Cluster wakes impact on a far distant offshore wind farm’s power
Authors: Jörge Schneemann, Andreas Rott, Martin Dörenkämper, Gerald Steinfeld, Martin Kühn
DOI: 10.5194/wes-2019-39

Author response to reviewer comments
We would like to thank the two reviewers and Rémi Gandoin for their time and the constructive and helpful comments. Their input contributed to an improvement of the original manuscript. We addressed their feedback and reply to it point-by-point in the following. We highlight the changes in the text of the manuscript within a separate pdf file (LaTeX-Diff).

Anonymous Reviewer #1
1. [Reviewer #1] The authors present two case studies whereby one is characterized by stable conditions and the second one by weakly unstable and stable conditions. However, the stability criterion they applied to define the stratification of the atmosphere can be misleading as they only consider the atmosphere below 24.6 m MSL to obtain the stability of the atmosphere. In contrast, the aircraft observations of Platis et al. (2018) and analytical models (e.g. Emeis (2009)) reveal that the atmosphere at rotor height and above are of major importance when defining the stability of the atmosphere when considering wakes of wind farms. The state of the atmosphere above the rotor drives the vertical turbulent momentum flux, that in turn drives the recovery of the wind deficit. Consequently, using a bulk Richardson number using measurements at sea surface and at 24.6 m are independent of the atmosphere above 24.6 m. This point is totally missing in the discussion, especially in the paragraph P20L8-19. The authors claim that they observed a wake with a length of 55 km in weakly unstable conditions, but they don’t mention the possibility that an inversion above 24.6 m could have hindered vertical momentum transport from above. For example, in the case study presented in Siedersleben et al. (2018), an inversion was present above hub height but the atmosphere was weakly unstable stratified below hub height in the morning hours. Therefore, the authors should at least mention the possibility of stable conditions above hub height, otherwise the results presented in this study are misleading. Depending on the motivation of the authors they could also check nearby soundings taken at the shore upwind to get an idea of the atmosphere above rotor height.

[Authors] This comment is similar to comment 12 of Reviewer #2. We refer also to the answer to this question.
In particular, we added temperature measurements from nacelles in GTI to characterize stability in the morning of 11.10.2018 and checked radiosonde soundings at Bergen and the Ekofisk site in the North Sea downstream of GTI (c.f. Figures 1 and 2 in the answer to question 12. of [Reviewer #2]). We found indeed an inversion, but it was situated in heights above hub height (nacelle measurements) and even above the rotor area (Bergen and Ekofisk soundings). Therefore, we stay with our statement of weakly unstable stratification in the very lowest layer below some 300 m where the turbines operate. In general, your comment to consider thermal stratification (or basically the height of the atmospheric boundary layer/internal boundary layer) additional to the use of stability coefficients is right and important. A higher boundary layer better supports the filling of the wake deficit with momentum from above than a low boundary layer. We added a statement on this fact in the discussion in the manuscript.

2. [Reviewer #1] P4L16: Why z-score, what advantage does this method have. Please comment on that!
[Authors] We choose the z-score since it better highlights differences in the power of the upstream turbines. The normalization with the std. deviation highlights the significance of the findings. To avoid distortion by inner farm wake effects we reference the z-score to the mean and std. dev. of the upstream turbines instead of using the whole farm.

3. [Reviewer #1] P5L12: Figures 2 and 1 should be Figures 1 and 2
[Authors] corrected
4. [Reviewer #1] P6L1: ... with different settings ... Why not are you not mentioning the names of the settings? -> ... with two different setting A and B as listed in Table 2.
[Authors] implemented

5. [Reviewer #1] P8L12: How did you derive the virtual temperature at the sea surface? Did you interpolate the pressure measurements take at 24.6 m to the sea surface and what humidity did you use?
[Authors] We specified and corrected the description of the derivation of the stability coefficient and added a short appendix to the manuscript describing the derivation of the virtual potential temperatures at the sea surface and on the height of the TP from the available data. We calculated the pressure at sea level using equation A7 added to the manuscript.

6. [Reviewer #1] P9L21-P10L5: Does the RMSE in wind speed and wind direction correspond to a quality flag smaller or equal than 2?
[Authors] We added the current Sentinel-1 Product Specification (c.f. reference Vincent et al., 2019) to the manuscript and specified the quality flag used as owiWindQuality and wrote down the definition (0: high quality, 1: medium quality, 2: low quality, 3: bad quality). The source for the RMSE for wind speed and direction does not link to the error to the quality flag.

Figure Comments
7. [Reviewer #1] Fig. 5: Letters indicating the orientation of the cross section would be very helpful.
[Authors] We added labelled ticks on the cross sections in Figures 5, 6, 7, 9, 10 and 11 corresponding to the scale on the x-axis in subfigures c and d.

8. [Reviewer #1] Fig. 6, Fig. 7 and Fig. 9, Fig. 10: Again, letters indicating the orientation of the cross section would be helpful. Additionally, the cross section as indicated in Fig. 6b) seems to be longer than shown in Fig. 6d).
[Authors] We added labelled distance ticks, see answer above. Indeed, the cross section (or virtual wake cut) is defined over a greater distance than data is available. In sub figures c) and d) we show the wind field interpolated on the cross section. Outside of the measurement/scan area no data appears.

9. [Reviewer #1] Fig. 5b) and Fig. 6b): What is the meaning of the rotor like looking icons?
[Authors] The symbols mark curtailed or not operating turbines. We added the symbol in the captions of both figures.

10. [Reviewer #1] Fig. 8): ... in the averaged lidar interval are marked by ? red? horizontal dotted lines?
[Authors] We added the word “red” in the captions of Figures 4 and 8.

11. [Reviewer #1] Fig. 9): Why is the power output only shown for the front row turbines? Are the other turbines producing less than rated power and the z-score is, hence, omitted for these turbines?
[Authors] The inner turbines in the wind farm experiences inner farm wake effects producing less power than in the front row. Since in this case the std. dev. of the front row turbines is small compared to the std. dev. of the whole wind farm we choose to focus on the front row turbines. Showing the power of turbines deep downstream in the wind farm would make it necessary to adjust the power scale to larger negative values. The effect intended to be shown here, the influence on the power of the first row in the cluster wake deficit, would be overlaid by the inner farm effects and appear less distinct. We replaced the symbol of the downstream turbines to a hexagon while the curtailed/not operational turbines in the front row remain with the old marker (Y).
Nicolai Gayle Nygaard, Reviewer #2

1. [Reviewer #2] P. 2, line 9-10: this makes it sound like optimization of wind farm layouts to reduce wake effects is new. Of course, the industry has been doing this for many years. I suggest slightly rephrasing to avoid this misinterpretation.
[Authors] We rephrased the sentence to “Optimized wind farm layouts on the basis of the prevailing wind rose and stability distribution to reduce wake effects are commonly used (e.g. Emeis, 2009; Turner et al., 2014; Schmidt and Stoevesandt, 2015).”

2. [Reviewer #2] P.2, line 15: I suggest adding a reference to the work by Volker on the Explicit Wake Parametrisation (EWP), for example Geosci. Model Dev., 8, 3715–3731, 2015
[Authors] We added the reference Volker et al. (2015) as suggested.

3. [Reviewer #2] P.3, line 13-14: maybe add that the wake and free flow regions are defined manually
[Authors] Added.

4. [Reviewer #2] P.4, line 16: clarify if the curtailment filter is based on a specific SCADA signal or derived from a combination of signals. This is of general interest to readers working with SCADA data. A reference to another paper describing similar filtering would also be sufficient
[Authors] We added the use of a SCADA status flag, a curtailment signal and the turbine’s blade pitch angle to the manuscript.

5. [Reviewer #2] P.6, table 1: are the hub heights with reference to mean sea level?
[Authors] The values given are referenced to different height levels (MSL, LAT, “over water”). We added a hint on this fact in the caption and neglect the error here, since the difference between LAT and MSL is around 2 m in the North Sea.

6. [Reviewer #2] P.6, line just above table 2: insert “the” between “in” and “beam”
[Authors] Added.

7. [Reviewer #2] P.7: how does the finite acquisition time combined with the scan rate “smooth” the lidar measurements? Is this similar to a spatial averaging? Please comment in the text
[Authors] We added a sentence stating the spatial averaging perpendicular to the beam. “In both scenarios the laser beam is scanned over an angle of 2° per measurement leading to spatial averaging perpendicular to the line of sight direction.”

8. [Reviewer #2] P.8, line 5: please add a description (and a reference if relevant) for the interpolation onto a regular grid. Also, it is not clear if the exclusion of grid points with less than 10 single scan contribution applies after interpolation or time averaging or both. Please clarify this
[Authors] We specified the interpolation method and better described the averaging procedure. Furthermore, we corrected the threshold for not contributing scans to accept a grid point to be valid. This threshold was chosen for scenarios A and B individually due to the different scan durations.

9. [Reviewer #2] Eq. (3): in Stull (1988) the bulk Richardson number is defined in terms of the virtual potential temperature. The authors use the potential temperature. Please specify why this approximation is appropriate and does not introduce bias in the classification of stability. Furthermore, I have seen other papers where the temperature in the denominator of the bulk Richardson number is not the surface temperature, but the air temperature at the measurement height. This cannot change unstable to stable conditions, but it can shift the stability parameter closer or further from neutral conditions. Finally, I wonder if the lidar measurements used in equation 3 include measurements in the cluster wakes. If this is the case, the wind speed in the denominator of equation 3 will be too small, thus biasing the stability parameter away from neutral conditions
[Authors] We specified and adapted the manuscript to clearly state the procedure of stability derivation. Furthermore we added a short appendix on how we derived the Richardson number
providing more detail. We corrected the temperature in the denominator of the bulk Richardson number to be the virtual potential temperature at the reference level following Emeis (2018). The lidar measurements we used to derive the bulk Richardson number were recorded in cluster wakes, when present. We added a statement in the manuscript pointing this out. We do not see a general problem in this methodology, since our goal is to characterize the large-scale inflow of the wind farm, whether it is overlaid by a cluster wake or not. When the wake influences ambient stability, this is part of the inflow and needs to be accounted for.

10. [Reviewer #2] P. 9, line 13: which z is used to calculate the stability parameter. Is it z_TP? Please specify
[Authors] We specified it to be the height of the TP z_TP resulting in zeta = z_TP/L

11. [Reviewer #2] P.12, figure 5: are the non-operating/curtailed turbines the one marked with the symbols that are not circles? This is not clear from the caption. The same symbol is used in figures 9-11, but is not referred to in the captions. Were most turbines standing still or curtailed in the second flow case?
[Authors] We added the symbol to the Figure’s caption. It marks the non-operating or curtailed turbines. In Figures 9 to 11 we decided just to show the power of the upstream turbines, since, due to inner farm effects, the scale of the z-score would reach further in the negative range when showing the power of the whole farm. This leads to less pronounced differences in the first row. Since the focus is here on the power of the upstream turbines, we changed the markers for the turbines behind the first row in the figure to hexagons just indicating turbine coordinates.

12. [Reviewer #2] p. 15, figure 8: I worry about the classification of weakly unstable conditions at the time of the 11 October 2018 SAR image. The stability is assessed entirely on a model. What is the uncertainty of this? Later in the same day, when meteorological measurements are available a large bias is seen between the mesoscale temperature and the measured temperature. This bias (if it also existed in the morning) could maybe change the stability classification from weakly stable to weakly unstable.
[Authors] The bias in the temperature data from the TP and NEWA has to be seen in the context of different reference heights. But you are right, the stability classification in the morning based on NEWA data alone is not very reliable. To support the NEWA data we obtained meteorological measurements from nacelles of some of the turbines in GTI. Even though these sensors are not calibrated and are most likely no first-class sensors the data gives more evidence on the stratification in the morning of 11.10.2018. Figure 1 displays the data together with the derived stability for four turbines. It confirms the unstable stratification in the morning and the transition to stable stratification after 12:00 UTC. All four temperature measurements are below sea surface temperature until approximately 12:00. We included temperature data and zeta of turbine GT58 in Figure 8 in the manuscript. Additionally we looked into temperature profiles from radiosonde soundings as suggested in a short comment by Rémi Gandoin and Reviewer #1. Figure 2 displays soundings at the stations Bergen (04:00 UTC and 10:00 UTC) and Ekofisk (11:00 UTC, 300 km downstream of GTI in the North Sea, course approx. 317°) on 11.10.2018. The temperature profile at Bergen, 04:00 UTC, reveals decreased temperatures in the lower layer up to 300 m in the early morning due to heat radiating to space under a clear sky. This cooled air mass is transported by the south-eastern flow over the approximately 16 °C warm North Sea leading to a shallow unstable boundary layer up to approx. 200 m to 300 m height where a strong inversion with increasing temperatures starts and blocks convection to reach up higher. This shallow unstable layer still appears in the sounding at Ekofisk, 11:00 UTC, but disappears over land during the day due to solar warming of the ground, see temp Bergen, 10:00 UTC. We added a short statement on the radiosonde soundings and the sources for sounding data in the paper without showing the temperature profile.

In conclusion we stick to our statement of a shallow (weakly) unstable stratified boundary layer in the morning of 11.10.2018. In the discussion we added a part pointing out the necessity of a careful characterization of atmospheric stability and consideration of boundary layer height.
Figure 1: Meteorological measurements and stability classification on 11.10.2018. Measurements taken on turbines GT51, GT58, GT59 and GT64 in Global Tech I. Top to bottom: relative humidity, temperature, pressure (only single measurement available), stability parameter zeta (note erroneous values for bulk Richardson numbers above critical value of 0.2), air speed on the nacelle and the bulk Richardson number.
13. [Reviewer #2] p. 16, line 30: can you comment on the expected AEP impact of the OSS platforms? I would expect it to be small, since the platforms are fairly low compared with the turbines and have a smaller cross-sectional area.
[Authors] We did not analyse the impact of platform wakes on the power of neighbouring or distant wind turbines. Therefore we could not comment neither on the impact on single turbines nor on the AEP of a wind farm. We agree with the assumption of a fairly low effect compared to wind turbine wakes due to the lower height and the smaller cross section. We added a short comment on this matter in the end of section 4.2.

14. [Reviewer #2] p. 17, line 3: at rated power OR above rated speed (as opposed to at rated speed)
[Authors] We changed the phrase to “above rated speed”.

15. [Reviewer #2] p. 17, line 9: if the average wind speed is smaller the wind speed deficit should be larger not smaller due to the increase of the thrust coefficient at lower wind speeds. Or am I missing something?
[Authors] We clarified the statement in the manuscript stating a similar relative wake deficit and a higher absolute deficit for higher wind speeds. The turbine’s thrust coefficient should be more or less constant in the partial load range leading to similar relative wake deficits. The DolWin2 cluster operated in partial load at the regarded times (c.f. www.energy-charts.de).

16. [Reviewer #2] p. 18, line 7: when saying that SAR mostly supports the lidar wake measurements, can you be more specific?
[Authors] We did not perform a systematic analysis of all available lidar measurements and corresponding SAR data, yet. This is planned for future work. Aside cases where SAR data and lidar agrees well, in some cases we found cluster wake like structures in the lidar while no conclusive signature of cluster wakes were evident in the SAR data. This complicates the interpretation of the situation due to the limited range of the lidar measurement (as discussed in the manuscript). We rephrased the manuscript to “In some of the cases with available large-area SAR wind data these alternative measurements supported the lidar cluster wake measurements.”.
17. [Reviewer #2] p. 21, line 14: I suggest this phrasing: Wind turbines are sensitive to the wind conditions over a wide range of heights defined by the swept rotor area.
[Authors] We changed the sentence to the proposed wording.

18. [Reviewer #2] p. 22, line 9: is the wind speed deficit region truly decreasing in width, or is it the region of a certain colour in the heat map that is shrinking? The increase of wake width is typically coupled with the decrease of the peak deficit.
[Authors] The colours in Figure 9 represent the SAR wind speed. The regions with the highest deficits (dark blue colours) extend downstream from the farms/clusters and become narrower with increasing distance. These regions do not necessarily represent the full wake but the inner region with the highest deficit. The outer wake regions seem to smear with the surrounding flow. We clarified our discussion on this point.

19. [Reviewer #2] p. 23, line 26: “then” should be “than”
[Authors] corrected
Cluster wakes impact on a far distant offshore wind farm’s power

Jörge Schneemann1, Andreas Rott1, Martin Dörenkämper2, Gerald Steinfeld1, and Martin Kühn1

1ForWind, Institute of Physics, Carl von Ossietzky University Oldenburg, Küpkersweg 70, 26129 Oldenburg, Germany
2Fraunhofer Institute for Wind Energy Systems, Küpkersweg 70, 26129 Oldenburg, Germany

Correspondence: Jörge Schneemann (j.schneemann@uol.de)

Abstract. Our aim with this paper was the analysis of the influence of offshore cluster wakes on the power of a far distant wind farm. We measured cluster wakes with long range Doppler light detection and ranging (lidar) and satellite synthetic aperture radar (SAR) in different atmospheric stabilities and analysed their impact on the 400 MW offshore wind farm «Global Tech I» in the German North Sea using supervisory control and data acquisition (SCADA) power data. Our results showed clear wind speed deficits that can be related to the wakes of wind farm clusters up to 55 km upstream in stable and weakly unstable stratified boundary layers resulting in a clear reduction in power production. We discussed the influence of cluster wakes on the power production of a far distant wind farm, cluster wake characteristics and methods for cluster wake monitoring. In conclusion, we proved the existence of wake shadowing effects with resulting power losses up to 55 km downstream and encouraged further investigations on far reaching wake shadowing effects for optimized areal planning and reduced uncertainties in offshore wind power resource assessment.

1 Introduction

Wind energy utilization at sea is an increasingly important part for the transition of the mainly fossil-based energy system towards renewable electricity generation. By the end of 2018 offshore wind turbines with a capacity of 6,382 MW were installed in German waters, 21,750 MW worldwide. A massive expansion of offshore wind energy utilization is expected in many countries. Germany alone aims at an installed capacity of 15 GW by the year 2030 (Mackensen, 2019). Most of this capacity will be installed in the North and Baltic Sea mainly in large wind farm clusters. A wind farm cluster typically consists of several wind farms in direct vicinity, often operated by different parties, featuring different wind turbine types and different geometries. We here call a large accumulation of more than a hundred wind turbines a cluster.

Wind turbines extract energy from the atmosphere forming regions of reduced wind speed, so called wakes, behind them. Wakes of single wind turbines merge to a wind farm or cluster wake (e.g. Nygaard, 2014). We use the term cluster wake for the merged wakes of a large number of wind turbines of either the same or different type with no individual wind turbine wake identifiable anymore. Downstream turbines within a wind farm (e.g. Barthelmie and Jensen, 2010) and in neighbouring downstream clusters (e.g. Nygaard and Hansen, 2016) experience reduced wind speeds and reduced power generation caused by wake shadowing effects. With a rising offshore wind energy utilisation cluster wake shadowing effects will occur to an increasing degree, leading to power losses and uncertainties in offshore wind resource assessment.

Wind turbine wakes were subject of intensive research in the last decade. Wake measurements were mainly performed using
the remote sensing technique Doppler lidar (e.g. Aitken et al., 2014; Trabucchi et al., 2017; Bodini et al., 2017; Fuertes et al., 2018; Beck and Kühn, 2019), power analysis on the basis of SCADA data (e.g. Barthelmie and Jensen, 2010) or Doppler radar (e.g. Hirth et al., 2014). Furthermore, several numerical studies investigated wind turbine wakes using large eddy simulations (LES) (e.g. Churchfield et al., 2012; Abkar and Porté-Agel, 2015; Dörenkämper et al., 2015; Lignarolo et al., 2016; Vollmer et al., 2016). In an unstable atmosphere e.g. in cold air over warm water, vertical turbulence leads to a well mixed boundary layer and causes a faster wake recovery. In stable conditions e.g. in warm air over cold water, wake deficits can last far downstream. Hansen et al. (2011), Dörenkämper et al. (2015) and Lee et al. (2018) investigated wake recovery with respect to atmospheric stability and found an increased length of wakes in stable stratification. Emeis (2009), Turner et al. (2014) and Schmidt and Stoevesandt (2015) suggested optimized wind farm layouts to reduce wake effects on the basis of the prevailing wind rose and stability distribution to reduce wake effects are commonly used (e.g. Emeis, 2009; Turner et al., 2014; Schmidt and Stoevesandt, 2015).

Cluster wakes are recently coming into the scientific focus with an increased offshore wind energy utilisation. Due to the large dimensions of cluster wakes experimental investigations have been made with measurement systems capable to cover large areas like satellite synthetic sperture radar (SAR) (e.g. Hasager et al., 2015), research aircrafts (e.g. Platis et al., 2018) and Doppler radar (e.g. Nygaard and Newcombe, 2018). Numerical studies were carried out by implementing wind farms in mesoscale models (e.g. Fitch et al., 2012) in contrast to the usage of e.g. LES for single wakes(e.g. Fitch et al., 2012; Volker et al., 2015). Wakes of large offshore wind farm clusters over distances of more than 10 km were first observed using data from satellite SAR (Christiansen and Hasager, 2005). Li and Lehner (2013) and Hasager et al. (2015) analysed offshore wind farm wakes using SAR images and compared the long visible wakes to results of mesoscale models. Nygaard and Hansen (2016) analysed the power production of an offshore wind farm before and after the commissioning of a wind farm located 3 km to the west on the basis of SCADA data and discovered power losses caused by wakes of the upstream wind farm in the first rows of the downstream wind farm. Nygaard and Newcombe (2018) used dual-Doppler wind radar to measure the inflow and the wake of an offshore wind farm and found wind speed deficits up to the maximal achievable downstream distance of 17 km possible with the used setup. They analysed a case with steady wind direction and speed and observed the cluster wake for over one hour, stability information was not available. Platis et al. (2018) used in situ measurements taken with a research aircraft on hub height behind offshore wind farm clusters in the German North Sea and identified wakes with lengths of up to 55 km under stable atmospheric conditions, up to 35 km in neutral conditions and up to 10 km in unstable conditions. Siedersleben et al. (2018b) used the same flight measurements as Platis et al. to evaluate a wind farm parametrization (Fitch et al., 2012) in a numerical weather model. Additionally they presented an analysis of aircraft wake measurements in five different heights 5 km downwind of the cluster. The wake deficit existed in all considered height levels also 50 m above the upper tip height of the rotor. Siedersleben et al. (2018a) investigated the micrometeorological consequences of cluster wakes due to mixing effects in the atmosphere using the flight measurements from Platis et al.. Lundquist et al. (2019) analysed the physical, economic and legal consequences of wake effects between large onshore wind farms with sizes of more than a hundred megawatt each.

Wind farm cluster wakes in the far field of more than 20 km downstream have not been monitored over longer periods. Satellite SAR just offers the possibility to take snap shots of the wind field. Doppler radar has been deployed on the coast monitoring
a near shore wind farm (Nygaard and Newcombe, 2018) but not in an offshore wind farm to use the full measurement range for wake analysis. Doppler lidar, which successfully monitored wind turbine wakes, was considered not to be able to achieve the measurement range needed to investigate full cluster wakes. Furthermore, the influence of cluster wakes on the power production of far downstream wind farms has not been analysed. The influence of atmospheric stability on the development and recovery of cluster wakes has not been studied in detail.

The objective of this paper is to analyse whether offshore cluster wakes have a significant and continuous influence on the power generation of a far downstream wind farm, and how this influence depends on atmospheric stability. For this purpose we investigated two exemplary cases of cluster wakes approaching the 400 MW wind farm «Global Tech I» in the North Sea during situations with different atmospheric stabilities by means of four synchronized data sets, namely

1. large-area satellite SAR wind data,
2. continuous platform-based long range Doppler lidar wind monitoring,
3. operational data of the wind farm «Global Tech I» and
4. meteorological measurements for atmospheric stability characterisation.

We follow Platis et al. (2018) in their definition of the cluster wake deficit as the difference of the wind speeds from the manually selected wake region and a neighbouring free flow region since the inflow wind speed of the wake generating cluster as reference is typically not known. Furthermore, regional and temporal differences in the wind field distort a comparison of the far distant points in front of and far behind a cluster. Therefore the adjacent regions in and aside the wakes are compared. Wake and free flow regions are identified manually in this analysis.

The paper is structured as follows. Section 2 introduces the experimental setup in the North Sea, measurements taken with Lidar, SAR and meteorological sensors as well as data processing. Section 3 presents two exemplary cluster wake cases affecting the wind farm «Global Tech I». In Section 4 we discuss the influence of cluster wakes on the power production of a far downstream wind farm as well as cluster wake characteristics and methods for cluster wake monitoring. Section 5 concludes on the findings and closes the paper.

2 Methods

In this study different data sources have been used: meteorological measurements, wind farm production data (supervisory control and data acquisition, SCADA) and remote sensing data from a Doppler lidar (light detection and ranging) measurement campaign and satellite SAR (synthetic aperture radar) data. A description of these data sources is given in this section. Our measurement campaign started in late July 2018 planned to last one year. Measurements we present in this paper were taken on 11 October 2018 and 6 February 2019. All measurement data in this study was recorded in UTC.
2.1 Wind farms and SCADA data

With status of early 2019 several offshore wind farms were installed mainly in clusters in the German and Dutch North Sea. Focus of this work is on the effects on the 400 MW wind farm «Global Tech I» (GT I), which is one of the world’s most distant offshore wind farms with a coastal distance of more than 100 km. We analyse the impact of two large wind farm clusters, namely the 802 MW «BorWin» cluster located about 25 km southwest and the 914 MW «DolWin2» cluster 55 km southeast on the wind farm GT I. Figure 1 gives an overview of the region around GT I while Figure 2 displays its layout. All maps we show in the following, except of Figure 1, were transferred to the Gauss Krüger coordinate system and the origin was shifted to the lidar position at turbine GT58 in GT I (Figure 2). Table 1 summarizes the main characteristics of the wind farms and clusters in the region. In direct southwestern vicinity of GT I the associated wind farms «Hohe See» and «Albatros» were under construction during the period of our measurement campaign with several transition pieces and a substation but no wind turbine towers installed. The first turbine was erected 6 April 2019 (EnBW, 2019). The position of the «Hohe See» offshore sub station (OSS) is marked in the following plots (×). The installation of the 900 MW high voltage direct current (HVDC) platform «BorWin gamma» in the southeast corner of «Hohe See» was completed on 11 October 2018 (Petrofac, 2018), we mark its position (+).

For the wind farm GT I, ten minute averaged SCADA data was available during the period of the measurements. Data of turbines in normal operation was considered, turbines with curtailed power below rated power were excluded from the analysis based on a SCADA status flag, a curtailment signal and consideration of pitch angles. For the wind farms «Gode Wind 1+2» and «Nordsee One» we obtained hourly production data from Fraunhofer ISE (2019) and...
Figure 2. Layout of the wind farm «Global Tech I» with turbine numbers. The turbine GT58 where we positioned the lidar is marked in red (○). The achievable sector for lidar measurements is drawn.

We checked the operational status. We analyse wind turbine power differences using the z-score

\[z_{P_i} = \frac{P_i - \overline{P_{\text{up}}}}{\sigma_{P_{\text{up}}}} \]

(1)

being the difference of the \(i \)-th turbine’s power \(P_i \) and the mean power of the turbines in the first row facing the wind direction (upstream turbines) \(\overline{P_{\text{up}}} \) normalized with the standard deviation of the power of the upstream turbines \(\sigma_{P_{\text{up}}} \) within the considered time span. Advection through the farm is not considered. We use the upstream turbines to calculate the z-score instead of the turbines of the whole farm to avoid distortion by inner farm wake effects.

2.2 Lidar measurements

We used a scanning long range Doppler lidar system of type Leosphere Windcube200S (Serial no. WLS200S-024) in this study. The lidar system emits laser pulses into the atmosphere and analyses the light backscattered by aerosols for a Doppler shift proportional to the radial wind velocity in beam direction \(v_r \). The lidar is able to process wind speed information in \(>200 \) different ranges on the beam called range gates. For each range gate the radial wind speed \(v_r \) and the carrier-to-noise ratio (CNR) as a measure of the signal quality are stored. The lidar’s scanner is able to point the beam in any desired direction in the hemisphere above and partly below the device.

We installed the lidar system on the transition piece (TP) of wind turbine GT58 in GT I (filled ○ in Figures 2 and 1 and 2). The height of its scanner was approximately 24.6 m above mean sea level (MSL), 67.0 m below hub height and 9.0 m below
Table 1. Overview of offshore wind farms considered in this work (status June 2019). The wind farms «Borkum Riffgrund 2» (Orsted, 2018) and «Merkur Offshore» (Merkur Offshore, 2018) were in the commissioning phase and partly fed into the grid during our measurements, therefore they are marked with smaller symbols in the relevant plots in this paper. D: rotor diameter, h_H: hub height, P_r: rated power per turbine, No.: number of turbines per wind farm, ΣP_r: rated power of wind farm. The numbers for the hub height are related to different reference levels, namely lowest astronomical tide (LAT), mean sea level (MSL) or just «over water». These differences are not further considered here since the difference between LAT and MSL is typically around 2 m in the North Sea.

<table>
<thead>
<tr>
<th>Name</th>
<th>Short</th>
<th>Turbine</th>
<th>D/m</th>
<th>h_H/m</th>
<th>P_r/MW</th>
<th>No.</th>
<th>ΣP_r/MW</th>
</tr>
</thead>
<tbody>
<tr>
<td>Global Tech I</td>
<td>GTI</td>
<td>AD 5-116</td>
<td>116</td>
<td>92</td>
<td>5.0</td>
<td>80</td>
<td>400</td>
</tr>
<tr>
<td>BorWin Cluster (802 MW)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BARD Offshore 1</td>
<td>BO1</td>
<td>BARD 5.0</td>
<td>122</td>
<td>90</td>
<td>5.0</td>
<td>80</td>
<td>400</td>
</tr>
<tr>
<td>Veja Mate</td>
<td>VM</td>
<td>SWT-6.0-154</td>
<td>154</td>
<td>103</td>
<td>6.0</td>
<td>67</td>
<td>402</td>
</tr>
<tr>
<td>Gemini Cluster (600 MW)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Buitengaats</td>
<td>BG</td>
<td>SWT-4.0-130</td>
<td>130</td>
<td>89</td>
<td>4.0</td>
<td>75</td>
<td>300</td>
</tr>
<tr>
<td>Zee Energie</td>
<td>ZE</td>
<td>SWT-4.0-130</td>
<td>130</td>
<td>89</td>
<td>4.0</td>
<td>75</td>
<td>300</td>
</tr>
<tr>
<td>DolWin 1 Cluster (1,416 MW)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trianel Windpak Borkum</td>
<td>TWB</td>
<td>AD 5-116</td>
<td>116</td>
<td>92</td>
<td>5.0</td>
<td>40</td>
<td>200</td>
</tr>
<tr>
<td>alpha ventus</td>
<td>av</td>
<td>AD 5-116</td>
<td>116</td>
<td>90</td>
<td>5.0</td>
<td>6</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5M</td>
<td>126</td>
<td>92</td>
<td>5.0</td>
<td>6</td>
<td>30</td>
</tr>
<tr>
<td>Borkum Riffgrund 1</td>
<td>BR1</td>
<td>SWT-4.0-120</td>
<td>120</td>
<td>87</td>
<td>4.0</td>
<td>78</td>
<td>312</td>
</tr>
<tr>
<td>Borkum Riffgrund 2</td>
<td>BR2</td>
<td>V164-8.0</td>
<td>164</td>
<td>111</td>
<td>8.0</td>
<td>56</td>
<td>448</td>
</tr>
<tr>
<td>Merkur Offshore</td>
<td>MO</td>
<td>Haliade 150-6</td>
<td>150</td>
<td>103</td>
<td>6.0</td>
<td>66</td>
<td>396</td>
</tr>
<tr>
<td>DolWin 2 Cluster (914 MW)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nordsee One</td>
<td>N1</td>
<td>6.2M-126</td>
<td>126</td>
<td>90</td>
<td>6.15</td>
<td>54</td>
<td>332</td>
</tr>
<tr>
<td>Gode Wind 1+2</td>
<td>GW</td>
<td>SWT-6.0-154</td>
<td>154</td>
<td>110</td>
<td>6.0</td>
<td>97</td>
<td>582</td>
</tr>
</tbody>
</table>

lower blade tip height of the turbine. Figure 3 displays a picture of the lidar installed in GTI. The lidar performed horizontal plan position indicator (PPI) scans (elevation angle φ was 0°) with continuous scanner movement in different azimuthal sectors of 150° width upstream with different settings: two different settings A and B as listed in Table 2. We started with the slower scenario A aiming for a high measurement range. Later we optimized the measurements using scenario B being four times faster and achieved similar ranges. In both scenarios the laser beam is scanned over an angle of 2° per measurement leading to spatial averaging perpendicular to the line of sight direction. After performing a scan the lidar needs a few seconds to reset and start the next scan. Every few hours it performs a homing procedure of the scanner to assure precise orientation. The laser pulse length used in both scenarios was 400 ns leading to a probe volume of approximately 70 m in the beam direction. The range gate spacing is listed in Table 2. The offset in the azimuthal direction between geographic north and the lidar’s north was corrected by scanning distant wind turbines in GTI with known positions («hard targeting»). The resulting error in the
Figure 3. Lidar system Windcube200S on the transition piece of wind turbine GT58 in the offshore wind farm «Global Tech I». On the right side of the image the tower of the turbine is visible while turbine GT51 northwest of GT58 can be seen in the background (c.f. GT I layout in Figure 2). (Stephan Voß, ForWind)

Table 2. Overview of the different settings for the lidar PPI scans. Both scenarios covered different sectors of 150° width. Range gates are listed as minimal range : spacing : maximal range. Range gates are also referred to as "measurement points" in the following.

<table>
<thead>
<tr>
<th>Scenario</th>
<th>Pulse lengths / ns</th>
<th>Acquisition time / s</th>
<th>φ°/s</th>
<th>Scan duration / s</th>
<th>Range gates / m</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>400</td>
<td>8.0</td>
<td>0.25</td>
<td>600</td>
<td>1000:50:12000</td>
</tr>
<tr>
<td>B</td>
<td>400</td>
<td>2.0</td>
<td>1.0</td>
<td>150</td>
<td>500:35:8000</td>
</tr>
</tbody>
</table>

azimuthal orientation Δφ was smaller than 0.1° and is therefore neglected.

The lidar was well aligned on the pitch and roll axis, errors were checked using the method of sea surface levelling (Rott et al., 2017). The resulting maximal error in the elevation Δϑ was less than 0.1°. An additional error in the elevation angle of the lidar measurement occurs from a small movement of the TP due to the thrust on the rotor with a maximum of 0.1°.

When regarding the height of the measurement locations the curvature of the earth must be taken into account for the ranges achieved. The error introduced raises quadratically with range and reaches Δh₈ = 5.02 m in a distance of 8 km and of Δh₁₀ = 7.85 m in a distance of 10 km. The measurement errors we describe here can be neglected for the mainly qualitative analysis in this work.
2.3 Lidar data processing

Lidar scans were individually filtered on CNR minimal and maximal thresholds, a maximum range and a minimal data density in the v_r-CNR-plane (similar to Beck and Kühn, 2017). For each PPI scan the mean wind direction was determined by fitting a cosine function to all radial speeds v_r of the scan over their azimuth angles φ. All v_r were then transformed back to the absolute wind speed v_a in mean wind direction assuming the perpendicular wind component to vanish using

$$v_a = v_r / \cos(\varphi_{\text{diff}})$$

with φ_{diff} being the difference angle between the beam direction and the mean wind direction. Sectors with measurement ranges almost perpendicular to the wind direction ($|\varphi_{\text{diff}}| > 75^\circ$) were excluded from the analysis because of an increasing error due to an overestimation of flow components perpendicular to the wind direction. We plot single lidar scans on their original polar grid while we calculated. To obtain averaged lidar wind fields interpolating we transferred the v_a-lidar data of each regarded scan to a Cartesian grid with a resolution of 50 m \times 50 m. Calculating-triangulating the data points and on each triangle performing linear barycentric interpolation to the grid points. We then calculated the cubic (or power) average of Grid points with less than on each grid point. Due to slightly changing wind directions in the averaging interval points at the border of the scans were just included in the further analysis if no scan (scenario A) or less than 10 single-scan contributions were excluded from further analysis. Scans (scenario B) did not contribute at the grid point.

2.4 Atmospheric stability and meteorological data

Meteorological measurements of atmospheric stability are uncommon in offshore wind farms. Different methods for the derivation of stability exist (c.f. Rodrigo et al. (2015) for an overview). We applied the bulk Richardson method from profile measurements according to Rodrigo et al. (2015) being Eméis (2018) based on the tropical observations of Grachev and Fairall (1997). We used the wind speed v_{TP} and the temperature T_{TP} on the height of the transition piece z_{TP} and the difference of the virtual temperatures $\Delta \Theta = \Theta_{TP} - \Theta_{0}$ from the two measurement heights at the TP Θ_{TP} and the sea surface Θ_{0}, potential temperatures at the height of the TP and at sea level $\Delta \Theta_{\nu} = \Theta_{\nu,TP} - \Theta_{\nu,SST}$ (c.f. Appendix A) to derive the dimensionless bulk Richardson number

$$Ri_b = \frac{g}{\Theta_0} \frac{z_{TP} \Delta \Theta}{v_{TP}^2} = \frac{g}{\Theta_{\nu,TP}} \frac{z_{TP} \Delta \Theta_{\nu}}{v_{TP}^2}$$

where g is the gravity acceleration. The dimensionless stability parameter

$$\zeta = \begin{cases} 10Ri_b & \text{Ri}_b > 0 \\ 1 - 5Ri_b & \text{Ri}_b \leq 0 \end{cases}$$

and the stability classification in Table 3 were chosen for stability categorization.

To be able to estimate ζ we operated sensors for air pressure (Vaisala PTB330) as well as temperature and relative humidity (Vaisala HMP155) on the TP of turbine GT58. In one case (c.f. Section 3.2.1) we used meteorological measurements from
Table 3. Classification of atmospheric stability as suggested by Sorbjan and Grachev (2010).

<table>
<thead>
<tr>
<th>Stability category</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>very stable</td>
<td>$0.6 < \zeta < 2.0$</td>
</tr>
<tr>
<td>stable</td>
<td>$0.2 < \zeta < 0.6$</td>
</tr>
<tr>
<td>weakly stable</td>
<td>$0.02 < \zeta < 0.2$</td>
</tr>
<tr>
<td>near neutral</td>
<td>$-0.02 < \zeta < 0.02$</td>
</tr>
<tr>
<td>weakly unstable</td>
<td>$-0.2 < \zeta < -0.02$</td>
</tr>
<tr>
<td>unstable</td>
<td>$-0.6 < \zeta < -0.2$</td>
</tr>
<tr>
<td>very unstable</td>
<td>$-2.0 < \zeta < -0.6$</td>
</tr>
</tbody>
</table>

the nacelle of turbine GT58 provided by the wind farm operator as a second source of data to derive the stability parameter at height of the nacelle ζ_{nac} using the same methodology as described above. A buoy for the measurement of the sea surface temperature T_{SST} was available from 9 August 2018 until 31 January 2019. We compared the measurements with the OSTIA data set (Donlon et al., 2012) both resampled to a 30 minute interval (mean values for the buoy data, linear interpolation for the daily available OSTIA data set) and found a mean difference of 0.19 K. Since the buoy was not available during the whole lidar measurement campaign, we use T_{SST} from the OSTIA data set to derive ζ. The wind speed on the height of the TP v_{TP} for the purpose of atmospheric stability analysis was calculated from horizontal lidar PPI scans as described in Section 2.3 using data with a measurement range smaller than 3000 m. These measurements took place within the approaching cluster wakes, when present. This influences the calculation of the stability parameter but we see the wake as part of the inflow and do not try to correct for it. We averaged meteorological measurements to 30 minute intervals.

For a comparison of the potential power P_{pot} in the wind with the power harvested by free flow turbines we had to transfer

Table 4. Overview of the available meteorological quantities to derive the stability parameter ζ. Availabilities disregard shorter data gaps. If no end time is stated measurements are ongoing with date of 01 August 2019. Additional the data from mesocale simulations similar to the NEWA data set were available but not listed in this table.

<table>
<thead>
<tr>
<th>quantity</th>
<th>symbol</th>
<th>sensor / source</th>
<th>height</th>
<th>availability period</th>
</tr>
</thead>
<tbody>
<tr>
<td>air temperature</td>
<td>T_{TP}</td>
<td>HMP155</td>
<td>$z_{\text{TP}} = 24.6$ m MSL</td>
<td>23.07.2018 -</td>
</tr>
<tr>
<td>air humidity</td>
<td>rH_{TP}</td>
<td>HMP 155</td>
<td>$z_{\text{TP}} = 24.6$ m MSL</td>
<td>23.07.2018 -</td>
</tr>
<tr>
<td>air pressure</td>
<td>P_{TP}</td>
<td>PTB 330</td>
<td>$z_{\text{TP}} = 24.6$ m MSL</td>
<td>23.07.2018 -</td>
</tr>
<tr>
<td>wind speed</td>
<td>$v_{\text{TP, lidar}}$</td>
<td>Lidar PPI scans</td>
<td>$z_{\text{TP}} = 24.6$ m MSL</td>
<td>17.08.2018 - (dep. on scan scenario)</td>
</tr>
<tr>
<td>sea surface temperature</td>
<td>$T_{\text{SST, buoy}}$</td>
<td>buoy next to GT58</td>
<td>sea surface</td>
<td>09.08.2018 - 31.01.2019</td>
</tr>
<tr>
<td>sea surface temperature</td>
<td>$T_{\text{SST, OSTIA}}$</td>
<td>OSTIA data set</td>
<td>sea surface</td>
<td>2018 - 2019</td>
</tr>
</tbody>
</table>

wind speeds from measurement heights ($z_{\text{SAR}} = 10$ m, $z_{\text{TP}} = 24.6$ m) to hub height $z_{\text{hub}} = 91.6$ m. Following Emeis (2018)
we used the logarithmic wind profile

\[u(z) = \frac{u_*}{\kappa} \cdot \left(\ln \frac{z}{z_0} - \Psi_m(z/L) \right) \] (5)

with a correction function \(\Psi_m(z/L) \) to account for the atmospheric stability to calculate the vertical wind profile. We used mesoscale data with a setup very similar to the production runs of the «New European Wind Atlas» (NEWA, c.f. Witha et al. (2019) and NEWA (2019)) internally deriving the roughness length \(z_0 \) using Charnock’s relation. We obtained the Obukhov length \(L \) from the stability parameter \(\xi = \frac{z}{L} \) and \(\xi = z_{TP}/L \). The von Karman constant reads \(\kappa = 0.4 \). The friction velocity \(u_* \) was then calculated for the given pair of wind speed and height, e.g. \(z_{TP} \) and \(u_{TP} \) from Equation 5. The wind speed on hub height was afterwards converted to the theoretical potential power \(P_{pot} \) using a power curve \(P_{est}(v) = c \cdot v^3 \) with the constant \(c \) derived from power data in the partial load range. We do not curtail \(P_{pot} \) at rated wind speeds allowing it to be larger than rated power.

2.5 SAR wind data

Satellite SAR remotely measures the roughness of the sea surface. Using a geophysical model to estimate wind direction, wind speeds over the ocean can be derived. In this work, we use publicly available already processed wind data from the Copernicus SAR-satellite Sentinel-1A. The algorithm for wind field processing is described in Mouche (2011), an overview of its performance is given in ESA (2019) and the data product including quality flags is described in Vincent et al. (2019).

Wind data at 10 m height is processed on a grid with a spatial resolution of \(1 \times 1 \text{ km}^2 \). Wind speed estimates are in range from 0 \(\text{m s}^{-1} \) to 25 \(\text{m s}^{-1} \) with a root mean square error (RMSE) smaller than 2.0 \(\text{m s}^{-1} \) and wind direction estimates have an RMSE below 30°. The spatial coverage of the SAR images and the processed wind fields is 170 \(\text{km} \times 80 \text{ km} \) minimum with a revisit time in the order of days. A quality flag for the wind estimate \(\text{_oriWindQuality} \) (0: high quality, 1: medium quality, 2: low quality, 3: bad quality, c.f. Vincent et al. (2019)) is provided within the data product. We use data with a quality flag \(\leq 2 \). For the calculation of the potential power on hub height (c.f. Section 2.4) we added constant wind speed values within the measurement accuracy to the SAR wind data to match the actual power production.

3 Results

In this section we present an analysis of wake situations of the «BorWin» cluster on 6 February 2019 and of the «DolWin2» cluster on 11 October 2018 based on Sentinel-1 SAR wind data, lidar measurements and SCADA power data of the wind farm GTI.

3.1 «BorWin» cluster wake on 6 February 2019

The «BorWin» cluster is located approximately 24 km upwind of GTI in southwesterly direction. We measured wakes from the cluster approaching GTI in stable stratified situations during our measurement campaign. Here we present a stably stratified
situation in late winter 2018/2019 with low variation in the wind direction allowing us to analyse lidar scans of the same situation over a period of a couple of hours.

3.1.1 Meteorological conditions

In Figure 4 we plot the measured wind speed and direction, air pressure, temperature and humidity as well as the sea surface temperature from the OSTIA data set and the derived stability parameter ζ during 6 February 2019. On that day the frontal system of a cyclone southwest of Iceland crossed the German Bight. The warm front passed GT I in the morning bringing air temperatures of about $6.9^\circ C$ in the warm sector over the $6.1^\circ C$ cold sea stabilizing the boundary layer. With decreasing humidity and disappearing fog good lidar availability was achieved starting at approximately 10:00 (short humid/foggy period of bad measurements around 12:00) with clear wakes of the «BorWin» cluster visible in the lidar scans. In the afternoon we choose a period with relatively constant wind direction from 13:35 to 16:12 for analysing the averaged wake effects over a longer period of about 2.5 hours. The period with stable stratification ended with the passage of the cold front at approximately 17:15.

3.1.2 SAR wind data

Figure 5 displays the analysis of a wind field derived from the measurement of the Copernicus satellite Sentinel-1A, which passed the German Bight at the end of the stable stratified period on 6 February 2019 as an overview of the wind field in the region around GT I. The wake of the «BorWin» cluster is clearly visible and extends approximately 24 km downstream until it partially hits the wind farm GT I. Further downstream of GT I an even higher wake deficit of the merged wakes of the «BorWin» cluster and GT I can be observed. The virtual wake cut (Figure 5c) reveals a sharp transition from higher to lower wind speeds at the edge of the wake, a deficit in the SAR wind speed of 0.9 m s^{-1} is observed. Since the wake just partially hits GT I it separates the farm in two regions, one in free flow and one affected by the wake. The turbines in free flow in the northwestern and southern corner of GT I produce significantly more power ($> 2\sigma_P$) than the first upstream row turbines produce in average (Figure 5b). We confirm this result with the comparison of the 10 minute power of the upstream row turbines with the potential power on hub height derived from the inflow wind speed (Figure 5d) which agrees well. Within the wake affected region in GT I typical inner farm wake effects are visible through a power decrease in downstream direction (e.g. Barthelmie and Jensen, 2010, Figure 5b) which are different in the northern and southern part of the farm due to different turbine spacings in wind direction.

3.1.3 Lidar wind fields

In Figure 6 we present the analysis of a single lidar scan of the inflow of GT I. We observe a clear edge between high wind speeds in the undisturbed flow and lower wind speeds in the wake of the «BorWin» cluster causing a clear separation of power production in the wind farm GT I in a free flow and a wake region (Figure 6b). The virtual wake cut in Figure 6c illustrates the
Figure 4. Meteorological data at the lidar location on the height of the TP (24.6 m MSL) of turbine GT58 on 6 February 2019. Top to bottom: wind direction $\phi_{\text{TP,lidar}}$, wind speed $v_{\text{TP,lidar}}$, air pressure P_{TP}, air and sea surface temperature T_{TP} and $T_{\text{SST,OSTIA}}$, relative humidity rH_{TP} and the dimensionless stability parameter ζ_{TP}. Measurement times are marked as follows: vertical dashed line: SAR image (Figure 5), vertical solid line: single lidar scan (Figure 6), shaded interval: averaged lidar wind field (Figure 7). Mean wind speed and direction in the averaged lidar interval are marked by red horizontal dotted lines. Dashed lines in wind speed and direction indicate moist/foggy periods with reduced lidar data availability.

A sharp transition region of just a few hundred meters width and highlights the wake deficit of 3.9 m s$^{-1}$ or 40.5%. The potential power on hub height derived from the inflow wind speed corresponds well with the power generated by the upstream row of turbines in the regarded ten minute interval (Figure 6d). The two northerly upstream turbines are in the region of free flow and produce with $> 2\sigma_P$ significantly more power than the turbines being influenced by the «BorWin» wake.

In Figure 7 we present an averaged lidar wind field calculated from 60 consecutive scans like the one in Figure 6 in a period of approximately 157 minutes with relatively constant wind direction (cf. shaded areas in Figure 4) to demonstrate the steadiness of the «BorWin» wake and its influence on power production. The wind speed along the virtual cut through the wind field in Figure 7c reveals a strong average wake deficit of 2.3 m s$^{-1}$ equivalent to 24.7%. The transition region from wake flow to free flow is about 3 km wide resulting from the small changes in wind direction and thus the slightly different positions of the wake during the averaging time. Aside the clear visible northerly edge of the «BorWin» wake the southerly edge can be observed in the southerly corner of the lidar wind field and correspondingly in the wake cut (Figure 7c). Wind speeds recover on both sides of the wake to similar values just above 9 m s$^{-1}$. The average power of the GT I turbines reveals a clear reduction in the wake affected region (Figure 7b). The turbines in free flow produce ($> 2\sigma_P$) above the average. Comparing the potential
Figure 5. Sentinel-1A Ocean Wind Field (Copernicus Sentinel data [2019]), measurement taken 6 February 2019 17:11:42 UTC. (a) Overview of the «BorWin» cluster and «Global Tech I». (b) Close look on the «BorWin» wake hitting GTI. The solid line marks a virtual wake cut 2000 m upstream of turbine GT58 on which the wind field is evaluated. Marked distances correspond to the x-axis of sub figures c) and d). The z-score of the turbine power z_{P_i} (cf. Equation 1) is shown in grey scales for the relevant ten minute period (17:10 - 17:20), markers scale with $z - z_{\text{min}}$. Numbers of upstream turbines to calculate the z-score are 1, 9, 16, 23, 30, 37, 44, 51, 58, 64, 69, 73, 76, 79, 80. Turbines not operating the full period or operating at curtailed power are excluded and marked (Y-shaped marker). c) Wind speeds along the wake cut from b). Wake and free stream are shaded (regions selected manually). d) potential power on hub height along the wake cut (solid line) together with the power produced by the upstream turbines in GTI within the regarded ten minute interval with turbine positions projected to the wake cut. A constant value of 1.0 m s$^{-1}$ was added to $v_{\text{SAR,10m}}$ for the calculation.

power on hub height along the wake cut together with the average power of the upstream row turbines (Figure 7d) we find a slight overestimation of the potential power in the wake region and an overestimated increase of the turbine power in the transition region. The position of the transition onset in the estimated power from the wind field and the measured power from the turbines agree well.

3.2 «DolWin2» cluster wake on 11 October 2018

The «DolWin2» cluster is approximately 55 km upstream of GTI in southeasterly direction. We regularly have indications in our measurements for wakes from the cluster approaching GTI in stably stratified situations. Here we present a situation
in autumn 2018 with a change of stability over the course of the day. We present a single lidar scan and an averaged lidar wind field from a period with low variation in the wind direction in stable stratification. A complementary SAR scan from the morning of the day during weakly unstable stratification is available as well and analysed here.

3.2.1 Meteorological conditions

In Figure 8 we plot the measured meteorological quantities on 11 October 2018. Since the lidar for measurements of wind speed and direction and the data of air temperature, pressure and humidity at TP height were not available during the whole day we added the mesoscale data from the New European Wind Atlas (NEWA) and measurements from the nacelle of turbine GT58 to the plots. A cyclone southwest of Iceland and a strong high pressure area over Russia dominated the weather during...
the day. The North Sea was positioned in the warm sector of the cyclone between the cold front over the UK and the warm front spanning from Iceland to Norway. Southeasterly winds prevailed in the southern North Sea raising the air temperature in GTI at approximately between 12:00 and 14:00 above the temperature of the still quite warm North Sea (approximately 16 °C) stabilizing the boundary layer after it was weakly unstable in the morning. In the morning a shallow (weakly) unstable boundary layer of some hundred metres height occurred because the surface layer over land cooled down during the night to temperatures below sea surface temperature and moved with the prevailing flow over the sea. Aside the stability obtained from NEWA (weakly unstable) and the nacelle measurements (unstable) this finding is further supported by temperature profiles sounded with radiosondes at the stations in Bergen (nr. 10238) and Ekofisk (nr. 1400) the same day. A weak inversion with temperatures of approximately 13.5 °C up to 300 m height appears in the profile at Bergen, 04:00 UTC, with a stronger temperature inversion above. At the Ekofisk site the temperature profile at 11:00 UTC shows a similar behaviour with the upper inversion being less pronounced and sunken to approximately 230 m height. This allows for dry adiabatic convection up to heights between 200 m and 300 m for the prevailing sea surface temperature.

We found a good general agreement between the NEWA data and the values measured in the wind farm. Especially, the derived stability parameter ζ agrees well. For the differences in the other quantities the different reference heights have to
Figure 8. Meteorological data at the lidar location (turbine GT58) on 11 October 2018. Top to bottom: wind direction $\phi_{\text{TP, lidar}}$, wind speed $v_{\text{TP, lidar}}$, air pressure P_{TP}, air temperature T_{TP}, sea surface temperatures $T_{\text{SST, OSTIA}}$ and $T_{\text{SST, buoy}}$, relative humidity rH_{TP}, and the dimensionless stability parameter ζ_{TP} on the height of the TP of GT58 (24.6 m MSL). Since the measurements are not available during the whole day we added the 10 m wind speed $v_{10m, \text{NEWA}}$ and direction $\phi_{10m, \text{NEWA}}$, 2 m and 50 m temperature $T_{2m, \text{NEWA}}$ and $T_{50m, \text{NEWA}}$ and the stability parameter ζ_{NEWA} from the NEWA data set (c.f. Witha et al., 2019) as well as the temperature $T_{92m, \text{nacelle}}$ and the derived stability parameter $\zeta_{92m, \text{nacelle}}$ on hub height of turbine GT58. Measurement times are marked as follows: vertical dashed line: SAR image (Figure 9), vertical solid line: single lidar scan (Figure 10), shaded interval: averaged lidar wind field (Figure 11). Mean wind speed and direction in the averaged lidar interval are marked by red horizontal dotted lines.

be considered. Half-hourly values of wind speed and direction from the NEWA data are not expected to cover small scale fluctuations and to perfectly match a local measurement.

3.2.2 SAR wind data

Figure 9a draws the wind field from the Copernicus satellite Sentinel-1A, which passed the German Bight in the morning of 11 October 2018 as an overview of the wind field in the region between GT I and the «DolWin2» cluster. The stratification during the SAR snap shot was weakly unstable. Wakes of the «Gemini», «DolWin1» and «DolWin2» clusters with lengths of at least 20 km, 40 km and 55 km are clearly visible. The wake originating in the «DolWin2» cluster splits into two parts generated by «Gode Wind 1+2» (GW) and «Nordsee One» (N1), c.f. Figure 1. The GW wake extends far downstream until it hits the wind farm GT I after approximately 55 km. Further downstream a merged wake of the «DolWin2» cluster and GT I can be observed extending out of the visible range after approximately 30 km. All wakes have the approximately same width.
as the generating cluster and become narrower downstream.

The virtual wake cut 9000 m upstream of GT58 reveals regions of different influence (Figure 9c). On the southwest side of the cut we see a region of undisturbed flow \((d \approx -15 \text{ km})\), with wind speeds decreasing towards northeast. The deficit between \(-5 \text{ km} < d < 0 \text{ km}\) originates in the wake of the wind farm N1 followed by the stronger deficit at \(0 \text{ km} < d < 10 \text{ km}\) of the GW wind farm. This wake deficit centrally hits GT I and affects its power production. Further east the wind speed remains approximately constant until it rises from \(d > 20 \text{ km}\) due to regional differences in the wind field. Regarding the marked wake and free flow regions in Figure 9c we observe a wake deficit of 0.6 m s\(^{-1}\) or 7.2 % in the SAR wind speed for the «DolWin2» wake in 10 m height.

Differently from the wake situation of the «BorWin» cluster (Section 3.1) the wind farm GT I is affected by the DolWin wake centrally, therefore we do not observe different separated regions of power production within the farm. Nevertheless, the outer turbines on the western and northeastern corner of the wind farm produce significantly more power (2.6 and 1.7 \(\sigma_P\) above average) than the average of the upstream row (Figure 9b). Looking at the potential power on hub height calculated from the virtual wake cut (Figure 9d) we find the increased power to result from the higher wind speeds at the sides of the «DolWin2» wake deficit. This highlights the effect of the wake on the power production even in weakly unstable conditions.

3.2.3 Lidar wind fields

In Figure 10 we show a single lidar scan of the flow southwest of GT I. The stratification during the scan was stable (Figure 8).

We do not observe a sharp transition from wake to free flow regions like for the «BorWin» wake (Figure 6) but a steady decrease in wind speeds southwest to northeast similar to the «DolWin2» wake situation we found in the SAR data from the same morning in weakly unstable stratification (Figure 9). Three more wakes appear in the wind field, one originating from a ship close to GT I, another one from the OSS «Hohe See» (×) and the third from the platform «BorWin gamma» (+). The latter wake extends at least 9 km downstream.

The virtual wake cut (Figure 10c) highlights the different flow regions with lower wind speeds near GT I. The «Hohe See» OSS wake is located at \(d \approx -4 \text{ km}\) and the «BorWin gamma» wake between \(-6 \text{ km} < d < -5.5 \text{ km}\). The wake deficit of the «DolWin2» cluster amounts to 3.3 m s\(^{-1}\) or 26.4 %. Comparing the potential power in the wind field with the power produced by the turbines of the upstream row we find most turbines producing approximately rated power (Figure 10d). The potential power in the west of the wind farm is slightly lower than the power of the upstream turbines. Even though during this lidar scan with high wind speeds the wind farms power is not influenced by the «DolWin2» wake due to the turbines curtailing power production at above rated speed, we find clear indications for wake effects with reduced wind speeds at the position of GT I 55 km downstream the DolWin 2 cluster.

Figure 11 highlights the steadiness of the «DolWin2» wake situation on 11 October 2018. We averaged 16 consecutive lidar scans in a period of approximately 162 minutes (15:44 to 18:26, cf. shaded interval in Figure 8) with a relatively constant wind direction. As for the single lidar scan we observe the same behaviour in the wind field with a wind speed decreasing along the virtual wake cut from southwest to northeast. The wake deficits of the OSS and «Hohe See» OSS and «BorWin gamma» are clearly visible in the averaged wind field (Figure 11c). The relative wake deficit of the cluster is smaller than «DolWin2».
Figure 9. Sentinel-1A Ocean Wind Field (Copernicus Sentinel data [2018]), measurement taken 11 October 2018 05:44:10 UTC. We show power data of the upstream turbines in the interval 05:40 - 05:50, as in Figure 5, positions of downstream turbines are marked (hexagon). In d) we added an offset of 2.0 m s$^{-1}$ to the SAR wind speeds on the virtual wake cut 9000 m upstream GT58 before we transferred them to hub height and calculated the potential power. Numbers of considered upstream turbines to calculate the z-score are 8, 15, 22, 29, 36, 43, 50, 68, 72, 80, 79, 76, 73, 64, 58, 51.

Cluster is similar for the single lidar scan and the averaged lidar scans (Figure 10) since the average wind speed within the averaging period is smaller than that at the time of the single scan (Figure 8) the absolute deficit is smaller, too. The course of the potential power in the wind field (Figure 11d) is continued by the power of the upstream rows turbines. The wake effect of the «DolWin2» cluster on the power of GTI is evident. The potential power in the wind about 4 km southwest of the wind farm reaches rated wind speed.

4 Discussion

We found evidence of wind farm cluster wakes in form of wind speed deficits with clear transition regions between slower wake flow and faster undisturbed flow in many lidar scans upstream GTI for all neighbouring wind farm clusters in southeasterly to westerly wind directions, namely the «DolWin2» (approximately 55 km), «DolWin1» (approximately 42 km), «Gemini» (ap-
Figure 10. Lidar measurement (scenario A) of the wake of the «DolWin2» cluster on 11 October 2018 17:16 - 17:20, power data of upstream turbines 17:10 - 17:20, as in Figure 6. Downstream turbines positions marked (hexagon). Turbine numbers to calculate the z-score are 8, 15, 22, 29, 36, 43, 50, 68, 72, 78, 80. Additionally we marked the converter platform «BorWin gamma» (+).

proximately 54 km) and «BorWin» (approximately 24 km) clusters. Large-area In some of the cases with available large-area SAR wind data, when available, mostly supports the lidar these alternative measurements supported the lidar cluster wake measurements. Power deficits in the wind farm agree with the wake regions found in lidar and SAR data. In this paper we presented two exemplary wake cases, one for the «BorWin» cluster 24 km upstream and one for the «DolWin2» cluster 55 km upstream, both wake effects occurred steadily over more than 2.5 hours and influenced the power production of GT I. We found cluster wakes mainly for positive values of the stability parameter ζ (stable stratification) but as well as for ζ slightly below zero (weakly unstable stratification, shallow boundary layer).

4.1 Influence of cluster wakes on power production of far downstream wind farms

The effect of cluster wakes on the operation of far downstream wind farms has not been investigated before. Nygaard and Hansen (2016) report about short distance effects in the power production of wind farms in direct vicinity (3.3 km gap) based on SCADA analysis. Nygaard and Newcombe (2018) analyse a cluster wake at hub height up to 17 km downstream a wind farm with dual Doppler radar from the coast. Platis et al. (2018) find long reaching wake effects (wind speed difference of
Figure 11. Wake of the «DolWin2» cluster on 11 October 2018 as in Figure 6 but averaged over 16 consecutive lidar scans (scan scenario A) in a period of 162 minutes (15:44 - 18:26), power data of upstream turbines averaged over 170 minutes (15:40 - 18:30), downstream turbines marked (hexagon). Turbine numbers to calculate the z-score are 8, 15, 22, 29, 36, 43, 50, 68, 72, 78, 80, 79.

more than 0.1 m s\(^{-1}\) considered as wakes) up to 55 km downstream in flight measurements but could not analyse their impact on distant wind farms. Here, our findings from combined satellite SAR and lidar measurements of cluster wakes existing over distances of up to 55 km downstream agree with the observation of Platis et al.. Additionally, we confirm the assumption of negative effects of cluster wakes on the power production of a far downstream wind farm.

The evidence of the wake influence on wind farm power is obvious for the «BorWin» case where we find a clear distinction of wake and free stream in the lidar and SAR wind measurements agreeing with the findings of Platis et al. who present a wake situation with a high wind speed gradient at one side of the cluster wake. In the «BorWin» case this edge of the wake continues in a separation of the wind farm turbines power production (Figures 5, 6, 7). In the «DolWin2» case we could argue whether the higher power of the outer turbines (Figure 9b) results from flow effects at the farm corners leading to higher turbine efficiencies as found by Barthelmie and Jensen (2010) but the comparison of the potential power in the inflow with the turbine power (Figure 9d) reveals a good agreement suggesting that at least most of the effect originates in the wake affected inflow conditions with the highest deficit reducing the power of the central turbines while the outer turbines profit from higher wind speeds at the sides of the wake.

Wakes are expected to exist far downstream in stable stratifications but to recover much earlier in the unstable case. Platis et al.
(2018) report about 41 measurement flights (24 × stable, 12 × unstable, 5 × neutral stratification) and find evidence for cluster wakes in stable boundary layers 55 km downstream while the furthest evidence in an unstable case is found 10 km downstream. In our lidar measurements we find the most pronounced cluster wakes in stable situations supporting these findings. But we have evidence for far reaching wakes in neutral and weakly unstable conditions, too. All lidar measurements we present in this work were measured in stable situations but the SAR image of the «DolWin2» case (Figure 9) was taken earlier the same day during weakly unstable conditions in a shallow weakly unstable boundary layer with cluster wakes appearing for downstream of many clusters. The Vertical momentum transport was possible in lower heights but was hindered by an inversion appearing at approximately 200 m to 300 m. The rotor area of the GTI turbines extends up to 150 m height. The «DolWin2» wake reaches 55 km downstream until it hits the wind farm GTI where the power production of the upstream row turbines follows the potential power calculated from the inflow SAR wind. This finding proves the existence of long reaching cluster wakes and their influence on power production of far downstream wind farms in even in cases with weakly unstable stratification. In future work we plan to publish an analysis of the whole data set of the, at the time of writing, still ongoing lidar measurement campaign focusing on wakes in unstable conditions. Nevertheless, the «DolWin2» case highlights the necessity to carefully characterize the boundary layer for stability analysis, since the unstable stratified layer in the boundary layer could be thin and limited by an inversion just above temperature measurement height and still within the rotor area.

In addition to the influence of a cluster wake on the wind farm GTI we still observe inner farm wake effects (Figures 5, 6) with decreasing power production downstream. Cluster wake and wind turbine wakes in the farm overlap. This supports the assumption of the cluster wake being a region of reduced wind speeds with no special characteristics of the original single turbine wakes remaining. We do not perform turbulence analysis comparing cluster wake turbulence to free flow turbulence in this study. Platis et al. (2018) report a slender wake of increased turbulent kinetic energy (TKE) originating in one corner of the cluster. It was aligned with a stronger horizontal wind speed gradient at the border of the wake. The TKE was reduced in the wake deficit due to the lower wind speeds.

The influence of cluster wakes on the current power production of downstream wind farms could not easily be related to their influence on the annual energy production (AEP). To achieve this, a detailed assessment of the total influence during at least one year has to be conducted using e.g. validated wind farm parametrizations in mesoscale models. The local distribution of wind speed, direction and atmospheric stability has to be considered as well as farm and cluster geometries.

In many wake cases the wind speed in the wake deficit still exceeds rated wind speed of the downstream turbines without an effect on their power production. If the upstream cluster’s turbines operate in wind speeds above rated speed their thrust coefficient c_T decreases additionally resulting in reduced wake deficits. We expect the total influence of cluster wakes on AEP to be smaller than wake effects from neighbouring wind farms (c.f. Nygaard and Hansen, 2016) due to cluster wake recovery and a smaller wake influenced wind direction sector. Our findings do not question wind energy utilisation in any kind. Nevertheless, a detailed assessment of the influence of cluster wakes on AEP of downstream wind farms during their whole operational life time considering all planned wind energy activities in the region should be conducted in the future. This can improve power production, offshore resource assessment and consequently reduce the uncertainties in financing large offshore wind projects especially in regions with a high level of (planned) wind energy utilisation. Therefore, further research is necessary to validate
wind farm parametrizations in numerical mesoscale weather models with appropriate wake, power and atmospheric measurements. Especially the influence of atmospheric stability on cluster wake recovery has to be investigated. Aside from influence on power the effect on additional wind turbine loads can be relevant. We did not perform analysis of the turbulence in the wake in this study or load simulations on wind turbines affected by far cluster wakes. Since we find sharp edges between wake flow and free stream continuing in the wind farms power production (Figure 6) future research should analyse turbine loads dependent on the cluster wake dynamics e.g. when a turbine on the wake border has to speed up and down fast caused by cluster wake dynamics.

4.2 Cluster wake characteristics

Wind turbines operate are sensitive to the wind conditions over a wide range of heights over the whole defined by the swept rotor area. Therefore, the investigation of cluster wakes should cover the whole vertical wind profile at least from lower to upper tip height. Satellite SAR measurements at the sea surface are typically transferred to 10 m height. Platis et al. (2018) investigates cluster wakes at hub height with a research aircraft in stable stratification while Siedersleben et al. (2018b) additionally presents measurements in five different height levels (60 m, 90 m, 120 m, 150 m, 220 m) from the same flight revealing wake deficits in all regarded levels. This highlights a vertical expansion of the wake far above the rotor area (upper tip height: 150 m). We find evidence for cluster wake effects in SAR images (roughness measurement on the sea surface, interpolation to 10 m above sea level), lidar measurements (≈24.6 m above MSL, 67.0 m below hub height and 9.0 m below lower blade tip height) and from the turbines power production (rotor swept area spans from 33.6 m to 149.6 m above MSL). A quantitative comparison of the measured wake strengths is not possible with our data due to the very different type of the measurements. Nevertheless we obtain evidence for wake effects in the boundary layer from the sea surface to the upper tip height 24 km and 55 km downstream agreeing with the observed vertical wake extension closer to the generating cluster presented by Siedersleben et al. (2018b). For a future campaign we suggest the assessment of the development of the atmospheric boundary layer from the inflow through a cluster and in the cluster wake by means of e.g. lidar profilers, lidar range height indicator scans (RHI) or flight measurements is suggested for a better understanding of cluster wake development and recovery.

All previous investigations of cluster wakes with satellite SAR suffer from the fact, that just one snap shot of the wake is available for a given situation and no wake dynamics or their steadiness could be analysed. Nygaard and Newcombe (2018) investigate a cluster wake at hub height up to 17 km downstream a wind farm with dual Doppler radar from the coast and present a one hour average wake field. The aircraft measurements performed by Platis et al. (2018) cover the whole area of the wake along the flight path taking several hours indicating a constant behaviour of the wake. We find steady wake conditions in both presented examples for more then 2.5 hours in the lidar data supported by the corresponding power data. This proves the existence of steady wake effects with a steady influence on the downstream wind farm for constant wind directions. Wake cases with changing wind directions are much harder to analyse since the wake just shortly influences the farm and will probably not even be detectable in wind measurements. We did not find any evidence for single wind turbine wakes in the lidar inflow measurements of GTI. This is supported by the results by Nygaard and Newcombe (2018) who present dual-Doppler radar cross stream flow cuts through a cluster wake at
different downstream distances with disappearing signatures of the single turbines from 6 km downstream (unknown stability). The shapes of the wakes we find could give further hints on the wake recovery process. While shorter wakes (here i.e. from the «BorWin» cluster, Figure 5) are as wide as the generating cluster wakes originating further away like from the «Gemini» cluster often appear narrower in the lidar measurements as if they already recovered from the sides or if the whole wake has widened with a resulting decrease in maximum wake deficit. This is supported by the shapes of the wakes seen in the SAR wind data in Figure 9b where the wakes-highest wake deficits are narrower further downstream. A detailed analysis of this effect is difficult due to changes in the mesoscale wind field and wakes of neighbouring clusters overlapping with the cluster wake.

The width of the transition region between free flow and wake seems to (at least partly) depend on the downstream position of the wake. In the «BorWin» wake we sometimes find high wind speed gradients at the wake's border about 20 km downstream (Figure 6) while in the «DolWin» wake 50 km downstream the transition region was several kilometres wide (Figure 10).

The longevity of wakes in stable conditions is further supported by the investigation of two different converter platform wakes in our lidar measurements ranging at least 9 km downstream in one case (Figure 10). Platform wakes have been observed before, e.g. Chunchuzov et al. (2000) reported a more than 60 km long wake of a 164 m tall offshore platform in very stable atmospheric conditions analysed with satellite SAR measurements. We did not investigate the effect of the wakes of wind farm converter platforms on the power of neighbouring or distant wind turbines but expect it to be fairly small compared to a wind turbine wake due to the lower heights and smaller cross sections of the platforms.

4.3 Cluster wake monitoring

Due to the large areas the cluster wakes take up their investigation was mainly based on long ranging remote sensing techniques. Satellite SAR covers large areas and has been widely used to analyse cluster wakes (Hasager et al., 2015). Our analysis adds the potential power as a computed local quantity to the SAR analysis (Figure 5bd) confirming the wake shape acquired by SAR with turbine power data. This is another hint for the ability of satellite SAR to resolve flow structures agreeing with the findings of Schneemann et al. (2015) who compared structures in concurrent SAR and lidar measurements indicating the general ability of SAR to resolve flow structures with the size of a few hundred metres.

Cluster wakes have not been measured with long range lidar. With an achievable maximum range of 10 kilometres with compact devices lidar seemed not to be appropriate to measure far cluster wakes behind a wind farm. We used lidar to measure incoming far cluster wakes. As opposed to SAR lidar allows for continuous measurements with scan repetition times in the order of a few minutes (2.5 min and 10 min here). In some cases the lidar results are clear (e.g. Figure 6) but in other cases it is difficult to interpret whether the wind field is influenced by a wake or not. Here, satellite SAR, when available, proves very useful to interpret wind monitoring by lidar offering the possibility to regard the lidar wind field in a wider context (e.g. the «DolWin2» case, section 3.2). Nevertheless, absolute wind speed measurements by satellite SAR are comparably imprecise. For the comparison of the shapes of the potential power in the inflow with the turbines power we had to correct individual offsets in the SAR wind speeds within the given measurement accuracy. Schneemann et al. (2015) had to correct for an offset
in SAR winds, comparing it with lidar, as well. This inaccuracy could be possibly reduced by a SAR analysis tuned to the special case. We did not perform SAR wind calculations ourselves but used already processed wind data.

The analysis of SCADA data on power losses due to cluster wakes without additional flow information from e.g. remote sensing is difficult since obvious gradients in wind farm power (Figure 6) due to cluster wakes are rare and not exactly stationary (e.g. washed out transition region in averaged lidar wind field, Figure 7b). In the «DolWin2» case (Figure 9) it is hardly possible to judge on the contributions of wake effects and effect of higher turbine efficiency at the farm’s corners (Barthelmie and Jensen, 2010) on the higher power of the turbines at the eastern and western corner of the farm.

For future research on cluster wakes and their influence on power generation we propose a combination of different measurement techniques complementing with their advantages, namely satellite SAR, long range lidar and flight measurements (aircrafts and drones). Doppler radar and non-compact lidar systems offering ranges larger than 15 km are available, but have not been deployed in offshore wind farms so far due to high costs and technical hurdles in the deployment, orientation and operation of the container-size systems on offshore structures.

Another important aspect of measurements from offshore platforms like transition pieces of offshore wind turbines to be considered is platform movement and the resulting errors in measurement locations. We found platform tilts of up to 0.1° due to turbine thrust depending on wind speed and direction using the method of sea surface levelling (Rott et al., 2017). This value might be even higher for turbines on a today commonly used monopile foundation compared to the tripod foundation used in GTI. With increasing measurement ranges the location error in the measurements further grows.

5 Conclusions

This paper investigates the question, whether offshore cluster wakes have an influence on power generation of far downstream wind farms considering atmospheric stability. Therefore we analysed two different cases of 24 km and 55 km long cluster wakes approaching the 400 MW offshore wind farm «Global Tech I» (GTI) by means of satellite SAR measurements, lidar wind monitoring as well as analysis of atmospheric stability and GTI power production.

Long range Doppler lidar supported by satellite SAR proves as a good combination for cluster wake measurements with the lidar providing accurate wind speed monitoring over long periods and SAR contributing with large-area wind fields for the overall picture.

We find that long distance wake effects of a wind farm cluster exist at least 55 km downstream in stable and weakly unstable stratification. They persist for more than 2.5 hours. During this measurement period the average wake deficits are 2.3 m s⁻¹ or 25 % approximately 24 km downstream and 2.2 m s⁻¹ or 21 % approximately 55 km downstream. Single lidar scans (2.5 min duration) reveal stronger wake deficits of up to 3.9 m s⁻¹ or 41 % approximately 24 km downstream.

Clear transition regions like edges in the wind separate wake and free flow 24 km downstream and continue in the affected wind farm splitting it in regions of higher power in undisturbed flow and reduced power in the wake deficit. Free flow turbines produce more then two standard deviations σ_P more then the average of the upstream turbines.

This contribution proves the existence of steady power reductions in a far downstream wind farm caused by cluster wakes.
We encourage further investigations on far reaching wake shadowing effects for optimized areal planning at sea and reduced uncertainties in offshore wind power resource assessment.

Appendix A: Calculation of virtual potential temperatures

We derived the virtual potential temperature used in section 2.4 from the available measurements on the TP. We adapted the following methodology mainly from Etling (2008). We need

- \(R_d = 287 \frac{1}{K_{kg}} \) \text{(specific gas constant of dry air)}
- \(R_v = 461 \frac{1}{K_{kg}} \) \text{(specific gas constant of water vapour)}
- \(\epsilon = \frac{R_d}{R_v} = 0.622 \) \text{(ratio between the specific gas constants for dry air \(R_d \) and water vapour \(R_v \))}
- \(\kappa_P = 0.286 \) \text{(Poisson constant in dry air)}

The saturation vapour pressure dependent on the temperature follows from the Magnus equation

\[
e_s(T) [\text{Pa}] = 100.0 \cdot 6.1 \cdot 10^{\left(\frac{7.45 \cdot (T[K] - 273.15)}{T[K] - 38.15}\right)}.
\]

The partial pressure of water vapour in the air dependant on the relative humidity \(r_H \) reads

\[
e = r_H \cdot e_s / 100.0
\]

while the mixing ratio is

\[
r_v = \epsilon \cdot \left(\frac{e}{p - e}\right).
\]

With the specific humidity

\[
q = \frac{r_v}{1 + r_v}
\]

and the potential Temperature

\[
\Theta = T \left(\frac{100,000 \text{ Pa}}{p}\right)^{\kappa_P}
\]

we approximate the virtual potential temperature

\[
\Theta_v = \Theta \cdot (1.0 + 0.61 \cdot q).
\]
While the virtual potential temperature at the TP $\Theta_{x,TP}$ could be derived directly from the available measurements we assume the relative humidity and the air temperature directly above the sea to be $rH_0 = 100\%$ and $T_0 = T_{SST}$ respectively to derive the virtual potential temperature at sea level $\Theta_{x,SST}$. Furthermore we calculate the air pressure at sea level

$$p_0 = p_{TP} \left(\frac{T_{SST} - \gamma \cdot z_{TP}}{T_{SST}} \right) \frac{g}{\gamma R_d}$$

(A7)

assuming a polytrop atmosphere and using the air temperature gradient

$$\gamma = \frac{T_{SST} - T_{TP}}{z_{TP}}.$$

(A8)

Data availability. Lidar data is not published and could be made available on request. GTI SCADA data is confidential and therefore not available to the public. SAR wind data is available from https://scihub.copernicus.eu/. Hourly power data for several wind farms is available from https://www.energy-charts.de/. The «New European Wind Atlas» is published at https://map.neweuropeanwindatlas.eu/. The OSTIA data set could be obtained from http://marine.copernicus.eu/ and radiosonde soundings are available at www.meteociel.fr or http://weather.uwyo.edu.

Author contributions. Jörge Schneemann conducted and supervised the measurement campaign, designed the research, performed the data analysis, made the figures and planned and wrote the paper. Andreas Rott and Martin Kühn contributed to the research with intensive discussions and added to the paper with conceptual discussions and internal review. Martin Dörenkämper advised on the meteorological parts, participated in the conception of the paper and did an internal review. Gerald Steinfeld performed parts of the stability analysis and intensively reviewed the manuscript.

Competing interests. The authors declare no conflict of interest.

Acknowledgements. We performed the lidar measurements and parts of the work in the framework of the research project "OWP Control" (FKZ 0324131A) funded by the German Federal Ministry for Economic Affairs and Energy on the basis of a decision by the German Bundestag. We acknowledge the wind farm operator Global Tech I Offshore Wind GmbH for providing SCADA data and their support of the work. Furthermore, we thank the European Space Agency (ESA) for making the Sentinel-1 data of the Copernicus program available. Thanks to Met Office for making the OSTIA data set available. We acknowledge the NEWA consortium for providing access to the «New European Wind Atlas». Special thanks to Stephan Voß for his work on the measurement campaign and the picture from Figure 3.
References

Grachev, A. A. and Fairall, C. W.: Dependence of the Monin–Obukhov Stability Parameter on the Bulk Richardson Number over the Ocean,
Hansen, K. S., Barthelmie, R. J., Jensen, L. E., and Sommer, A.: The impact of turbulence intensity and atmospheric stability on power
Hasager, C., Vincent, P., Badger, J., Badger, M., Bella, A. D., Peña, A., Husson, R., and Volker, P.: Using Satellite SAR to Characterize the
Hirth, B. D., Schroeder, J. L., Gunter, W. S., and Guynes, J. G.: Coupling Doppler radar-derived wind maps with operational turbine data to
Li, X. and Lehner, S.: Observation of TerraSAR-X for Studies on Offshore Wind Turbine Wake in Near and Far Fields, IEEE Journal of
Lignarolo, L. E., Mehta, D., Stevens, R. J., Yilmaz, A. E., van Kuik, G., Andersen, S. J., Menneveau, C., Ferreira, C. J., Ragni, D., Meyers, J.,
van Bussel, G. J., and Holierhoek, J.: Validation of four LES and a vortex model against stereo-PIV measurements in the near wake of an
Lundquist, J. K., DuVivier, K. K., Kaffine, D., and Tomaszewski, J. M.: Costs and consequences of wind turbine wake effects arising from
merkur-offshore.com/progress/, [online access 19 June 2019], 2018.
https://sentinel.esa.int/documents/247904/349449/S-1_L2_OWI_Detailed_Algorithm_Definition.pdf, [online access 22 February 2019],
2011.
Nyggaard, N. G.: Wakes in very large wind farms and the effect of neighbouring wind farms, Journal of Physics: Conference Series, 524,
Nyggaard, N. G. and Hansen, S. D.: Wake effects between two neighbouring wind farms, Journal of Physics: Conference Series, 753, 032020,
Nyggaard, N. G. and Newcombe, A. C.: Wake behind an offshore wind farm observed with dual-Doppler radars, Journal of Physics: Confer-

