
Author Comments.  

When a WES paper is published, the journal editors completely retype set the paper. They rescale 
figures etc.. All of the figure sizes are intended for the final paper rather than the draft. For these 
reasons, the figures are all over the place etc.. The final visual presentation of the paper is determined 
by the journal, not me.  

 

Referee #1 
Thank you for the detailed comments on the paper. It may appear in the following section that I am 
hostile to your comments, this is not the case, I appreciate the feedback even if I have responded in an 
argumentative fashion in the following sections.  

Please note that while the experiments mostly inspect dynamic stall, my literature review places 
dynamic stall in the wider context of unsteady aerodynamics.  

Comment regarding training method.  

I would like to start with the topic of a machine learning approach to unsteady aerodynamics. For my 
description to make sense it is important to understand that methods such as neural networks are 
trained in steps using stochastic gradient descent. In short, this means that we put a data point into the 
network, we then measure the difference between the correct output and the output of the current 
configuration of the model. We then slightly nudge the model in the direction of creating the correct 
output. A deep learning neural network architecture has enormous flexibility, while this is great because 
we can approximate any function, by definition most of these functions will be the wrong function. To 
constrain the neural network from all possible functions down to something that looks like an 
aerodynamic response of an airfoil, we need a good deal of data. As you rightly point out, it would be 
silly to attempt this with CFD.  

Here is the important part of the argument. Because we can use stochastic gradient descent to train the 
model, we don’t need to use the same input data over the whole training process. We can use low 
resolution data in the early training stages to bring the neural network into the correct neighbourhood. 
Out of the all of the possible functions that a neural network can create, the poor quality approximation 
of the aerodynamics which lacks turbulence etc. is still much closer to CFD or field data than all possible 
outputs. Is it a good model at this stage? No. But it is relatively well behaved, it could do a nice 
impersonation of the Beddoes Leishman model for instance.  

What now? Once we have a model that contains something that looks roughly like unsteady 
aerodynamics, we can begin refining the model with a much smaller amount of higher quality data. To 
use a metaphor, the poor quality data got us into the neighbourhood like a bad quality street map, the 
better quality data is like a good quality street map of a very limited area, it helps us find the right 
street.  

The ideas that I have presented here have a precedent. Jeremy Howard was able to win a neural 
network image identification challenge using much smaller amounts of computational time by first 
training the neural network on 16bit images and then only training on 256 right at the end.  



The important question is of course: will this all work? My answer is, I don’t know. 3D effects, different 
time scales all these things will make it a difficult model to train. However, I believe that the innovations 
of modern machine learning approaches have opened this new avenue of model building. My 
exploration of this topic was intended communicate the existence of this new avenue rather than 
prescribing an exact solution to unsteady aerodynamics.  

Comment Regarding Airfoil stall is bad.  

I understand your point but I disagree.  

1. Stall reduces lift. We see vortex generators in the inner and outer regions of wind turbines to 
mitigate this effect for increased power production and noise reduction (for this I only have 
anecdotal evidence admittedly)  

2. Stall causes phase lags which can result in instabilities. ( I will come back to this point) 
3. Review papers such as Holierhoek, J. (2013). An Overview of Possible Aeroelastic Instabilities for 

WIND ENGINEERING, 44(0). Make a very long list of instabilities, a great deal of them being stall 
driven.   

4. While smaller wind turbines were stall regulated, the design methodology of modern wind 
turbines uses pitch and variable speed to regulate wind turbines. In part due to the instabilities 
highlighted in point three. In short, modern wind turbines seem to be designed to avoid using 
stall as a regulation of lift which seems to be reflect that on balance, wind turbines stall is bad.  

While there may be certain load cases where as you pointed out, stalling of the blades will reduce 
extreme loads, in the very next sentences I provide the context for the statement. While you do 
make an interesting counter point, I would prefer not to change the sentence. With respect, the 
boundary case you present does not present a strong enough argument to say: “simply not correct”. 
It’s not a critical premise in a syllogism, I believe that the balance of the argument is on my side, and 
I believe that it is a succinct way open opening the topic.  I would happily hear an expansion of your 
point, perhaps I have missed your point.  

 

  



Stall Flutter 

I will clarify this point with a few references to literature, because their explanations are far better than 
mine. Stall flutter doesn’t imply dynamic stall. In fact, while you may get a large response from deep 
stall, light stall will tend to drive down the aerodynamic damping in the torsional direction.  If you look in 
the figure below you can see the hysteresis loops have much larger negative damping than the deep 
stall case, you alluded to this effect in your comments. If you read the paragraph carefully I clearly state 
that I am talking about light stall. In page 303 of the reference, the distinction is made between stall 
flutter and dynamic stall, though it is my experience that stall flutter can be applied as a named to many 
many different phenomena. I believe my description was fairly careful.  

  

 

McCroskey, W. J. (1982). Unsteady Airfoils. Annual Review of Fluid Mechanics, 14(1), 285–
311. https://doi.org/10.1146/annurev.fl.14.010182.001441 

Regarding phase shift, remembering that work or the energy absorbed or dissipated is defined as the 
boundary integral of these loops.  

 

This is just one way of looking at the equations. Another way is the decomposition of the lift into 
complex values in the same manners as Theodorsen. Carta and Niebanck sum it up neatly. 



 

Carta, F. O., & Niebanck, C. F. (1969). Prediction of rotor instability at high forward speeds. 
(Vol. III, Stall). 

I draw your attention to formula 18 where the unsteady component is responsible for the work done in 
a single degree of freedom system. This means that the phase shift between the angle of attack and the 
moment leads to aerodynamic damping.  

The following paper dives into this topic in greater detail. This and another paper were provided as 
citations in the offending sentence to give this very context.  

Bowles, P. O., Corke, T. C., Coleman, D. G., Thomas, F. O., & Wasikowski, M. (2014). 
Improved Understanding of Aerodynamic Damping Through the Hilbert Transform. AIAA 
Journal, 52(11), 2384–2394. https://doi.org/10.2514/1.J052630 

I find the description in terms of 
ௗ஼೗

ௗఈ
 or 

ௗ஼೘

ௗఈ
 less succinct. The phase difference description is 

applicable to different modes of instability.  

 

 

 

 



Cycle to Cycle Variations.  

While in the long run the system may oscillate around an attractor it can have large departures from 
that attractor in the short run, do we still want to call that cycle stable? The work done formula 
presented on the previous page presents the boundary integral over a cycle, not over a long run range 
of cycles, so stability is determined cycle to cycle and can even be determined with in the cycle 
referencing Bowles and Corke again.   

Towing Tank Outlier Case 

The towing tank case presents data on a single pressure port because as you said, we didn’t have full lift 
available. In the limited part of the aerodynamic data that I had available, there weren’t any good 
examples to demonstrate the outlier detection.  

Figure 22 

There is only a small different between the clusters this was already highlighted but I have extended the 
comment. The misplaced reference was fixed.  

Figure 12 

The colors represent z-scores- it’s standardized, added comment to caption.   

Figure 14-16 

The probability distributions are presented with minimum possible detail.    

Section 4.1  

I agree. I have moved it and I believe it reads better now.  

Page 15 Complicated Case 

From the limited set of data available to me, this demonstrated the effects best.   

Unnecessary figures.  

I removed some figures.  

  



Referee #2 Tuhfe Gocmen 
Section 3  

1. Fixed  
2. Moved to later but final placement will be done by the editors.  
3. The clustering algorithm receives a time series as input.  
4. A full study about the downsampling is published in my students thesis I have highlighted this.  

Section 4.  

- Agreed and rearranged.  
- Regarding the CNN architecture. I am in a split mind. I used the generic pictures to try and 

educate the reader in broad terms.  
- You are right about the uncertainties on the training data. This is why I said I assume the training 

data is correct. I did a few trials seeing how different my clicks were on the same figure, it was 
less than the difference in the convection speeds by a good margin. It’s not a perfectly satisfying 
answer, but the best approach I could think of. The approach is intended to be used to analyse 
experimental data. If it was an online system, I would definitely want to be more rigorous.  

- I added some explanations of the training process.  

Regarding my suggestions for future unsteady aerodynamics models, I was talking in the sense of future 
work and where ML could be applied, it would be a different model completely however.  

The code example will have some of the dataset.  



Cartographing dynamic stall with machine learning
Matthew Lennie1, Johannes Steenbuck1, Bernd R. Noack2, and Christian Oliver Paschereit1

1Technische Universität Berlin, Institut für Strömungsmechanik und Technische Akustik
2LIMSI, CNRS, Université Paris-Saclay, Bât 507, rue du Belvédère, Campus Universitaire, F-91403 Orsay, France

Correspondence: Matthew Lennie (matthew.lennie@tu-berlin.de)

Abstract. Airfoil stall is bad for wind turbines. Once stall has set in, lift collapses, drag increases and then both of these forces

will fluctuate strongly. The result is higher fatigue loads and lower energy yield. In dynamic stall, separation first develops

from the trailing edge up the leading edge, eventually the shear layer rolls up and then a coherent vortex forms and then sheds

downstream with it’s low pressure core causing a lift spike and moment dump. When 50+ experimental cycles of lift or pressure

values are averaged, this process appears clear and coherent in flow visualizations. Unfortunately, stall is not one clean process,5

but a broad collection of processes. This means that the analysis of separated flows should be able to detect outliers and analyze

cycle to cycle variations. Modern data science/machine learning can be used to treat separated flows. In this study, a clustering

method based on dynamic time warping is used to find different shedding behaviors. This method captures that secondary and

tertiary vorticity vary strongly and in static stall with surging flow; the flow can occasionally reattach. A convolutional neural

network was used to extract dynamic stall vorticity convection speeds and phases from pressure data. Finally, bootstrapping was10

used to provide best practices regarding the number of experimental repetitions required to ensure experimental convergence.

Keywords. Wind Energy, Machine Learning, Unsteady Aerodynamics, Dynamic Time Warping, Clustering, Deep Learning,

Data Science, Multi-Dimensional Scaling, Dynamic Stall, Dynamic Stall Vortex
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1 Introduction

Beyond small angles of attack, airfoil boundary layers have to contend with strong adverse pressure gradients. When the15

boundary layer doesn’t have enough momentum, a flow reversal occurs and eventually the flow separates from the surface of

the airfoil (Abbott and von Doenhoff, 2012). Once this occurs, viscous effects dominate and any assumption of potential flow

falls apart (Schlichting and Gersten, 2016). This means that modeling separated flows has always been a challenging task.

Even in the age of Computational Fluid Dynamics (CFD), attempts to simulate stall with Unsteady Reynolds Averaged Navier-

Stokes (URANS) have not yet yielded good quality results (Stangfeld et al., 2015; Rumsey, 2008; Rumsey and Nishino, 2011).20

Large Eddy Simulations (LES) show promise but are still too computationally expensive to be used as an ordinary design and

analysis tool (Rumsey and Nishino, 2011). In practice, in the wind industry, semi-empirical models (Andersen et al., 2007;

Wendler et al., 2016; Holierhoek et al., 2013) are still the main analysis tools for stalled airfoil flows. These models have to

make simplifications to be viable, the key questions are: What information is lost?

Stall is the term used to describe a broad range of phenomena that occur during boundary layer separation. There are two25

broad characteristics that help us understand the myriad of terms used within literature;

1. A flow reversal in the boundary layer resulting in the stream-wise streamline no longer following the surface of the airfoil

(Abbott and von Doenhoff, 2012). The region of flow reversal will usually have a neutral pressure.

2. The presence of instabilities, such as shear layer instabilities or wake mode (vortex shedding) instabilities (Hudy and

Naguib, 2007). These instabilities make the pressure footprint on the airfoil highly unsteady.30

While the following explanations of the categories of stall will dive deep into details, these two features remain the basic

underlying phenomena.

Let us begin by considering a stationary airfoil. As the angle of attack increases, the airfoil will encounter trailing edge (light)

stall (McCroskey, 1981). Light stall will develop at moderate angles of attack and is more likely to be present on airfoils with

a well rounded leading edge (Greenblatt and Wygnanski, 2002; Leishman, 2006). The adverse pressure gradient overcomes35

the momentum of the boundary layer somewhere downstream of the point of minimum pressure (Abbott and von Doenhoff,

2012). The vertical size of the viscous region will be in the order of the airfoil thickness (McCroskey, 1982). A well rounded

leading edge will result in a smooth development of trailing edge stall, whereas a sharp leading edge may cause trailing edge

stall to be by-passed rapidly (Leishman, 2006). The separated region won’t contribute to the lift implying a smooth roll off of

the lift, increase of drag, and a nose up moment. Even on a stationary airfoil, the boundaries of the separated region will be40

unsteady (Mulleners and Rütten, 2016) and will vary along the span.

At higher angles of attack, deep stall will develop on the airfoil (McCroskey, 1982). Deep stall is characterized by separation

occurring at the leading edge region. As the angle of attack increases, the point of minimum pressure will move closer to the

leading edge as the stagnation point moves more towards the pressure side of the airfoil (Abbott and von Doenhoff, 2012).

Here the airfoil leading edge geometry is critical as a tight radius will cause a stronger adverse pressure gradient. Even though45

the stall occurs the at the leading edge, the definition of "leading edge stall" usually involves a laminar bubble bursting but
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the mechanism can more simply be trailing edge stall that engulfs the entire suction side of the airfoil (Leishman, 2006). In

the steady case, deep stall will cause a plummet in the lift being produced and a sharp increase in drag. The vertical size of

the viscous region will be in the order of the airfoil chord (McCroskey, 1982). The viscous region will be home to various

instabilities such as shear layer mode or wake mode shedding (Hudy and Naguib, 2007); essentially different types of shedding50

phenomena leading to fluctuating airfoil forces.

Flow that detaches from the leading edge can reattach due to transition of the shear layer (Abbott and von Doenhoff, 2012)

or a re-thickening of the airfoil e.g. wind turbine airfoils can have dents due to manufacturing (Madsen et al., 2019). This

phenomenon is call a separation bubble. Bubbles are a sensitive phenomena and small changes to boundary conditions can

make them disappear completely (Ward, 1963). Inflow turbulence, leading edge surface erosion, fouling or ice will often cause55

forced transition (Pires et al., 2018). Earlier transition will tend to reduce or remove bubbles (Ward, 1963). Even without

outside influences, bubbles are an unstable phenomena due to shear-layer disturbances which lead to transition and eventual

reattachment or bursting (Kirk and Yarusevych, 2017). For certain older airfoil families i.e. NACA 63-2nn, the presence or

lack of a bubble may cause an airfoil to switch between leading and trailing edge stall this phenomenon is known as double

stall (Bak et al., 1998). While double stall might no longer be as relevant on new generations of airfoils on wind turbines with60

pitch regulation, bubbles can affect stall behavior and the eventual performance of the airfoil.

What happens when the airfoil starts moving? When an airfoil moves from from low angles of attack into light stall regimes,

there will be a phase lag between the angle of attack and the separation. This effect becomes stronger as the airfoil pitches

faster and can be seen as a resistance to stall when compared to the stationary case. One can interpret this effect in a few ways:

1. The wake hasn’t yet forgotten the previous flow arrangement, meaning the effective angle of attack is still catching up65

with the geometric angle of attack, i.e. circulatory lift delay.

2. The current boundary layer still has the higher momentum from the former more favorable flow state.

3. The surface of the airfoil accelerates the boundary layer during the motion.

When moving from light stall angles of attack down to attached flow, the flow attachment is delayed for the same reason. This

appears in polar diagrams as hysteresis loops but can also be interpreted as a dangerous phase difference between the angle of70

attack and the lift, moment and drag. In this context, phase differences mean that the structure will absorb or dissipate energy

(Bowles et al., 2014; Lennie et al., 2016). In short, this phase difference can lead to single degree of freedom pitch flutter also

known as stall flutter (McCroskey, 1982). If the unstable nature of separated flows leads to the extent and phase of light stall to

be variable between cycles of pitching, then it follows that the aeroelastic stability of the airfoil will also be variable between

cycles.75

When an airfoil moves rapidly from attached flow into deep stall, it creates an effect known as dynamic stall. The separation

moves rapidly from the trailing edge up to the leading edge, the shear layer becomes unstable and then rolls up into a vortex

with a strong low pressure core (Mulleners and Raffel, 2013). The vortex then travels downstream causing a spike in low

pressure across the airfoil which presents as a strong spike in lift and a strong dump in the moment. A full description of
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dynamic stall would be extraneous here but excellent reviews can be found in McAlister et al. (1978); McCroskey (1982,80

1981); Leishman (2002); Carr (1987) and more modern experimental works can be found in Granlund et al. (2014); Mulleners

and Raffel (2013); Mulleners et al. (2012); Mulleners and Raffel (2012); Muller-Vahl et al. (2017); Müller-Vahl et al. (2015);

Stangfeld et al. (2015); Balduzzi et al. (2019); Holst et al. (2019)). For the discussion here, it is sufficient to note that the

strength and phase of the leading vortex varies, so will the aeroelastic stability.

To review the previous section:85

1. There are different types of stall that occur differently in static or dynamic conditions.

2. There are complex instabilities that lead to stall being variable in both space and time.

3. Differences in stall behavior will also lead to changes in aeroelastic stability.

So how are these variations treated?

Treating stall as a stochastic process is a relatively recent idea. As early as 1978, one sees acknowledgment that stall is90

variable in literature such as McAlister et al. (1978); an experimental report it took measurements of 50 cycles of a pitching

airfoil undergoing dynamic stall to ensure convergence of the lift. Only more recently have researchers have begun to address

the spatial and temporal variability of stall in experimental work. Mulleners and Raffel (2013) were able to show that dynamic

stall could be described by two stages of a shear layer instability, and that the development of these instabilities varied across

cycles. In light stall, it was shown that the trailing edge separation region had two modes, resulting in either a Von Karman95

shedding pattern or a stable dead water zone (Mulleners and Rütten, 2016). The separation pattern fluctuates unreliably and

when vorticity is present, the vortex convection speed is also variable.

Experimental data from Manolesos serves as a detailed reminder that stall happens in 3 dimensions (Manolesos et al., 2014;

Manolesos, 2014). Even on a simple 2D wind section, flow visualization showed four different separation patterns (Manolesos,

2014). These patterns are referred to as stall cells, and create complicated vortex patterns on and behind the airfoil. Even100

more complicated still are the separation patterns on wind turbine blades due to the changes of airfoil shape, twist and chord

length (various surface visualizations can be found in Manolesos (2014); Lennie et al. (2018); Vey et al. (2014)). Wind turbines

uniquely experience very high angles of attack; where the spatial patterns complicate further (Skrzypi et al., 2014; Skrzypinski,

2012; Gaunaa et al., 2016; Lennie et al., 2018). The picture that should be now clear is that: stall is a continuum of behaviors

rather than a small number of defined cases.105

So variability is rampant in stall. How should we measure and interpret airfoil stall behavior? It should be clear given

the discussion so far that simple averaging or even phase averaging will remove important data (Riches et al., 2018). The

cycle to cycle variations and outliers are an important part of the dataset and shouldn’t be smeared out. Manolesos (2014)

suggested conditional averaging to produce better airfoil polar diagrams. Mulleners and Rütten (2016) also performed a kind

of conditional averaging using the orbits of POD coordinates displayed onto recurrence plots. Furthermore, Holst et al. (2019)110

also suggests a binning approach, especially when considering very deep stall. Conditional averaging is an interesting approach,

but the important question becomes, what condition is appropriate to split the data?
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Fluid dynamics has always been a natural case for dimensionality reduction. In particular, there is abundant literature using

Singular Value Decomposition (SVD) based methods such as POD/PCA (Taira et al., 2017), DMD (Schmid, 2010; Kutz et al.,

2015; Brunton et al., 2015), SPOD (Sieber et al., 2015). These methods generally do not perform well in cases with any115

kind of traveling wave behavior (Taira et al., 2017; Riches et al., 2018; Hosseini et al., 2016). The reason for this lies in the

creation of fixed spatial functions/basis functions. If the shedding is consistent, the system will be sparse, a sensible reduced

order system can be found. However, introduce phase jitter and the small number of basis functions no longer does a good

job in representing the shedding; so more mode shapes are needed. Even for a simple cylinder shedding, up to 50 modes were

required to represent the system reasonably well (Loiseau et al., 2018). Dynamic stall convection velocities vary continuously120

(Mulleners and Rütten, 2016), therefore we cannot expect a sparse set of spatial functions to represent the system well.

Fortunately the SVD and simple averaging type methods are not the only forms of dimensionality reduction techniques

available. It turns out the dimensionality reduction is a cornerstone technique of machine learning; an interactive summary can

be found in Christopher Olah’s website (Olah, 2019). In this paper, we will show how Multi-Dimensional Scaling (MDS) (Borg

and Groenen, 2007) and clustering (Maimon and Rokach, 2006) can be used as a reliable analysis technique for airfoil stall.125

Nair et al. (2018) have demonstrated one approach to clustering for separated flows in the context of cluster-based feedback

control. Cao et al. (2014) also demonstrated the use of time series clustering in the context of combustion. The advantage of

cluster type methods is that they break the data down into similar neighborhoods rather than assuming that a set of global basis

functions. Both Loiseau et al. (2018) and Ehlert et al. (2019) have both demonstrated that Local Linear Embedding (LLE), a

neighborhood type method, can create a sparse representation of the system.130

The MDS and clustering methods rely on a distance metric to gauge the similarity between the time series of lift of various

experimental repetitions. As already discussed, the data will contain phase jitter which may cause simple distance metrics such

as to overestimate the difference between cycles (Ratanamahatana and Keogh, 2004). The problem is amplified by the strong

gradients present around the time of vortex convection. This is a common time series problem and Dynamic Time Warping

(DTW) was created for this purpose (Morel et al., 2018; Ratanamahatana and Keogh, 2004). DTW allows for the time series to135

be stretched and squashed a small amount to allow for an effective comparison between experimental repetitions. The approach

of using a cycle to cycle distance metric (in this case DTW) is different to making time independent clusters used in the work

of Nair et al. (2018). The difference in approach comes from intended application.

Methods such as clustering and MDS belong to a branch of machine learning called unsupervised learning, i.e. learning

from the data without having the answer ahead of time. Supervised learning uses a labeled dataset to learn a mapping between140

input and outputs. Once a model is trained, we can then map new data. Furthermore, the concept of transfer learning exploits

the fact that once a model has been trained for one task, it can be easily re-molded to complete similar tasks (Brownlee, 2017).

In practice this means that a neural network can be trained for a specific computer vision task and then easily be reused i.e.

a network originally trained for classifying breeds of dogs within photographs can be easily reused on aerodynamics data

(the FASTAI project has a lecture series expanding at length on this theme (Howard and Others, 2019)). In this paper, we145

will demonstrate the utility of transfer learning by using a pre-trained convolutional neural network (CNN) to extract vortex

convection speeds from airfoil pressure plots. A huge challenge of working with experimental data is that it is exceptionally
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difficult to extract features from data in an automated fashion. One example of this is extracting the convection speed of a

vortex from pressure data, to the human eye it is a fairly obvious stripe in the pressure plot. However it is challenge to extract

this feature automatically, however computer vision machine learning is perfect for such cases. While the vortex convection150

speeds are themselves an interesting result, the example should demonstrate to readers the incredible power of using pre-

trained neural networks for extracting features from data. Deep neural networks are becoming increasingly used within the

wind industry for applications e.g. for predicting rotor icing (Yuan et al., 2019), power-curve estimation (Kulkarni et al., 2019)

or even for rotor-blade inspections (Shihavuddin et al., 2019).

2 Experimental Data155

The analyses shown in the rest of this paper relies on two existing datasets. The following introductions aim to provide some

context but do not exhaustively describe the experimental setups or the data they retrieved. The original references provide a

far more detailed view into the set ups.

2.1 Wind Tunnel

The first dataset was collected by Müller-Vahl (2015). Extensive unsteady aerodynamic experiments were conducted in a160

blowdown wind tunnel powered by a 75 kW backward bladed radial blower. The test section is depicted in Figure 1 and is

610mm per 1004mm. The model is mounted on two circular, rotatable plexiglas windows and the wind speed is measured

with two hot-wire probes. The pressure around the model is captured by 20 pressure sensors on both suction- and pressure-side

(40 in total). The NACA 0018 airfoil model has two control slots at 5% and 50% chord for additional blowing. The model has

a chord length of 347mm and a span of 610mm. More information about the tunnel can also be found in Greenblatt (2016)165

and excerpts of the dataset can be found at "https://www.flowcontrollab.com/data-resource".

The wind tunnel data covers a comprehensive collection of experiments with varying boundary conditions. It ranges from

static baseline investigations over oscillating pitching and variation of free stream velocity (and a combination of both). In

order to manipulate the boundary layer, blowing was added. One peculiarity of this data set is that boundary layer tripping can

be induced by the taped over blowing slots on the suction side of the airfoil. For the purposes of our analysis, this detail was170

not critical.

2.2 Towing Tank

The second dataset comes from a large towing tank facility at the Technische Universität Berlin. The water tank dimensions

are 250m length, a width of 8.1m, and an average depth of about 4.8m. A carriage runs on rails, towing a rig (and the model)

through the water with a maximum speed of 12.5ms−1. On it the complete measuring system is installed. The rig consists of175

to side plates with a length of 1.25m, a height of 1m, and a thickness of 0.035m prohibiting lateral flow around the model.

In between the side plates, the model, with a span size up to 1m can be inserted at arbitrary angles of attacks. The model

resembles a flat plate with an elliptical nose and blunt trailing edge. It has a span of 0.95m, 0.5m chord a thickness of 0.03m.
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Figure 1. View of the test section showing the pitching mechanism and the approximate location of the airfoil model. From Müller-Vahl

(2015).

The surface is covered in aluminum and 12 pressure ports are inserted at the specified locations in Figure 2. The airfoil model

is an unusual form but only some qualitative demonstrations are made with this dataset. A more detailed description is given180

in Jentzsch et al. (2019).

Figure 2. Cross section of the mounted flat plate. Red dots indicate position of pressure sensors. From Jentzsch et al. (2019).

3 Machine Learning Approaches

3.1 Dynamic time warping, clustering and multi-dimensional scaling

Before being able to compare repetitions of the experiments, we have to have a distance metric in order to numerically assess

similarity. Dynamic time warping is a distance measurement that allows for squashing and stretching of the time series in order185

to reach a best fit. The simplest interpretation is that Euclidean distance measures directly vertical between the time series and

that conversely DTW the measurement is allowed to have a time component to find the lowest possible distance (Figure 5). In
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practice, it’s comparable to taking a winding path through a grid where each box corresponds to a time step from the two paths

being compared (see Figure 5). The general rule of thumb is that a small amount of warping is a good thing, a lot can end up

distorting reality. Therefore, DTW algorithms are usually implemented with either global or local constraints, these constraints190

have a bonus of increasing the computational efficiency.

A useful extension to the DTW algorithm creates a composite of multiple time series called a centroid (see Figure 3).

Normally the problem with dynamic stall time series is that the vortex shedding is smeared out when simple means are taken.

The onset of static stall can also appear to be a smooth process rather than a sudden separation that occurs at variable phases

across different cycles of the experiments (see Figure 3). The barycenter extension to DTW creates an average that preserves195

these features. This means that the resulting centroid will be far more representative of a real stall process.

Figure 3. soft-DTW centroid for clustered time series with strong phase jitter.

For this research, the soft-DTW algorithm was used to compute the barycenter and was taken from the python module tslearn

by Tavenard (2008). The algorithm was first proposed by Cuturi and Blondel (2017). To create the clusters, it is necessary to

compare every time series within a group to each other. This means the complexity of that the algorithm is O(N2). Two steps

were taken to scale the process; firstly the data was down-sampled thus reducing "N" and secondly the code was scaled using200

DASK (Dask Development Team, 2016). DASK is a python library designed to parallelize standard python functions onto

cluster architecture. The second step may at first appearance seem extreme, in practice the power required was more than

a standard desktop but one or two compute nodes were more than sufficient. For the examples computed in this paper, 1-2

workers (nodes) would process a single experiment within a few minutes. A combination of parallelization and downsampling

was used in this study.205

Reducing the number of samples gives a significant speed boost as the complexity of the distance measurement is based

on the number of time steps. While reducing the sample size, the spectral resolution is reduced about the same factor. The

frequency of the expected phenomena limits the amount of downsampling. In order to improve the cluster results the data is, in

addition to downsampling, filtered. Dynamic Time Warping is noise sensitive as the algorithm shifts and bends the time series

in order to match similar values. Fortunately, tuning these steps is not difficult as a visual inspection of the resulting data will210

indicate whether the algorithm is making sensible groups or not. This topic is explored in greater detailed in the related work

from Steenbuck (2019).
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Figure 4. Time series clustering algorithm

Clustering is a method of dimensionality reduction based on the principle that the dataset can be efficiently described by a set

of subgroups. These subgroups are formed on the assumption that the description of the cluster is a useful enough generalization

for each member of the cluster. This means that the groups are formed on the basis of similarity. Clustering is an unsupervised215

method in the sense that there is no correct answer defined ahead of time. Usually unsupervised methods will reveal underlying

data structures. This is not to say that we can just passively use these algorithms and useful results will ensue. Each clustering
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Figure 5. Euclidean distance vs DTW distance between two time series

algorithm will perform well for some datasets and will deliver nonsense for others, care is required. To ensure good results,

users will usually have to tune hyper-parameters for the dataset, the simplest of these parameters is the number of clusters. A

first estimation about a reasonable number can be made from inspecting the dendogram or the MDS plot as described below.220

Another approach is to calculate the mean silhouette score of all elements for a range of cluster numbers. The silhouette score

is calculated by comparing the distance from a data element to its own cluster centre to the distance to the centre of the closest

neighboring cluster. Large scores correspond to better clusters.

Figure 6. Mean of silhouette scores per cluster number.

For this application hierarchical clustering turned out to produce groups that were physically meaningful and shared features.

Hierarchical clustering creates links between data points (in our case a single cycle of a dynamic stall test) to form a dendrogram225

as seen in Figure 4. The dendrogram is then cut at a height which results in a given number of clusters. As longer branches

indicate bigger differences, the height of cutting should be chosen so, that the longest branches are cut. The clustering was

implemented using scipys (Jones et al., 2019) hierarchical clustering algorithm (scipy.cluster.hierarchy) with the ward method

as a measure for distances between newly formed clusters. Hierarchical clustering was chosen after exploratory analysis showed

that other basic algorithms such as KMeans tended to perform poorly for this data.230
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Another way of presenting the data is to use Multidimensional Scaling (MDS) (Borg and Groenen, 2007). MDS essentially

takes a cloud of data points with high dimensionality and squashes the points onto a low dimension plane while attempting to

maintain the distance between the points. In our case, each time step of a single series represents a dimension or feature which

results in dimensionality that is incredibly difficult to interpret. Now take each series as a single data point and then squash

it onto a 2D plane, and the data reveals an underlying structure. We can then color each point and use a k nearest neighbors235

classifier to color the background as seen in Figure 4. The resulting point cloud (hopefully) inherents distinct clusters. The

number of clusters encounterd here, gives a good first estimation about a reasonable cluster number for further analysis. So

instead of creating a chaos of overlapping time series, the data appears as a low dimensional representation image with each

color representing time series with similar behavior. In some circumstances, the coordinates of the image will even have a clear

physical meaning i.e. dimension 1 could correlate with Reynolds number. A broad overview of the algorithm used in this paper240

can be found in Figure 4.

An example of the cluster analysis is depicted in Figure 4. In here, the time series of each cluster are represented by their

centroid which is of their cluster at the given time step. We can see that each of the centroids represents a slightly different

behaviors particularly during the secondary vortex shedding. Each cluster has a small uncertainty band shown by the standard

deviation. As the dataset can be represented by three centroids instead of trying to compress the entire data into a single average,245

the representation is concise but still provides a more accurate view of the process.

3.2 Convolutional Neural Networks

Convolutional layers are the special trick that have turned neural networks into a wildly effective computer vision tool

(Krizhevsky et al., 2012). Convolutional layers allow pictures to maintain their structure and then apply shape filters over

the pictures. In the first layer of the network, the filters will be detecting edges, slow gradients and color changes (Zeiler and250

Fergus, 2013). With proceeding layer, the filters begin to look like natural features such as: a birds eye, a bicycle wheel or a

door-frame. Each of these filters is created during the training process where large datasets are fed through the network and the

error is propagated backwards through the network to allow for incremental improvement.

We have discussed here neural networks with a high number of layers. This is referred to as deep learning. Deep learning

is a field that has recently become a reality due to the abundance of graphical processor units (GPU) and more recently tensor255

processing units (TPU). Platforms such as PyTorch or TensorFlow provide high level front ends in Python. The front ends

just generate code to handle low level interactions and optimizations. Furthermore, it is common practice to publish well

performing neural network architectures that are already pre-trained (transfer learning). Cheap computational power, easy high

level coding and the advent of transfer learning means that these incredibly powerful tools are now available for aerodynamic

applications like detecting boundary layer transition from microphone data (see Figure 7).260

Dynamic stall vortices have a strong low pressure core which causes a lift overshoot and moment dump. When dynamic stall

vortex data is averaged over 50+ cycles, it tends to show dynamic stall vorticity as far more clean and coherent than is the case

for a single cycle. The strength of each vortex, its convection speed and onset of convection vary between cycles. This leaves
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Figure 7. Identification of a boundary layer state using a recurrent neural network (data from Bak et al. (2010)) (see code example

https://github.com/MatthewLennie/Aerodynamics)

the question: how much do dynamic stall vortices convect differently? Do boundary conditions like the reduced frequency

affect the variability?265

The dynamic stall vortex feature of a pressure vs time plot is easily distinguished by the human eye, however, pulling this

feature from the data is rather difficult. The authors attempted the task with a number of more simple approaches such as

simply finding the peak at each chord-wise position, a Hough transform, or even using a Markov Chain Monte Carlo sampler

to put sample puts onto the stall vortex. They all worked for a few cases but failed to generalize and in the end did not perform

well enough to be usable. Each vortex is different and therefore manually creating a rule to automatically pull the dynamic stall270

vortex feature from the data wasn’t trivial. However, this is a standard computer vision task very similar to a driver-less car

identifying a cyclist in a picture. Fortunately, heavy development in the computer vision field has resulted in some incredibly

powerful pre-trained models such as the RESNET family of models (He and Sun, 2016) 1. The model is a convolution neural

network that has been pre-trained on a massive dataset of real world images. This means that the convolutional layers of the

network already have a set of shape filters that are broadly applicable to all natural pictures. This means that with a relatively275

small amount of training data and computational effort, we are able to simply re-mould the convolutional layers to identify

dynamic stall vortices’s and give the convection speed and phase.

Pre-trained neural networks can be built and re-trained using any of the typical frameworks such as PyTorch, Keras or

TensorFlow. In this case, we used a RESNET50 model within the FASTAI architecture which is a high level interface built on

top of PyTorch (Howard and Others, 2019). The FASTAI architecture implements several current best practices as defaults such280

as; cyclical learning rates, drop-out, training data augmentation and data normalization. The final layer of the neural network

was replaced with two outputs to represent a linear fit of the vortex convection (slope, offset). For this analysis, acceleration

of the vortex was ignored, though the code could be easily extended. The pressure data was represented as a picture where the

1Note that while we were able to get acceptable results from the RESNET models, a higher level of accuracy may be obtained by network architectures

that were built specifically for this kind of localization task.
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horizontal dimension represents phase, and the vertical dimension represents the suction side of the airfoil with the bottom of

the picture being the leading edge (an example of an already processed picture is in Figure 8, the training data does not have285

the blue line identifying the vortex but is otherwise the same). Training data was created by manually clicking (and storing) the

positions of the vortex on 733 images (an attempt with only 300 pictures tended to over-fit on RESNET50 or have high bias on

smaller models). The manual clicking does introduce some measurement error, but a few practice runs showed that the error

much smaller than the effect of the physical phenomena. The images were selected from a wide range of cases with randomized

test training splitting within each case to ensure good generalization of the fitted model. However, data was limited to examples290

with a strong wake mode shedding meaning that the vorticity is easily visible on the pressure footprint. The training was done

in two stages, first with the internal layers of the RESNET model frozen, once the training edge reached an asymptote, the

internal layers were unfrozen to mold the internal layers for a small number of epochs.

Initially 80% of the data was taken as training set and the training was completed with 20 epochs with the convolutional

layers frozen so that the newly added layers could quickly converge. The training was stopped at 20 epochs once the validation295

error begun to increase. The convolutional layers were then unfrozen the training was continued for a further 20 epochs. During

training no geometrical augmentations on the training were undertaken but the brightness of the images was augmented 2. The

error statistics were still unsatisfactory and additional training did not improve the performance further. However, the current

settings of the hyper-parameters settings and training procedure had seemed to extract the best model given the available data.

The training procedure was repeated exactly the same a second time, with the same hyper-parameters and the same number300

of epochs, however this time the dataset wasn’t split into test and training sets thus neglecting validation error. This may be

perceived as a opening up the risk of over fitting, however the training procedure and hyper-parameters were already tested and

the neural network didn’t over-fit. Furthermore, usually additional data will usually help reduce over-fitting. We therefore have

confidence that with this procedure the validation error will not increase and that the training error is representative across the

dataset. Thankfully the additional data did reduce the training error enough to make the model usable (see an example results305

in Figure 8). The residuals of both the slope and constant were distributed roughly as Gaussians with Standard Deviations of

0.15. In total, the training took in the order of 30mins of computational time on a GPU. Readers are encouraged to view the

source code at "https://github.com/MatthewLennie/VortexCNN". The repository contains training sets and final data used to

produce the following analysis.

The resulting model incurs a small measurement error so the resulting distributions have be adjusted. Fortunately, the mea-310

surement error could be quantified. Both the error and the resulting vortex convection values can be approximated as Gaussian.

The real distribution is sought by guessing a distribution, running a Gaussian convolution filter over the distribution and then

measuring the difference between the resultant distribution and the data. Essentially, we knew the measurement error distri-

bution roughly, we knew the output distribution, we can on a statistical basis work backwards. This error term is fed into a

optimizer thus giving an estimation of the real data distribution without the error incurred by the neural network inference. In315

practice, this reduces the standard deviations of both the slope and intercept by roughly 30%. We should note that we can not

"repair" the measurement data and locate the true convection speed of each measurement, but on a statistical basis, we can get

2Geometric augmentations would have been the next method to improve the model if the process hadn’t worked well enough
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closer to a true estimation. It is also worth mentioning that this neural net will find the speed that the vortex footprint travels

across the airfoil, the vortex will usually have an additional component normal to the airfoil.

The procedure described above represents a first iteration of such an approach, a feasibility demonstration. With some more320

effort, a better neural network architecture could be chosen and the clicking procedure could be replaced with comparison

to flow visualization. With these improvements, we could potentially avoid the final step where we attempt to repair the

distributions. We would prefer to remove this final step which forces us to assume that the distribution is Gaussian.

4 Results

4.1 Extracting vortex convection with a convolutional neural network325

A number of test configurations with dynamic stall were chosen and pushed through the neural network to demonstrate some

of the patterns. The first case is relatively complicated, as it features, an oscillating inflow velocity, pitching into the dynamic

stall range and leading edge blowing. Four examples tests were compared with different phase differences between the angle of

attack motion and the inflow velocity. Medina et al. (2018) made a very similar analysis and found that decelerating flow tended

to destabilize the boundary layer and encourage earlier separation. With the convection speed and onset data retrieved by the330

neural network it is possible to show that this is true in the specific detail of the dynamic stall vortex. Figure 11 shows that for

cases where the inflow speed is in phase with the angle of attack, the shedding occurs later. However, when it does finally occur,

the vortex will shed at a higher velocity (see Figure 11). Interestingly the results seem to indicate a much higher variability in

the cases where the flow is decelerating during the vortex convection. Figure 14 also shows the relationship between the onset

of the vortex shedding and the convection speed, there is a weak correlation ( 0.3 Pearson metric) but not strong enough with335

the existing data to make conclusions about the relationship between the two.

Figure 8. Example CNN Output, color intensity refers to suction pressure, blue line is regressed fit. Pressure is standardized therefore the

colors represent Z-scores, no units or color bar are provided for this reason
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Figure 9. Inflow and angle of attack for Figure 10 and Figure 11

Figure 10. Probability distributions of the convection speed of dynamic stall with airfoil blowing different phases of harmonic inflow

(τ ).Uamp

U
= 0.5, k = 0.08, Re= 2.5 · 105 and α0 = 15°,αamp = 10°.

-
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Figure 11. Probability distributions of the onset of dynamic stall with airfoil blowing and different phases of harmonic inflow (τ ).Uamp

U
=

0.5, k = 0.08, Re= 2.5 · 105 and α0 = 15°,αamp = 10°.

Figure 12. Probability distributions of the convection speed of dynamic stall with different Reynolds Number, k = 0.09, and α0 = 18°,α1 =

7°.

4.2 Dynamic Stall Clustering

In the following section, we have chosen a few examples purely for the purpose of demonstrating the methods. It would

require a separate body of work to trawl over a larger selection of data in order to conduct a proper analysis. At high angles340

of attack (α0 = 21.25° and αamp = 8.25°), we can observe the different kinds of stall behaviors that can occur. Figure 15 and

Figure 16 show contrasting behaviors for the same angles of attack. In Figure 15, a quasi-periodic shedding appears. Without
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Figure 13. Probability distributions of the onset of dynamic stall with different Reynolds Number, k = 0.09, and α0 = 18°,α1 = 7°.

Figure 14. Relationship between the onset of shedding and convection speed for a range of blowing cases

flow visualization it is hard to determine the shedding type, but the pressure footprint show the vortex as weak and smeared.

This kind of footprint would indicate that the vorticity is not close to the surface of the airfoil or is large and not very coherent.

This probably indicates that we are seeing a shear layer instability rather than very clear wake mode examples seen in the345

previous section. The clusters seem to indicate that the shedding behavior is not reliable with cluster 3 (green) and cluster 4

(red) showing amplitudes of oscillation dissipating rapidly.

Now let us consider a second case with a different Reynolds number and reduced frequency but with the same angle of

attack range (Figure 15). The airfoil moves into stall, releases one (cluster 2 - orange) or two coherent vortices’s (cluster 1 -

blue cluster) and the resolves into weaker small scale shedding.350
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In Figure 17 and Figure 18 we can observe the effect of changing the reduced frequency while holding the Reynolds number

and angle of attack constant. The first most obvious difference is that the period between the primary and secondary vorticity

remain constant. The data does otherwise follow the general wisdom that the lift overshoot will increase with reduced frequency

but not uniformly. Furthermore, the lower reduced frequency seems to create a much wider variance in the primary stall vortex

compared to the higher reduced frequency where both clusters display a strong primary vortex with only a barely visible change355

in primary stall. Using the clustering method we are also able to reveal that, in both cases, one cluster has a strong secondary

vorticity and the other has a nearly non-existent secondary vorticity (read carefully, colors do not match). Interestingly the

higher reduced frequency in Figure 18 seems to suppress the secondary vortex as Figure 17 shows strong secondary vorticity

55.8% of the cycles and a somewhat weaker secondary vortex for the other cycles.

We have observed with these four example cases that differences in reduced frequency and Reynolds number will resolve360

into a quite different type of vortex shedding. Furthermore, even within the same case we can see a strong variation in the

strength of the shedding mechanism. The instability mechanism driving this shedding is very sensitive to the small variations

in input conditions. The shedding mechanisms shown in these four examples are just one of the variety of shedding behaviors.

A quick visual inspection of the time series data would be unlikely to uproot the variable shedding behaviors seen in these

two examples. However, the cluster centroids or even simply the MDS plots (i.e. Figure 20) make the differences clear and365

easy to interpret. In either of these cases, a phase averaged results would have been a poor representation of the dataset. This

should help future modeling efforts as we should at least understand our data somewhat before trying to model it.

Figure 15. Deep stall investigations: cluster analysis for boundary conditions: k = 0.0992, Re= 3.3 · 105 and α0 = 21.25°,αamp = 8.25°.

5 Convergence and outliers

The clustering and MDS can also be used together to identify outliers. In wind tunnels, the first cycles of a test will often be

different to later cycles due to the wake effects and dynamics of the tunnel. Similar start up effects can also be seen in the towing370
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Figure 16. Deep stall investigations: cluster analysis for boundary conditions: k = 0.0574, Re= 5.7 · 105 and α0 = 21.25°,αamp = 8.25°.

Figure 17. Deep stall investigations: cluster analysis for boundary conditions: k = 0.0992, Re= 3 · 105 and α0 = 18°,αamp = 7°.

tank. However, more broadly speaking, test data are often plagued with test data poisoned by some sort of external influence.

Figure 19 is an example of a single leading edge pressure sensor from the towing tank where obvious outliers are present. The

pressure values in the main cluster (blue) show detached flow over the entire cycle. However, a small number of cycles in the

green and orange clusters actually reattach. The MDS representation alone Figure 20 indicates that it is worth inspecting the

data further. Such an obvious representation could speed up the task of possibly pruning the dataset where outliers are created375

by known effects such as startup or a measurement failure.

It would also be possible to remove outliers automatically based on the cluster data. In practice, this level of automation

is not necessary on most experimental setups and the visual inspection provided by MDS and clustering was enough to find

outliers quickly and efficiently.
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Figure 18. Deep stall investigations: cluster analysis for boundary conditions: k = 0.1346, Re= 3 · 105 and α0 = 18°,αamp = 7°.

Figure 19. Clustered time series from surge experiment. Boundary conditions: U∞(φ) = 2.5ms−1 +0.7ms−1 sin(φ), Re= 1.25 · 106,

f=0.21Hz,α= 10°

While in this paper we have broadly recommended making cluster based centroids rather than a mean of the whole dataset,380

the reality is that the latter is still common practice. McAlister et al. (1978) made the recommendation of taking at least 50

cycles of data to ensure convergence of cases with dynamic stall. The methods used in that paper were limited by available

computational power.

Bootstrapping is a method of uncertainty estimation which uses re-sampling. The concept is quite simple; stick the data in

a bucket, re-sample with replacement until you reach the size of the dataset, then find your mean, variance and other statistics385

required. This process is then repeated until a probability distribution of the values is found; very similar to the concept of

confidence intervals. This provides us a quantitative statement such as "the existing data indicates 90% of the time that the

mean lies between 0 and 1". Bootstrapping has some nice mathematical properties mostly propagating from central limit

theory. A good treatment of the subject is given by Chernick (2008).
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Figure 20. Above: Silhouette Samples per cluster. Below: MDS representation

In our case, we would like to see how the uncertainty of our population estimates decrease as we collect more data. To do390

this, we repeat the bootstrapping process pretending at each step that we only have a given number of cycles. This results in a

graph comparing uncertainty to number of cycles available (see Figure 21 and Figure 22). One will note that the variance and

inter-quartile ranges converge slower than the mean and median. This is due to the simple fact that the central moments of the

distribution will collect more data more quickly, and will therefore converge with less data. In practice this means, how much

data you need will depend on whether you need the central moments or the extreme events.395

Lennie et al. (2017) demonstrated that when considering stall, it is probably best to avoid using mean and variance due to

the non-Gaussian spread of the data. Median and inter-quartile range will serve better in cases of stall. All of the population

estimates are presented here as percentile based estimates such as median and inter-quartile are still rarely used in literature.

Representing the variability with a non-parametric distribution (Kernel Density Estimate) gives the best representation and can

be achieved with violin plots (see examples in Lennie et al. (2017)). The error itself is based on the temporal mean of the400

respective estimate throughout the time series. A similar convergence approach was used in (Dominin et al.).

A number of test cases were chosen with varying degrees of separation. In deep stall cases, as seen in Figure 22, the error of

the standard deviation drops below 2% after 60 repetitions. The light stall case in Figure 21 shows quick convergence at low

values. Already after 20 repetitions all errors are below 1%. In cases with unsteady inflow, the normalization of aerodynamic

coefficients with the inflow speed can amplify experimental noise and therefore converge slower than expected. It may be405

possible to converge the inflow speed and lift values separately then apply normalization to speed up convergence. Of course
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Figure 21. Convergence of the population estimates for a light stall case as the number of tests increase

Figure 22. Convergence of the population estimates for a deep stall case as the number of tests increase

different levels of confidence would require more or less repetitions, however, for general purpose the following principles can

be made:

1. For deep stall use <60-100 Cycles.

2. For light stall use <20 Cycles.410

3. Be careful in cases with unsteady inflow, even attached flow can take up to 40 Cycles to converge.

These principles should be read in context of the limited example given here. In most of the examined cases, the variability and

thus the rate of convergence was reduced with higher Reynolds numbers. The higher the angle of attack, the more pronounced

the effect. The convergence may be influenced further by the reduced frequency and the addition of flow control elements. It

is always best practice to conduct the bootstrapping for each new test configuration. The full results supporting this advice can415

be found in the master thesis of Steenbuck (2019).
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6 Conclusions

This paper has attempted to bridge the gap between unsteady aerodynamics and the field of data science. Stall is a complex

phenomena which varies in both time and space and the data has shown strong variations between cycles of the experiments.

The combination of clustering, dynamic time warping and multi-dimensional scaling allow us to effectively cluster cycles420

together making the data easy to interpret and reveal patterns that were previously difficult to inspect visually. Convolutional

neural networks allow us to use computer vision on pressure data to find dynamic stall vortex convection. Using neural networks

to extract complex features from data has an incredible potential with-in aerodynamics especially due to the advent of transfer

learning.

Even the few examples analyzed in this study demonstrate that stall behavior is complex. The clustering results demonstrated425

that the shedding behavior varies across cycles especially in the secondary and tertiary vorticity. The neural network was

able extract the vortex convection feature from the pressure plots to show that the onset of dynamic stall and the convection

speed vary with the inflow conditions as well as cycle to cycle. Wind turbines can be exposed to very high angles of attack

particularly during construction and shutdown and furthermore the blades are relatively flexible giving rise to vortex induced

vibration problems (Lennie et al., 2018). At higher angles of attack the wake structure and shedding frequencies would shift430

again (Lennie et al., 2018). Separated flows are incredibly complex and varied across different operating regimes.

The marriage of data science and aerodynamics presented in this study has been an exercise of data visualization. However,

machine learning tools can also be useful for other tasks such as robust dynamic prediction (Brunton and Noack, 2015). The

natural extension of this study would be to create a new generation of unsteady aerodynamics models using machine learning

techniques. The empirical models3, such as the Beddoes-Leishman model, will be very difficult to extend to handle vortex435

induced vibrations given the fact that shedding behavior varies strongly with many of the input conditions and therefore will

be hard to encode into a readable set of equations. Essentially it becomes too difficult for a human creator to write down a

complex enough model that is well behaved over all operating regimes.

Machine learning provides another path to improving aerodynamic models, as it provides the tools and techniques to fit

highly performing complex models while simultaneously handling the problem of over-fitting. Such an approach would per-440

form much the same roll as the current models but would be machine learned. Using the concept of transfer learning it would

be possible to train the model in stages. The machine learned model training process could be achieved with the following

steps:

1. Generate a huge set of "cheap" training data using a standard unsteady aerodynamic model.

2. Train the machine learning model on this data until it performs as well as the standard model.445

3. Generate unsteady CFD and experimental training data for a single airfoil.

4. Use the smaller amount of higher fidelity data to further train the machine learning model.

3Holierhoek et al. (2013) have a good comparison of the models
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5. For each airfoil, generate a small amount of CFD data

6. Recalibrate the machine learned model to each airfoil.

This approach has the advantage that the model can be constrained with a near endless supply of cheap data from the standard450

unsteady aerodynamics models. We would now have confidence that over nearly all operating conditions the model wouldn’t

diverge too far from reality. The model can then be re-moulded just enough to represent the higher fidelity data from experi-

ments and CFD without losing the constraints set in the previous step. This would produce a base model. For each new airfoil

a new sub-model could be spawned off with a small amount of training data and computational effort. This means we have the

robustness of the engineering model with an improved ability to match high quality data.455

However, these are recommendations future investigation, the results of this study already provide a number of recommen-

dations about stall and data science.

1. Means aren’t sufficient at describing stall. Data science and machine learning provide good ways of investigating cycle

to cycle variations.

2. Multidimensional scaling and clustering with DTW as a distance metric is an effective way of examining data for460

different shedding modes or experimental outliers.

3. Dynamic stall behaviors vary significantly even within the same test conditions.

4. It is unlikely the traditional empirical models are the solution to modeling stall more accurately, machine learning is

probably the better option.

5. Dynamic stall vortices’s will convect at different times and with different speeds. A neural network can retrieve this465

information from pressure data with a reasonable amount of training data and computational resources.

6. The bootstrapping method will help with determining the number of cycles needed to reach a given level of confidence.

7 Code Availability

A distillation of the codes used in this paper are available on https://github.com/MatthewLennie/ The data used for the convec-

tion plots is also in the repository. An example file is provided for the time series clustering with MDS plot.470
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