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Abstract. We present an analysis of three metocean datasets of 10-minute statistics and our resulting recommendations to both

producers and users of such datasets. Many of our recommendations are more generally of interest to all numerical measure-

ment data producers. The datasets analyzed originate from offshore meteorological masts installed to support offshore wind

farm planning and design: the Dutch OWEZ and MMIJ, and the German FINO 1. Our analysis shows that such datasets contain

issues that users should look out for and whose prevalence can be reduced by producers. We also present expressions to derive5

uncertainty and bias values for the statistics from information typically available about sample uncertainty. We also observe

that the format in which the data is disseminated is sub-optimal from the users’ perspective and discuss how producers can

create more immediately useful dataset files. Effectively, we advocate using an established binary format (HDF5 or netCDF4)

instead of the typical text-based one (comma-separated values), as this allows for the inclusion of relevant metadata and the

creation of significantly smaller directly accessible dataset files. Next to informing producers of the advantages of these for-10

mats, we also provide concrete pointers to their effective use. Our conclusion is that datasets such as the ones we analyzed can

be improved substantially in usefulness and convenience with limited effort.
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1 Introduction

The planning and design of off-shore wind farms depends heavily on the availability of representative meteorological and ocean15

or ‘metocean’ data. For example, the wind resource (the wind speed and direction distribution) at the candidate farm location

is used to estimate energy production over the farm’s lifetime and information about ocean waves is needed for planning a

maintenance strategy.

The data is collected by instruments placed on met-masts or measurement buoys deployed in measurement campaigns

ordered by the government or the farm developer and set-up by applied research institutes or companies. The data generated in20

these campaigns is collected and processed by these research institutes or the farm developer. The datasets produced are often

available publicly, although usually with some access and usage restrictions, especially for commercial use.

We became interested in evaluating metocean datasets after encountering a number of issues in a specific dataset, both in data

quality as well as in the dissemination format. (Our concrete purpose was to use it for wind farm energy production estimation.)

Discussion with other users of such datasets showed that many found the typical dissemination approach, providing multiple25

files with comma-separated values, to be inconvenient or even a hindrance to their application. Most were not aware of the
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data quality issues we encountered, which can be categorized as faulty data, missing documentation, inappropriate statistic

selection, limited data quality information, and suboptimal value encoding.

Therefore, we performed a study of three commonly used metocean datasets to answer essentially the following questions:

(i) Are these issues commonly shared in metocean datasets? (ii) How can the issues that are present be addressed? This paper

reports the results of that study. In brief: (i) Yes, there are shared issues, but, not unexpectedly, not all of them in all datasets.5

(ii) Dataset producers can address the issues with a few non-onerous additions to their creation practice. Next to providing

arguments for and detailing these conclusions, this paper is meant to raise awareness of the issues mentioned by giving concrete

examples. Furthermore, it provides dataset producers with concrete ideas about how to achieve substantial improvements with

reasonable effort.

The users of the produced datasets are of course the farm developers, but also the academic world, whose usage is not10

necessarily restricted to wind energy applications. The context of our academic research is off-shore wind energy, but the work

we present here is relevant outside that area as well. When our discussion goes beyond the analysis of the specific datasets we

considered, it is also mostly independent of their metocean nature, but generally applies to any numerical time series data.

To achieve the informative and instructive goals of this paper, we structure the paper into two main sections. We start with an

essentially descriptive Sect. 2, to give an overview of the datasets we considered and to identify the issues we encountered. The15

original contributions here are our thorough description, in-depth analysis, and expressions for the uncertainties and bias for

the statistics’ values that make up the datasets. In this section we also mention options for addressing issues described where

it can be done compactly and where we believe it adds value for dataset producers. In the instructive Sect. 3 we discuss how

the format of these datasets can be improved and thereby disseminated more conveniently. This section includes an up-to-date

evaluation of binary dataset file format functionality. The recommendations to both dataset producers and users that follow20

from these analyses are collected at the end of this paper (Sect. 4), preceding the overall conclusions (Sect. 5).

2 The Datasets and Their Analysis

We split our discussion of the datasets into two parts: first, in Sect. 2.1, we present the three datasets qua context and content,

then, in Sect. 2.2, we go over the issues we encountered.

2.1 A First Look at the Datasets25

All three datasets we consider come from measuring masts in the North Sea and contain multiple multi-year 10-minute statistics

data, ‘series’. These 10-minute statistics are derived from higher-frequency measurements, ‘signals’, of quantities measured

by various instruments at various locations on the mast. The available statistics are the sample minimum, maximum, mean, and

standard deviation.

For each dataset, we give a brief description of the measurement site and setup, list the measurement period and quantities30

measured, describe the dissemination approach, point to available documentation, and highlight some further important aspects.
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Figure 1. A map with the location of the three off-shore met masts from which data was analyzed: OWEZ, MMIJ, and FINO 1.

We do this in full detail here for the first dataset, but for the other two relegate aspects that are not substantively different to

Appendix A1.

Common to all three datasets is that they can be downloaded from a website, where some documentation is available. But,

also for all three, we needed to look up external sources and contact parties involved in the dataset creation process to get a

more complete view.5

2.1.1 OWEZ — Off-shore Windfarm Egmond aan Zee

To gather data before and after construction of the Off-shore Windfarm Egmond aan Zee (OWEZ; Offshore windpark Egmond

aan Zee in Dutch), a met-mast was built on-site. Its location is 52°36′22.9′′ North, 4°23′22.7′′ East (WGS 84), which is

15 km off the Dutch coast near the town Egmond aan Zee. The location is indicated in Fig. 1. The mast was erected in 2003

and construction of the wind farm started in 2006. Data is publicly available for the period July 2005–December 2010. The10

instruments used and quantities measured, and some of their characteristics are listed in Table 1.

Due to an agreement between the Dutch government and the OWEZ developer, data gathered and reports written in the

context of the wind farm’s construction have been made publicly available. This is done through a website where these materials

can be downloaded (NoordzeeWind). The metocean dataset can be downloaded as 66 separate monthly, compressed Excel (xls)
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Table 1. An overview of the instruments and their locations on the OWEZ met-mast (height in meters above mean sea level and boom

orientation), the quantity measured, measurement uncertainty, the measurement ranges, and the sampling frequencies.

Instrument (#) Heightah Orientationao Quantity Unit Uncertaintym Rangem Freq.m

[m] abs. rel. [%] [Hz]

accelerometer (1) 116 mast
N-S accel.

W-E accel.
m/s2 0.01 −30–30 33

cup anemometer (9) all all hor. wind sp. m/s 0.5 0–50 4

ultrasonic anemometer (3) all NE
hor. wind sp.

vert. wind sp.
m/s 0.01 1.5 0–60 4

wind direction ° 2 0–359 4

wind vane (9) all all wind direction ° 1.4 0–360

barometer (1) 20 mast atm. pressure mbar 0.5 600–1100

thermometer (3) all S ambient temp. ◦C 0.1 −40–80

hygrometer (3) all S rel. humidity % 1 0–100

precipitation sensor (2) 70 NE, NW precip. level – 0–5

thermometer (1) -3.8 mast water temp. ◦C 0.15 0.1

acoustic wave and

current profilerf
(1) -17 ? water temp. ◦C 0.1 −4–40 1

water level m 0.01 4

wave height m 0.01 1 −15–15 4

wave direction ° 2 0–359 2

wave period s 0.01 0.5–50 2

current vel. 7 m

current vel. 11 m
m/s 0.005 1 1

current dir. 7 m

current dir. 11 m
° 0–359 1

ah For height, ‘all’ corresponds to 21 m, 70 m, 116 m. ao For orientation, ‘all’ corresponds to NE, NW, S. f The given sampling frequencies are upper

bounds.
m Missing values are unknown.
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spreadsheet files. The total size is almost 1 GB, or about 400 MB compressed. This represents data points for 289296 10-minute

intervals. The data in each file is structured as follows:

– 6 date-time columns (year, month, day, hour, minutes, seconds);

– 48 ‘channels’ of five columns each: an integer identifier ‘Channel’ and four real-valued statistics, ‘Max’, ‘Min’, ‘Mean’,

and ‘StdDev’; each channel corresponding to a specific measured quantity and location on the mast.5

In the Excel files, the statistics’ values are encoded as 8-byte binary floating point numbers.

Information about the dataset, the met-mast, and its context is available through the same website. In particular, there is a user

manual (Kouwenhoven, 2007) and several reports from which further information can be gleaned (e.g., Curvers, 2007; Eecen

and Branlard, 2008; Wagenaar and Eecen, 2010a, b). Information about the instruments used and in particular the measurement

uncertainty had to be looked up in spec sheets or obtained through personal communication with people involved in the project10

(cf. Acknowledgements).

2.1.2 MMIJ — Measuring Mast IJmuiden

The second dataset, ‘MMIJ’, comes from a met-mast in the Dutch part of the North Sea. The location is indicated in Fig. 1.

Details can be found in Appendix A1.1.

The exact set of signals differs of course from the OWEZ dataset; we have given an overview in Table A1 in the appendix.15

The data was collected during the period 2011–2016, a period of time comparable in length to OWEZ. The dataset is made

available as a single semicolon-separated values (csv) file and the statistics’ values are encoded in a decimal fixed-point format

with five fractional digits (x...x.xxxxx).

2.1.3 FINO 1 — Research Platform in the North Sea and the Baltic Sea Nr. 1

The third dataset, ‘FINO 1’, comes from a met-mast in the German part of the North Sea. The location is indicated in Fig. 1.20

Details can be found in Appendix A1.2.

The exact set of signals again differs from the OWEZ dataset; we have given an overview in Table A2 in the appendix.

The data investigated was collected during the period 2004–2016, so a period of time more than twice as long as for the other

two datasets. A difference with the other two datasets is that not all statistics are available for all signals. Also, it is free for

academic research purposes, but not for commercial use, in contrast to the two other datasets. The dataset is made available25

as a set of tab-separated values (dat) files and the statistics’ values are encoded in a decimal fixed-point format with up to two

fractional digits (x...x.xx). For each quantity, a quality column is included next to the statistics’ columns.

2.2 Dataset Issues

We split the issues encountered in the datasets into five categories each discussed in their own section: faulty data (Sect. 2.2.1),

documentation (Sect. 2.2.2), statistic selection (Sect. 2.2.3), quality flags (Sect. 2.2.4), and value encoding (Sect. 2.2.5).30
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Figure 2. An illustration of the visual inspection and zooming of plots. We present the OWEZ vertical wind speed data collected by the

ultrasonic anemometer at the NE-116 m location.

2.2.1 Faulty Data

Each of the three datasets presented above contained faulty data. With this we mean data values that cannot correspond to the

actual values, or are very unlikely to correspond to them. We stumbled upon initial examples, but then systematically looked

for issues.

To facilitate this systematic and partly automated investigation, we created binary file format (HDF5 or netCDF4) versions5

of the datasets in which metadata such as range and possible values can be stored alongside the data itself. We discuss these

formats in more detail in Sect. 3. The automation essentially consisted of looping over all signals and statistics to detect issues;

further investigation was done manually.

Concretely:

1. We performed interactive visual inspection of plots of the individual datasets, including zooming in on suspicious-10

looking parts. Figure 2 provides an example. The plots should be read as follows: the mean value is given by the ‘inner’

full (black) line; mean values plus and minus one standard deviation are given by the ‘intermediate’ dotted (blue) lines;

minima and maxima are given by the ‘outer’ dashed (red) lines.

The plots in this figure are snapshots of an interactive visualization procedure: Even though the lines overlap in the

unzoomed left-hand plot, an anomalous extreme mean value is visible around the 2007–2008 year change. Zooming15

in a bit gives the middle plot, where the statistics start becoming visually separated and where the anomaly stands out

even more. Zooming in further gives the right-hand plot, which shows that many missing values surround the anomaly,

further suggesting that the values still present here may not be reliable. (We do not know why the surrounding values are

missing.)

6

https://doi.org/10.5194/wes-2019-42
Preprint. Discussion started: 26 July 2019
c© Author(s) 2019. CC BY 4.0 License.



Table 2. An overview of the (largest) range violations present in the FINO 1 dataset. (Values rounded to three digits.)

Instrument Quantity Unit Statistic Lowest Instr. range Highest

cup anemometer hor. wind. sp. m/s min 0.0313 0.1–75

max 0.1–75 1690

ultrasonic anemometer hor. wind. sp. m/s max 0–45 45.6

wind direction ° avg 0–359 360

wind vane wind direction ° max 0–360 521

avg 0–360 366

barometer atm. pressure hPa avg 0.00391 800–1060

hygrometer rel. humidity % avg 0.0313 10–100 102

precipitation sensor precip. intensity mA avg 0.00195 4–20 45.3

pyranometer global radiation W/m2 avg −4.86 0–4000 145000

2. We ran automated checks for values outside the normal range for the series or for inconsistent sets of statistics’ values.

Let us clarify what inconsistent sets of statistics’ values are. Statistic values imply bounds on the value of other statistics.

If such a constraint is violated for some 10-minute interval, the tuple of statistics (minimum x̌, maximum x̂, mean x̄,

standard deviation sx) for that interval is inconsistent. For example, it should be the case that x̌≤ x̄≤ x̂; violations of

this constraint are present, e.g., in the FINO 1 cup anemometer wind speed data. Less obvious constraints involving the5

sample standard deviation also exist. We used 1
2 |x̂− x̌| as the general upper bound for the standard deviation, given that

the values lie in the interval [x̌, x̂] (Shiffler and Harsha, 1980). (Here x̌ and x̂ can be replaced by range bounds in case the

minimum and maximum statistics are not present in the dataset.) Any such inconsistency is a serious issue, as it indicates

a deficiency somewhere in the procedures for calculating statistics and their post-processing.

As an example, the range violations in the FINO 1 dataset gave the results listed in Table 2. Some range violations point10

to faulty data (e.g., cup anemometer-hor. wind speed-max, where the value exceeds the bound by more than an order

of magnitude), others suggest a need for more elaborate uncertainty analysis (e.g., hygrometer-rel. humidity-avg, where

the violating values probably correspond to the bounds) or more intelligent handling of the range bounds (e.g., wind

vane-wind direction-max, where the upper bound could be increased; cf. also Appendix A2.1).

The code producing the results of Table 2 is publicly available (Quaeghebeur, 2019). The fact that our netCDF4 version15

of the dataset is (uniformly) structured and contains metadata allows the code to be generic, i.e., not variable-specific,

and therefore compact.
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3. We did checks of the occurring values, for quantities with a discrete number of possible values. One example are the

synoptic code ‘Max’ values from the MMIJ precipitation monitor. The check showed the following values to be present:

−998 −997 −953 −952 −950 −900 −176 −16

0 51 53 55 58 59 61 63 65 68 69 71 73 75 77 87 88 89 90

1085

Synoptic code values below 0 and above 99 do not exist (World Meteorological Organization, 2016, p. 356–358), so

faulty data is present here. Only integer values are present here, but erroneous fractional values would also be detected.

The code for performing this check is publicly available (Quaeghebeur, 2019).

4. We ran automated checks for outlier candidates. There can be both ‘classical’ outliers, i.e., values outside the range

typical for that series, and ‘dynamic’ ones, i.e., subsequent value pairs whose difference (‘rate-of-change’) lies outside10

the difference typical for that series’s time-variation. Both types of outliers can, but do not necessarily correspond to

faulty data.

In further manual analysis of outlier candidates, causes may be identified, providing feedback on the data collection and

processing procedures. For example, both in the MMIJ and FINO 1 datasets, we encountered sudden drops to the value

zero for some series at regular time instances; this quite likely corresponds to foreseeable or detectable sensor resets of15

some kind.

There are many methods for outlier detection (Aggarwal, 2017). But, in this paper, we just wish to point out that there

is a clear need for some form of outlier detection to be used in the creation of metocean 10-minute statistics datasets.

Namely, the datasets we analyzed would benefit enormously from even a basic analysis; we suspect this generalizes to

other such datasets produced in the wind energy field. To make this need apparent, we present a set of plots in Figs. 3–620

that illustrate that indeed there are still outliers present in the datasets. We devised this type of plot as an alternative to

lag-1 plots (which plot xk+1 versus xk), so that rate-of-change magnitudes can be read off directly.

These plots should be read as follows: The horizontal ‘x’-axis shows measurement value; the vertical ‘y’-axis shows the

absolute value of the mean of the differences with the preceding and next measurement values. Each dot corresponds to a

measurement. Lines connect successive measurements. Only those measurements are shown with an x-percentile outside25

[0.1,99.9] or a y-percentile above 99, so the brunt of the measurements are not shown. (These bounds are somewhat

arbitrary, but reasonable for the size of the datasets.) The y-axis is linear until the 99th percentile, and logarithmic above.

To give an idea about the distribution of all the measurement points, so also the ones that are not shown, we add (blue)

lines for specific fractiles: thick dashed for the median and thin dotted for { 1
26 , . . . ,

1
8 ,

1
4 ,

3
4 ,

7
8 , . . . ,1− 1

26 }. Thick full (red)

lines are added as necessary to indicate range bounds.30

In Fig. 3, there are some suspiciously high values, some even beyond the nominal measurement range of the instrument.

This is also the case for the ‘Min’ and ‘Mean’ statistics, even if the probably isolated responsible data points are not
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Figure 3. Illustrative plots for visually identifying outliers: OWEZ 21 m NW ultrasonic anemometer horizontal wind speed data [m/s].

Figure 4. Illustrative plots for visually identifying outliers: MMIJ 21 m relative humidity data [%].

Figure 5. Illustrative plots for visually identifying outliers: FINO 1 21 m air pressure data [hPa].
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Figure 6. Illustrative plots for visually identifying outliers: FINO 1 72 m ambient temperature data [◦C].

visible. In Fig. 4, there are suspicious 0 % values and a bunch of values beyond 100 %. In Fig. 5, we see a bunch of data

points at suspiciously low values and some impossibly fast 10-minute pressure changes, a number of them more than

100 hPa. In Fig. 6, we see a quite large number of atypically high temperatures and some impossibly fast 10-minute

temperature changes, a couple of them of more than 30 ◦C.

Outlier plots for all data series are available as supplementary material for this paper. The code producing them is publicly5

available (Quaeghebeur, 2019).

Our analysis was generic in the sense that we did not make use of quantity-specific domain knowledge (e.g., empirical re-

lationships between mean and maximum) or measurement setup-specific knowledge (e.g., met-mast influence on wind speed).

In the context of wind resource assessment, Brower (2012) gives a description of a data validation procedure that does take into

account such specifics. Meek and Hatfield (1994) proposed signal-specific rules for checking meteorological measurements10

for range violations, rate-of-change outliers, and no-observed-change occurrences.

For all of the issues presented in this section, the dataset provider is better placed to interpret them, given that they have

information about the data acquisition and processing procedures that the user lacks. Therefore it is the dataset provider who

would ideally identify such issues and fix them, if possible, or otherwise at least mask or flag them. Given, as illustrated, the

relative simplicity of the required analyses, relatively little effort may be required for a substantial increase in dataset quality.15

2.2.2 Documentation

As mentioned in Sect. 2.1, for each of the three datasets we investigated, documentation on the measurement setup, instruments,

and quantities measured is available. Usually, this takes the form of a website, data manual, overview table, or a combination

thereof. However, for purposes of interpretation and use of these datasets, some essential or potentially useful information is

often missing.20
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We consider the information we listed in the overview Tables 1, A1, and A2 to be essential: instrument location, quantity

measured, its unit, information about accuracy (e.g., by giving absolute and relative uncertainty),1 range, and, given our focus

on statistics data, sampling frequency. For categorical data such as binary yes/no sensors (e.g., precipitation presence) or

enumeration values (e.g., synoptic codes), range is of course replaced by a set of possible values and unit by a description of

how to interpret those possible values.5

How do the three datasets fare in terms of documentation?

Time stamps All data values are accompanied by time stamps spaced ten minutes apart. However, for none of the three

datasets it is mentioned whether this time-stamp refers to the time of the first, last, or even some other sample. Knowing

this is necessary for the precise combination of datasets. If we assume that the samples underlying the dataset start at

the full hour, which corresponds to the raw data we have seen for OWEZ, we can deduce the convention used. Based on10

whether the first time-stamp in a data file has ‘00’ or ‘10’ for its minutes value, we assume that OWEZ and MMIJ are

first-sample based and FINO 1 is last-sample based.

Location For all three datasets, the documentation about location was good to excellent: technical drawings of the mast with

instrument locations or detailed data about orientation and height. A small comment we can make here is that the location

information in the series names used sometimes does not directly correspond to the actual situation. For example, in the15

MMIJ dataset a 46.5° angle offset of boom orientation relative to the North needs to be accounted for and in the FINO 1

dataset some height labels differed from the documented heights.

Quantities & units The description of the actual quantities measured and their units was in general also quite good. There

were two clear exceptions: (i) The precipitation detector was completely omitted from the MMIJ documentation. (ii) Pre-

cipitation data from FINO 1 at 23 m contained the concatenation of both presence (yes/no) and intensity data. Also, the20

interpretation of binary codes (e.g., does 0 correspond to yes or no?) was for none of the datasets explicitly given, but

had to be deduced from the data.

Ranges Ranges and sets of possible values were mostly left unmentioned in the documentation, except for those available

in instrument data-sheets included in the OWEZ and MMIJ data manuals. Making the data sheets of the instruments

available in such a way turned out to be convenient, as tracking them down is in our experience not always possible.25

Accuracy Accuracy information was available in the FINO 1 overview table and for those instruments for which the data

sheet was included in the OWEZ and MMIJ data manuals. For the other signals, we had to rely on the information found

in data sheets not available in the datasets’ documentation or website. Entirely absent is a discussion of the impact on

accuracy of all other aspects of the measurement setup (e.g., analog-to-digital conversion) and data processing (e.g., the

1We follow the Joint Committee for Guides in Metrology (2012) in our usage of ‘(measurement) accuracy’ and ‘(measurement) uncertainty’. Namely, the

former refers to a qualitative description of the “closeness of agreement between a measured quantity value and a true quantity value of a measurand” and the

latter to a quantitative measure, i.e., a “non-negative parameter characterizing the dispersion of the quantity values being attributed to a measurand, based on

the information used”. These terms cover both systematic and random aspects.
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application of calibration factors). Such a discussion would allow researchers using the datasets to get a more complete

picture of the accuracy of the values in the datasets.

Sampling frequency The sampling frequencies were available in the documentation for MMIJ and FINO 1, but not for

OWEZ. This information is essential for the estimation of the uncertainty of the mean and standard deviation statis-

tics.5

Instruments & their settings We mentioned our use of data sheets a few times before. To find these when they are not

included in the documentation, the exact instrument models need to be available. This was the case for all three datasets.

However, this may not be enough: the measurement characteristics of some instruments (e.g., barometers) depends on

specific settings, especially when they perform digital processing. These settings were never described.

Data processing Next to its relevance for assessing the accuracy of the values in the dataset, a good view of the data processing10

pipeline is important for other aspects as well:

– When is data considered to be faulty and flagged in or omitted from the dataset accordingly? This is entirely

missing for OWEZ and FINO 1, but some information is given for MMIJ: if some values in a 10-minute interval

are missing, the corresponding statistics are marked as missing. How faulty data values are encoded is documented

for OWEZ (as the value −999999), but not for MMIJ and FINO 1. For MMIJ, the convention used (the string15

‘NaN’) seems to be used quite consistently, although some precipitation monitor outlier values might actually be

other markers for faulty data. For FINO 1, there are two main faulty data placeholder values easily identified from

the datasets: −999.99 and −999. However, other values are also present, such as 0 and variants of the two main

ones, such as 999, −999.9 and −1000.

– How are the statistics calculated? This is never mentioned in the documentation. For most signals not much ambi-20

guity can arise, as there is not much choice, being limited to a possible bias correction approach for the standard

deviation. However, for directional data, it is very much pertinent which definition of mean and standard deviation

have been used: arithmetic or directional mean, classical or circular standard deviation (see, e.g., Fisher, 1995).

– Do the data processing steps to arrive at the statistics have any weaknesses, numerical or other? For example, in the

FINO 1 wind speed data, there appear max values that, suspiciously, are a factor ten or hundred times larger than25

the surrounding values. Leaving such things unexplained severely reduces the trust in the dataset.

It is clear from the above list that while already quite a lot of information is available, quite a number of very useful pieces

of information are missing. Many of these are available to the dataset providers, so again the quality of the datasets, now in

terms of documentation, can be substantially improved with relatively little effort.

Unmentioned as of yet is that essentially all the documentation for these datasets is provided in a way accessible to humans,30

but not in a machine-readable way. Much of the information described in the documentation can however be encoded as

metadata in a standardized and machine-readable way. Metadata is discussed further in Sect. 3.1.
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2.2.3 Statistic Selection

As seen in the overview sections 2.1.1, 2.1.2, and 2.1.3, for all three datasets the statistics provided are essentially the same:

minimum, maximum, mean, and standard deviation. Only for FINO 1 not all statistics are included for all quantities. In this

section, we are going to discuss these statistic selection choices, pointing out issues that arise from them.

The uniformity of the statistics provided is convenient when reading out the data, as it reduces the user’s quantity-specific5

code. However, when the signal’s values do not represent an (underlying) linear scale providing the minimum, maximum,

mean, and standard deviation does not make much sense; it may actually cause misinterpretation. This is usually the case for

categorical signals, such as the MMIJ synoptic code signal. In such cases, other statistics must be chosen. For example, for

binary quantities such as yes/no precipitation data, giving the relative frequency of just one of the two values captures all the

information present in the typical set of four statistics.10

As said, in the FINO 1 dataset statistics are sometimes omitted, but mostly for other reasons. For quantities that are con-

sidered to be ‘slow-varying’ (such as atmospheric pressure, ambient temperature, and relative humidity) only the mean has

been recorded.2 However, next to the convenience of uniform sets of statistics, having multiple statistics for a measurement

interval is useful for data quality assessment. (Possible storage and transfer constraints are of course valid reasons for limiting

the number of statistics.) For directional quantities such as wind direction the minimum and maximum were omitted because15

these are considered meaningless by the dataset producer.2 The OWEZ and MMIJ datasets show, however, that it is possible

to give meaningful definitions of maximum and minimum for directional data. (See Appendix A2.1 for a concrete approach.)

This can be valuable information, as it makes it possible to deduce, e.g., the sector extent from which the wind has blown

during a time interval.

2.2.4 Quality flags20

Next to statistics, we saw in Sect. 2.1.3 that the FINO 1 dataset also contains a categorical quality flag for each set of statistics.

Such information is not present in the other two datasets.

Including such a flag makes it possible to also provide information about missingness, i.e., to indicate why one or more

statistic values is missing at that time instant. Such information is often encoded using a bit field, i.e., a binary mapping from

quality issues and missingness mechanisms to true (1) and false (0); this bit field can be recorded as a positive integer. For25

example, consider the following tuple of quality issues and missingness mechanisms: (‘suspect value jumps’, ‘out-of-range

values’, ‘unknown missingness mechanism’, ‘icing’, ‘instrument off-line’). Then the bit string ‘00000’ (or integer 0) would

denote a measurement interval without any (identified) issues and for example ‘010010’ (or integer 18) would correspond to a

measurement interval with both instrument icing and out-of-range values detected.

2Personal communication d.d. 2017-06-27 with Richard Fruehmann (cf. Acknowledgements).
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2.2.5 Value Encoding

In the overview sections 2.1.1, 2.1.2, and 2.1.3, for all three datasets, the values themselves are encoded as fixed-point values

for MMIJ and FINO 1 and as a binary floating point double for OWEZ. There is, however, more to be said about what exactly

is encoded and which information can be reflected in the encoding. We do that here.

Signal values have a natural set they belong to. Relative humidity, for example, is a fraction, i.e., a value between zero and5

one. Categorical signals take values in a predefined enumerated set. If for such signals values are given outside of this set, this

is a source of confusion: the user may wonder whether they can just round erroneous values to the nearest enumerated one

or treat them as faulty. For example, the MMIJ precipitation detector’s precipitation presence signal contains values around

the enumerated ones and its precipitation monitors’ precipitation presence signals contains values far outside the range of

enumerated values. Another case are continuous signals that are at one point expressed as current or voltage values: the end10

user will be less certain about the correct translation procedure to the correct units than the data processor. For example, the

FINO 1 precipitation intensity signal is expressed as a current instead of an accumulation speed.

In the OWEZ and FINO 1 datasets it sometimes occurs that certain statistics are marked as faulty or missing, while never-

theless other statistics for the same signal at the same instance are available. From inspection of such data, it is clear that it can

both happen that the values of these other statistics seem reasonable or faulty. An explanation of why the data values are partly15

missing would preserve trust in the non-missing values. This requires a description of the processes creating such a situation

(cf. Sect. 2.2.2), but could also include instance-specific information in a flag value (cf. Sect. 2.2.4).

The values stored in the dataset do not in general encode their accuracy. For the MMIJ and FINO 1 datasets, values used a

fixed-point format, but the number of decimal digits used is not directly related to the accuracy information available for the

different quantities. This fact may be overlooked by users, resulting in possible misinterpretations.20

To avoid misinterpretation, it is possible to add an estimate for a value’s uncertainty, e.g., by rounding and specifying a

corresponding number of significant digits. Accuracy information was only available for signal values (i.e., high frequency

samples), typically as absolute uncertainties εa and relative uncertainties εr. Below, we give expressions for propagating this

information to the statistics, as this does not seem available in the literature, and discuss further factors affecting the statistics’

uncertainty. The nontrivial derivations of these expressions and a description of the underlying model for the measurement25

process can be found in Appendix A2.2. The most important assumption made in these derivations is that ε2
r � 1� n, where

n is the number of samples per averaging interval.

Sample uncertainties can be propagated to the statistics of the n signal values xk per averaging interval, which is 10 minutes

for the datasets discussed in this paper. For this, we essentially assume independence and normality of the corresponding

uncertainties εxk
. Also the uncertainty in the statistics due to the finite nature of the samples can be quantified based on the fact30

that the sum appearing in the calculation of the mean and standard deviation can be seen as a simple form of quadrature. Let

x̌ and x̂ be the minimum and maximum values in the sample; let x̄= 1
n

∑n
k=1xk and s2

x = 1
n

∑n
k=1(xk − x̄)2 be the sample

mean and sample variance. We find the following expressions for the squared uncertainties of the statistics:

ε2
x ≈

(
ε2

a + ε2
r x

2
)

+
1
n2
δ2 for x ∈ {x̌, x̂}, εx̄2 ≈ 1

n

(
ε2

a + ε2
r (x̄2 + s2

x)
)

+
1
n2
δ2, ε2

sx
≥ 1
n

(
ε2

a + ε2
r (x̄2 + 3s2

x)
)

+
1
n2
δ2.
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Here δ ≈ x̂−x̌
2 ; in case x̂ and x̌ are unavailable, δ ≈ z1−1/nsx can be used instead, where z1−1/n is the standard normal

quantile for exceedance probability 1/n. The uncertainty due to the finite sample size, the term 1
n2 δ

2, diminishes much faster

as a function of n than the uncertainty due to the measurement noise, expressed by the other terms. In practice, this second

term is therefore negligible unless εa and εr are taken to be zero because no information is available about them.

Next to having associated uncertainties, the sample statistics can also be biased estimators of the statistics for the underlying5

signal. It turns out that only the sample standard deviation sx is biased and that

s′x =
√

max
{
s2
x−

(
ε2

a + ε2
r x̄

2
)
,0
}

(1)

would be a better estimate from this perspective.

To get a more concrete view of these uncertainties and bias, we provide average relative uncertainty and bias values for the

MMIJ dataset in Table 3. The variation of the uncertainties and bias is substantial, so this table of averages does not provide a10

complete picture, but enough to draw some conclusions:

– A fixed-point format does not have the flexibility to give the appropriate number of significant digits; usually either too

many or too few are given.

– While the uncertainty is usually rather small (up to a few percent), in some cases it is substantial (around ten percent or

more).15

– The bias in the sample standard deviation can in general not be ignored.

What the impact of uncertainty and bias are depends on the application. (For example, turbulence intensity estimation is clearly

affected by the bias in the wind speed sample standard deviation.) But to be able to assess this impact, uncertainty and bias

values must be available, making expressions such as the above essential.

3 Dataset Formatting20

We split our discussion of dataset file formats into two parts. First, in Sect. 3.1, we give an overview of the formats that are

currently used for the dissemination of the datasets studied and existing alternatives that we argue to be superior. Then, in

Sect. 3.2, we take a closer look at the potential of these alternatives based on our practical experience with them.

3.1 A Comparison of Dataset File Formats

We saw in Sect. 2.1, during our first look at the datasets we studied, that these were disseminated as a compressed set of Excel25

files for OWEZ, a compressed semicolon-separated values file for MMIJ, and a compressed set of tab-separated values files

for FINO 1. In the Excel files, the values are stored as 8-byte binary floating point numbers. In the delimiter-separated values

files the values are specified in a fixed-point decimal text format, with five (MMIJ) and two (FINO 1) fractional digits. All

of these are essentially table-based formats, where columns correspond to series and rows correspond to values for a specific

15
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Table 3. Average relative uncertainties and bias in percent for quantities from the MMIJ dataset for which some (likely incomplete) uncer-

tainty information is available. (See Table A1 for more information about the quantities. The values are given with two digits, but it is not

implied that both are significant.)

Instrument Quantity
εx̌

x̌

εx̂

x̂

εx̄

x̄

εsx

sx
1− s′x

sx

cup anemometer hor. wind sp. 4.3 2.7 0.067 1.0 12

ultrasonic anemometer wind sp. X dir. 10 11 2.4 3.0 8.0

wind sp. Y dir. 11 12 2.4 3.0 7.5

wind sp. Z dir. 16 29 7.7 3.3 8.2

wind vane wind direction 2.2 0.77 0.056 1.4 5.4

barometer atm. pressure 0.017 0.0099 0.00021 7.2 37

thermometer ambient temp. 2.3 2.3 0.067 35 34

hygrometer rel. humidity 1.3 1.3 0.026 8.7 34

precipitation monitor precip. intensity 17 17 0.45 3.4 1.1

fromv,s cup anemometer hor. wind sp. 2.7 1.7 0.044 0.76 7.9

fromv ultrasonic anemometer wind sp. magn. 3.9 3.0 3.0 3.4 2.2

hor. wind sp. 2.0 0.79 0.042 0.44 2.1

fromv,s ultrasonic anemometer hor. wind sp. 1.2 0.58 0.045 0.31 1.2

fromv,s wind vane wind direction 1.8 0.56 0.042 0.51 3.6

fromv barometer and thermometer air density 0.016 0.0085 0.00018 2.0 16

s Correction for tower shadow by selective averaging of values at the same height.
v Virtual measurement; namely, derived from signals obtained with one or more actual instruments.

time instance. (This structure satisfies the requirements of ‘tidy data’ according to Wickham (2014), apart from being split over

multiple files.) Some metadata is included in two or more header lines, such as series identifiers and the unit.

We created binary file format versions of the datasets; in HDF5 format (The HDF Group, 2017a) for OWEZ and in netCDF4

format (Unidata, 2016) for MMIJ and FINO 1. Both formats are platform-independent. Files in netCDF4 format are actually

HDF5 files, but adhering to the netCDF data model (Rew et al., 2006). The use of a different data model is reflected in the5

application programming interfaces (APIs) available for HDF5 and netCDF4. A number of HDF5’s technical features are not

supported by the netCDF data model, which on the other hand provides additional semantic features, most notably, shared

dimensions and coordinates variables. The netCDF4 format and its predecessors are popular for the storage of Earth science

datasets, including metocean ones. These formats allow the data to be placed into multidimensional arrays, ‘variables’, in

a hierarchical file system-like group structure. Arbitrary key-value metadata attributes can be attached to both groups and10

variables. The variables support various common data types, such as 1, 2, 4, and 8-byte integers, 2, 4, and 8-byte binary

IEEE floating point numbers (Cowlishaw, 2008), and character strings. Also custom enumerations, variable-length arrays, and
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compound types can be defined, e.g., a combination of four floats and an integer. Furthermore, variables can be compressed

transparently, i.e., without the user having to manually perform decompression before use.

Let us give a brief evaluation of support in software tools for the different file formats. Even if the delimiter-separated values

files are not really standardized (however, see Lindner, 1993; Shafranovich, 2005), support for them is near universal. Software

tools usually include options to deal with the particulars of the actual encoding (delimiter, quoting, headers, etc.), but this does5

require manual discovery of these specifics. These text-based formats can in principle be read and modified in a text-editor, but

these are usually not designed to deal with large files, so this is actually impractical for all but the smallest datasets and useless

for analysis. The Excel ‘xls’ format, even though proprietary, has broad reading support. Support for HDF5 and netCDF4

formats in software tools is very extensive (The HDF Group, 2017b; Unidata, 2018). This, next to their feature-set, is also a

reason for us choosing to use them; they appear to be the most future-proof of the many binary formats in existence. We used10

Python modules to work with all these formats (McKinney et al., 2016; Colette, 2017; Unidata, 2015).

Next let us consider the impact of a format being text-based or binary-based. Text-based formats in principle give a lot

of freedom in choosing the format in which values are represented, but usually this is done in a single fixed-point format.

To use the data, the values’ representations need to be parsed into the standard binary number formats used by computers,

namely, floats and integers of various kinds. Binary file formats use binary number formats directly, which are faster to load15

into memory and more space-efficient.3 Because of their standardized nature, they can include other binary-specific features,

such as transparent compression and checksums (data integrity codes).

Now let us look at the metadata. HDF5 and netCDF4 are considered self-describing formats, as they allow arbitrary metadata

to be included next to the data. This data is easy to access, also programmatically. Table-based data files typically include one

or two header lines of metadata (sometimes more), but there is no universal convention about what can be found there. So20

making use of information included in this way always requires user intervention. There are initiatives to create metadata

inclusion standards for delimiter-separated values formats, but these have not gained significant adoption and are aimed at

either web-based material (Tennison et al., 2015) or small datasets (Riede et al., 2010), or are very recent proposals (Walsh and

Pollock, 2019).

Section 2.2.2 mentioned that the documentation available for the datasets we investigated is not machine-readable. It can be25

made so by providing it as metadata. Such metadata can be used to facilitate analyses and uses of the data. For example, if a tool

‘knows’ the range and units associated to series of values, air pressure and temperature, say, then it can automatically determine

those for derived series, such as air density. Examples of metadata standards for datasets are the ‘CF Conventions’ (Eaton et al.,

2017) and ISO 19115-1 (ISO/TC 211, 2014). It is encouraged in the Earth Science community to not just add arbitrary metadata,

but include at least standard attributes from the ‘CF Conventions’ (Eaton et al., 2017) and follow the ‘Attribute Convention for30

Data Discovery’ (ESI, 2015). These facilitate reuse, discovery, and also make it possible, for example, for software to enhance

3In text files, every decimal digit costs 8 bits (1 byte) to store, so a length-n number requires 8n bits. In binary formats, a more efficient encoding is used

(numbers as bit-strings), requiring m bits. To round-trip from decimal to binary and back, m = bn log2(10)+ 2c ≈ b3.3n +2c is sufficient (Matula, 1968).

This picture does not change substantively if sign and magnitude are taken into account. In practice a 32-bit binary format is used for storing values, which

uses 23 bits for representing the significand, sufficient for 6 decimal significant digits; 1 bit is used for the sign and 8 for the exponent.
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the presentation of the dataset elements (see, e.g., Hoyer et al., 2017). They also allow for adding further useful metadata, such

as provenance information, e.g., in the form of an ISO Lineage (ISO/TC 211, 2019). These conventions are aimed at netCDF

files, but can to a large degree by applied to HDF5 files as well. Of course the metadata to be included as recommended by

these conventions can also be specified for table-based formats, but not in the same self-describing way.

3.2 Practical Experiences with Binary Formats5

We already mentioned in Sect. 2.2.1 that we created binary file format (HDF5 or netCDF4) versions of the datasets we studied.

In this section, we first, in Sect. 3.2.1, report on the process and its results. Then, in Sect. 3.2.2, we discuss the limitations of

these formats, including limitations of software support.

3.2.1 The Transformation Process

Transforming the supplied data files was done by writing a specific script for each case. The general setup is similar for each10

script:

1. One needs to import the supplied datasets into in-memory data structures that can be manipulated by the scripting

language. An important part of this step is the identification of missing data or data marked as faulty and encoding it

appropriately. Storing them as the ‘Not a Number’ binary floating point value is the common approach we followed.

Using a Boolean mask separate from the dataset itself is an alternative that can also be used in case the data stored does15

not consist of floating point values.

2. One must decide on and create a structure for the file, to organize the data and make it conveniently accessible. We used

a hierarchical structure for this, grouping first by device (class) and then by quantity. For instrument locations, we tried

two approaches:

– adding the locations as groups in the hierarchy, below the ‘quantity’ groups (done for OWEZ);20

– collecting the data for all locations in a multidimensional array with additional axes next to the time axis, e.g., for

height and boom direction (done for MMIJ and FINO 1).

For the different statistics (minimum, maximum, mean, and standard deviation), we tried three approaches:

– adding the statistics series as separate variables in the hierarchy (done for all three);

– keeping the statistics together in a compound data structure, essentially a tuple of values, where each value is25

accessed by (statistic) name; such compound values then formed the elements of the multidimensional arrays

(done for MMIJ and FINO 1);

– adding the statistics as an extra axis to the multidimensional array (done as well for MMIJ).

3. One must collect and compose the metadata for the dataset, the devices, and the quantities. Then one must add these as

attributes in the file. The latter is almost trivial to do once the former, time consuming task is completed.30
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4. One must choose an encoding and the storage parameters for the data and write it out to the file. We chose to store

the values as 4-byte binary floating point numbers, compress it using the standard ‘Deflate’ algorithm, and add error

detection using ‘Fletcher-32’ checksums. Furthermore, we used the information available about the accuracy of the

values to round to the least significant binary digit. This is a lossy transformation that, however, does not lose significant

information, but further improves compression.5

Let us finish this section with some remarks.

– During the transformation process, we could load the datasets studied entirely into memory. This is convenient, but not

necessary, as the process of reading the supplied datasets can be done in a piece-wise fashion.

– The size of the files resulting from the transformation we made was one-eight of the supplied files’ size or smaller and

one-half their compressed size or smaller. (More precisely, the sizes of the uncompressed [compressed] supplied files10

versus the sizes of our HDF5 or netCDF4 versions are as follows. OWEZ: 1 GB [400 MB] vs. 65 MB; MMIJ: 500 MB

[120 MB] vs. 55 MB; FINO 1: 800 MB [120 MB] vs. 50 MB.)

– Tools exist to facilitate the transformation process, most notably the on-line service Rosetta (Unidata, 2013), which

generates netCDF files satisfying the CF Conventions.

– Templates to facilitate the creation of netCDF files satisfying the CF Conventions and the Attribute Conventions for Data15

Discovery are available (NCEI, 2015). These do not make use of hierarchical grouping, but can to a large degree be used

within each group.

3.2.2 Limitations of Binary Formats Tested

When creating the transformed dataset files, we tested many of the features available in the HDF5 and netCDF4 formats. Not

all of these features turned out to be as useful as initially expected or have sufficient software support. We here discuss features20

for which we encountered issues, to help others make an informed choice when considering their use.

Compound data structures Compound data structures are essentially tuples of values, where each component value is ac-

cessed by its name. These allow for a tight grouping of related data, for example to group all the statistics for a given

signal for a given measuring interval, attach a quality flag, or to group the components of a vector (e.g., the wind ve-

locity). However, metadata cannot be attached to the structure’s components and to read any one component, the whole25

structure is loaded in memory, multiplying the memory requirements. Furthermore, support for creating these structures

for use in netCDF4 files using Python was buggy (we helped fix that bug) and support for reading compound value data

is currently far from universal; for example, it is not included in Matlab’s netCDF interface. Also, documentation of their

use is currently limited.

2-byte floating point numbers HDF5 allows storing 2-byte (16 bit) floating point numbers, which is more space-efficient if30

the precision is sufficient. The support in the core HDF5 library turned out to be buggy and support was non-existent,

e.g., in Matlab.
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Scale-offset filters Another approach for efficiently storing floating point values x is to transform them to integer values k of

shorter bit-length. Namely choosing series-specific scale and offset parameters α and β such that x is equal to αk+β

within required precision. HDF5 has a built-in filter to do this, but it does not preserve special floating point values like

NaNs used for representing missing values. The ‘CF Conventions’ (Eaton et al., 2017) often used in netCDF files also

describe a metadata-based approach, but not all software automatically applies the inverse transformation, so it is not5

transparent to the user.

Dimensions When creating variables, the netCDF4 format requires using defined dimensions (e.g., time and height). These can

be shared between variables and associated to coordinate variables (e.g., arrays with concrete time values and instrument

heights). There is also a similar concept of ‘dimension scale’ in HDF5, but it is not as convenient.

Unicode In principle both HDF5 and netCDF4 support Unicode text for group, variable, and attribute names and for attribute10

values. Software support for Unicode text in attribute values is not universal, however; notably, Matlab does not support

this yet for netCDF4.

String values Both HDF5 and netCDF4 support variable-length strings as variable values. This can for example be useful for

coordinate variables, such as when instrument position is designated by ‘left’ and ‘right’. However, again Matlab does

not support this yet for netCDF4.15

4 Recommendations

Based on our analysis of the three datasets and on our work transforming them in to binary file formats, we have the following

recommendations for the two main stakeholders.

Dataset producers

– Expand the automated checks you perform on the signals the dataset series are based on, to efficiently remove20

avoidable issues that are currently still present (Sect. 2.2.1).

– Make the documentation of the dataset and its creation process more comprehensive (cf. Sect. 2.2.2). This is best

done by attaching metadata, which is most likely already available in your data management systems, right next

to the data. External documentation such as data-manuals and websites, if still needed, can be semi-automatically

generated from metadata that is stored in a structured way.25

– Provide your datasets (also) in a binary format that allows for a structured combination of data and metadata

(cf. Sect. 3.2). Based on our experience, we currently advise, for metocean statistics datasets, using the netCDF4

format, with

– metadata added according to the Attribute Conventions for Dataset Discovery and CF Conventions (cf. Sect. 3.1),

– metadata describing absolute and relative sample uncertainty (cf. Sect. 2.2.5),30
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– coordinate variables for all dimensions of the data variables,

– each statistic series as a separate variable, so not using compound data structures or by expanding the multidi-

mensional array,

– values binary-rounded according to the available uncertainties (cf. Sect. 2.2.5), which does not preclude inclu-

sion of ‘ancillary’ variables for the uncertainty values themselves,5

– sample standard deviations corrected for bias (cf. Sect. 2.2.5) or inclusion of an ancillary variable for the bias

(modifying the values themselves may be seen as too invasive),

– variables compressed transparently, so not using a metadata-based scale-offset filter,

Its better support for dimensions and coordinate variables is what makes the netCDF4 format currently more at-

tractive than the plain HDF5 format.10

– Add a quality flag variable for each signal (cf. Sect. 2.2.4).

Dataset users

– Do not trust the data blindly and perform some checks in the vein of those we discussed in Sect. 2.2.1.

– Provide feedback to the dataset producers about issues you encounter and dataset features that would have added

value for your research; our experience in this regard, especially with ECN, is positive.15

– If you are used to working with comma-separated values type formats, do the effort of working with a format like

HDF5 or netCDF4 if the opportunity presents itself, as this will allow working more efficiently with datasets (cf.

Sect. 3).

5 Conclusions

The questions of our study were: (i) Are these issues commonly shared in metocean datasets? (ii) How can the issues that are20

present be addressed?

The answer to the first question is ‘yes, but not uniformly’: The analysis of three datasets with statistics of metocean signals

aimed at wind energy applications presented in Sec. 2.2 showed that indeed there are shared issues, such as the presence of

unmarked faulty data (outliers, most clearly), incomplete documentation (signal accuracy, most generally), and value encoding

(lack of uncertainty information, most importantly). Some issues are not shared, and one dataset can actually be seen as an25

example of good practice in some aspect (the quality flags included in the FINO 1 dataset, most concretely).

An abstract answer to the second question is ‘by the dataset producers, in a straightforward way, with limited effort’. More

concretely:

– The techniques we used to bring faulty data to light are straightforward to implement, which supports our claim that they

can be detected and fixed with relatively little effort.30
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– Concerning documentation: In our quest for creating a good overview of the datasets, we collected information from

various sources to supplement the documentation provided; this is a time consuming task. Much of the information that

we had to search for, is available to the datasets producers, so the effort for them is smaller. Given that one cannot expect

all dataset users to perform data quality analyses and information collection efforts themselves, it would be beneficial

if the dataset producers take this upon them as a duty. This will make their datasets more useful and therefore more5

valuable.

– As noted above, a specific issue with the datasets was the limited information about and quantification of the uncertainty

of the dataset values. The expressions for uncertainties and bias we derived provide a straightforward quantification of the

statistics’ uncertainties and bias based on the information that is typically available, absolute and relative uncertainties

for the sample values. These expressions can be used by users if needed by their application. The dataset producers10

can also apply them and use the uncertainty values found to improve their dataset, e.g., by rounding the dataset values

(reducing the size requirements) or by including the uncertainty values as ancillary variables.

– In support of our analysis of the datasets, we created versions in a binary format. In comparison to the tabular formats

in which the datasets are made available, such binary formats are more convenient for users, as they make the data

available in a much more structured format and as they are self-describing when documentation is added as metadata.15

The description of our effort, experiences, and feature evaluation provide a high-level guide and suggested best practices

to dataset producers who wish to also improve their datasets in this way.

In summary, this paper shows why and how metocean datasets for wind energy applications can be improved in various,

useful ways, with relatively little effort.

Code and data availability. Code used during the research is publicly available via GitHub and Zenodo (Quaeghebeur, 2019). For OWEZ20

and MMIJ, we are in the process of verifying whether we have permission to publish HDF5 and netCDF4 datasets we created. These will be

put on a publicly available data repository and referenced here for the final version of this paper. For FINO 1, we know that we cannot make

any such dataset available.

Appendix A: The Datasets and Their Analysis

A1 A First Look at the Datasets25

A1.1 MMIJ — Measuring Mast IJmuiden

In the context of a Dutch governmental research program, a met-mast was built in the Dutch part of the North Sea with the

aim to gather metocean data with a frequency and quality needed for the planning and development of offshore wind farms

in the Dutch North Sea. Its location is 52°50′53.4′′ North, 3°26′8.4′′ East (WGS 84), which is 82 km off the Dutch coast
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near the province North-Holland. The location is indicated in Fig. 1. The mast was ready for operation in 2011 and was

decommissioned by 2017. Data is available for the period November 2011–March 2016. Multiple datasets can be obtained;

we restricted attention to the one for meteorological signals. The instruments used and quantities measured, and some of their

characteristics are listed in Table A1.

The MMIJ datasets can be obtained by registering, which is free, and filling in a request form on a website of the Energy5

research Centre of the Netherlands (ECN). The meteorological statistics dataset can be downloaded via an e-mailed link as a

single compressed semicolon-separated values (csv) file. The total size is a good 500 MB, or about 120 MB compressed. This

represents data points for 229248 10-minute intervals. The data in the csv file is structured as follows:

– 1 date-time column (YYYY-MM-DD hh:mm);

– 65 sets of four columns each: one for each of the four real-valued statistics, ‘min’, ‘max’, ‘avg’, and ‘std’; each set10

corresponding to a specific measured quantity and location on the mast.

The statistics’ values are encoded in a decimal fixed-point format with five fractional digits (x...x.xxxxx).

Information about the dataset, the met-mast, and its context is available through the same website. In particular, there is

an instrumentation report (Werkhoven and Verhoef, 2012). Some information about the instruments used and in particular the

measurement uncertainty had to be looked up in spec sheets. Further clarifications were obtained through personal communi-15

cation with people involved in the project (cf. Acknowledgements).

A1.2 FINO 1 — Research Platform in the North Sea and the Baltic Sea Nr. 1

In the context of the German governmental research program FINO (for ‘Forschungsplattformen in Nord- und Ostsee’) started

in 2002, three measuring stations with met-masts were built; two in the German part of the North Sea and one in the Baltic. The

aim is supporting technological developments for and study the effect of off-shore wind farms. We have looked at data from20

the first mast erected, FINO 1, which became operational in 2003. Its location is 54°0′53.5′′ North, 6°35′15.5′′ East (WGS

84), 45 km North of the island of Borkum, near the site where the off-shore wind farm ‘Alpha Ventus’ was built in 2009–2010.

The location is indicated in Fig. 1. Data from 2004 onward is available. Multiple datasets can be obtained; again we restricted

attention to the one for meteorological signals. The instruments used and quantities measured, and some of their characteristics

are listed in Table A2.25

The FINO 1 datasets can be obtained after requesting access (BSH, a), which is free for academic research, but not so for

commercial purposes; re-dissemination is not allowed. Credentials are then provided to login to the download website (BSH, a),

where one can select the desired signals and time period. The resulting dataset is delivered as a compressed set of tab-separated

values (dat) files, one for each selected quantity/height combination. We selected the meteorological statistics data for the years

2004–2016. The total size is a good 800 MB, or about 120 MB compressed. This represents data points for 683856 10-minute30

intervals. The data in each dat file is structured as follows:

– 1 date-time column (YYYY-MM-DD hh:mm:ss);
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Table A1. An overview of the instruments and their locations on the MMIJ met-mast (height in meters above Lowest Astronomical Tide),

the quantity measured, measurement uncertainty, the measurement ranges, and the sampling frequencies.

Instrument (#) Heights Pos.b Quantityqc Unit Uncertaintym Rangem Freq.

[m] abs. rel. [%] [Hz]

cup anemometer (8)
27,58.5

92

reg.

irr.
hor. wind sp.1 m/s 0.2 1 0.3–75 4

ultrasonic anemometer (3) 85 reg. status1 – {−103,0}eo 4

wind sp. X dir.1

wind sp. Y dir.1

wind sp. Z dir.1
m/s 0.1 2 −60–60 4

wind vane (9) 27,58.5,87 reg. wind direction1 ° 1 0–360d 4

barometer (2) 21,90 atm. pressure1 hPa 0.1 500–1100 4

thermometer (2) 21,90 ambient temp.1 ◦C 0.12 −80–60 4

hygrometer (2) 21,90 rel. humidity1 % 1 0–100 4

precipitation detector (1) 27 U precip. presence1 – {0,100}en 4

precipitation monitor (2) 21 l, r status1 – {0,100}eo 4

quality5 % 0–100 4

synoptic code5 – {0, . . . ,99}ew 4

precip. presence5 – {0,100}en 4

precip. intensity5 mm/min 15 0– 4

precip. amount5,r mm 0– 4

visibility5 m 0–10000 4

fromv,s cup anemometer (3) 27,58.5,92 hor. wind sp.1 m/s 0.14 0.3–75 4

fromv ultrasonic anemometer (3) 85 reg. wind sp. magn.1 m/s 0.07 0–104 4

hor. wind sp.1 m/s 0.07 0–85 4

fromv,s ultrasonic anemometer (1) 85 hor. wind sp.1 m/s 0.05 0–85 4

fromv,s wind vane (3) 27,58.5,87 wind direction1 ° 0.7 0–360d 4

fromv barometer and thermometer (2) 21,90 air density1 kg/m3 0.0001 0.5–2.0 4

b For instruments on booms, positions are boom orientations [°], with North at 46.5°, ‘reg.’ corresponds to {0,120,240} and ‘irr.’ to {180,300}. For those not on booms other

identifiers are used, if known.
d Means lie between 0°–360°; minima and maxima can be outside of that interval so that min≤ avg≤ max.
en No, Yes. eo ‘0’ = OK, non-zero = Not OK. ew Using synoptic ‘present weather’ codes defined by the World Meteorological Organization (2016, p. 356–358).
m Missing values are unknown. qc Quality code: ‘1’ = ‘ISO 17025 approved, in accordance with IEC61400-12’; ‘5’ = ‘no or unknown calibration’.
r Between sensor resets. s Correction for tower shadow by selective averaging of values at the same height.
v Virtual measurement; namely, derived from signals obtained with one or more actual instruments.
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Table A2. An overview of the instruments and their locations on the FINO 1 met-mast (height in meters above Lowest Astronomical Tide),

the quantity measured, measurement uncertainty, the measurement ranges, and the sampling frequencies.

Instrument (#) Heights Quantity statisticss Unit Uncertaintym Rangem Freq.

[m] abs. rel. [%] [Hz]

cup anemometer (8)
34,41,51,61,

71,81,91,102
hor. wind sp. −+µ σ m/s 0.1 1 0.1–75 1

ultrasonic anemometer (3) 42,62,82 hor. wind sp. −+µ σ m/s 0.01 1 0–45 50

wind direction µ σ ° 1 0–359 50

wind vane (9) 34,51,71,91 wind direction +µ σ ° 2 0–360 1

barometer (2) 21,93 atm. pressure µ hPa 0.3 800–1060 1

thermometer (5) 34,42,52,72,101 ambient temp. µ ◦C 0.1 1

hygrometer (5) 34,42,52,72,101 rel. humidity µ % 3 10–100 1

precipitation monitor (2) 23,101 precip. presence meas.v – {0,1}c

precipitation sensor (1) 23 precip. intensity µ mA 4–20 1

pyranometer (2) 34,93 global radiation µ W/m2 3 0–4000 1

c No, Yes. m Missing values are unknown.
s Statistics included (with column name): ‘−’ = minimum (‘Minimum’), ‘+’ = maximum (‘Maximum’), ‘µ’ = mean (‘Value’), ‘σ’ = standard deviation (‘Deviation’).
v The measurement is given (in the ‘Value’ column), as there is essentially one measurement per ten minutes.

– 4 statistics columns, ‘Value’, ‘Minimum’, ‘Maximum’, and ‘Deviation’;

– 1 quality column (‘0’ = raw, ‘1’ = doubtful quality, ‘2’ = quality controlled).

The statistics’ values are encoded in a decimal fixed-point format with up to two fractional digits (x...x.xx).

Information about the dataset, the met-mast, and its context is available through the platform’s websites (FINO 1; BSH,

b). A detailed overview table regarding the mast’s instrumentation (DEWI, 2015) is available upon request by email. Some5

information about the instruments used and in particular the measurement ranges had to be looked up in spec sheets. Further

clarifications were obtained through personal communication with people involved in the project (cf. Acknowledgements).

Others have looked at the FINO 1 data before. For example, detailed studies have been performed on the wind speed data

gathered (Westerhellweg et al., 2012; Stepek et al., 2015).

A2 Dataset Issues10

A2.1 Maximum and Minimum for Directional Data

We here give a proposal for definitions of maximum and minimum for directional data. We assume the sampling frequency is

high enough to make direction changes larger than 180° for successive samples practically impossible.
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Transform the direction sequence from 0°–360° to the real line so that ‘360° jumps’ are removed; e.g., the sequence 356°,

358°, 1° and 4° would become 356°, 358°, 361° and 364°. Call the minimum and maximum of this transformed sequence χ

and ξ; so χ= 356° and ξ = 364° in our example. If ξ−χ > 360° the direction has changed at least one full rotation for the

given sequence. Let µ be the (vector) mean, expressed within 0°–360°; so µ≈ 359.75° in our example. Now choose k such

that χ+k360°≤ µ≤ ξ+k360° with max{|χ+k360°−µ|, |ξ+k360°−µ|}minimal; k = 0 in our example. Then χ+k360°5

and ξ+ k360° are the sought for minimum and maximum.

A2.2 Statistic Value Uncertainty

The statistics present in the dataset are derived from n measurements xk uniformly sampled over a length-T interval, where

T = 600s for the datasets we consider. To get a view on the uncertainty of the statistics, we model the process generating the

measurements as follows: There is an underlying signal y with samples yk = y(tk). On measurement, noise is added, so that10

xk = yk + ek for all k ∈ {1, . . . ,n}. The noise is assumed to consist of independent absolute and relative zero-mean Gaussian

components, i.e., ek = εaza,k + εrykzr,k with zr,k and za,k samples from independent standard normal distributions, so that the

component’s standard deviations are εa and εryk.

We first consider the contribution of sampling and then the contribution of the noise to the uncertainty of the statistics.

Uncertainty due to sampling15

The ‘ideal’ statistic values are defined in terms of the continuous-time signal:

y̌c = min
t∈[0,T ]

y(t), ŷc = max
t∈[0,T ]

y(t), ȳc =
1
T

T∫

0

y(t)dt, s2
y,c =

1
T

T∫

0

(y(t)− ȳc)2dt. (A1)

The ‘noiseless’ sample statistics values are

y̌ = min
k∈{1,...,n}

yk, ŷ = max
k∈{1,...,n}

yk, ȳ =
1
n

n∑

k=1

yk, s2
y =

1
n

n∑

k=1

(yk − ȳ)2, (A2)

where for the sample variance s2
y , we did not apply the usual bias correction because n is assumed sufficiently large.20

As we assume is done in the datasets, we take tk = (k− 1) 1
nT . So we are applying the ‘Left Rule’ numerical integration

method (see, e.g., Tucker, 1997) to get estimates ȳ for ȳc and s2
y for s2

y,c. A corresponding error estimate is T 2

2n

∣∣∑n
k=1 f

′(tk)
∣∣,

where f is equal to 1
T y and 1

T (y− ȳc)2 respectively. An estimate for the sum of derivatives is obtained by assuming y is linear,

i.e., y′ ≈ ŷ−y̌
T and

(
(y− ȳc)2

)′ = 2(y− ȳc)y′ ≈ 2sy ŷ−y̌T . Similarly, for uncertainty estimates of the maximum and minimum

statistics we assume that the signal continues to linearly increase (decrease) for half a sample step beyond the maximum25

(minimum) sample.

To get concrete values, we replace the noiseless statistics with the actual noisy ones. This results in the following expressions:

τy̌ ≈
x̂− x̌

2n
, τŷ ≈

x̂− x̌
2n

, τȳ ≈
x̂− x̌

2n
, τs2y ≈ sx

x̂− x̌
n

, τsy ≈
1

2sx
τs2y ≈

x̂− x̌
2n

, (A3)
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where the uncertainty for the standard deviation sy was derived from the one for the variance by applying a first order Taylor

approximation of the square root. In case the minimum and maximum statistics are not available, but the sample standard

deviation is, one could use the crude estimates x̌≈ x̄− z1−1/nsx and x̂≈ x̄+ z1−1/nsx, where z1−1/n is the standard normal

quantile for exceedance probability 1/n.

A2.3 Uncertainty due to measurement noise5

We use the following random variables to model the process that adds noise to the measurements:Xk for the measurements and

Ek for the noise, with auxiliary standard normal variables Za,k and Zr,k, so that Xk = yk +Ek with Ek = εaZa,k + εrykZr,k.

Here, the basic random variables Za,k and Zr,k are assumed to be independent from each other and all other random variables

Za,`, Zr,`, ` 6= k.

Some further notation: E is the expectation operator. Var and Cov are the variance and covariance operators, respectively,10

defined by for any random variables V and W by Cov(V,W ) = E
((
V −E(V )

)(
W −E(W )

))
and Var(V ) = Cov(V,V ).

Furthermore, we let V̌ = minnk=1Vk, V̂ = maxnk=1Vk, V̄ (p) = 1
n

∑n
k=1V

p
k , with V̄ = V̄ (1), and s2

V = 1
n

∑n
k=1(Vk − V̄ )2.

Recall that standard normal variables Z are completely determined by their expectation E(Z) = 0 and variance Var(Z) =

E(Z2) = 1. Also, the expectation of any odd power is zero: E(Z2m+1) = 0.

For the sample minimum and maximum we assume that the measurement noise does not substantially influence the order15

statistics, so X̌ = y̌+Eǩ and X̂ = ŷ+Ek̂. (Otherwise this noise introduces bias in the estimate and an extra term in the variance

(see Cramér, 1946, Equation 28.6.16).) This implies

x̌≈ E(X̌) = y̌+ E(Eǩ) = y̌, σ2
y̌ = Var(X̌) = Var(Eǩ) = ε2

a + ε2
r y̌

2, (A4)

x̂≈ E(X̂) = ŷ+ E(Ek̂) = ŷ, σ2
ŷ = Var(X̂) = Var(Ek̂) = ε2

a + ε2
r ŷ

2, (A5)

because20

E(Ek) = εaE(Za,k) + εrykE(Zr,k) = 0,

Var(Ek) = ε2
a Var(Za,k) + ε2

r y̌
2 Var(Zr,k) = ε2

a + ε2
r y̌

2,

where for the variance the first equality follows from independence of the variables Za,k and Zr,k.

For the sample mean we can deduce that

x̄≈ E(X̄) = ȳ+ E(Ē) = ȳ and σ2
ȳ = Var(X̄) = Var(Ē) =

1
n

(
ε2

a + ε2
r (ȳ2 + s2

y)
)

(A6)25

because

E(Ē) =
1
n

n∑

k=1

(
εaE(Za,k) + εrE(Zr,k)

)
= 0,

Var(Ē) =
1
n2

n∑

k=1

(
ε2

a Var(Za,k) + ε2
r y

2
kVar(Zr,k)

)

=
1
n2

n∑

k=1

(
ε2

a + ε2
r y

2
k

)
=

1
n

(ε2
a + ε2

r
1
n

n∑

k=1

y2
k) =

1
n

(ε2
a + ε2

r ȳ
(2)) =

1
n

(
ε2

a + ε2
r (ȳ2 + s2

y)
)
,
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because it holds that ȳ(2) = ȳ2 + s2
y .

For the sample standard deviation sX , we use the first order Taylor expansion of the square root sX =
√
s2
X with s2

X varying

around E(s2
X):

√
s2
X ≈

√
E(s2

X) +
1

2
√

E(s2
X)

(
s2
X −E(s2

X)
)
.

So first order approximations of the expectation and variance are5

sx ≈ E(sX)≈
√

E(s2
X) and σ2

sy
= Var(sX)≈ 1

4E(s2
X)

Var(s2
X). (A7)

So we see that we actually need to calculate E(s2
X) and Var(s2

X), the expectation and variance of the sample variance.

Let us first write this sample variance in terms of our model variables:

s2
X = X̄(2)− X̄2 = ȳ(2) + 2 ¯yE+ Ē(2)− ȳ2− 2ȳĒ− Ē2 = s2

y + s2
E + 2( ¯yE− ȳĒ).

Then10

E(s2
X) = s2

y + E(s2
E) + 2

(
E( ¯yE)− ȳE(Ē)

)
= s2

y + E(s2
E) + 0 = s2

y + E(Ē(2)− Ē2) = s2
y + (1− 1

n
)(ε2

a + ε2
r ȳ

(2)) (A8)

because

E( ¯yE) =
1
n

n∑

k=1

ykE(Ek) = 0,

E(Ē(2)) =
1
n

n∑

k=1

(
ε2

a E(Z2
a,k) + 2εaεrykE(Za,k)E(Zr,k) + ε2

r y
2
kE(Z2

r,k)
)

= ε2
a + ε2

r ȳ
(2),

E(Ē2) =
1
n2

n∑

k=1

n∑

`=1

(
ε2

a E(Za,kZa,`) + εaεr
(
ykE(Za,`)E(Zr,k) + y`E(Za,k)E(Zr,`)

)
+ ε2

r yky`E(Zr,kZr,`)
)

15

=
1
n

(ε2
a + ε2

r ȳ
(2)).

Furthermore

Var(s2
X) = Var(s2

E) + 4Var( ¯yE− ȳĒ) + 4Cov(s2
X ,

¯yE− ȳĒ).

The last term of this expression is zero because all terms of its expansion contain odd powers of independent standard normal

random variables. We do not perform the tedious calculation of the first term, as it essentially expresses the uncertainty of the20

measurement noise, which has been left unmodeled. Therefore we ignore this term, which means we consider a lower bound:

1
4

Var(s2
X)≥Var( ¯yE− ȳĒ)

= Var( ¯yE) + ȳ2 Var(Ē)− 2ȳCov( ¯yE,Ē)

= E( ¯yE2)−E( ¯yE)2 + ȳ2
(
E(Ē2)−E(Ē)2

)
− 2ȳ

(
E( ¯yEĒ)−E( ¯yE)E(Ē)

)

= E( ¯yE2) + ȳ2E(Ē2)− 2ȳE( ¯yEĒ)25

=
1
n

(ε2
a ȳ

(2) + ε2
r ȳ

(4)) + ȳ2 1
n

(ε2
a + ε2

r ȳ
(2))− 2ȳ

1
n

(ε2
a ȳ+ ε2

r ȳ
(3)),
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where in the last step the first and last terms’ calculation is analogous to the one of E(Ē2) above. It holds that ȳ(2) = ȳ2 + s2
y

and because we have no estimate for ȳ(3) and ȳ(4), we use the Gaussian case, i.e., we assume ȳ(3) ≈ ȳ3 + 3ȳs2
y and ȳ(4) ≈

ȳ4 + 6ȳ2s2
y + 3s4

y (Johnson et al., 1994, Ch. 13). This gives

n

4
Var(s2

X)≥ ε2
as

2
y + ε2

r (ȳ(4) + ȳ2ȳ(2)− 2ȳȳ(3))≈ ε2
as

2
y + ε2

r s
2
y(ȳ2 + 3s2

y) = s2
y

(
ε2

a + ε2
r (ȳ2 + 3s2

y)
)
.

Going back to the sample standard deviation in Eq. A7, using Eq. A8, and assuming n� 1 and ε2
r � 1 we get5

sx ≈ E(sX)≈
√
s2
y + (ε2

a + ε2
r ȳ

(2)) so s2
y ≈

1
1 + ε2

r

(
s2
x− (ε2

a + ε2
r ȳ

2)
)
≈ s2

x− (ε2
a + ε2

r ȳ
2), (A9)

σ2
sy

= Var(sX)≥ s2
y

s2
y + (ε2

a + ε2
r ȳ

(2))
1
n

(
ε2

a + ε2
r (ȳ2 + 3s2

y)
)
≈ 1
n

(
ε2

a + ε2
r (ȳ2 + 3s2

y)
)
, (A10)

where for the last approximation we assumed that the measurement noise’s contribution to the sample standard deviation is

negligible (s2
y� ε2

a + ε2
r ȳ

2).4 In any case, in general the bias in sx as an estimator of sy dwarfs the estimate of the uncer-

tainty σsy
due to the measurement noise. Even the uncertainty in the bias (the unmodeled uncertainty of the measurement10

noise) may overwhelm σsy
. These considerations lead us to conclude that the lower bound we give is conservative in general

and that the real uncertainty can be substantially larger.

To get concrete values, we replace y̌, ŷ, ȳ and s2
y appearing in the expressions for the uncertainties by their estimates. We

also deal with the corner case s2
x < ε2

a +ε2
r x̄

2. This results in the following estimates for the expectations and uncertainty, again

assuming ε2
r � 1:15

y̌ ≈ x̌, σ2
y̌ ≈ ε2

a + ε2
r x̌

2 (A11)

ŷ ≈ x̂, σ2
ŷ ≈ ε2

a + ε2
r x̂

2 (A12)

ȳ ≈ x̄, σ2
ȳ ≈

1
n

(
ε2

a + ε2
r (x̄2 + s2

x)
)
, (A13)

sy ≈
√

max
{
s2
x−

(
ε2

a + ε2
r x̄

2
)
,0
}
, σ2

sy
≥ 1
n

(
ε2

a + ε2
r (x̄2 + 3s2

x)
)
. (A14)

A2.4 Combined uncertainty20

To arrive at a total uncertainty, we combine them using the combination rule for independent uncertainties from classical error

propagation (Taylor, 1997):

εx̌ =
√
τ2
y̌ +σ2

y̌, εx̂ =
√
τ2
ŷ +σ2

ŷ, εx̄ =
√
τ2
ȳ +σ2

ȳ, εsx =
√
τ2
sy

+σ2
sy
. (A15)

Here we use x instead of y in the left-hand side subscripts because outside of this appendix there is no need to refer to the

underlying model we use.25

4 The standard for what is negligible differs between estimates of statistics and of uncertainties thereof. For example, ε2
a +ε2

r ȳ2

s2
y

= 10% is non-negligible

in Eq. A9, but is negligible in Eq. A10.
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