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Abstract. The wind farm layout optimization problem is notoriously difficult to solve because of the large
number of design variables and extreme multimodality of the design space. Because of the multimodality of the
space and the often discontinuous models used in wind farm modeling, the wind industry is heavily dependent on
gradient-free techniques for wind farm layout optimization. Unfortunately, the computational expense required
with these methods scales poorly with increasing numbers of variables. Thus, many companies and researchers
have been limited in the size of wind farms they can optimize. To solve these issues, we present the boundary-
grid parameterization. This parameterization uses only five variables to define the layout of a wind farm with any
number of turbines. For a 100-turbine wind farm, we show that optimizing the five variables of the boundary-grid
method produces wind farms that perform just as well as farms where the location of each turbine is optimized
individually, which requires 200 design variables. Our presented method facilitates the study and both gradient-
free and gradient-based optimization of large wind farms, something that has traditionally been less scalable
with increasing numbers of design variables.

1 Introduction

In 2018, wind energy produced 6.6 %TS1 of the electric-
ity use in the United States.1 With current market trends
and technology, the U.S. Energy Information Administration
projects that this number will rise by 1 % in both 2019 and
2020 (U.S. Energy Information Administration, 2019a), and
the installed capacity will increase by 4 % every year through
2050 (U.S. Energy Information Administration, 2019b). In
order for the US and the rest of the world to meet and ex-
ceed these projections, it is necessary to be able to create
efficient turbine layouts for large wind farms. The wind farm
layout optimization problem is notoriously difficult to solve
because of the large number of design variables, computa-
tionally expensive models for high fidelity simulations, and
extreme multimodality of the design space (see Fig. 1).

1https://www.eia.gov/tools/faqs/faq.php?id=427&t=3 (last ac-
cess: 9 December 2019).

Because of the multimodality of the space and the of-
ten discontinuous models used in wind farm modeling, the
wind industry is heavily dependent on gradient-free tech-
niques for wind farm layout optimization (Herbert-Acero
et al., 2014). Although these methods can be highly effec-
tive for small numbers of design variables, the computational
expense required to converge scales poorly, approximately
quadratically, with increasing numbers of variables (Singg
et al., 2008; Rios and Sahinidis, 2013; Lyu et al., 2014;
Ning and Petch, 2016; Thomas and Ning, 2018). Because
of this poor computational scaling, many companies and re-
searchers have been limited in the size of wind farms they can
optimize, as the number of variables typically increases with
the number of turbines. Figure 2 demonstrates this princi-
ple. This figure shows the number of function evaluations re-
quired to optimize the multi-dimensional Rosenbrock func-
tion versus the number of variables (Rosenbrock, 1960). To
give a sense of what these numbers mean, if this problem
with 64 variables and exact-analytic gradients takes 1 h to
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Figure 1. The complexity and multimodality of wind farm layout
design space. Shown is the normalized annual energy production of
a 100-turbine wind farm as a function of the location of one turbine;
99 turbines remain fixed, while one is moved throughout the wind
farm. (a) A 2-D view of the design space. (b) A 3-D surface, which
highlights the extreme variation of the peaks and valleys. This figure
shows only the multimodality from two dimensions, where the true
design space has 200 design variables.

Figure 2. The number of function calls required to optimize
the multi-dimensional Rosenbrock function versus the number of
variables. The computational expense of gradient-free and finite-
difference gradients scale poorly with the number of variables.

optimize, using finite-difference gradients would take almost
4 d, while a gradient-free method would take over 20 years.
The trends, not the exact numbers, shown in this figure are
general for other optimization problems, such as wind farm
layout. As the size of the problem increases, the compu-
tational expense with certain optimization methods can be-
come unmanageable.

Despite its difficulty, layout optimization is an essential
step in wind farm development in order to maximize power
production. Power losses of 10 %–20 % are typical from tur-
bine interactions within a wind farm (Barthelmie et al., 2007,
2009; Briggs, 2013) and can be as high as 30 %–40 % for
farms with turbines spaced within 3 rotor diameters of each
other (Stanley et al., 2019). However, because the difficul-
ties in finding optimal turbine placement increase with the
number of turbines, layout optimization can quickly become

infeasible for large wind farms (Ning and Petch, 2016). Even
so, accelerated research and understanding of the principles
governing wind energy as well as public demand for renew-
able energy sources are encouraging developers and com-
munities to install farms with more wind turbines than have
been typical in the past. Current turbine layout definitions
and optimization methods are woefully inadequate for these
increasingly large farms.

The most common current wind farm layout definitions in-
clude defining the location of each turbine directly (Feng and
Shen, 2015; Guirguis et al., 2016; Gebraad et al., 2017), pre-
assigning some locations in a wind farm as suitable turbine
locations to limit the size of the design space (Emami and
Noghreh, 2010; Parada et al., 2017; Ju and Liu, 2019) and
parameterizing the turbines as a grid (Neubert et al., 2010;
González et al., 2017; Perez-Moreno et al., 2018). Defining
the location of every wind turbine directly allows the most
freedom but also requires two variables for each turbine. In
addition, the design space is the most multimodal. If one lim-
its the design space by predetermining acceptable turbine lo-
cations or parameterizing the turbine locations with a simple
grid, they are able to optimize larger wind farms. However,
these methods produce simplistic wind farm designs, which
underperform for most realistic scenarios.

In this paper we present the boundary-grid (BG) layout
parameterization, a new wind farm layout parameterization.
This new method solves the challenges that have previously
made wind farm layout optimization so difficult. BG param-
eterization uses only five variables and can produce layouts
that perform just as well as or better than the layouts achieved
by directly optimizing the location of each wind turbine.
With some of the most advanced wind farm optimization
methods that have previously been available, we can directly
optimize the location of every turbine in a 100-turbine wind
farm in 4–5 h. More common methods take on the order of
days or longer. With BG parameterization, we can optimize
a 100-turbine wind farm in 3 min. Additionally, this new pa-
rameterization dramatically reduces the multimodality of the
design space compared to direct layout optimization (com-
pare Figs. 1 and 13b). Finally, BG parameterization has ad-
ditional benefits, including a regular, aesthetically pleasing
layout and naturally defined roads or shipping lanes. This
technique can immediately be applied to wind farm design
to obtain excellent wind farm layouts with limited computa-
tional resources.

2 Boundary-grid parameterization

When the locations of wind turbines in a farm are optimized
directly, the final layout often follows two general rules.
First, a large fraction of turbines are grouped on or near the
wind farm boundary. Second, the turbines that are not posi-
tioned on the boundary are loosely arranged in rows through-
out the farm (Fig. 3a). By observing these patterns in optimal
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Figure 3. Example 100-turbine wind farm layouts, and parameter-
ized wind turbine layout definition. Each dot is to scale, represent-
ing the wind turbine diameter. (a) Wind farm layout when the posi-
tion of each turbine has been optimized directly. This optimization
required 200 design variables – the x and y location of each turbine.
(b) Wind farm layout optimized with boundary-grid parameteriza-
tion. This optimization required five design variables, shown in pan-
els (c) and (d). (c) The start location design variable, s. (d) The four
variables defining the inner grid: the grid spacing, dx and dy, the
grid offset b, and the rotation, θ .

wind farm layouts, we defined our new layout parameteriza-
tion such that it would create wind farms that filled these
requirements.

2.1 New layout variables

In BG parameterization, the turbines are divided into two
groups: the boundary and the inner grid (Fig. 3b). The bound-
ary turbines are spaced around the circumference of the wind
farm and are defined with one design variable. The rest of the
turbines in the farm make up the inner grid, which is defined
with four design variables for a total of five variables to de-
scribe the location of every turbine in the farm. The bound-
ary turbines are placed on the wind farm boundary, spaced
equally traversing the perimeter. These are defined by one
variable, s, which is the distance along the perimeter where
the first turbine, or start turbine, is placed. This in turn defines
the position of every turbine around the boundary (Fig. 3c).
During the development of our parameterization method, we
tested various strategies of spacing the turbines around the
boundary. However, we found that equally spacing the tur-
bines around the perimeter consistently provided the best re-
sults. The inner grid turbines are defined by four design vari-
ables: dx, dy, b, and θ . The grid spacing, dx and dy, is the
distance between columns and rows in the grid; b is the off-
set distance, which defines how far consecutive rows are off-
set; θ is the grid rotation angle, which rotates the entire grid
(Fig. 3d). The grid offset could also be defined as an angle;

however, we have used a distance as the gradients are more
conducive to optimization. The inner grid is centered around
the wind farm center, ensuring a one-to-one mapping from
the design variables to the possible wind farm layouts.

2.2 Selection of discrete values

There are some discrete values which are important in our
formulation, namely the number of turbines which are placed
along the boundary and how many are in the grid, how many
rows and columns are in the grid, and how the rows and
columns are organized. We present some rules that we have
found effective in determining these discrete values for all
wind roses, wind farm boundaries, and wake models that we
tested. Each individual case may benefit slightly from a more
specialized selection of these values but our method works
well across all cases tested.

The number of turbines placed on the boundary is deter-
mined by the wind farm perimeter and turbine rotor diame-
ter. If the perimeter is large enough, 45 % of the wind tur-
bines are placed on the boundary. In some cases, the wind
farm perimeter is small and would result in turbines that are
too closely spaced if 45 % were placed around the boundary.
In this case, the number of boundary turbines is reduced un-
til the minimum desired turbine spacing in the wind farm is
preserved. When defining the number of turbines to be placed
along the perimeter, the user must consider the most extreme
boundary angles, such that minimum turbine spacing is pre-
served even at boundary corners. No matter how many tur-
bines are placed around the boundary, they are always spaced
equally traversing the perimeter, and all of the remaining tur-
bines are placed in the inner grid. Note that the number of
boundary turbines is determined before the number of tur-
bines in the inner grid, to ensure that sufficient spacing is
maintained between the boundary turbines.

The number of rows, columns, and their organization in
the grid is determined with the following procedure. First,
dy is set to be 4 times dx, b is set such that turbines are off-
set 20◦ from those in adjacent rows, and θ is initialized ran-
domly. Then, dx is varied with θ remaining constant, and dy
and b change to fulfill the requirements prescribed in the ini-
tialization definition, until the correct number of turbines are
within the wind farm boundary. During optimization, each of
the grid variables can change individually; however, the dis-
crete values remain fixed. For extremely small wind farms,
with an average turbine spacing much less than 4 rotor diam-
eters, it may be impossible to initialize the turbine rows with
dy equal to 4 times dx and meet the minimum spacing con-
straints. In this case, the discrete row variable initialization
would need to be adjusted.

The process outlined to select the discrete variables used in
the parameterization is recommended as a starting point, and
when computational resources or time is limited. We tested
many different methods of how to determine the discrete val-
ues, but found that the method shown above consistently pro-
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Figure 4. The thrust coefficient curve for the 3.35 MW turbine used
in this paper.

duced wind farm layouts with high energy production. With
sufficient resources, some scenarios may benefit from opti-
mizing with a different ratio of boundary turbines or different
initializations of the boundary grid. However, the results dis-
cussed in this paper were produced with the method given in
this section. Because these variables are discrete, they cannot
be included as design variables when using a gradient-based
optimization method because the function space would be
discontinuous. But a gradient-free optimization may bene-
fit from including some of these discrete variables as design
variables in the optimizations.

3 Wind farm modeling

3.1 Wind turbine parameters

In the testing of the BG wind farm layout parameterization
method, we modeled the turbine parameters after the IEA
3.35 MW reference turbine (Bortolotti et al., 2019). The rel-
evant parameters are a rotor diameter of 130 m, a hub height
of 110 m, a rated aerodynamic power of 3.6 MW, and a gen-
erator efficiency of 93 %. The thrust coefficient curve for this
turbine is shown in Fig. 4, and was generated using CCBlade,
a blade element momentum code (Ning, 2013). The power
curve was defined as a piecewise equation in Eq. (1).

Pi(V )=


0 V < Vcut-in

Prated

(
V

Vrated

)3
Vcut-in ≤ V < Vrated

Prated Vrated ≤ V < Vcut-out
0 V ≥ Vcut-out

(1)

In this power curve definition, Pi is the aerodynamic power
produced by an individual wind turbine, V is the hub ve-
locity at that turbine (Lackner and Elkinton, 2007; Chen
et al., 2015; Park and Law, 2015), Prated is 3.6 MW, Vrated
is 10 m s−1, Vcut-in is 3 m s−1, and Vcut-out is 25 m s−1. The
aerodynamic power is then multiplied by the generator effi-
ciency to calculate the electric power.

3.2 Wind farm details

The major benefit of wind turbine layout parameterization
comes for large wind farms. For farms with just a few tur-
bines, the layout can be optimized directly with a small
amount of design variables. In such cases with few design
variables, there is little to no benefit gained from intelli-
gently parameterizing the design space. In this study, each
wind farm layout that we optimized had 100 wind turbines,
to demonstrate the benefits of BG parameterization for large
wind farms.

We tested the performance of our parameterization method
on wind farms with different average turbine spacing: 4, 6,
and 8 rotor diameters shown in Fig. 10. In addition to test-
ing wind farms with different turbine spacing, we modeled
and optimized several different wind farm boundaries in this
study: the boundary of the Princess Amalia wind farm, a real
farm in the North Sea (Van Dam et al., 2012; Gebraad and
Van Wingerden, 2015; Kanev et al., 2018), a circle, and a
square to demonstrate the sharp angles that can occur in wind
farm boundaries. These boundaries are shown in Fig. 12.

3.3 Wake model

Wind speed deficits in this paper were predicted from tur-
bine wakes with a modified version of the 2016 Bastankhah
Gaussian wake model (Bastankhah and Porté-Agel, 2016).
The original formulation of the model does not define the
wake deficit in the near-wake region, creating undefined re-
gions which make optimization difficult. To mitigate this is-
sue, Thomas and Ning added a linear interpolation of the
wake loss from the turbine up to where it is defined by the
wake model, which is the version used in this paper (Thomas
and Ning, 2018). The most important equation for this Gaus-
sian wake model is shown in Eq. (2):

1u

u∞
=

(
1−

√
1−

CT cosγ
8σyσz/d2

)
exp

(
−0.5

(
y− δ

σy

)2
)

exp

(
−0.5

(
z− zh

σz

)2
)
, (2)

where 1u/u∞ is the velocity deficit in the wake; CT is the
thrust coefficient; γ is the yaw angle, which is assumed to
be 0 throughout this paper; y− δ and z− zh are the dis-
tances from the wake center and the point of interest in
the cross-stream horizontal and vertical directions, respec-
tively; and σy and σz are the standard deviations of the wake
deficit, again in the cross-stream horizontal and vertical di-
rections, respectively. These standard deviations are defined
in Eqs. (3) and (4).
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Figure 5. The sampling points across the swept rotor area to calcu-
late the effective wind speed at the turbine. Wind speeds are sam-
pled at each point and then averaged. (a) The sparse sampling loca-
tions used during optimization. The coordinates shown are normal-
ized by the rotor radius. (b) The 100 sample points used for final
evaluation.

σy = ky(x− x0)+
D cosγ
√

8
, (3)

σz = kz(x− x0)+
D
√

8
, (4)

where D is the diameter of the wind turbine creating the
wake, x− x0 is the distance downstream from the turbine
to the point of interest, and ky and kz are unitless and are
functions of the free-stream turbulence intensity:

ky,kz = 0.3837 TI+ 0.003678. (5)

Because γ = 0 throughout this paper, cos(γ )= 1 meaning
that σy = σz. Wakes were combined with a linear combina-
tion method, about which more details can be found in the
cited literature (Bastankhah and Porté-Agel, 2016; Thomas
and Ning, 2018).

To find the effective wind speed across the entire wind tur-
bine to be used in turbine power calculation, we averaged
the velocities sampled at several points across the rotor. Dur-
ing optimization, we sampled at four points over the swept
area of the rotor, shown in Fig. 5a. We have found that using
just these four sampling locations gives an almost identical
effective velocity compared to using more sampling points.
For the final evaluation, we sampled the wind speed at 100
points equally spread across the rotor swept area, shown in
Fig. 5b.

3.4 Wind resource

As the goal of this paper is to demonstrate the performance of
our layout parameterization method in wind farm optimiza-
tion for any scenario, we chose three different wind roses
from cities in California, USA: North Island, Ukiah, and

Victorville.2 During optimization, we divided the wind roses
into 24 equal bins for each wind rose, with an associated di-
rectionally averaged wind speed, shown in Fig. 6. We have
assumed that the wind speed distribution from each wind di-
rection can be approximated with a Weibull distribution de-
fined with the directionally averaged wind speeds (Fig. 7 and
Eq. 6). Weibull distributions have been shown to be good
representations of real wind speed data (Justus et al., 1978;
Rehman et al., 1994; Seguro and Lambert, 2000)TS2

f (U,λ,k)=
k

Umean

(
U

Umean

)k−1

e−(U/Umean)k

λ (Umean,k)=
Umean

0(1+ 1/k)
(6)

In Eq. (6), f is the probability of wind for a given wind
speed, U is any wind speed (non-negative), Umean is the di-
rectionally averaged wind speed for the direction bin of in-
terest, and 0 is the gamma function. The shape parameter, k,
is assumed to be equal to 2.0 for every wind direction, which
is a realistic value for the Weibull distributions that repre-
sent real wind speed probability data (Rehman et al., 1994;
Seguro and Lambert, 2000). For each wind direction, we
have sampled the Weibull distribution at five equally spaced
points during optimization. Five wind speed samples and 24
wind direction samples are chosen as the sampling amount
required to converge to the true wind farm production for
a given wind farm (Stanley and Ning, 2019). Although the
wind farms are optimized with the coarser sampling of 24
wind directions and 5 wind speeds, the final wind farm lay-
outs are evaluated with a finer sampling of 360 wind direc-
tions and 50 wind speeds, to avoid the possibility of artifi-
cially inflated energy production due to coarse wind resource
sampling.

4 Optimization

In this paper we compare how optimizing with BG wind
farm layout parameterization compares to two common cur-
rently used parameterization methods. We have optimized
wind farms using a simple grid parameterization (referred
to as “grid optimization”) and BG parameterization (“BG”)
and by directly optimizing the location of each turbine in-
dependently (“direct optimization”). Examples of these lay-
outs, along with the baseline layout that was used to compare
results in Sect. 5.1, are shown in Fig. 8.

In each case, the objective function of the optimization was
to maximize the annual energy production (AEP) of the wind
farm, shown in Eq. (7).TS3

AEP= 8760
23∑
i=1

5∑
j=1

P
(
φi,U (φi)j

)
fifj (7)

2https://mesonet.agron.iastate.edu/sites/windrose.phtml?
station=AAT&network=CA_ASOS (last access: 9 December
2019).
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Figure 6. The three wind roses and associated average wind speeds used in this study. The wind resources are from (a) North Island,
California, (b) Ukiah, California, and (c) Victorville, California.

Figure 7. Example Weibull distributions for two different average
wind speeds. Each wind direction is associated with an average
wind speed (shown in Fig. 6), which is used for the value Umean.

In this equation, 8760 is the number of hours in a year, P is
the wind farm power production, φ is the wind direction, V
is the free-stream wind speed, fi is the wind direction proba-
bility, and fj is the wind speed probability. The design vari-
ables were determined by the optimization method that was
used. For the grid optimization, the design variables were the
grid spacing in the x and y directions, dx and dy, the grid
offset b, and the grid rotation θ for a total of four variables.
The discrete variables in the grid were determined with the

same method described above to find the discrete variables in
the grid portion of the BG parameterization, except dy = dx
or dy = 2dx while determining the grid format. We experi-
mented with different values of dy during grid initialization
and found that the 1 : 1 or 1 : 2 ratios provided the best re-
sults. We ran every grid optimization with each initialization
ratio and chose the best results. The design variables for the
BG optimization were the same as the grid optimization for
the inner grid turbines and an additional variable s defining
the start location of the boundary turbines for a total of five
design variables. For the direct optimization methods, the de-
sign variables were the x and y locations of each turbine in
the wind farm for a total of 200 design variables. In each opti-
mization, we applied turbine spacing constraints and bound-
ary constraints. The turbine hub locations were constrained
to not be within 2 rotor diameters of any other turbine hub.
Additionally, the turbine hubs were constrained to be within
the defined wind farm boundary. No bound constraints or ad-
ditional constraints were used to define where the turbines
must lie. A link for the code used in this project is included
at the end of this paper. Please refer to the code for specific
details about how these constraints were enforced. This opti-
mization is expressed in Eq. (8).
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A. P. J. Stanley and A. Ning: Massive simplification of the wind farm layout optimization problem 7

Figure 8. Example optimal layouts achieved with each parameterization method. These are 100-turbine layouts, with an average turbine
spacing of 4 rotor diameters and the Princess Amalia wind farm boundary. They were optimized with the wind rose from North Island,
California. (a) The baseline grid to which other methods were compared in Sect. 5.1. (b) An example optimized grid layout. (c) An example
optimized boundary-grid layout. (d) An example layout that was optimized directly.

maximize AEP
with regard to dx,dy,b,θ (grid)

dx,dy,b,θ,s (BG)
xi,yi(i = 1, . . .,100) (direct)

subject to boundary constraints
spacing constraints

(8)

We used the optimizer SNOPT, which is a gradient-based
optimizer that uses sequential quadratic programming and
is well suited to large-scale nonlinear problems such as the
wind farm layout optimization problem (Gill et al., 2005). A
challenge of gradient-based optimization is the tendency to
converge to local solutions. In order to better search design
space, we optimized the problem to convergence 100 times
with randomly initialized design variables. The random ini-
tialization was performed by fully randomizing the rotation
variable θ and the boundary start location s and defining the
discrete and other design variables as defined in Sect. 2.2.
The design variables dx,dy, and b are then randomly per-
turbed by plus or minus 10 %. This random initialization
method allows the number of rows and columns in the in-
ner grid to differ between optimization runs. This was done
for each parameterization method, lending confidence that
the best solution after optimizing the 100 random starts is
near the global optimum. From the random starting points,
we were also able to determine the spread of solutions ob-
tained with each layout parameterization.

We used exact-analytic gradients in each optimization.
The gradients for each portion of the model were obtained
with an automatic differentiation source code transformation
tool, Tapenade (Hascoet and Pascual, 2013). To combine the
gradients to get the total derivative of the objective with re-
spect to each of the design variables, we used the open-source
optimization framework, OpenMDAO, which propagates the
partial derivatives of each small section of the model and cal-
culates the gradients of the entire system (Gray et al., 2010).

Using exact, rather than finite-difference, gradients is im-
portant in this study because the computational expense
required for optimization problems with increasing design
variables scales better with exact gradients (see Fig. 2). For
the parameterized optimizations, the exact gradients were not
as vital in terms of computational expense, but they were
very important for the direct optimizations which had 200
design variables. In addition to reducing the function calls
required to reach convergence, the exact gradients helped the
optimizer converge to a better solution, avoiding many of the
numerical difficulties that often plague the optimization pro-
cess when using finite-difference gradients.

For this paper we have used only a gradient-based opti-
mization method. The purpose of this research is to explore a
novel wind turbine layout parameterization and how it com-
pares to other more commonly used layout parameteriza-
tions. We do not explore how different optimization methods
compare when applied to the wind farm layout problem. As
mentioned in the Introduction, the relationship of how op-
timization method performance scales with increasing num-
bers of design variables is well documented. Additionally,
our past work suggests that the large number of random starts
allows for a reasonably thorough search of the design space.

5 Results and discussion

In this section we demonstrate how the optimal wind farms
using BG parameterization compared to wind farms that have
been optimized directly or with a common grid parameteri-
zation. We will discuss the best results, the computation ex-
pense required to optimize and the multimodality of the de-
sign space with each parameterization method.

5.1 Best results

Figure 9 shows the best results of the 100 random starts for
each parameterization method, compared to a simple base-

www.wind-energ-sci.net/4/1/2019/ Wind Energ. Sci., 4, 1–14, 2019



8 A. P. J. Stanley and A. Ning: Massive simplification of the wind farm layout optimization problem

Figure 9. The best annual energy production achieved with 100 randomly initialized optimizations. Shown are the best results from the grid
turbine parameterization (four design variables), our new boundary-grid parameterization method (five design variables), and by directly
optimizing the location of each turbine (200 design variables). Results are shown as a percent increase over a baseline grid layout. (a) Varied
average turbine spacing in the wind farm. (b) Varied wind rose. (c) Varied boundary shape.

line grid (Fig. 8a). In Fig. 9, panels (a), (b), and (c) show
results for varied turbine spacing, wind roses, and boundary
shapes, respectively. For each wind farm BG layout parame-
terization performs slightly better than the direct layout op-
timization, although all BG results are within 0.4 % of the
corresponding direct results. This does not mean that directly
optimizing the layout of each turbine cannot perform as well
as the BG parameterization. Clearly, with complete freedom
of where to place each wind turbine, the optimizer could find
the exact same layout as the BG layout. However, the com-
plete freedom of the direct optimization means that the op-
timizer is free to explore many suboptimal layouts as well
and will often converge in those areas. With BG parameteri-
zation, we have forced the turbines to only explore desirable
turbine locations. For the scenarios that we explored, 100 BG
optimizations produced a better result than 100 direct opti-
mizations.

Figure 9a shows the optimal results for wind farms with
varied average turbine spacing, with the North Island wind
rose and Princess Amalia wind farm boundary. For the small-
est, most tightly packed wind farm, the optimized grid per-
forms better than the baseline but underperforms by about
2.3 % compared to the other parameterization methods. Even
at an average turbine spacing of 6 rotor diameters, the direct
and parameterized optimizations perform about 1 % better
than the grid optimization, which may or may not be sig-
nificant depending on the uncertainty of the models used.
For the largest wind farm, the optimal grid performs within
0.4 % of the other parameterization methods. For large wind
farms where the turbines are spaced very far apart, wakes are
mostly recovered by the time they reach other turbines in the

wind farm. In these cases, even an optimized grid performs
almost as well as the direct or BG optimization.

Figure 9b shows results for optimized wind farms with dif-
ferent wind resources, with an average turbine spacing of 4
rotor diameters and the Princess Amalia wind farm bound-
ary. The wind roses and the associated directionally averaged
wind speeds are shown in Fig. 6. As with the varied turbine
spacing results, the BG results are slightly better than the di-
rect optimizations and much better than the simple grid. For
each wind rose, the grid achieves a slight improvement over
the baseline but underperforms by 2 %–2.3 % compared to
the direct and BG parameterizations.

Figure 9c shows the results for a varied wind farm bound-
ary. The farms in this subfigure have an average turbine spac-
ing of 4 rotor diameters and the North Island wind rose. Con-
sistent with the previous results, the parameterized optimiza-
tion performs superbly, always slightly outperforming the di-
rect optimizations. In addition, we can see that the BG and
direct optimizations perform better than the simpler grid op-
timizations, by 1.5 %–2.3 %.

In terms of the best achievable wind farms with each pa-
rameterization method, our new BG method performs almost
identically to optimizing the location of each wind turbine
directly. In all cases that we tested, the BG optimizations
were able to find solutions that slightly outperformed the di-
rect optimizations, although they were almost identical. With
only five design variables, we can create wind farms that per-
form the same as or better than farms that have been designed
with 200 variables. While the grid parameterization is able to
achieve good results for some wind farms, it often performs
much worse than our parameterization. One additional vari-
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Figure 10. Results from 100 randomly initialized optimizations for wind farms with varied average turbine spacing and 100 wind turbines.
The farm optimized had the Princess Amalia boundary and the wind rose from North Island, California. Shown are results using the grid
turbine parameterization, our new boundary-grid parameterization, and direct optimization. The optimal annual energy production distribu-
tion achieved for each of the optimization runs, in wind farms with varied turbine spacing of 4, 6, and 8 rotor diameters for panels (a), (b),
and (c), respectively. The number of function calls required to converge for each of the optimization runs, in wind farms with varied turbine
spacing of 4, 6, and 8 rotor diameters for panels (d), (e), and (f), respectively.

able is a small price to pay for significant improvement in
optimal wind farm design.

5.2 Computational expense

The utility of any wind farm layout parameterization is not
only measured by the ability to create high energy-producing
wind farms, but by the ability to do so quickly and reliably.
Figures 10, 11, and 12 are histograms showing optimal re-
sults and the computational expense required for each of the
100 optimizations run for each wind farm and parameteriza-
tion method. In each figure, panels (a)–(c) show the normal-
ized optimal AEP for each of the 100 runs, and panels (d)–
(f) show the number of wake model function calls required
to converge to a solution. The AEP results have each been
normalized by the maximum AEP achieved by the direct op-

timizations for the associated wind farm. Also note that the
number of function calls are shown with a log scale.

In general, the grid and the BG optimal AEP results have
a similar spread, with the BG results shifted up higher. Com-
pared to the direct optimizations, the grid and BG optimiza-
tions have a larger spread in optimal solutions. This is a
consequence of the discrete variables that are initialized at
the start of each optimization run. The number of rows and
columns, as well as their organization in the grid are deter-
mined by the randomly initialized rotation design variable,
θ . Some of these grid formations are more desirable than
others, leading to higher AEP values. This spread in opti-
mal solutions is not a significant issue because the number
of functions calls required for the grid and BG optimizations
are an order of magnitude lower than that required by the di-
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Figure 11. Results from 100 randomly initialize optimizations for wind farms with varied wind roses and 100 wind turbines. The farm
optimized had the Princess Amalia boundary, and the average turbine spacing was 4 rotor diameters. Shown are results using the grid tur-
bine parameterization, our new boundary-grid parameterization, and direct optimization. The optimal annual energy production distribution
achieved for each of the optimization runs, in wind farms with varied wind roses. Wind rose from (a) North Island, California, (b) Ukiah,
California, and (c) Victorville, California. The number of function calls required to converge for each of the optimization runs, in wind farms
with varied wind roses. Wind rose from (d) North Island, California, (e) Ukiah, California, and (f) Victorville, California.

rect optimization. This allows for many randomly initiated
runs in a short amount of time. If it did become an issue, the
spread could be reduced by predefining the discrete grid vari-
ables or including them as design variables in a gradient-free
formulation. By showing the results for three different wind
farm sizes, wind roses, and wind farm boundaries, we believe
that our parameterization method can produce high AEP and
optimize with reduced function calls for many scenarios.

With regards to the function calls required to converge, the
grid optimizations required about one-third of the function
calls to converge compared to the BG optimizations, while
the direct optimizations required about an order of magni-
tude more. The only exception was the circular wind farm,
for which the direct optimizations converged quickly, on the

same order as the BG optimizations. Function calls are an
important measure of computational expense, as they are cor-
related with time and processing power required to optimize.
Here it is important to remember that our results were ob-
tained with exact-analytic gradients, meaning that one func-
tion call was required to obtain the wind farm AEP as well
as the gradients with respect to each of the design variables.
The same is true of the constraints: one function call gave
both the constraint values and the gradients. Without exact
gradients, a finite-difference method would need to be used
to calculate the gradients. At every optimization step, finite-
difference gradients require one (forward or backward dif-
ference) or two (central difference) additional function calls
for every design variable to approximate the gradients. Thus,
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Figure 12. Results from 100 randomly initialize optimizations for wind farms with varied wind farm boundaries and 100 wind turbines.
The average turbine spacing was 4 rotor diameters, and the wind rose was from North Island, California. Shown are results using the
grid turbine parameterization, our new boundary-grid parameterization, and direct optimization. The optimal annual energy production
distribution achieved for each of the optimization runs, in wind farms with varied boundary shapes. (a) Princess Amalia wind farm boundary.
(b) Circular wind farm. (c) Square wind farm. The number of function calls required to converge for each of the optimization runs, in wind
farms with varied boundary shapes. (d) Princess Amalia wind farm boundary. (e) Circular wind farm. (f) Square wind farm.

if forward-difference gradients were used rather than exact
ones, the grid optimizations would need about 4 times as
many function calls to reach a solution, the BG optimiza-
tion would need about 5 times as many function calls, and
the direct optimization would need 200 times as many func-
tion calls to converge. This is the best-case scenario, as opti-
mizations with finite-difference gradients often have trouble
converging. Compared to gradient-free optimization, the ex-
act analytic gradients are vital. The direct optimization with
a gradient-free technique would be near impossible because
of the massive required computational expense (Ning and
Petch, 2016; Thomas and Ning, 2018).

5.3 Multimodality

One of the major difficulties of the wind farm layout opti-
mization problem is the extreme multimodality of the design
space (Fig. 1). There can be thousands or even millions of
local solutions, often varying drastically in their quality. Fig-
ure 13 shows one-dimensional sweeps across the design vari-
ables for each of the three different parameterization methods
discussed in this paper. Because of the number of variables
in this problem, it is difficult to fully represent the full design
space graphically; however, this figure is a good indicator of
the multimodality of the different design spaces. Figure 13a,
b, and c show the multimodality of the grid, BG, and direct
layout parameterizations, respectively.

Parameterizing the design space with a grid and with the
BG method (Fig. 13a and b) does not completely remove
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Figure 13. One-dimensional sweeps across the design space of each parameterization method discussed in this paper. These figures show the
multimodality of each of the design spaces. (a) The simple grid parameterization. (b) Our newly presented boundary-grid parameterization.
(c) Moving the location of one wind turbine across the wind farm in x and y (refer to Fig. 1). With the direct turbine layout definition there
are actually 200 variables. This figure shows the multimodality in just two of these variables, where the whole design space is much more
complex.

the multimodality of the wind farm layout problem. How-
ever, it does result in a smoother response and fewer local
minima compared to the design space when each of the tur-
bines are optimized directly. These function spaces can be
explored easily with a few random starting locations or with
a gradient-free optimization method. The design space when
varying the location of individual turbines (Figs. 1 and 13c)
is much noisier, filled with comparatively larger peaks and
valleys in the design space. These figures only show the de-
sign space with respect to the location of one turbine, which
is defined with two variables. The full space consists of the
location of all 100 turbines, or 200 variables, for which the
multimodality and overall noisiness of the design space is ex-
acerbated. Figure 13a and b do not show the function space
with respect to the discrete grid variables. Even so, consid-
ering each combination of the feasible grid variables is more
desirable than the difficulty involved with the 200-D function
space of the direct layout definition.

Notice that the ranges of the design variable sweeps is
different for the BG and grid parameterizations compared
to the direct sweep. This is because the simpler parameter-
izations are more limited in the feasible design values. The
range through which the design variables can sweep is rela-
tively limited, without violating the minimum spacing or the
boundary constraints.

6 Additional details on BG parameterization

BG parameterization requires few variables, produces wind
farm layouts that perform similarly to ones that have been
optimized directly with much lower computational expense,
and reduces the multimodality of the design space. In ad-
dition, there are some innate design characteristics that are
useful in wind farm design. First, the layouts produced are
regular, aesthetically pleasing patterns. To the untrained eye,
BG parameterization looks well designed compared to the
seemingly random layouts that are often produced when ev-
ery turbine location is optimized individually. This can play
an important role in the public perception of large-scale wind
energy. Second, BG parameterization has clear roads or ship-
ping lanes naturally built into the design. Roads and shipping
lanes are requirements in wind farm design that are often ne-
glected in research studies.

Often, there are prohibited areas within a wind farm. This
could be for many reasons, such as natural geography, roads
or shipping lanes, or a variety of other reasons. Although be-
yond the scope of this paper and not addressed in the results
shown in Sect. 5, we have a few ideas on how this would be
handled with BG parameterization. Many prohibited zones,
such as shipping lanes, roads, or cable lines, are easily man-
aged with a grid turbine layout, as these could easily be de-
signed to follow the existing grid layout. Other prohibited
zones could be handled by the BG parameterization, with no
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adjustments. This would be for cases where the prohibited
zones are relatively small. For other cases, where the pro-
hibited zones are larger and more restrictive, slight modifi-
cations would need to be made to the parameterization. The
discrete variable of the inner grid would be initially defined
such that the turbine location constraints are met. This would
likely include some of the rows that are not continuous, but
have some gaps to accommodate the constraints. Likewise,
the boundary turbines would be defined slightly differently,
in that there would be some gaps to accommodate layout con-
straints.

7 Conclusions

In this paper, we have presented the new boundary-grid wind
farm layout parameterization method. This method uses only
five design variables, regardless of the number of wind tur-
bines but is capable of producing turbine layouts that perform
just as well as or better than layouts where the location of
each wind turbine has been optimized directly. We optimized
the layout of seven different wind farms with three different
parameterization methods: a simple grid, directly optimiz-
ing the location of each turbine, and our new boundary-grid
parameterization. For each wind farm and parameterization
method, we ran 100 optimizations with randomly initialized
design variables. In every case, the best layout achieved with
the BG parameterization perform slightly better than the best
layout achieved with the direct optimizations.

In addition to being able to match the optimal energy pro-
duction of wind farms that were directly optimized, BG pa-
rameterization requires an order of magnitude fewer function
calls to reach a solution. This is with exact-analytic gradients,
which means if finite-difference gradients or a gradient-free
optimization method were used instead, our parameterization
method would require at least 2 to 3 orders of magnitude
fewer function calls to optimize. BG parameterization also
reduces the multimodality of the design space, simplifying
the optimization process and making it easier to find a good
solution.

The BG layout definition places a portion of the wind
turbines around the boundary, spaced equally traversing the
wind farm perimeter. The rest of the turbines are placed in a
grid inside the farm boundaries. The wind farm layouts cre-
ated have a regular, aesthetically pleasing pattern, naturally
defined roads and shipping lanes, and an easily defined ca-
bling pattern. BG parameterizations solve many of the prob-
lems that typically accompany wind farm layout optimiza-
tion. It is a simple, easily implemented technique that can
immediately be applied by researchers and wind farm devel-
opers, playing an important role in the continued growth of
wind energy.
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