primarily by 1p effects due to aerodynamic and/or mass imbalance. These outweighed

by much the fatigue loads induced by (low frequency) turbulence. As a result of that, the CL-Windcon measurements were

not useful for assessing the accuracy of the wake-induced loads predictions by the LUT, but they did confirm the findings with

respect to yaw-induced loading.25

The field measurements on EWTW were compared to the LUT load predictions for a range of wind speeds. The agreement

was very good, especially for the blade root bending moments. With respect to tower loads the LUT estimates generally

overpredicted the measurements for the wind directions with waked inflow. The measured tower loads were also found less

sensitive to variations in the inflow conditions than the blade loads.

Finally, the LUT database is created with a wind turbine model and controller according to the current “common practice”.30

As such, it may not be representative for specific cases such as wind turbines with soft-soft towers, low induction rotors, and

advanced control algorithms including IPC, tower damping, LiDAR-based control etc. For the more standard cases, the results

from this paper suggest that the LUT approach is suitable for different wind turbine types when it comes to predicting the load

trends (making it possible to judge whether under AWC loads increase or decrease, and by how much), rather than the absolute

loads.35
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