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Abstract. Wind farm control strategies are being developed to mitigate wake losses in wind farms, increasing energy pro-

duction. Wake steering is a type of wind farm control in which a wind turbine’s yaw position is misaligned from the wind

direction, causing its wake to deflect away from downstream turbines. Current modeling tools used to optimize and estimate

energy gains from wake steering are designed to represent wakes for fixed wind directions. However, wake steering controllers

must operate in dynamic wind conditions and a turbine’s yaw position cannot perfectly track changing wind directions. Re-5

search has been conducted on robust wake steering control optimized for variable wind directions. In this paper, the design

and analysis of a wake steering controller with wind direction variability is presented for a two-turbine array using the FLOw

Redirection and Induction in Steady State (FLORIS) control-oriented wake model. First, the authors propose a method for

modeling the turbulent and low-frequency components of the wind direction, where the slowly varying wind direction serves

as the relevant input to the wake model. Next, we explain a procedure for finding optimal yaw offsets for dynamic wind con-10

ditions considering both wind direction and yaw position uncertainty. We then performed simulations with the optimal yaw

offsets applied using a realistic yaw offset controller in conjunction with a baseline yaw controller, showing good agreement

with the predicted energy gain using the probabilistic model. Using the Gaussian wake model in FLORIS as an example, we

compared the performance of yaw offset controllers optimized for static and dynamic wind conditions for different turbine

spacings and turbulence intensity values, assuming uniformly distributed wind directions. For a spacing of 5 rotor diameters15

and a turbulence intensity of 10%, robust yaw offsets optimized for variable wind directions yielded an energy gain equivalent

to 3.24% of wake losses recovered, compared to 1.42% of wake losses recovered with yaw offsets optimized for static wind

directions. In general, accounting for wind direction variability in the yaw offset optimization process was found to improve

energy production more as the separation distance increased, whereas the relative improvement remained roughly the same for

the range of turbulence intensity values considered.20
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1 Introduction5

A subset of wind farm control strategies involves the control of individual wind turbines to influence the aerodynamic inter-

action between turbines in a wind farm via their wakes. These control strategies can improve the total energy production of

a wind farm or reduce structural loads (Johnson and Thomas (2009); Boersma et al. (2017)). Although several methods of

actuation exist for influencing the wake behind a wind turbine (Fleming et al. (2014); Boersma et al. (2017)), one of the most

effective and easily implementable strategies for increasing energy production being explored is wake steering (Dahlberg and10

Medici (2003); Wagenaar et al. (2012)). Wake steering control involves intentionally misaligning turbines’ nacelle positions

relative to the wind direction, thereby steering their wakes away from downstream wind turbines. Although the misaligned

turbines generate less power, the total power produced by the wind farm can be increased as a result of the higher wind speeds

experienced by downstream turbines.

Wake steering control has been studied using computational fluid dynamics (CFD), wind tunnel experiments, and full-scale15

field experiments. Wake steering was shown to increase the total power production of a six-turbine wind farm using large-eddy

simulation (LES), a type of CFD, by Gebraad et al. (2016). Additionally, Vollmer et al. (2016) used LES to investigate the

impact of different atmospheric stability conditions on the effectiveness of wake steering. Using two-turbine arrays comprised

of scaled wind turbines in a wind tunnel, Campagnolo et al. (2016) and Schottler et al. (2016) also demonstrated an overall in-

crease in power production with wake steering. Recently, wake steering experiments at commercial wind farms have suggested20

that an increase in total energy production is realizable in the field for a two-turbine scenario (Fleming et al. (2017, 2019)),

with Fleming et al. (2019) observing an average energy increase of 4% for a turbine pair over wind directions where wake

steering is active. Although high-fidelity modeling and experiments are necessary to validate wake steering, computationally

efficient engineering models of wake steering are needed for optimizing controllers and estimating wind farm energy produc-

tion. For example, the FLOw Redirection and Induction in Steady State (FLORIS) tool developed by the National Renewable25

Energy Laboratory (NREL) and Delft University of Technology (Gebraad et al. (2016)) provides a framework for optimizing

wake steering strategies, allowing the user to choose between several different engineering wake models. The FLORIS code is

available at https://github.com/NREL/floris (NREL (2019)) with documentation provided at https://floris.readthedocs.io.

Analyses of wake steering using CFD simulations, wind tunnel tests, and engineering models such as FLORIS are useful

for demonstrating the effectiveness of wake steering, but are typically performed assuming fixed wind directions and yaw30

positions. In reality, large-scale weather phenomena cause the mean wind direction across the wind farm to vary over time.

Wind turbines are unable to perfectly track the changing wind directions because of typically slow yaw controller dynamics

as well as difficulty estimating the wind direction from noisy measurements. This is even more important when implementing
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wind farm control, wherein the wind direction must be estimated from imperfect measurements by a wake steering controller

to determine the appropriate yaw offset to apply. Because of wind direction variability, slow yaw controller dynamics, and the

uncertainty inherent in yaw control, energy gains from wake steering are expected to be lower in the field than predicted by

analyses assuming static wind directions and yaw positions. To address wind direction variability, Bossanyi (2018) performed

wind farm control simulations using a dynamic simulation model with time-varying wind conditions, highlighting controller5

design choices relevant to dynamic wind conditions. However, the applied yaw offsets are optimized assuming static wind

directions. Wind direction variability is analyzed in a statistical sense by Gaumond et al. (2014), who show that using a wake

model to accurately predict wake losses in a wind farm for a specific mean wind direction requires wind direction variability

about the mean direction to be considered. To optimize a wake steering strategy for energy production, Quick et al. (2017) use

optimization under uncertainty (OUU) to find yaw offset targets that maximize energy production when there is uncertainty10

in the achieved yaw position. Rott et al. (2018) similarly use an OUU approach to optimize yaw offsets for energy production

considering variability and uncertainty in the wind direction during periods of constant yaw position. Using the FLORIS wake

model, both Quick et al. (2017) and Rott et al. (2018) show that robust wake steering strategies accounting for yaw or wind

direction uncertainty typically involve lower-magnitude yaw offsets yet outperform “static-optimal” wake steering strategies,

which are optimized for fixed wind directions, when uncertainty exists.15

This article builds on the work of Quick et al. (2017) and Rott et al. (2018) by including both wind direction uncertainty,

resulting from wind direction variability, and yaw position uncertainty in the robust yaw offset optimization process. An

additional contribution of this work is to quantify wind direction and yaw position uncertainty using realistic yaw and yaw

offset control simulations with stochastic wind direction signals based on field measurements. However, rather than directly

using a turbulent wind direction signal to determine wind direction and yaw position uncertainty, the authors propose a method20

for deriving a slowly varying wind direction time series representing the time-varying mean wind direction across the wind

farm without turbulence. This low-frequency wind direction signal acts as a more relevant input to the FLORIS wake model,

which already contains the effects of turbulence for a fixed mean wind direction. The developed method for optimizing yaw

offsets with wind direction and yaw position uncertainty is demonstrated using the example of a two-turbine array (a scenario

of interest for initial field validation studies) with the Gaussian wake model in FLORIS (Annoni et al. (2018)). An additional25

contribution of this research is to evaluate the energy gains achieved by the robust “dynamic-optimal” yaw offsets using

realistic wake steering control simulations, which show close agreement with the energy gains predicted from the probabilistic

model of wind direction and yaw uncertainty. Finally, by varying the turbine spacing and turbulence intensity, where the latter

affects the degree of wake expansion/recovery in the Gaussian wake model, wind direction variability is shown to become

more important in the yaw offset optimization process as the separation distance increases, but has roughly the same impact30

for different turbulence intensity values.

The rest of the article is organized as follows. Section 2 describes the models used in the research, including the wake,

wind turbine, yaw controller, wake steering controller, and wind direction models, as well as the wake steering simulation

procedure. The procedure for quantifying wind direction and yaw uncertainty as well as optimizing yaw offsets for the case of

uncertain wind directions and yaw positions is described in Section 3. Using the Gaussian wake model in FLORIS, Section 435
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contains the results of wake steering controller simulations for a two-turbine array in dynamic wind conditions for both static

and dynamic-optimal yaw offsets, highlighting the improvement in energy gain when yaw offsets are optimized considering

wind direction and yaw uncertainty. Sections 4.2 and 4.3 show the dependence of wake steering with wind direction variability

on turbine spacing and turbulence intensity. Last, further discussion of the results is provided in Section 5, which concludes

the paper.5

2 Models

This section provides a description of the wake model, wind turbine model, the yaw and yaw offset controllers, as well as

the dynamic wind direction model and the simulation procedure used in the analysis of wake steering with wind direction

variability.

2.1 Wake Model10

The impact of wakes on turbine power production is modeled using the FLORIS engineering wake modeling tool (NREL

(2019)). Specifically, the Gaussian wake model developed by Bastankhah and Porté-Agel (2014, 2016) and Niayifar and Porté-

Agel (2016) is used to model the velocity deficits and wake profile. This model includes the ambient turbulence intensity

(TI) as a parameter that helps determine the rate of wake recovery and the wake expansion. Wake deflection caused by yaw

misalignment is modeled using the wake deflection model of Bastankhah and Porté-Agel (2016), based on the Reynolds-15

averaged Navier-Stokes equations. More information about the wake and wake deflection models available in FLORIS can be

found in Annoni et al. (2018) or at https://floris.readthedocs.io.

An example of the wakes produced by a two-turbine array with 5 rotor diameter (D) spacing using the above-mentioned

wake model, with mean freestream wind speed U = 8 m/s and a TI value of 10%, is provided in Fig. 1. The wake behavior is

shown for the baseline case of zero yaw misalignment as well as with a positive 20◦ yaw offset applied to the upstream turbine.20

Note that a positive yaw offset corresponds to a counterclockwise rotation of the turbine relative to the wind direction.

2.2 Wind Turbine

The wake behavior and power production computed by FLORIS relies on a simplified wind turbine model, which is based on

the NREL 5-MW reference wind turbine model in this research (Jonkman et al. (2009)). The NREL 5-MW reference turbine

has a rotor diameter of 126 m and a hub height of 90 m. All analysis in this paper is based on simulations with a mean25

freestream wind speed of U = 8 m/s, corresponding to a power production of 1.81 MW (rated wind speed for the NREL 5-MW

reference model is 11.4 m/s). With U = 8 m/s, the NREL 5-MW reference turbine operates in region 2, where power production

is maximized and thrust is relatively high (the coefficient of thrust CT = 0.762), conditions in which wake losses are high and

wake steering is most effective.
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Figure 1. Examples of wakes for a two-turbine scenario with 5 rotor diameter (D) spacing using FLORIS. In the baseline case, both turbines

are aligned with the wind direction. For the offset case, the upstream turbine has a yaw offset of 20◦.

To model the impact of yaw misalignment on power production, a simple cosine power law relationship is used in conjunc-

tion with the standard power equation in FLORIS:

P =
1

2
ρACPu

3 cosp γ, (1)

where γ is the yaw offset and the exponent p describes how quickly power decreases with increasing yaw misalignment. A

value of p = 1.88 is used here, based on fitting Equation 1 to data from LES simulations, as reported by Gebraad et al. (2016).5

2.3 Yaw Controller

Yaw control is simulated using simple logic based on the yaw controller model described by Bossanyi (2018). A slowly varying

wind direction signal is formed by low-pass filtering the measured wind direction, given by the sum of the wind vane signal and

the nacelle position, using a first-order filter with a time constant of 35 s. When the magnitude of the difference between the

filtered wind direction and the nacelle position exceeds a threshold of 8◦, the turbine begins yawing toward the direction of the10

filtered wind direction at the yaw rate of 0.3 ◦/s defined for the NREL 5-MW reference turbine (Jonkman et al. (2009)). Once

the difference between the current yaw position and the slowly varying filtered wind direction reaches zero or changes sign,

the turbine stops yawing until the error threshold is exceeded again. The values of the error threshold and yaw rate parameters

used here are equivalent to those presented by Bossanyi (2018). However, instead of the 30 s filter time constant described

by Bossanyi (2018), a slightly longer time constant of 35 s is used here, which results in yaw activity similar to that of a15

commercial wind turbine used in the wake steering experiment discussed by Fleming et al. (2019).
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2.4 Yaw Offset Controller

For a specific wind direction, optimal yaw offsets are found for the upstream turbine in a turbine pair by determining the offset

that maximizes the sum of the power produced by the two turbines using FLORIS. Because of the practical challenges of

switching between large positive and negative yaw offsets for small changes in wind direction as well as the relative benefits

of positive yaw misalignments, only positive offsets are considered here. For example, Damiani et al. (2018) show that blade5

root bending moment fatigue is reduced with positive yaw misalignments but increases with negative yaw misalignments.

Additionally, LES simulations show that positive yaw misalignments are more effective at increasing power production as a

result of the behavior of large-scale trailing vortices that help steer the wake, as explained by Fleming et al. (2018), as well

as the impact of the Coriolis force on wake deflection, discussed by Archer and Vasel-Be-Hagh (2019). To further reduce

the impact of wake steering on turbine loads, we limit yaw offsets to 20◦ (Damiani et al. (2018)). However, wake steering10

with both positive and negative yaw misalignments may be a promising strategy because of the additional energy that can be

captured. Whereas research suggests that blade root bending moment fatigue decreases only for positive yaw offsets, loads for

other components may increase or decrease regardless of the direction of misalignment (Damiani et al. (2018); Mendez Reyes

et al. (2019)). Therefore, the specific design-driving loads should be identified and considered when assessing a wake steering

strategy. Furthermore, the load reduction experienced by downstream turbines from wake steering could outweigh the higher15

loads on misaligned upstream turbines when averaged over the lifetime of the wind farm, as discussed by Kanev et al. (2018)

and Mendez Reyes et al. (2019).

Yaw offsets for the upstream turbine in a two-turbine array aligned in the east-west direction, optimized for a turbine spacing

of 5D with TI = 10%, are provided in Fig. 2 for mean wind speeds U = 6, 8, and 10 m/s. These “static-optimal” yaw offsets are

optimized assuming static wind directions (i.e., without wind direction variability). As the wind direction crosses above 270◦,20

where the downstream turbine is fully waked, the highest allowable offset of 20◦ results in the maximum combined power

production. As the wind direction increases to the north and the downstream turbine is increasingly only partially waked, the

yaw offset needed to sufficiently deflect the wake decreases until there is no longer any benefit from wake steering.

Yaw offset control is used to apply the desired yaw offsets to a turbine and can either be implemented as direct yaw control,

wherein a direct yaw position command is sent to the turbine, or indirect yaw control, where the yaw error setpoint of the25

standard yaw controller is changed to the target offset. Although more precise yaw offset tracking can be achieved using direct

yaw offset control (Bossanyi (2018)), indirect yaw offset control is considered in this research because it can be implemented

in the field without modifying the turbine’s yaw control logic (Fleming et al. (2019)).

The control logic used to implement indirect yaw offset control in this research, which is based on the strategy implemented

at a commercial wind farm by Fleming et al. (2019), is provided in Fig. 3. A modified wind vane signal is formed by subtracting30

the target yaw offset from the original wind vane signal. The modified vane signal is then fed into the wind turbine’s standard

yaw controller, causing it to track the target yaw offset instead of the default setpoint of zero. The target yaw offset is determined

using a lookup table providing yaw offset as a function of nacelle-based wind speed and direction. Low-pass filtering is applied

to the lookup table inputs to provide estimates of the slowly varying mean wind speed and direction. Note that for this study,

6



260 265 270 275 280 285 290 295
Wind Direction ( )

0

5

10

15

20

Ya
w 

Of
fs

et
 (

)

U = 6 m/s
U = 8 m/s
U = 10 m/s

Figure 2. Yaw offset schedules optimized for a 5D turbine spacing with static wind directions for mean wind speeds 6, 8, and 10 m/s.

NREL    |    2

++ +

Lowpass 
Filter

Vane Signal Out

Nacelle Wind Speed

Yaw Position
Offset 

Lookup
-

Nacelle Vane

Figure 3. Yaw offset controller. Inputs include measurements from the wind turbine’s nacelle vane, nacelle anemometer, and yaw position

sensor. The output vane signal is used as the input to the wind turbine’s yaw controller.

which considers below-rated operation for U = 8 m/s, the controller is simplified by containing only the yaw offset schedule

determined for U = 8 m/s because of the low sensitivity of the optimal yaw offsets to wind speed variations in this region. After

comparing the energy gain resulting from wake steering simulations with different wind direction filter time constants, a value

of 30 s was chosen, yielding an estimate of the slowly varying wind direction without introducing too much delay.

2.5 Wind Model5

To assess wake steering control with wind direction variability, we developed a dynamic wind model representing realistic

wind conditions. Time series representing the turbulent wind direction at a point near hub height measured by the nacelle wind

vane are needed to simulate the yaw and yaw offset controllers. FLORIS, on the other hand, models the time-averaged wake

behavior and power production resulting from turbulent wind conditions as a function of mean wind direction. Additionally,

high-frequency, small-scale components of wind direction incorrectly indicate the direction of wake travel. Therefore, a more10

appropriate input to FLORIS would be a signal representing the slowly varying, large-scale mean wind direction across the

wind farm, with the turbulent component removed. To model these two different wind direction signals, stochastic time series
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Figure 4. Normalized power spectra of the wind direction determined from met mast wind vane measurements, the turbulent wind direction

component derived from LES, and the resulting low-frequency wind direction component (left); the same power spectra multiplied by

frequency (right).

are generated representing the slowly varying mean wind direction across the wind farm (the “low-frequency” component)

as well as the purely turbulent wind direction component, corresponding to a fixed mean wind direction. The low-frequency

component is used as the input to FLORIS, whereas the sum of the two signals acts as the input to the yaw and yaw offset

controllers.

As discussed in Section 2.4, because wind speed variability around U = 8 m/s is not expected to significantly impact the5

effectiveness of wake steering, the wind model is simplified by assuming a fixed freestream wind speed of 8 m/s. However,

wind speed variability likely has a greater impact on wake steering near rated wind speed, wherein the relationship between

wind speed, power, and thrust is more nonlinear.

Stochastic wind direction signals are simulated by generating a normally distributed random time series based on the power

spectra of the low-frequency and turbulent wind direction components, assuming the wind directions can be represented as10

Gaussian random processes. Specifically, a series of Fourier components at discrete frequencies containing uniformly dis-

tributed random phases is generated, with magnitudes determined by the desired power spectrum (Shinozuka and Deodatis

(1991)). We then apply the inverse discrete Fourier transform to obtain the stochastic time series with a sample period of 1 s.

The power spectrum used to generate the turbulent wind direction component, Sφt
(f), is based on data from LES using

NREL’s SOWFA (Simulator fOr Wind Farm Applications) tool (Churchfield et al. (2012)), representing a neutral atmospheric15

boundary layer with a mean hub height wind speed of U = ∼8 m/s, which is similar to simulations discussed in past studies

(Fleming et al. (2015, 2018)). The power spectrum is calculated using data at a height of 95 m with a mean wind speed of

U = 8.1 m/s, TI = 10.1%, and a wind direction standard deviation of 3.93◦ (see the “LES” spectrum in Fig. 4).
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Measurements obtained from a wind vane at a height of 87 m on the M5 meteorological (met) mast at NREL’s National

Wind Technology Center (Clifton et al. (2013)) are used to determine the power spectrum of the combined low-frequency and

turbulent wind directions, Sφ (f). To match the conditions generated by LES, data were limited to 1-hour periods, wherein the

mean wind speed was between 7.5 m/s and 8.5 m/s and the atmospheric conditions were neutral (defined using the Monin-

Obukhov stability parameter, z/L (Clifton et al. (2013)), at a height of 15 m, as |z/L|< 0.05 (Rajewski et al. (2013))). Using5

twelve 1-hour periods of acceptable data with an average 1-hour TI = 18.8% and an average 1-hour wind direction standard

deviation of 10.92◦, a representative wind direction power spectrum is determined, shown as the “Met Mast” spectrum in

Fig. 4.

Using the power spectra of the LES-based turbulent wind direction component, Sφt
(f), and the met-mast-derived combined

wind direction, Sφ (f), and assuming no correlation between the low-frequency and turbulent components, the spectrum of the10

low-frequency component, Sφl
(f), is found via the relationship

Sφ (f) = Sφl
(f) +Sφt

(f) . (2)

The LES-based turbulent and met-mast-based combined wind direction spectra are compared in Fig. 4, normalized so they

converge at high frequencies. Note that the LES-derived spectrum quickly decays above 0.1 Hz because of the spatial filtering

inherent in LES. These frequencies are ignored, however, and the trend observed between 0.01 and 0.1 Hz is assumed to15

continue at higher frequencies. Finally, the wind direction power spectra are approximated using the following equations fit to

the data, where Sφl
(f) is calculated as Sφ (f)−Sφt

(f) and C serves as a scaling constant:

Sφ (f) =
C

f
(3a)

Sφt
(f) =

C · 6.26 · 103 · f0.65(
1 +

(
f

5·10−3

)3
)0.55 (3b)

Sφl
(f) =

C

((
1 +

(
f

5·10−3

)3
)0.55

− 6.26 · 103 · f1.65

)

f

(
1 +

(
f

5·10−3

)3
)0.55 (3c)20

Although Equation 3a is not physically realistic because it describes a power spectrum containing infinite energy across all

frequencies, it fits the data well for the range of frequencies simulated. Note that below 0.0037 Hz, the low-frequency wind

direction is the dominant component of the combined wind direction signal; for higher frequencies, the turbulent component

dominates. Thus, the low-frequency wind direction component could be estimated by low-pass filtering a measured wind

direction time series using a cutoff frequency of 0.0037 Hz.25

Examples of the turbulent wind direction and combined wind direction time series from LES and met mast measurements,

respectively, are shown in Fig. 5 (a). Note that the LES simulation is limited to 860 s, whereas the met mast measurements

are analyzed in 1-hour blocks. Using the power spectra given by Equations 3b and 3c, examples of stochastic time series

representing the turbulent and low-frequency wind direction components as well as the combined wind direction, formed by

9
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Figure 5. Example wind direction time series: (a) wind directions from LES and met mast wind vane measurements and (b) stochastic

turbulent, low-frequency, and combined wind directions.

summing the turbulent and low-frequency components, are provided in Fig. 5 (b). The stochastic time series are scaled to match

the combined standard deviation of 10.92◦ observed in the met mast data.

2.6 Simulation Procedure

As described in Section 2.5, the stochastic low-frequency wind direction component acts as the wind direction used in FLORIS,

whereas the combined low-frequency and turbulent wind direction serves as the realistic noisy input to the yaw and yaw offset5

controllers. A fixed wind speed of 8 m/s is used as the input to both FLORIS and the yaw offset controller. Wake steering

control is evaluated by generating a series of 1-hour stochastic wind direction time series with a combined wind direction

standard deviation of 10.92◦ for a range of mean wind directions. To capture all wind directions wherein wake steering control

could be active, unique 1-hour simulations are performed for mean wind directions between 200◦ and 340◦ in increments of

0.05◦, resulting in 2800 simulations for each control scenario examined. For comparison purposes, baseline yaw control is10

simulated in addition to wake steering control for each wind direction time series. The first 10 minutes of data resulting from

each simulation are discarded to eliminate controller start-up transients.
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Figure 6. Example stochastic wind directions and low-frequency wind directions with yaw positions corresponding to baseline yaw control

and yaw offset control, with the 8 m/s offset schedule shown in Fig. 2.

3 Yaw Offset Optimization

This section begins with a description of the methods used to model and quantify wind direction and yaw position uncertainty

caused by wind direction variability. Next, the process for optimizing yaw offsets for wake steering control to maximize energy

production with wind direction and yaw uncertainty is explained.

3.1 Wind Direction and Yaw Position Uncertainty5

Wind direction and yaw position uncertainty are determined by first quantifying the yaw error variability. Standard yaw control

is simulated using stochastic low-frequency and combined wind direction signals with the combined wind direction standard

deviation of 10.92◦ measured in the field, as explained in Section 2.5. Yaw error variability is then quantified as the standard

deviation of the difference between the low-frequency wind direction and the turbine’s yaw position. An example of simulated

wind direction and yaw position signals for both baseline yaw control and yaw offset control using static-optimal offsets is10

provided in Fig. 6. Baseline yaw control for the simulated conditions results in a yaw error standard deviation of σε = 5.25◦.

The impact of wind direction and yaw position uncertainty on wake steering is analyzed by modeling the low-frequency wind

direction (φl) and yaw position (θ) as jointly distributed random variables formed by adding wind direction and yaw uncertainty

to the static wind direction and yaw position defined by the yaw offset schedule. The resulting joint probability density function

(PDF) of low-frequency wind direction and yaw position is given by the convolution of the static PDF, fΦl,Θ,s (φl,θ), based on15

the offset schedule, γ (φl), and the PDF representing the uncertainty in the two variables f∆Φ,∆Θ
(∆φ,∆θ):

fΦl,Θ (φl,θ) = fΦl,Θ,s (φl,θ) ∗ f∆Φ,∆Θ
(φl,θ) . (4)

11



The static PDF of wind direction and yaw position is given by

fΦl,Θ,s (φl,θ) = fΦ (φl)δ (θ− (φl− γ (φl))) , (5)

where δ (·) is the Dirac delta function and fΦ (φ) is the PDF of the wind direction, assumed to be uniformly distributed

across all wind directions to simplify the analysis. However, fΦ (φ) could easily be replaced by a more appropriate probability

distribution based on site-specific conditions.5

As explained by Rott et al. (2018), the PDF of the wind direction during a 5-minute time period can be approximated as a

normal distribution. Because wind turbines typically yaw every few minutes or so—remaining at fixed yaw positions otherwise

(see Fig. 6)—the yaw error is also approximated as a normally distributed random variable. The yaw error uncertainty is then

divided into wind direction uncertainty, ∆φ, and yaw position uncertainty, ∆θ, which are treated as independent normally

distributed random variables described by the joint PDF:10

f∆Φ,∆Θ (∆φ,∆θ)∼N

0

0

 ,
σ2

φ 0

0 σ2
θ

 . (6)

To maintain the observed yaw error standard deviation of σε = 5.25◦, the following relationship between the variances of wind

direction uncertainty, yaw position uncertainty, and yaw error must exist:

σ2
φ +σ2

θ = σ2
ε . (7)

The impact of the parameters σφ and σθ on the PDF of wind direction and yaw position with wake steering based on the15

static-optimal offset schedule for 8 m/s described in Section 2.4 is shown in Fig. 7, which compares theoretical joint PDFs

of low-frequency wind direction and yaw position using Equations 4 through 7 with a histogram determined from simulation.

All theoretical PDFs and histograms are discretized using 1◦ bins. The theoretical PDF of wind direction and yaw position

assuming all of the yaw error variation can be attributed to wind direction uncertainty (σφ = 5.25◦) is shown in Fig. 7b,

whereas the PDF calculated assuming all variation is caused by yaw position uncertainty (σθ = 5.25◦) is provided in Fig. 7c.20

Also shown in the plots are the mean yaw positions achieved as a function of wind direction. Note that the two theoretical

PDFs are identical for wind directions far from the yaw offset control sector; for baseline yaw control, any combination of

wind direction and yaw position standard deviation that satisfies Equation 7 produces the same joint PDF of wind direction and

yaw position. Consequently, wind directions where wake steering is implemented must be used to identify the proper values of

σφ and σθ.25

Rather than attributing all of the yaw error to either yaw position or wind direction uncertainty, Fig. 7 reveals that yaw

offset control with wind direction variability is likely modeled best using a combination of the two sources of uncertainty.

Assuming all of the yaw error is caused by wind direction uncertainty, as shown in Fig. 7b, implies that the yaw positions

determined from the yaw offset schedule are achieved without any uncertainty. But once the yaw offsets are reached, the wind

direction varies while the yaw position is fixed, until the turbine yaws again. Note that the yaw position gaps in Fig. 7b are30

a consequence of discretizing the PDF using 1◦ bins. Alternatively, Fig. 7c highlights how attributing all of the yaw error to

12
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Figure 7. Distributions of low-frequency wind direction and yaw position with yaw offset control using a static-optimal yaw offset schedule:

(a) histogram from simulation results, and theoretical probability density functions assuming (b) only wind direction uncertainty, and (c)

only yaw position uncertainty.

yaw position uncertainty suggests uncertainty in the yaw position that is achieved for a given wind direction, but that there is

no wind direction variability once the yaw position is reached. The simulation-based histogram in Fig. 7a, however, exhibits

characteristics of both yaw position and wind direction uncertainty. Because the mean yaw positions achieved based on the

simulation results are closer to the theoretical mean yaw values with no yaw position uncertainty, most of the yaw error can

likely be attributed to wind direction uncertainty, as modeled by Rott et al. (2018). The procedure used to quantify the amount5

of wind direction and yaw position uncertainty, described by σφ and σθ, respectively, used in the remainder of this research is

explained in Section 3.3.

3.2 Yaw Offset Optimization Procedure

For a given estimated low-frequency wind direction, φ̂l, determined by the yaw offset controller, the optimal yaw offset γ∗ for

the upstream turbine in the turbine pair is found using10

γ∗
(
φ̂l

)
= argmax

γ
E
[
P
(
φ̂l,γ

)]
, (8)

where E
[
P
(
φ̂l,γ

)]
is the expected power production given the estimated wind direction, φ̂l, and target yaw offset, γ. Based on

the joint probability distribution of wind direction and yaw position uncertainty in Equation 6, the expected power production

using FLORIS is given by

E
[
P
(
φ̂l,γ

)]
=

180∫
−180

180∫
−180

f∆Φ,∆Θ (∆φ,∆θ)PFLORIS

(
φ̂l + ∆φ,γ−∆θ

)
d∆φd∆θ, (9)15
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where PFLORIS (φl,γ) describes the power production of the two-turbine array as a function of low-frequency wind direction

and the yaw offset of the upstream turbine, and ∆φ and ∆θ represent deviations of the wind direction and yaw position

from their mean values, respectively. Equations 8 and 9 essentially comprise the same form of optimization used by Quick

et al. (2017), considering only yaw uncertainty, and Rott et al. (2018), examining wind direction uncertainty. Equation 9 is

implemented by approximating the integration as a double summation and discretizing wind direction and yaw position using5

a step size of 1◦. As a result, only integer yaw offset values are considered.

The solution to Equations 8 and 9 as a function of wind direction without wind direction or yaw position uncertainty

(σφ = σθ = 0) yields the “static-optimal” yaw offset schedule. When wind direction and yaw uncertainty, resulting from wind

direction variability, are included, the solution is referred to as the “dynamic-optimal” offset schedule.

3.3 Wind Direction and Yaw Position Variability Parameter Tuning10

Appropriate values for the standard deviation of the wind direction and yaw uncertainty are found by comparing the expected

mean energy production with wake steering based on theoretical PDFs of wind direction and yaw with simulation results.

Specifically, the mean energy production across all wind directions is calculated for different combinations of σφ and σθ

adhering to Equation 7. The combination that best predicts the mean energy resulting from wake steering simulations is used for

finding the dynamic-optimal yaw offset schedule. Note that we assume the controller has perfect knowledge of the yaw position.15

Yaw uncertainty, as defined here, instead stems from the dynamics and hysteresis of the yaw and wake steering controllers.

For example, the target yaw misalignment determined by the yaw offset controller lags behind the true wind direction, which

can cause the yaw controller to settle on an unintended yaw position. Additionally, while the turbine is yawing to achieve a

particular yaw misalignment, the offset target from the yaw offset controller can change, again causing the controller to stop at

an unintended yaw position.20

To find the uncertainty parameters that best predict the energy production with dynamic-optimal yaw offsets, an iterative

parameter tuning approach is used. An initial guess is made, setting yaw position uncertainty equal to wind direction uncer-

tainty. Next, simulation results based on the initial dynamic-optimal yaw offset schedule are used to retune the uncertainty

parameters. The process is repeated until both the uncertainty parameters and optimal yaw offsets converge. By applying this

tuning procedure, values of σφ = 4.95◦ and σθ = 1.75◦ are found. As expected, most of the yaw error variation is attributed to25

wind direction uncertainty, with a small amount of yaw position uncertainty caused by the yaw controller dynamics. A com-

parison between the histogram of low-frequency wind direction and yaw position based on wake steering simulations using the

dynamic-optimal yaw offset schedule and the theoretical joint PDF with σφ = 4.95◦ and σθ = 1.75◦ is shown in Fig. 8.

A comparison between the histogram of low-frequency wind direction and yaw position from wake steering simulations

with the original static-optimal yaw offset schedule from Fig. 2 and the theoretical joint PDF using the tuned parameters is30

shown in Fig. 9. Although the mean yaw positions are similar, the wind direction and yaw distributions do not match as well

as they do for the dynamic-optimal case, especially near φ = 270◦, where the wind direction is aligned with the turbine pair.

Close agreement is desired so that the theoretical joint PDF of wind direction and yaw position can be used to accurately

predict the simulated energy gain, allowing the optimal yaw offset schedule to be reliably found using the theoretical PDF.
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Figure 8. Distributions of low-frequency wind direction and yaw position with yaw offset control using a dynamic-optimal yaw offset

schedule: (a) histogram from simulation results and (b) theoretical probability density function assuming wind direction uncertainty with a

standard deviation of 4.95◦ and yaw position uncertainty with a standard deviation of 1.75◦.

Part of this discrepancy can be explained by the larger offsets demanded by the static-optimal offset schedule. The theoretical

joint PDF of wind direction and yaw assumes that the yaw controller tends to settle near one of the two yaw position extremes

near φ = 270◦. However, the wake steering simulations reveal that the yaw controller often settles between the two extremes

in this region as a result of the indirect yaw control implementation. Thus, the specific yaw control dynamics affect how

well the theoretical joint PDF of wind direction and yaw predicts the actual control behavior. Notwithstanding the observed5

discrepancies for the static-optimal offset schedule, there is good agreement between the simulated and predicted joint PDFs

for the robust dynamic-optimal case.

4 Results

In this section, we present simulation results showing the increase in energy production with wake steering for a two-turbine

array. In Section 4.1, the improvement in wake steering performance when dynamic-optimal yaw offsets are used is discussed10

in detail for a turbine spacing of 5D and turbulence intensity of 10%. The impact of turbine spacing and TI (which impacts

wake expansion and recovery in FLORIS) on the improvement in energy production using dynamic-optimal yaw offsets is

examined in Sections 4.2 and 4.3, respectively.

4.1 Comparison of Yaw Offset Controllers Optimized for Static and Variable Wind Directions

For a turbine spacing of 5D and turbulence intensity of 10%, the normalized mean power of the combined upstream and15

downstream turbines binned by low-frequency wind direction for westerly wind directions is shown in Fig. 10 for baseline

yaw control and wake steering control. The mean power production resulting from baseline yaw control and wake steering

15
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Figure 9. Distributions of low-frequency wind direction and yaw position with yaw offset control using a static-optimal yaw offset schedule:

(a) histogram from simulation results and (b) theoretical probability density function assuming wind direction uncertainty with a standard

deviation of 4.95◦ and yaw position uncertainty with a standard deviation of 1.75◦.

control with static-optimal as well as dynamic-optimal yaw offsets is provided in Fig. 10a for the case of static wind directions

(i.e., power is computed for each wind direction independently, with yaw offsets determined directly from the yaw offset

schedules). Clearly, the static-optimal offset schedule outperforms the lower-magnitude dynamic-optimal yaw offsets in this

case. Note that power is only increased for one-half of the waked sector because of the restriction of positive yaw offsets.

Figure 10b shows the mean power produced with the same three control scenarios with wind direction variability included.5

Solid lines correspond to theoretical predictions of power production based on Equation 9, whereas dashed lines are calculated

from simulation results. Here, the static-optimal yaw offsets only outperform the dynamic-optimal offsets in a narrow sector;

overall, the dynamic-optimal yaw offsets result in higher energy gain. Because of wind direction variability, the yaw offsets

applied near the aligned direction cause a loss in power when the wind direction drops below 270◦ or increases above ∼280◦.

Compared to the static-optimal offsets, the dynamic-optimal yaw offset schedule strikes a balance between achieving large10

gains between 270◦ and ∼280◦ and minimizing losses outside this sector.

Mean yaw offsets along with the normalized change in power produced by the turbine pair with wake steering control are

plotted in Fig. 11 as a function of low-frequency wind direction for both static-optimal and dynamic-optimal yaw offsets.

The mean achieved yaw offsets and changes in power with dynamic wind directions predicted by theory and resulting from

simulation are shown along with the yaw offset schedules. Simulation results are provided based on binning using the original15

1-s data as well as 1-minute and 10-minute averages of the data. The mean achieved yaw offsets binned by low-frequency wind

direction for the static-optimal and dynamic-optimal cases reveal the source of the power loss below 270◦ and above∼280◦, as

shown in Fig. 10b. For wind directions below 270◦, zero yaw offset is desired. However, the positive mean yaw offsets resulting

from wind direction variability cause the wake to deflect clockwise toward the downstream turbine, reducing its power. On the
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Figure 10. Normalized mean power of combined upstream and downstream turbines for baseline and wake steering control with static-

optimal and dynamic-optimal yaw offset schedules for (a) static and (b) dynamic wind directions. Mean power values are determined from

theory (solid) and simulation (dashed) for a turbine spacing of 5D and turbulence intensity of 10% and plotted as a function of low-frequency

wind direction.

other hand, for wind directions above ∼280◦, relatively small yaw offsets are needed to deflect the partial wake away from the

downstream turbine. Because of wind direction variability, the resulting mean yaw offsets are too large, leading to unnecessary

power loss on the upstream turbine with little additional gain at the downstream turbine. Comparing the static-optimal and

dynamic-optimal cases shows how the less-aggressive dynamic-optimal yaw offsets lead to slightly lower peak gains in power

production, but result in lower mean yaw offsets achieved outside of the primary wake steering region, minimizing power loss.5

The lower peak gains are more than compensated for by the reduced losses. Finally, note that the dynamic-optimal yaw offsets

extend to higher wind directions than the static-optimal offsets. The small offsets above 290◦ result in very little power loss,
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Figure 11. Mean achieved yaw offsets using offset schedules optimized for (a) static and (b) dynamic wind directions as well as change in

mean power produced by the turbine pair from wake steering using offset schedules optimized for (c) static and (d) dynamic wind directions

as a function of low-frequency wind direction. Theoretical achieved offsets and power gains are shown for dynamic wind directions along

with the yaw offset schedules. Achieved yaw offsets and power gains from simulations with dynamic wind directions are provided for 1-s,

1-minute, and 10-minute averages of low-frequency wind direction, yaw offset, and power. A turbine spacing of 5D and turbulence intensity

of 10% are used in the FLORIS model.

yet, due to wind direction variability, help increase the mean achieved yaw offsets at lower wind directions where wake steering

is beneficial.

The theoretical predictions of the mean achieved yaw offsets and change in power with wake steering match the simulation

results very well for the dynamic-optimal yaw offset scenario in Figs. 11b and 11d, for which the wind direction and yaw

position uncertainty model is tuned. For the static-optimal scenario, the theory predicts higher peak mean yaw offsets and a5
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more narrow achieved yaw offset region than exhibited by the simulations. The predicted change in power also differs from

the simulations more than in the dynamic-optimal case. As explained in Section 3.3, these discrepancies are related to yaw

controller dynamics that are unaccounted for in the theoretical predictions.

The overall gains for different wake steering scenarios are provided in Table 1, which lists the percentage of the total wake

losses recovered with dynamic wind directions assuming uniformly distributed wind directions. The baseline wake losses for5

the different scenarios investigated, from which the wake loss recovery is calculated, are provided in Table 2, again assuming

uniformly distributed wind directions. Note that when averaging over all wind directions, the gain in absolute energy produc-

tion from wake steering is small for this two-turbine scenario (≤ 0.2%), primarily because of the low baseline wake losses.

Therefore, we express the gains as a percentage of wake losses recovered, which we expect to be a more meaningful value

for comparison across different wind farm scenarios. When simulating dynamic wind directions, 1.42% of the wake losses are10

recovered by the static-optimal offset schedule. The theoretical prediction of 1.08% slightly underestimates the energy gain

because of unmodeled yaw controller dynamics, indicating room for improvement in the theoretical model. By accounting for

wind direction and yaw position uncertainty, wake steering simulations using dynamic-optimal yaw offsets result in an energy

gain of 3.24% of total wake losses, nearly matching the predicted increase of 3.18% and representing more than a twofold

improvement over the static-optimal wake steering case.15

Simulation results in Fig. 11 are binned using different averaging periods to illustrate how longer averaging periods can

hide or smooth out some of the trends predicted by the theory. Averaging periods of 1 or 10 minutes are more relevant when

analyzing field data because of uncertainty in high-frequency wind direction measurements and to account for the time it takes

for the wake to propagate between the pair of turbines. Although the mean achieved yaw offsets are not sensitive to these

averaging periods, the mean change in power shows a strong dependence on the averaging period used for binning. As the20

binning period increases, the mean power trends are smoothed out. For example, using 10-minute averages, the simulation

results for the dynamic-optimal scenario almost completely hide the power loss outside the main wake steering region, and

show a lower peak gain instead.

4.2 Impact of Turbine Spacing

For a two-turbine array, the turbine spacing impacts both the amount of energy that can be gained using wake steering and25

the additional benefit from using a dynamic-optimal yaw offset strategy. Keeping all other wind farm parameters the same

as in Section 4.1, Fig. 12 compares the mean yaw offsets and change in power produced by the turbine pair as a function of

low-frequency wind direction for both static-optimal and dynamic-optimal offset schedules for turbine spacings of 3D, 5D,

and 7D, based on theory and simulation. Figure 12 shows that more energy can be gained using wake steering for shorter

separation distances, where wake losses are higher (see Table 2). As the separation distance increases, baseline wake losses30

become lower, leaving less room for wake steering to improve energy production. However, as the separation distance increases,

the wake steering losses suffered because of wind direction variability increase. As shown by the simulation results in Table 1,

for a spacing of 3D, wake steering control in dynamic wind conditions using the static-optimal offset schedule results in a

wake loss recovery of 4.04%, whereas with the 7D spacing, energy is reduced compared to the baseline case, yielding a wake
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Figure 12. Mean achieved yaw offsets using offset schedules optimized for (a) static and (b) dynamic wind directions as well as change in

mean power produced by the turbine pair from wake steering using offset schedules optimized for (c) static and (d) dynamic wind directions

as a function of low-frequency wind direction for turbine spacings of 3D (blue), 5D (green), and 7D (red). Theoretical and simulation-based

achieved offsets and power gains are shown for dynamic wind directions, along with the yaw offset schedules. A turbulence intensity of 10%

is used in the FLORIS model.

loss recovery of -0.54%. Longer separation distances allow more time for a redirected wake to deflect by the time it reaches

the downstream turbine. Consequently, unintended deviations from the optimal yaw offset result in larger changes to the wake

position at the downstream turbine. For example, note the relatively high losses below 270◦ for the 7D spacing with static-

optimal yaw offsets in Fig. 12c caused by mean positive yaw offset angles, which significantly redirect the wake toward the

downstream turbine.5
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Because the reduction in energy gain from wake steering caused by wind direction variability increases for larger turbine

separations, the relative importance of using dynamic-optimal offset schedules increases as well. As shown in Figs. 12b and

12d, to achieve robustness to wind direction and yaw uncertainty, the peak dynamic-optimal offsets become smaller as the

separation distance and, therefore, sensitivity to yaw offset deviations become greater. As a result, although the peak power

gains are lower than with static-optimal yaw offsets, the losses below 270◦ and above the primary wake steering sector are5

greatly reduced. Referring to Table 1, for a separation of 3D, replacing the static-optimal offsets with the dynamic-optimal

offset schedule only raises the energy gained by wake steering from 4.04% of the total wake losses to 4.33%. But for a spacing

of 7D, switching to dynamic-optimal offsets changes the energy loss resulting from static-optimal offsets to an energy gain of

2.16% of total wake losses.

4.3 Impact of Turbulence Intensity10

Just as wake steering can be implemented for a variety of turbine spacings, the effectiveness of wake steering depends on

the atmospheric conditions. Although atmospheric stability has been shown to have a large impact on wake steering (Vollmer

et al. (2016); Fleming et al. (2019)), ambient turbulence intensity (TI), which is closely linked to stability, acts as the primary

atmospheric variable in the Gaussian wake model used in this research (Niayifar and Porté-Agel (2016)), affecting the degree of

wake expansion and recovery. Turbulence causes the low-velocity air in the wake to mix with the surrounding higher-velocity15

flow, helping the wake recover. Additionally, turbulence causes wake meandering. Therefore, low TI leads to a narrow time-

averaged wake profile with a high peak wake loss, whereas high turbulence causes a broader wake profile with lower peak

losses. As listed in Table 2, the total wake losses decrease as the TI increases.

For a fixed turbine spacing of 5D, Fig. 13 shows the offset schedules, mean achieved yaw offsets, and changes in power

of the turbine pair resulting from wake steering as a function of low-frequency wind direction using both static-optimal and20

dynamic-optimal offsets for TI values of 5%, 10%, and 15%. The low-turbulence case with TI = 5% allows the greatest amount

of energy to be gained using wake steering; with a narrow wake profile with deep losses, wake deflection causes a larger

increase in velocity at the downstream turbine than for a more spread out wake profile with lower velocity deficits typical of

high turbulence. At the same time, the higher sensitivity of the power production to changes in yaw offset also means that

unintended yaw offsets can more easily steer the wake center back toward the downstream turbine, reducing power, as shown25

in Fig. 13c, between 260◦ and 270◦. Because the greater susceptibility to wind direction and yaw position uncertainty outside

of the primary wake steering control sector for lower TI values is somewhat balanced by the higher peak power gains inside the

control sector, the relative impact of wind direction variability on the effectiveness of wake steering remains roughly constant

as TI varies.

Similar to the results in Fig. 12, while the peak energy gains with dynamic-optimal offsets shown in Fig. 13d are lower than30

they are with static-optimal offset schedules, because of more robust, lower-magnitude offsets shown in Fig. 13b, the energy

lost outside of the primary wake steering sector is greatly reduced. But just as the impact of wind direction variability on

the overall effectiveness of wake steering does not strongly depend on TI, the relative improvement in the energy gain made

possible by replacing static-optimal offset schedules with dynamic-optimal yaw offsets does not exhibit a clear trend with TI.
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Figure 13. Mean achieved yaw offsets using offset schedules optimized for (a) static and (b) dynamic wind directions as well as change in

mean power produced by the turbine pair from wake steering using offset schedules optimized for (c) static and (d) dynamic wind directions

as a function of low-frequency wind direction for turbulence intensity values of 5% (blue), 10% (green), and 15% (red). Theoretical and

simulation-based achieved offsets and power gains are shown for dynamic wind directions, along with the yaw offset schedules. A turbine

spacing of 5D is used in the FLORIS model.

The largest relative improvement in energy production after switching to dynamic-optimal yaw offsets occurs for the middle

TI value of 10%, where the percentage of wake losses recovered by wake steering increases from 1.42% to 3.24% (a relative

improvement of 128%). However, large improvements in energy gains from wake steering are observed for both the lower and

higher TI values as well (see Table 1). For TI = 5%, the energy gain increases from 2.94% of total wake losses to 4.53% when

dynamic-optimal offsets are used (a relative change of 54%). Similarly, after switching to the dynamic-optimal yaw offset5

schedule, the wake loss recovery for TI = 15% increases from 0.99% to 1.63% (a relative change of 65%).

22



Table 1. Percentage of wake losses recovered from wake steering with dynamic wind directions for a two-turbine array with different

turbine spacings and turbulence intensity values, assuming uniformly distributed wind directions. Results are provided for static-optimal and

dynamic-optimal yaw offsets based on theoretical predictions as well as simulations.

Spacing (TI = 10%) TI (Spacing = 5D)

Yaw Offset Schedule/Simulation Case 3D 5D 7D 5% 10% 15%

Static-Optimal/Theory 4.17 1.08 -1.67 3.67 1.08 0.54

Static-Optimal/Simulation 4.04 1.42 -0.54 2.94 1.42 0.99

Dynamic-Optimal/Theory 4.47 3.18 2.04 5.18 3.18 1.56

Dynamic-Optimal/Simulation 4.33 3.24 2.16 4.53 3.24 1.63

Table 2. Total baseline wake losses compared to freestream operation for a two-turbine array with different turbine spacings and turbulence

intensity values, assuming uniformly distributed wind directions.

Spacing (TI = 10%) TI (Spacing = 5D)

3D 5D 7D 5% 10% 15%

Wake Losses 4.62% 2.36% 1.52% 2.74% 2.36% 2.04%

5 Discussion and Conclusions

This paper expanded on previous work investigating the optimization of wake steering control with yaw and wind direction

uncertainty resulting from dynamic wind directions, particularly the research of Quick et al. (2017) and Rott et al. (2018). The

present research examined the hypothesis that for steady-state wake models representing turbulent wind conditions, the most

relevant wind direction input should contain only the low-frequency wind direction component without the turbulence already5

captured by the wake model. First, the low-frequency wind direction was defined by comparing the power spectra of wind

directions measured in the field and wind directions simulated using CFD for a fixed large-scale mean wind direction. Next, we

generated stochastic time series representing the low-frequency and turbulent wind direction components. Although previous

work examined the impact of yaw uncertainty and wind direction uncertainty separately, here wake steering strategies were

optimized for combined yaw and wind direction uncertainty, estimated by comparing the yaw position resulting from realistic10

yaw and yaw offset control simulations with the low-frequency wind direction. However, it was found that wind direction

uncertainty caused by wind direction variability, examined by Rott et al. (2018), is the dominant source of uncertainty.

For a two-turbine array, the theoretically predicted performance of wake steering control strategies optimized considering

yaw and wind direction uncertainty was compared to results from realistic yaw offset control simulations, showing generally

good agreement. However, some discrepancies caused by unmodeled yaw controller dynamics exist. As discussed in Sec-15

tion 3.3, the discrepancies are related to the use of indirect yaw control; if the wind direction varies enough while the turbine is

yawing, the yaw controller can stop yawing before the intended offset is reached. The agreement between theory and simulation

could be improved by switching to direct yaw control, where exact yaw adjustments are prescribed by the controller.
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An analysis of wake steering in dynamic wind conditions for different turbine spacings revealed that as the turbine separation

increases, yaw and wind direction uncertainty has a more detrimental impact on the achievable gains in energy production.

However, as the turbine spacing increases, the relative improvement in energy production when accounting for yaw and wind

direction uncertainty in the yaw offset optimization process increases as well, as shown in Table 1. The impact of the degree

of wake expansion and recovery on wake steering with wind direction variability was examined by varying the turbulence5

intensity for a fixed turbine spacing. Unlike the dependence on turbine spacing, the relative improvements to wake steering

that are achieved by considering wind direction and yaw position uncertainty in yaw offset optimization do not exhibit a strong

relationship with turbulence intensity. The greatest improvement after switching to dynamic-optimal yaw offsets occurs for

TI = 10%, the middle turbulence level that was investigated. Further research efforts are needed to determine how the amount

of wind direction variability depends on turbulence intensity as well as mean wind speed and atmospheric stability, beyond the10

8 m/s, neutral stability case examined here.

Although not considered in this research, in addition to making wake steering more robust to wind direction and yaw position

uncertainty, efforts can be made to reduce the uncertainty. For example, short-term forecasts of wind direction provided by

remote-sensing instruments can be used by the wake steering controller to target more relevant future wind directions rather

than reacting to past measurements of the wind conditions. Another strategy for reducing uncertainty in the wind direction used15

by the controller is collective consensus control, discussed by Annoni et al. (2019), where wind direction measurements from

individual turbines in a wind farm are aggregated to form a more reliable wind direction estimate at each turbine. Collective

consensus control can also be used to provide wind direction forecasts to downstream turbines.

Additionally, more realistic wake models are being developed based on new insights into the physics of wake steering that

may impact how susceptible wake steering is to wind direction variability. For example, the curled wake model presented by20

Martínez-Tossas et al. (2019) and the Gauss-Curl hybrid wake model developed by King et al. (2020), inspired by observations

from CFD simulations discussed by Fleming et al. (2018), consider how trailing vortices resulting from yaw misalignment

interact with the wake to not only deflect it but change its shape. Fleming et al. (2018) discuss how the trailing vortices

created by multiple turbines can merge, creating large-scale structures in the flow that could potentially be used to entrain

higher energy flow from above the wind farm. It is likely that such “flow control” strategies are more robust to wind direction25

variability because they increase energy production over a large region of the wind farm rather than solely relying on deflecting

individual wakes away from downstream turbines. However, future work is needed to investigate these more advanced wind

farm control techniques and how they perform in dynamic wind conditions.

Finally, we investigated a two-turbine array in this study because it serves as a simple example for field validation. In follow-

on research, the yaw offsets and change in energy predicted by the models and simulations presented here will be compared to30

values obtained from wake steering field experiments, such as the campaign described by Fleming et al. (2019), to determine

how accurately the proposed methods model wake steering in practice. As revealed in Section 4.1, longer averaging times

used in the data analysis can hide some of the trends in the change of energy against wind direction predicted by the theory.

Therefore, averaging times on the order of 1 minute should be considered for field validation.
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