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Abstract. Model uncertainty is a significant challenge in the wind energy industry and can lead to mischaracterization of

millions of dollars’ worth of wind resource. Machine learning methods, notably deep artificial neural networks (ANNs), are

capable of modeling turbulent and chaotic systems and offer a promising tool to produce high-accuracy wind speed forecasts

and extrapolations. This paper uses data collected by profiling Doppler lidars over three field campaigns to investigate the5

efficacy of using ANNs for wind speed vertical extrapolation in a variety of terrains, and quantifies the role of domain knowl-

edge on ANN extrapolation accuracy. A series of 11 meteorological parameters (features) are used as ANN inputs and the

resulting output accuracy is compared with that of both standard log law and power law extrapolations. It is found that ex-

tracted non-dimensional inputs, namely turbulence intensity, current wind speed, and previous wind speed, are the features that

most reliably improve the ANN’s accuracy, providing up to a 65% and 52% increase in extrapolation accuracy over log law10

and power law predictions, respectively. The volume of input data is also deemed important for achieving robust results. One

test case is analyzed in-depth using dimensional and non-dimensional features, showing that feature non-dimensionalization

drastically improves network accuracy and robustness for sparsely sampled atmospheric cases.

1 Introduction

Challenges to the prediction of microscale atmospheric flows are well-documented, especially for complex terrain and forested15

regions (Baklanov et al., 2011; Krishnamurthy et al., 2013; Fernando et al., 2015, 2019; Sfyri et al., 2018; Yang et al., 2017;

Berg et al., 2019; Wilczak et al., 2019; Pichugina et al., 2019). Poor or unfit parameterizations can lead to inaccurate flow

prediction and extrapolation, producing large modeling uncertainties. Every location has unique flow features with variability

that warrants a dedicated field campaign to develop and validate parameterization schemes befitting local forecasting. This

process can still result in poor spatial representation of the site due to limitations in measurement technology, area covered by20

the field campaign, and site complexity.

Large extrapolation errors are particularly detrimental for wind farms, which rely on accurate wind speed extrapolation to

estimate available wind resource and forecast output power. With the industry currently bracing for turbines up to 260m tall,

vertical extrapolation accuracy has become particularly important for the next generation of wind farms. The current industry

standard of 1% uncertainty per 10m vertical extrapolation (Langreder and Jogararu, 2017) must be improved in order to increase25
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the viability of such large-scale, powerful turbines. This would likely be particularly difficult to accomplish by using numerical

models. In complex terrain, these models’ parameterization schemes must be tuned for each individual region in order to obtain

optimal results (Stiperski et al., 2019; Bianco et al., 2019; Olson et al., 2019; Akish et al., 2019), reducing the plug-and-play

effectiveness of numerical modeling. Model results must also be scaled down to the desired finer resolutions, which can result

in representivity error (Dupré et al., 2020). Therefore, it would be beneficial to move away from such models toward robust30

machine learning techniques that can be rapidly, economically, and automatically parameterized, require no downscaling, and

consistently improve with time and data availability. When properly applied, these machine learning techniques can likely aid

in effectively calculating the rotor equivalent wind speeds for power curve measurements based on IEC 61400-12-1:2017 either

from a met-mast lower than hub-height or a wind profiler with low data availability at higher heights. Additional applications

in wind energy for such a technique range from feed-forward control of wind turbines or wind farms (Schlipf et al., 2013;35

Krishnamurthy, 2013; Kumar et al., 2015), prediction of yaw mis-alignment (Fleming et al., 2014), and optimizing wake

steering approaches (Fleming et al., 2019).

Neural networks have recently come into vogue due to the rapid increase in computational power alongside a plethora of

available data. They are particularly skilled at pattern recognition and bias correction, having been used for various meteoro-

logical applications (McGovern et al., 2019; Hsieh and Tang, 1998). Multiple studies have shown that neural networks perform40

well when tasked with wind speed forecasting on a variety of timescales (Bilgili et al., 2007; More and Deo, 2003; Chen et al.,

2019). However, wind speed measurements from meteorological towers or remote sensors often must be extrapolated in space

as well as time to reach the location of interest (e.g. turbine hub height), adding another layer of forecasting complexity.

In a recent study, Mohandes and Rehman (2018) found that neural networks in conjunction with lidar data can accurately ex-

trapolate wind speeds over flat terrain using wind speeds measured below the targeted height (extrapolation height). However,45

it is unclear whether this finding holds for more complex terrain. Knowledge of meteorological conditions and site charac-

teristics could be essential for optimal extrapolation accuracy. In the same vein, Li et al. (2019) found that adding turbulence

intensity as an input greatly improves wind speed forecasting accuracy, suggesting that the input feature set may be highly

influential for machine learning tools applied to meteorological problems. Following such developments, the present study

focuses on proper extraction and selection of meteorological features across multiple sites for a neural network designed for50

vertical extrapolation of wind speed. The novelty of this study is in addressing the following questions: First, is it possible to

improve wind speed extrapolation accuracy under various terrain conditions using neural networks by invoking physics-based

input features? Second, which atmospheric features should be selected to optimize the model’s prediction capabilities?

Section 2 provides an introduction to neural networks and the list of input features utilized. Section 3 briefly describes the

campaign sites and instrumentation utilized as well as measurement uncertainty. Section 4 presents findings of the investigation,55

and Section 5 provides analysis and discussion. Concluding remarks are given in Section 6.
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Figure 1. Artificial neural network diagram. Input nodes are in red, hidden nodes in orange, and output node in yellow. Black lines represent

weighted connections between layers.

2 Model Overview

2.1 Neural Network Architecture

Artificial neural networks (ANNs) are a machine learning framework wherein a multi-layered network of nodes attempts to

compute an output from a given set of inputs while eliciting (often hidden) patterns underlying a given data structure. A classic60

feed-forward ANN layout is given in Fig. 1. These networks mimic the inner workings of the human brain and consist of four

main elements: a layer of user-defined inputs, one or more hidden layers, an output layer, and the weighted connections that

adjoin any hidden layer to that before and after itself. Each layer is made up of nodes, which gather information from the

previous layer, perform an activation function, and send the altered information to the next layer. ANNs with multiple hidden

layers (deep neural networks) are often much better at unearthing patterns in complex, nonlinear systems. These networks learn65

best when supplied with large datasets and a well-selected feature set. Poor feature extraction or selection can lead the network

to find a pattern that is either misleading or potentially incorrect. In other words: garbage in, garbage out.

ANNs first go through a training phase where they learn the structure of a system. Batches of training data are fed into the

network, which produces an output. This output is then compared to the actual output, which is known a priori. The network

then backpropagates the error through the system via stochastic gradient descent (SGD), starting from the last layer and ending70

at the first. During this process, the weights between layers are altered to produce a robust network physiology. This process is

repeated for as many iterations as is desired, with the network seeing all training data in each iteration.
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At the end of each iteration, a set of validation data is given to the network to ensure that the network is not over-fitting the

training data. At the end of training, the network is given a third set of data, known as testing data, that has been unseen by

the ANN theretofore. The network’s performance is characterized by its prediction accuracy on the testing data, defined by a75

certain error or loss metric C. This study uses the mean absolute percentage error (MAPE, Eq. 1) as the loss metric due to ease

of comparison with industry metrics and its insensitivity to non-dimensionalization (Appendix A).

C = MAPE =
1

N

N∑
i=1

100×
∣∣∣∣yi− ŷiyi

∣∣∣∣ (1)

where N is the number of observations, yi the observed output, and ŷi the network output. The ANN used here has a

similar framework as Mohandes and Rehman (2018), containing four hidden layers with 30, 15, 10, and 5 nodes, respectively,80

descending until the final output layer that has a single node. Research on the effect of increasing the number of hidden layers

shows that deeper networks are better able to approximate highly complex systems (Aggarwal, 2018). The number of hidden

layers generally is a function of the number of input and output arguments used in the ANN as well as the expected non-

linearity in the system. The true depth of an ANN is generally concluded based on several trial and error runs. Increasing the

number of hidden layers in our case, however, did not yield higher extrapolation accuracy.85

There were also two dropout layers, located after the first and second hidden layers, that protect against over-fitting. The

activation function in each hidden layer was the hyperbolic tangent, while the output layer had a linear activation function.

The MAPE cost function was utilized as the cost function C. The Adam optimization algorithm (Kingma and Ba, 2014) was

implemented to enhance SGD, and all trials were discontinued after no more than 1,000 iterations through the entire training

dataset. All datasets were split into three distinct pieces: training data (50%), validation data (25%), and testing data (25%). In90

order to minimize bias, all data was randomly split before each of the 10 runs for every test case. From these 10 runs, the best,

average, and standard deviation of the testing data MAPE were recorded. Tests were performed with different input features

and different heights at various site locations to confirm that bias from a given site and/or measurement height was removed.

The Keras library, built on TensorFlow, was utilized to construct the ANN model (Abadi et al., 2016; Chollet et al., 2015).

2.2 Input Features95

Our main hypothesis is that more informed meteorological inputs lead to lower model extrapolation error and possibly lower

error than can be achieved by existing models. All meteorological inputs utilized in this study are listed alongside their re-

spective definitions in Appendix B. To ensure that the model performs better than that achieved via simple analysis or with

unadulterated inputs, we consider four base cases. The first is a power law extrapolation, a simple algorithmic representation

of how wind speed varies with height,100

Uα = Ur
(
z/zr

)α
(2)
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where Uα is the streamwise wind speed at the height of interest, Ur the streamwise wind speed at a reference height, z the

height of interest, zr the reference height, and α a power law coefficient that characterizes the shear between z and zr. The α

value was derived dynamically for each individual period (Shu et al., 2016). The second base case is the log law extrapolation

under neutral conditions. The formulation of the log law when the wind speed is known at a reference height can be given as105

UL = Ur
ln((z− d)/z0)

ln((zr − d)/z0)
(3)

where UL is the wind speed at extrapolation height, d the zero-plane displacement, and z0 the roughness length. Both d

and z0 are determined based on local topographic information (Holmes, 2018). The log law extrapolation (and more generally

Monin-Obukhov similarity theory) is expected to perform poorly for the complex terrain sites due to the lack of stationarity

and horizontal homogeneity (Fernando et al., 2015).110

The other two base cases involve using nearly raw meteorological data as input features. The third base case uses only the

streamwise wind speeds (U ) below the height of interest as inputs, while the fourth base case uses U , wind direction (Dir),

and hour (Hr) as inputs. The hour is formatted as a cosine curve to ensure continuity between days, while the direction is

formatted from −1→ 1 to alleviate scaling issues.

Neural network inputs are taken at 20m intervals to a maximum of 80m below the height of interest (e.g., for an output115

at 120m, data from 100m, 80m, 60m, and 40m are used). The lowest measurement height available was 40m. Because sites

(Section 3) had different instrumentation, the only features used are those obtained by a single profiling lidar. All lidar data

are 10-minute averaged. Three non-dimensional features are extracted from the lidar data, namely turbulence intensity (TI =

σU /U ; σU is the standard deviation of the wind speed), non-dimensional streamwise wind speeds (Un; non-dimensionalized by

U 20m below the height of interest), and non-dimensional streamwise wind speed from the previous time period (Up). Up is120

the only input feature utilized that extended up to the height of interest (i.e. we assume that the previous period’s wind speed at

the extrapolation height is known), and bold lettering on these three features indicates that they are non-dimensional quantities.

Three additional features are also extracted: vertical wind shear (dudz = ∂U/∂z), local terrain slope in the direction of incoming

flow (φ), and vertical wind speed (W ). The non-dimensional input features were selected considering their robustness in

inputting more accurate features (e.g., possible compensation of measurement errors in formulating non-dimensional variables)125

and ability of non-dimensional variables to better represent flow structures (Barenblatt and Isaakovich, 1996). Features are used

in various combinations in order to determine which provide useful information to the network and which provide unnecessary

or redundant information that lead to confusion. All input features were included in a final test to show that simply throwing

multitudes of data at the network yields poor results.

It is typical industry practice to normalize (i.e. standardize) input variables, wherein an input variable x is scaled to x̂ via130

x̂=
x−µ
σ

(4)

where µ is the variable’s mean and σ is the variable’s standard deviation (Aggarwal, 2018). This technique is particularly

useful when input variables have Gaussian distributions and cover multiple scales. However, none of the variables in our study
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had such a distribution, and many inputs already have similar scaling. Testing showed that standardization had no discernible

impact on network performance (not shown), and therefore the input features were kept in their unaltered state. The non-135

dimensionalization performed followed typical fluid dynamical practices (Barenblatt and Isaakovich, 1996).

The subscript 1 (e.g., Up,1) denotes that the input value was only taken at the height of interest, subscript 2 (e.g., W2)

denotes that the input value was taken at 20m below the height of interest, and subscript 3 (e.g., Up,3) denotes that the input

value was taken at the height of interest and 40m below. Input variables without a subscript 1 or 3 were taken from all four

heights below the extrapolation height. Additionally, because a vast majority of industrial wind turbines do not produce power140

at exceedingly low wind speeds, all cases with streamwise velocity 20m below the extrapolation height (U1) < 3ms−1 were

removed before testing. The highest wind speed value recorded at any site was less that 23 ms−1, below the standard cut-off

limit of 25 ms−1 (Markou and Larsen, 2009).

3 Site Description and Instrumentation

Data from three international field campaigns, whose locations can be seen in Fig. 2a, were used in this study. The authors145

participated in each of these campaigns by deployment of instruments and data analysis. The Wind Forecasting Improvement

Project 2 (WFIP2) was a multi-year field campaign focused on improving the predictability of hub-height winds for wind en-

ergy applications in complex terrain (Wilczak et al., 2019). An 18-month field campaign took place in the US Pacific Northwest

from October 2015 to March 2017. Several remote sensing and in-situ sensors were located in a region with distributed com-

mercial wind farms along the Columbia river basin. This study focuses on using vertical profiling lidar (Leosphere’s Windcube150

V1) data collected by the University of Colorado at Boulder from the so-called Wasco Site for a period of 15 months (Bodini

et al., 2019; Lundquist, 2017). The lidar’s location can be seen as the orange marker in Fig. 2b. The surrounding terrain is

complex (although nominally less so than that at Perdigão to be described below), with neighboring wind farms to the east of

the lidar. Any periods with missing data at multiple heights were ignored in the analysis. A Signal-to-Noise Ratio (SNR) and

availability threshold (30%) recommended by the manufacturer is used to remove any potentially bad data.155

The Coupled Air-Sea Processes for Electro-magnetic ducting Research (CASPER) field campaign was focused on mea-

surement and modeling of the Marine Atmospheric Coastal Boundary Layer (MACBL) to better predict the interaction of

EM propagation and atmospheric turbulence (Wang et al., 2018). Two field campaigns were conducted during CASPER,

one near the coast of Duck, North Carolina (CASPER-East) in 2015 and another near the coast of Point-Mugu, California

(CASPER-West) in 2017. This study uses data from the CASPER-West experiment. Vertical profiler data (Windcube V1) from160

the FLoating Instrument Platform (FLIP), collected over approximately a month, was used for this study. The profiler’s location

can be seen as the blue marker in Fig. 2c. The data were filtered using the SNR and availability threshold recommended by the

manufacturer. Datasets available at all heights were selected for this study.

The final study is the Perdigão campaign, a multinational project that took place in the Spring and Summer of 2017 aimed at

improving microscale modeling for wind energy applications (Fernando et al., 2019). Conducted in the Castelo Branco region165

of Portugal, the campaign deployed an array of state-of-the-art sensors to measure wind flow features within and around a
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Figure 2. (a) depicts all site locations. Remaining three panels depict topography at (b) WFIP2, (c) CASPER, and (d) Perdigão. Map data

©2019 Google, INEGI and Inst. Geogr. Nacional.

complex double-ridge topography. The ridges are spaced approximately 1.4km apart with a valley in between. Both ridges rise

approximately 250m above the surrounding topography, which mainly consists of rolling hills and farmland. Over four months

of data were taken from a Leosphere profiling lidar, denoted by the black marker in Fig. 2d, which was located on top of the

northern ridge of the Perdigão double-ridge. This particular location was selected due to the multitude of complex flow patterns170

seen at this location during the campaign. A meteorological tower was located adjacent to the lidar, but it only rose to 100m

above ground level, below all extrapolation heights. Profiler data available at all heights were used for this study, and any data

below 30% availability over 10 minutes were ignored.

The uncertainty of the wind Doppler lidar measurements is expected to be within 2% (Lundquist et al., 2015, 2017; Giyanani

et al., 2015; Kim et al., 2016; Newsom et al., 2017; Newman and Clifton, 2017). Owing to a lack of secondary measurements175

at the locations and heights of interest, all lidar measurements are treated as true.

4 Results

Table 1 shows for each case the best testing extrapolation accuracy at all sites. The total number of (randomly split) validation

and testing samples for each case is also shown for reference. The table is color coded, with the best accuracy in yellow and the

worst in red. At first glance it is obvious that the network’s accuracy is highly dependent not only on the inputs used, but also180

the site location and data availability. The site with the highest extrapolation accuracy is the nominally mildly complex WFIP2
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U, Dir, Hr

U
U𝝰

UL

Un

Un, TI

Un, Up,1

Un, TI, U𝝰

Un, TI, dudz

Un, TI, 𝜙
Un, TI, 𝜙2

Un, TI, W

Un, TI, Up,1

Un, TI, Up,3

Un, TI, Up,3, 𝜙2

Un, TI, Up,3, U2

Un, TI, Up,3, W2

All Inputs

WFIP2 CASPER
120m (4,772 

samples)
160m (4,944 

samples)
200m (4,860 

samples)
100m (11,392 

samples)
120m (11,456 

samples)
100m (1,040 

samples)
120m (1,026 

samples)

Perdigão

2.01
2.14
2.16
2.26
2.17

2.30
2.30
2.45

2.19
2.15

4.39

1.92
1.92
1.94
2.23
2.11

1.86
2.09 2.00

1.94
1.94

2.11
1.91
1.92
1.98
1.92

1.71
1.60
1.74
1.70
1.90

2.41

3.59
2.47
2.48 1.94

1.95
2.17

1.75

2.29
2.29
2.30
1.99
2.29

4.69 3.82

1.12
1.12
1.14
1.25
1.25

1.59
1.56
1.73 1.28

1.12
1.12

1.74
1.71
1.61
1.54
1.62

1.18
1.10
1.16
1.19
1.15

1.35

1.74
1.51
1.57 1.41

1.43
1.44

1.21

1.24
1.26
1.24
1.20
1.27

3.06 2.71

1.34
1.29
1.78

1.06
1.08
1.29 2.16

1.39
1.39

1.18
1.14
1.08
1.06
1.06

1.72

2.18
2.69
2.59 2.81

2.74
2.91

1.99

1.78
1.61
1.37
1.71

3.70

1.41
2.25

1.90
1.42
1.37

1.97
1.41
1.88
1.82

3.90

1.56

Table 1. Best MAPE per test case. For each height at every site, the case with the best result is underlined. Yellow is highest accuracy, red is

lowest. The total number of validation and testing samples is shown for reference.

site, which also has the most robust dataset. The highly complex Perdigão site has the worst extrapolation accuracy, with the

accuracy of the offshore CASPER site between the two. The best MAPE achieved for all heights (underlined), with each site

below 2%, meets and often exceeds industry standards (Langreder and Jogararu, 2017).

The power law performed better than the log law and was therefore used as a baseline for comparison in Table 2. As this185

table shows, the two ANN baseline cases (one utilizing U ,Dir, andHr, as well one only utilizing U ; first two rows of Tables 1

and 2) performed almost equally well and showed a slight improvement over the power law extrapolation. However, there is no

clear distinction between the results of the two cases and thereforeDir andHr can be presumed to have no effect on prediction

accuracy. When U is replaced by Un, the network accuracy again improves, providing a result 10-33% more accurate than the

power law extrapolation. TI and Up,1 are the most beneficial secondary input features when used alongside Un. While TI190

improves network accuracy in all except at the CASPER site, Up,1 is more impactful, improving accuracy up to 52% over the

power law extrapolation. TI was chosen as the second input for cases with three input features because it is the most beneficial

feature that includes information about the flow’s turbulence levels and to some extent the atmospheric stability, information

that is expected to be highly influential in determining the flow, particularly at the complex terrain sites.

A majority of the third input features, specifically Uα, dudz, φ, φ2, and W , have negligible or negative effects on extrap-195

olation accuracy. There are exceptions to this rule, nevertheless, as Uα considerably improves accuracy for CASPER and φ2

improves accuracy at 160m height for Perdigão. With a single exception, the best extrapolation accuracy is obtained when Un,

TI , and either Up,1 or Up,3 are used as inputs. Adding extra input features beyond this point has, at best, negligible impact

on network extrapolation accuracy. This is best described by the final test case where all available features are forced into the
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U, Dir, Hr

U
Un

Un, TI

Un, Up,1

Un, TI, U𝝰

Un, TI, dudz

Un, TI, 𝜙
Un, TI, 𝜙2

Un, TI, W

Un, TI, Up,1

Un, TI, Up,3

Un, TI, Up,3, 𝜙2

Un, TI, Up,3, U2

Un, TI, Up,3, W2

All Inputs 0.9 22.714.7 44.3 20.3 26.4 10.4

36.2 46.4
24.1 46.0 28.1 35.6 25.0 36.2 51.5
21.6 46.0 26.7 35.6 26.4

38.5 52.9
19.2 46.5 25.3 35.6 26.4
21.6 46.5 29.0 35.6 26.4

18.3 34.7
22.0 46.0 25.8 34.5 25.0 40.8 51.2
13.9 37.9 21.2 28.2 20.8
11.4 41.2 19.8 28.2 18.1
7.8 36.2 12.4 28.7 20.1

26.1 35.4
11.8 36.2 21.7 27.6 17.4 18.3 37.5
12.7 35.9 19.8 28.7 19.4

5.8

32.3
18.0 44.6 26.3 31.0 23.6 37.2 51.5

36.2 21.2 27.0 18.1 21.6

CASPER

120m (%) 160m (%) 200m (%) 100m (%) 120m (%) 100m (%) 120m (%)

21.1 31.610.6 32.9 19.4 22.4 16.0

-18.8 3.4
6.1 31.2 10.1 13.2 0.7 -23.4

Perdigão WFIP2

6.1 30.9 10.6 9.8 2.1

12.2

Table 2. ANN percent improvement over power law extrapolation. Gold denotes most improvement, while blue denotes less improvement

or a decline in accuracy.

network. With all inputs, the best extrapolation accuracy is up to 67% worse compared to the input case that obtains the best200

result (100m CASPER, Table 1).

5 Discussion

A brief analysis shows that extracted non-dimensional meteorological input features (Un, TI , and Up) drastically improve the

network’s extrapolation accuracy, allowing it to perform much better than conventional log law and power law extrapolations.

However, this uptick in accuracy does not continue as more features are added. As can be seen in Fig. 3, using more than three205

input features for Perdigão actually reduced network accuracy. This is most obvious when all possible features are thrown into

the network. The input noise and redundancy reduces the network’s ability to find usable patterns. Excess information, much

of it redundant, confuses the network.

Two tests were performed to determine whether this improvement in accuracy is derived from feature non-dimensionalization.

Because the network performed best at Perdigão with input features of Un, TI , and Up,3, the same inputs were then given210

to the network, but in dimensional form (i.e. U , σU , and Up,3). The dark blue bar in Fig. 3 shows that the network performed

significantly worse when given dimensional features. In fact, the network performs just as poorly with dimensional features

as it does when given all the input features indiscriminately, showing that non-dimensionalization has a significant impact on

network performance.

Next, the 160m Perdigão extrapolation with input features Un, Up,3, and TI was analyzed in-depth. In order to determine215

the exact effects of non-dimensionalization, the same inputs were then given to the network in dimensional form. The results are
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Figure 3. MAPE at Perdigão averaged over all heights. Color coding describes the number of input features used for the ANN. Dark blue

bar indicates an additional test for comparison. Log law extrapolation (4.3% average MAPE) excluded for clarity.

given in Fig. 4. The left column shows network outputs when given dimensional features, whereas the right column shows the

results obtained using non-dimensional features (herein referred to as the dimensional and non-dimensional network, respec-

tively). Fig. 4a and b show a comparison of true wind speed and that predicted by the network. It is immediately obvious that,

upon approaching sparse sample regions, the dimensional network begins to fail, clearly underpredicting high wind speeds.220

The non-dimensional network, however, does not have this problem and accurately extrapolates these higher wind speeds.

An elementary indicator of the network’s predictive power is the coefficient of determination R2, given by

R2 = 1−
∑

(yi− ŷi)2∑
(yi− ȳi)2

(5)

where yi and ŷi have the same meanings as in Eq. 1 and ȳ is the mean observed output. Non-dimensionalization improvesR2

from 99.3% to 99.6%. While this is a clear improvement, it does not tell the whole story. Non-dimensionalization minimizes225

the network’s dependence on wind speed, possibly by forcing it to calculate the amount of shear between reference and

extrapolation heights, which is more easily determined with the assistance of TI . Therefore, it may be expected that non-

dimensionalization reduces error at high wind speeds where there is a deficiency of samples.

The decrease in error variance is seen in Fig. 4c and d, which show the change in uncertainty η with height. For a Gaussian

variable, η can be defined as230

η = 100× σε

U
(6)
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Figure 4. Comparison of network performance with dimensional (a, c, e) and non-dimensional (b, d, f) input features for the 160m extrap-

olation at Perdigão. Top row shows a comparison of true and extrapolated wind speed (at extrapolation height) with the best-fit line, the

middle row the change in uncertainty with wind speed, and the bottom row the change in extrapolation error with wind speed. The black

lines indicate a spline interpolation of the data. Colors indicate the percent of data at each binned wind speed for the testing dataset.
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where σε is the standard deviation of the root mean square error and U the mean wind speed. For non-dimensional testing,

predicted wind speeds are first transformed back into the dimensional space (i.e. Un→ U ) prior to error calculation in order

to find true wind speed extrapolation uncertainty. The total uncertainty, a measure of error variability, is reported in the top

row of Fig. 4, but the change in η with height can be seen in the figure’s middle row. At low wind speeds (< 4ms−1) with235

a large sample size the dimensional network actually outperforms the non-dimensional network. As wind speeds increase,

both the dimensional and non-dimensional networks’ uncertainties decrease at a similar rate until the sample size begins to

decrease at roughly 10ms−1. At high wind speeds, the dimensional network’s uncertainty begins to increase, eventually rising

to almost 2% at extrapolated wind speeds > 15ms−1. The non-dimensional network’s uncertainty, meanwhile, continues to

decrease as wind speed increases, eventually reaching values as low as 0.5%. This is once again due to the fact that the non-240

dimensional network is better accounting for the wind shear that is crucial for extrapolation. High wind speeds no longer

appear to the network as outliers, allowing the network to better extrapolate much higher wind speeds than otherwise possible.

Non-dimensionalization therefore decreases output variability in sparse dimensional space, producing less volatile outputs and

a more robust network.

Lastly, the change in MAPE with wind speed can be seen in Fig. 4e and f. As with uncertainty, the dimensional network’s245

MAPE increases dramatically with wind speed due to sample sparsity. Non-dimensionalization once again nearly eliminates

this effect, as the MAPE consistently decreases for extrapolated wind speeds < 16ms−1. Whereas the uncertainty denotes

error variability,MAPE denotes overall prediction error. As is clear in Fig. 4a, the dimensional network has an obvious bias at

high wind speeds, systematically under-predicting extrapolation wind speed. This is apparent in Fig. 4e, as MAPE increases

to more than 10% at higher wind speeds. The non-dimensional network does not have this problem, again due to the fact that250

the network is oblivious to the dimensional wind speed, minimizing the prediction’s dependence upon total wind speed. We

therefore conclude that non-dimensionalization decreases both total error and error variability in regions with a sparsity of

samples by eliminating the dependence on wind speed.

CASPER is most sensitive to the choice of input features. This may be due to two factors. First, the site may have flow

dynamics for which our current list of inputs cannot account (such as the Catalina Eddy near the Californian Bight (Parish255

et al., 2013), and marine offshore internal boundary layers (Garratt, 1990) observed near that site). Additionally, it is likely

that the amount of CASPER data available is not adequate for the network to accurately parse more complex hidden patterns.

Less data could lead the network to overemphasize noisy perturbations as opposed to larger meteorological trends. It is telling

that even with the small amount of data available the ANN is sometimes more than 50% more accurate than the power law

extrapolation technique.260

Although the best extrapolation accuracy occurs at WFIP2, the largest improvement over the power law is at CASPER and

Perdigão. This may be due to the fact that the power law extrapolation performed well at WFIP2 to begin with, suggesting that

WFIP2 may have the simplest flow pattern of the three sites. The amount of data available did not seem to improve network

performance but likely stabilized the network against noise.

We determine that of the features analyzed, the non-dimensional input features, Un, Up, and TI , most reliably help the265

efficacy of the ANN. Extracting the non-dimensional wind speed gives the network a better idea of the general trend it needs
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to spot and adds more uniformity to the input samples. TI specifies the amount of turbulence and hence momentum diffusive

capacity within the system (i.e. velocity gradients), a property that none of the other input features are able to directly convey.

Lastly, providing the ANN with the previous period’s wind speed drastically improves accuracy. This is the only feature that

contains information about the flow’s history. All three of these features are important because they give the network new270

insightful information about evolving aspects (dynamics) of the flow.

Some of the other input features (φ, W , Dir) are less impactful for extrapolation, with minor effects that are site and height

dependent. Adding irrelevant inputs increases the system’s noise and, unless an abundance of data is available, can cause the

ANN to model coincidental or conflicting patterns. Other features (dudz, U ) provide redundant information. These features

typically fail to improve network accuracy, can slow the training process, and are best left out. Lastly, Uα can act as a positive275

or negative influence on the network because α is dependent on other parameters such as Un, Up, and TI . If the power law

model is reasonably accurate or has a clear repetitive bias, Uα could be a useful input feature that provides the ANN with a

dependable indication of wind shear. Otherwise, it adds misleading noise to the input feature set by thwarting the steering that

Un, Up, and TI would provide toward an accurate extrapolation.

It is obvious that just the right amount of scaled meteorological information is necessary to achieve optimal extrapola-280

tion accuracy. It is also useful to simplify the modeled system whenever possible, provided that the simplification does not

remove necessary information. An example is the difference in extrapolation accuracy between U and Un. Before the non-

dimensionalization, the ANN has to find a baseline wind speed and predict the vertical wind shear. With non-dimensionalization,

the baseline wind speed is a constant and the network is able to exploit possible self-similarity properties of the velocity profile.

Whatever information lost during non-dimensionalization is more than compensated by the improved model robustness and285

removal of some measurement inaccuracies, allowing for better generalization over regions in the input domain that would

have a scarce amount of data (i.e. extrapolated wind speed > 14ms−1).

This is only a first step in investigating how mindful feature extraction and selection can improve ANN accuracy for meteo-

rological predictions in wind engineering. Further improvement may be possible through the addition of other meteorological

elements, particularly atmospheric stability (although we expect when inputs consist of different height levels and with specifi-290

cation of turbulence level, the effects of stratification is indirectly taken into account). Future studies are needed to investigate

the efficacy of using non-dimensional meteorological variables to improve wind speed forecasting. Recurrent neural networks

should also be utilized to test how alternative combinations of meteorological features, combined with extensive knowledge of

the system’s history, can improve wind speed forecasting.

6 Conclusions295

Model uncertainty is a vexing problem in the wind energy industry that has vast economic implications. It has been shown that

standard wind energy vertical extrapolation methods are outdated and can no longer serve their purpose of efficiently predicting

and extrapolating meteorological properties accurately under various conditions (Sfyri et al., 2018; Stiperski et al., 2019). This

problem can be mitigated by employing machine learning tools that have made great strides in the past few decades. Newer and
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faster techniques seem to spring up every few months along with a continual increase in data processing power. ANNs have300

the capability to delve into turbulent, nonlinear systems and may therefore be used as a tool to assist models, although blindly

using ANNs without a dynamic underpinning is vacuous. Domain knowledge, especially on governing dynamical variables,

can greatly assist these systems in finding underlying trends that govern atmospheric phenomena.

This study investigated how feature extraction and selection can increase ANN wind speed vertical extrapolation accuracy.

Various meteorological features were combined to test their effectiveness as ANN inputs. It was found that, on the average,305

ANN vertical extrapolation error decreases by 15% when using Un as a singular input feature rather that U . Two other

extracted non-dimensional features, TI and Up, also led to increased extrapolation accuracy. The accuracy obtained by the

ANN was up to 65% and 53% better than that obtained by a log law and power law vertical extrapolations, respectively.

Vertical extrapolation error was minimized to as low as 1.06% over 20m, but too many network inputs actually caused a

reduction in network accuracy. The 160m extrapolation at Perdigão was analyzed in depth to determine the effects of feature310

non-dimensionalization. In addition to an improved correlation with measured wind speeds, non-dimensionalization led to a

decrease in both total extrapolation error and variability, particularly at high wind speeds. The non-dimensional input features

created a robust network that improved predictions even in rare and underrepresented cases. This shows that with sufficient data

and proper feature extraction and selection, ANNs are able to improve upon the current industry standard vertical extrapolation

accuracy.315

Future studies are planned to investigate feature extraction and selection for wind speed predictions over a variety of

timescales using a recurrent neural network. Identification of robust non-dimensional variables is expected to give ANNs a

better perspective of atmospheric conditions. We hope that machine learning tools, combined with proper feature selection and

extraction, will reduce atmospheric model uncertainty to a fraction of what it is today.

Code and data availability. Data from the Perdigão campaign may be found at https://perdigao.fe.up.pt/, the WFIP2 campaign at320

https://a2e.energy.gov/projects/wfip2, and the CASPER campaign at https://www.researchworkspace.com/campaign/2685070/casper-west.

Input and target variables are altered for each individual test; example codes used for this study maybe found at https://github.com/dvassall/.

Appendix A: MAPE Magnitude Invariance

Our goal is to ensure that the loss function’s magnitude is invariant regardless of output scaling, allowing a fair comparison

between dimensional and non-dimensional networks. For a simple feed-forward neural network with j output nodes, our output325

error can be defined as E = 1
nΣcΣjecj where c is the number of samples in a batch and ecj is the error (given by a user-defined

loss function) seen by each output node for each sample in the batch. If we are using a mean absolute percentage error loss

function, meaning that we may define our error metric as

ecj = 100
|ycj − ŷcj |

ycj
(A1)
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where ycj is the true target output, ŷcj is the predicted target output, and the vertical lines denote the absolute value. For330

convenience consider a single sample in a single batch (this same analysis can be expanded to multiple samples over multiple

batches because of the linear nature of the summation). We will refer to the true and predicted values as y and ŷ, respectively.

We can now define the true and predicted (dimensional) outputs (yd and ŷd, respectively) as well as the true and predicted

non-dimensional outputs (yn = yd/a and ŷn = ŷd/a, respectively, where a is a non-dimensionalization variable unique to each

individual case). We can find the dimensional error ed to be335

ed = 100
|yd− ŷd|

yd
(A2)

Likewise, the non-dimensional error en can be written as

en = 100
|yd/a− ŷd/a|

yd/a
= 100

|yd− ŷd|
yd

(A3)

proving that the error’s magnitude is invariant under non-dimensionalization. This is not true for loss metrics such as mean

squared error or mean absolute error, where340

ed = (yd− ŷd)2, en =
(yd− ŷd)2

a2
(A4)

and

ed = |yd− ŷd|, en =
|yd− ŷd|

a
(A5)

respectively. By using the MAPE loss function, we are ensuring that the network learns at similar rates when using both

dimensional and non-dimensional variables.345
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Appendix B: Definitions of Variables

Features are listed in the order that they appear in Section 2.2. Non-dimensional features are in bold. All input variables except

Hr are taken from four elevations below extrapolation height.

Uα Extrapolated wind speed based on Eq. 2 (ms−1)

UL Extrapolated wind speed based on Eq. 3 (ms−1)

U Streamwise wind speed (ms−1)

Dir Wind direction (−1→ 1)

Hr Hour of the day (cosine curve; −1→ 1)

TI Turbulence intensity; TI = σU/U (σU is the standard deviation of streamwise wind speed; both σU and U

taken at a single elevation)

Un Non-dimensional streamwise wind speed (U at all heights divided by U 20m below the extrapolation height)

Up Non-dimensional streamwise wind speed from the previous time period (non-dimensionalized the same way as Un)

dudz Vertical wind shear (dudz = ∂U/∂z; s−1)

φ Terrain elevation angle from direction of incoming wind speed (◦)

W Vertical wind speed (ms−1)
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