
Date 30/11/2019 

Our reference WES-2019-59 

 

Contact person Giovanni Migliaccio 

E-mail giovanni.migliaccio.it@gmail.com 

 

Subject Author’s response 

 

 

 

University of Pisa 

Department of Civil and Industrial Engineering 

 

Address 

Largo Lucio Lazzarino, 2, 56122, Pisa 

Italy 

 

 

 

 

 

 Dear Reviewers, 

 

The authors would like to express their gratitude for the constructive feedbacks which 

have helped us to further improve the quality of the paper. In our attempt to accounts 

for the received comments, we have revised different parts of the paper. The objective of 

this document is to respond to the points raised by the Reviewers and to provide a 

detailed overview of the corresponding changes in the revised paper. In the following 

sections, we respond to the review report provided by each Reviewer. 

 

Your sincerely, 

 

Giovanni Migliaccio 

 

 

 

 

 

Sections: Response to comments of Anonymous Referee #1 

Response to comments of Anonymous Referee #2 

Response to comments of Anonymous Referee #3 

  

  

Note-1:  Author’s response to each Referee’s comment follows the comment itself and is in blue.  

  

  

Note-2: At the end of the three sections above, a paper marked-up version is added (it provides a 

direct comparison between the revised paper and the initial paper). 
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 Response to comments of Anonymous Referee #1 

 
 The authors are proposing a novel beam like model specifically developed for wind 

turbine blade structures. The authors motivate the need for development with 

computational efficiency required for design optimization in conjunction with aeroelastic 

analysis. The model is capable of considering lengthwise geometrical variations (LGVs) 

such as twist, curvature and pre-bend and is suitable for large deformation analysis. 

 

 General comments:  

The research significance of the proposed model is high and the authors are addressing 

two of the renowned challenges in wind turbine blade simulations namely computational 

efficiency and accuracy. Regarding the latter, the implementation of LGVs into blade 

beam models bears indeed a considerable research demand. 

 

  Concerning the introduction, the important contiguous contributions in the realm of this 

paper made by Giavotto and coworkers were not mentioned in the literature review.  

 

 ‘Giavotto and coworkers’ is now mentioned (see line 52 of the revised paper and the 

‘references’). 
 

  The model proposed in this paper is presented in a sole formal mathematical format. I 

am conceding the necessity of such a formal solution, albeit, the model can hardly be 

falsified in its current form. The authors mention that the model was indeed 

implemented and allude the intention to publish the procedure in a follow up paper. 

However, the complete absence of information concerning the implementation e.g. the 

pseudo code impedes reproducibility and judgement. With the information provided it is 

not possible to judge whether the model is a scientific breakthrough or not. In Section 4 

an analytical example is presented in which no tangible results e.g. stress/strain fields are 

presented that would be vital for corroboration. It would especially be pertinent (and 

straightforward) to compare the model predictions with analytical solutions of a tapered 

beam the third author published previously. I recommend the paper for publication, 

provided that the solution is explicated in more detail with particular emphasis on the 

adopted numerical procedure. Moreover, the paper would gain credence by provision of 

concrete model predictions, which can be tried against analytical/other numerical 

solutions. 

 

 An new section has been added (section 5, lines 268-367) to provide information on the 

current numerical implementation of the model (in Matlab), along with numerical results 

(e.g. tip deflections, strain measures, stress resultants) that can be obtained by using 

such a model (sub-sections 5.1-5.3). Comparison with corresponding results obtained 

with a 3D FEM commercial software are also provided. 

 

  Specific comments/ questions:  

1. P.2 line 40: Please define ‘beam like models (BLM)’ or provide a reference to its 
stipulation 

 

 BLM is a shorthand of “beam-like model”, now it is better defined (see lines 44-46). 

 

  2. P.4 line 95: Please more clearly define the meaning of ‘proper orthogonal tensor fields’ 
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by preferably using a physical interpretation. The same pertains to the meaning and 

purpose of the skew tensor fields KA and KB. Alternatively, please provide references. 

 

 Further details have been provided (see lines 100-106) and more references to classical 

works of rational and continuum mechanics have been added (see line 100 for ‘proper 
orthogonal tensor…’ and line 104 for ‘skew tensor…’). 
 

  3. P.5 line 110: Please more clearly enunciate the meaning of ‘well-defined measures of 

deformation’. 
4. P.5 line 115: Please define ‘proper manner’. 
 

 That has been done and useful references have been added (see lines 118-121). 

 

  5. P.6 lines 150-155: The entire paragraph appears hard to follow. Can it be confate in a 

more comprehensible way? 

 

 That paragraph has been revised and more details and references have been added (see 

lines 157-166). 

 

  6. P.7 top: Please clearly state which higher order terms (from which order) are 

neglected. 

 

 This has been better specified (see lines 168-169). 

 

  7. P.7 line 170: In contrast to mathematics, I presume the majority of readers affiliated 

with wind energy might not be familiar with the rather specific terms stemming from 

differential geometry such as ‘pull back’ and ‘push forward’. Auxiliary explanations and 
additional references to relevant literature would be very helpful to follow the 

derivation. 

 

 This line has been re-written and additional references to classical works of rational and 

continuum mechanics have been provided (see lines 181-185). 

 

  8. The first author of one reference is misspelled: It should rather read ‘Stäblein’ with 
umlaut. 

 

 This has been done. 

 

  9. P. 8 ff: Is it correct that the general beam problem is decoupled into what is stipulated 

as ‘1D’ solution and into a ‘2D’ solution? If this is indeed correctly understood, on what 
grounds can the decoupling be justified? What is the error estimation of such an 

assumption? 

 

 For beam-like structures with transversal dimensions much smaller than the longitudinal 

one, in the case discussed in section 3 (small warping, small strain, etc), the resolution of 

the classical 3d nonlinear elasticity problem can be reduced to the resolution of two main 

problems. One of them governs the local warping of the cross-sections. It is referred to as 

the ‘cross-sections problem’. The other problem governs the global deformation of the 

center-line. It is referred to as the ‘center-line problem’. The mathematical models to 

determine the deformation of cross-sections and center-line are discussed with more 

details in the revised paper (lines 222-243 and 283-289). Additional references have been 



Date 30/11/2019 

Our reference WES-2019-59 

Page 4/10 

 

 

added to help understanding how those problems can be solved. An entire new section 

with numerical simulations has also been added (section 5) to show the accuracy of the 

results obtainable with such an approach and the information it can provide. Comparison 

with corresponding results of a 3D FEM commercial software have also been included. 

 

  10. P.9 line 210: If correctly understood, the 2D solution of the warping displacements 

must be obtained prior to the 1D solution. Yet, in equation 28 the analytical expressions 

for the cross sectional properties (moments of areas) of an isotropic, prismatic ellipsoid 

are used. It is not abundantly clear how exactly the general 6x6 cross section stiffness 

matrix is obtained in case of a wind turbine rotor blade. 

 

 The analytical results proposed in section 4 are for the case of tapered (not prismatic) 

beam-like structures with elliptical cross-sections. For that case we can provide analytical 

results. For generic reference cross-sections shapes the formulation of the problem of 

‘how to determine the deformation of the cross-sections’ is the same (as in section 3.4), 

but in such a case the solution has to be obtained by using numerical methods. However, 

this is not surprising, since even in the classical linear theory of prismatic beams the 

analytical solutions are available for a limited number of cases only (this is better 

specified in the revised paper, see, for example, lines 245-249). For what concerns the 

relations between stress resultants and strain measures, they can be obtained by 

integration of the 3d stress fields over the cross-sections of the beam-like structure. In 

the considered case they are linear relations and can be arranged in a standard matrix 

form (this is better specified in the revised paper, see, for example, lines 232-237). 

 

  11. A figure showing the cross section, CSYS and cross-section forces used in section 4 

would help a lot to illustrate the matter. 

 

 Some figures have been modified and other figures have been added to better introduce 

and explain the problem. In particular, see Figure 1 and Figure 2 and the corresponding 

lines introducing them (lines 86-95 and 142-146). They show the cross-sections and the 

local frames used to write the stress and strain fields, as well as the force and moments 

stress-resultants, in components notation. Other figures (e.g. 3, 5, 9) also help to better 

understand the problem and visualize the simulation results. 
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 Response to comments of Anonymous Referee #2 

 
 The motivation of this work is highly relevant to wind energy. It is common place for 

beam-like models to be used, due to their balance between computational efficiency and 

accuracy. One limitation to these theories is the assumption of prismatic geometry. The 

closest example of relaxing this constraint is that of Hodges and Yu with VABS, where the 

beam can be curved and twisted, yet, cannot taper. Ignoring taper has some 

consequences for wind energy, near the root region where the loads are highest. So, the 

taper region can be important for structural design, while contemporary models cannot 

properly model these complex stresses. 

 

  Although the ambition of this work is important to wind energy, I cannot recommend 

that this article is published in it’s current form. A critical weakness is that the solution to 
the warping field is not well developed. Only a simple analytical example is given, which 

makes this contribution only valid for special cases. Thus, it cannot be used for wind 

turbine blades in general. 

 

 The paper addresses the modeling of the mechanical behavior of beam-like structures 

which are curved, twisted and tapered in their reference unstressed state, undergo large 

displacements, in- and out-of-plane cross-sections warping and small strain. The problem 

of ‘how to determine the warping of the cross-sections’ is formulated for generic cross-

sections shapes in section 3.4. For what concerns the resolution of the problem, we can 

provide analytical results in some cases (see section 4 for the case of bi-tapered elliptical 

cross-sections), while numerical methods are required for generic cases. But this is not 

surprising, since even in the classical linear theory of prismatic beams analytical results 

are available for a limited number of cases only. This is better specified in the revised 

paper, see, for example, lines 232-235 and 245-249. 

 

  Currently, the state of the art are the contributions of Hodges, Yu and Giavotto. They 

have already developed general purpose beam models and cross section solvers. So this 

is the ultimate level of ambition that is needed to make a contribution to wind energy in 

this area. However, the key aim of this work, to incorporate taper, will be an important 

improvement over these earlier contributions. So I would strongly encourage the author 

to continue this important work. I can recognize that getting to the level of these earlier 

contributions will be difficult. I think this particular manuscript can still maintain an 

analytical approach and be improved by expanding greatly on the example. There is still 

an open question on what effects a beam model with taper could capture. So, the author 

could demonstrate the stresses and strains that this solution gives, that are not present 

in a more conventional beam formulation. Furthermore, the author could also make 

comparisons to FEM models to highlight the effects that are not captured. This I think is 

possible at this level and results like this would greatly improve the manuscript. 

Furthermore, if you had an tapered elliptical blade, how does taper affect things like 

frequencies or tip deflection? Again, these results will shed light on what more we can 

expect from simple engineering models if this limitation was relaxed, yet although simple 

and analytic, it would have relevance to wind energy. 

 

 

 In addition to what said in the answer to the previous comment, in the revised paper a 

new section has been added, which includes numerical results (e.g. tip deflections, strain 

measures, stress resultants) for some reference beam-like structures undergoing large 
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displacements (section 5). Different test cases confirm the effectiveness of the modeling 

approach and illustrate the information it can provide. Comparison with corresponding 

results of a 3D FEM commercial software have also been included (section 5). 

 

  The authors did a well at explaining the motivation of their work. It could be made more 

widely applicable by explaining current engineering design challenges that this would 

help overcome. I have highlighted some points at the beginning of this review. 

 This is a very mathematical paper written in a concise manner, using a lot of terminology 

that is typically not familiar outside of the continuum-mechanics community. To make 

this article accessible to wind energy readers I recommend several points where the 

author expand on the terminology. 

 

 Auxiliary explanations and more references to classical works of rational and continuum 

mechanics have been added throughout the entire paper to make it easier to follow the 

mathematical aspects of the proposed modeling approach. 

 

  The authors should further develop their techniques for solving the warping solution so it 

can be applied to general cross section shapes that are typically found in wind turbine 

blades. The authors should aim to solve the structural dynamics of real wind turbine 

blades. Furthermore the explanation of this work should be expanded so it is more clear. 

 

 The method is already applicable to generic cross-sections shapes (see the answer to the 

first comment above, page 5 of 10). 

 

  There are several minor points that can be improved: 

 Equation 15 with sub-equations would be more clear 

 

 The corresponding lines have been revised and further details and references have been 

added (see lines 168-174). 

 

  A general comment as with a theoretical development, please elaborate on the 

assumptions taken and the limitations of this approach. 

 

 Further details about the assumptions (e.g. beam-like structure, transversal dimensions 

much smaller than longitudinal dimension, small warping, small strain) have been 

provided and more references to the literature have been added (see lines 158-165). 

 

  Generally speaking the wind energy community is not familiar with continuum 

mechanics. The author should explain verbally what all the terms mean. I personally have 

read about all these terms from my text books, but it would be nice if I didn’t have to 
dust off my old texts to understand this article. 

 

 Auxiliary explanations, further details on the terms used, and more references to classical 

works of rational and continuum mechanics, have been added throughout the paper to 

make it easier to follow the mathematical aspects of the proposed modeling approach. 

 

  In the equations, the time rate of change is indicated by a dot. Typically this is given by a 

dot over the variable, however in this work it appears to be a super-script. This can be a 

little confusing because they use the same dot for dot products. If you use latex, ndot{x} 

would be the command that you would use. 
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This has been done, that is, the ‘time rate of change’ has been indicated by a dot over the 

variable (see, for example, Eq. 4, line 109, as well as all the other equations in which the 

‘time rate of change’ is used). 

 

  The ’ˆ’ operator is used in the equation. It is not clear that the ’ˆ’ operator is in many of 

the equations. The authors should elaborate more on the formal definitions of the 

mathematics. 

 

 The operator ’∧ ’ has been better defined in the revised paper (see line 106). 
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 Response to comments of Anonymous Referee #3 

 
 The proposed method in the manuscript is a novel model of beam-like structures with 

curved, twisted and tapered geometries. Since the wind turbine blade designs are 

curved, twisted and tapered beam-like structures and go through large displacements in 

their operational life, the proposed model is highly related to the wind turbine blade 

analysis. Today, beam models are generally preferred in load and aeroelastic stability 

analysis of the turbine blades due to their accuracy and computational speed compared 

to the 3D finite element models. Although, curved and twisted beam models already 

exist in the literature (Hodges, Dewey H. Nonlinear composite beam theory), counting 

the taper effects are the main novelty of the study. 

 

  Although the motivation of the study is very interesting and notable for state of the art 

blade analysis, there are essential things to be done before it is published.  

The manuscript is written in mathematical format, however the equations are hard to 

follow and re-derive because authors skip intermediate steps and give no reference in 

the derivation of the equations. I strongly recommend to write the intermediate steps 

explicitly or give relevant references for these steps instead of the statements such as 

’well defined measures’, ’proper manner’ or ’when the 2D problem is solved’. Figures 
depicting the cross-sectional warping effects, loads and ’suitable coordinates’ 
(coordinate curves) would be helpful to the readers.  

 

 Further details and references have been added throughout the paper to make it easier 

to follow the mathematical aspects of the proposed modeling approach. In addition, 

some figures have been modified to better introduce and explain the problem. See, for 

example, Figures 1 and 2. They show the center-lines in the reference and current states, 

the ‘plane’ cross-section in the reference state, as well as the corresponding ‘warped’ 
cross-section in the current state. Moreover, they also show the local frames which are 

used to write the stress and strain fields, the warping fields, as well as the force and 

moment stress-resultants, in components notation. Other figures also help to better 

understand the problem and visualize the simulation results (e.g. Figures 3, 5, and 9). 

 

  Another substantial point is the lack of reproducible results. The analytical example 

results given in the manuscript can’t be reproduced by the explanations given in the 
manuscript, hence the solution needs to be explained clearly. If the authors come up 

with the analytical example by themselves, they should provide more information about 

it. If the analytical example is taken from another study, please give reference. They 

should also compare the their results with a higher fidelity analysis results such as 3D 

finite element results to show that the taper effects are captured correctly by their 

formulation. The authors mention that they already implemented the method in a 

MatLab code. However, there is no information about the implementation of the 

method. Example results of authors’ code and comparison of them by higher fidelity 
models would increase the value of the study. A wind turbine blade example would also 

intensify the proposed methods’ relevance to wind turbine applications. 
 

 Section 4 provides analytical formulas we have obtained for beam-like structures with bi-

tapered elliptical cross-sections. More information on this analytical solution have been 

provided in section 3.4 and 4. Also, an entire new section with numerical results (e.g. tip 

deflection, strain measures, stress resultants) for different beam-like structures has been 
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added to show the effectiveness of the proposed approach and the information it can 

provide (section 5 and subsections 5.1-5.3). Comparison with corresponding results of a 

3D FEM commercial software have also been included in that section. 

 

  Please below suggestions: 

 1- Section 2 : ’BeamDyn’ is very relevant to the application of the geometrically exact 
beam models to wind turbine analysis. Consider citing it. 
 

 It has been cited in the revised paper (see line 58 and the ‘references’). 
 

  2- Section 3.1 : Instead of Figure-2 with wind turbine blade, a figure with cross-section 

warpings and coordinate curves would be elucidating. 
 

 Some figures have been modified and other figures have been added to better introduce 

and explain the problem. In particular, Figure 1 and Figure 2 have been modified, as well 

as the corresponding lines introducing them (lines 86-95 and 142-146). They show the 

center-lines in the reference and current states, the ‘plane’ cross-section in the reference 

state, as well as the corresponding ‘warped’ cross-section in the current state. Moreover, 

they also show the local frames which are used to write the stress and strain fields, the 

warping fields, and the stress-resultants, in components notation. 

 

  3- Section 3.1 : Please explain ’y’ clearly (in current position vector R). 
 4- Section 3.1 : Please explain deformation gradient explicitly or give reference for it. 

 5- Section 3.1 : Please explain ’some higher terms’ after equation 14. 
 6- Section 3.1 : Please write intermediate steps between equation 13 - 15. 

 

 The paragraph containing ‘y’, ‘deformation gradient’, ‘higher order terms’ and ‘equation 

13-15’ has been modified and more explanations have been added. Further details on 

the mathematical model have been provided, along with more references to classical 

works of rational and continuum mechanics. See lines 149-174. 

 

  7- Section 3.2 : A figure with cross-section forces and moments would help the readers. 
 

 Some figures have been modified and other figures have been added to better introduce 

and explain the problem, as mentioned above. See Figures 1-2 and the corresponding 

lines introducing them. They show the cross-sections and also the local frames which are 

used to write the stress and strain fields, the warping fields, and the force and moment 

stress-resultants too, in components notation. 

 

  8- Section 3.4 : Please elaborate the section by providing the solution of the warping 

fields. 
 

 Section 3.4 addresses the problem of ‘how to determine the warping fields’, which are 

responsible of the cross-sections deformation. Section 4 provides analytical results for 

beam-like structures with bi-tapered elliptical cross-sections. For that case we can 

provide analytical results. For generic cross-sections shapes the formulation of the 

problem is the same as in section 3.4, but the solution has to be obtained by using 

numerical methods. But this is not surprising, since even in the classical linear theory of 

prismatic beams analytical solutions are available for a limited number of cases only. This 

has been better specified in the revised paper (see also lines 232-235 and 245-249). 

 

  9- Section 4 : Please give more information about the example and how you obtain the 
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final results. Please, compare them with higher fidelity solution to show your model 

captures the taper effects correctly. Comparison can also show the results of a model 

which ignores the taper effects. So, reader can see the effect of taper term in final 

results. 

 10- A section which explains the numerical implementation should be added. 

 11- A section with results of your numerical model and higher fidelity model should be 

added. 
 

 Further details on how to determine cross-sections warping and center-line deformation 

have been provided (see lines 222-243 and 283-289). An entire new section has been 

added to introduce the model we have implemented in Matlab and the results that it can 

provide (see section 5). Comparison with corresponding results of a 3D FEM commercial 

software have also been included in that section. 
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Abstract. The continuous effort to better predict the mechanical behavior of complex beam-like structures like wind turbine 

blades is strictly related to lowering the costrequirements of energy.performance improvement and costs reduction. But new 

design strategies and the continuous increase in the sizeapproaches and the increasing flexibility of modern bladesthose 

structures make their aero-elastic modeling ever more challenging. For the structural part of this modeling, the best 10 

compromise between computational efficiency and accuracy can be obtained by schematizing the blades asa schematization 

based on suitable beam-like elements. This paper addresses the modeling of the mechanical behavior of complex beam-like 

structures, which are curved, twisted and tapered in their reference unstressed state, undergo large displacements, 3Din- and 

out-of-plane cross-sectional warping and small strains. A suitable model for the problem at hand is proposed. It can be used 

to analyze large deflections under prescribed loads and allows the 3D strain and stress fields in the structure to be 15 

determined. Analytical and numerical results obtained by applying the proposed modeling approach, as well as comparison 

with 3D-FEM results, are illustrated. 

1 Introduction 

In the process of improving horizontal axis wind turbines (HAWT) performance new methods are continuously being sought 

for capturing more energy and, developing more reliable structures, all with the ultimate goal ofand lowering the cost of 20 

energy (Wiser, 2016). As demonstrated by several researches, such goal Such goals can be achieved through the use of 

advanced materials, the optimization of the aerodynamic and structural behavior of the blades, and the exploitation of load 

control techniques. By way of (see, for example, one promising load control approach is based on the bend-twist coupling 

(BTC) of the blades, which can be obtained by sweeping the shape of the blades or by changing the orientation of their 

composite fibers (Ashwill 2010, Bottasso 2012, StableinStäblein 2017). But new design strategies and the continuous 25 

increase in the size andincreasing flexibility of modern bladesthose structures make the modeling of their aero-elastic 

behavior ever more challenging. For the structural part of this modeling, schematizing the blades asbaldes through suitable 

beam-like elements can be the best compromise between computational efficiency and accuracy. ModernBut modern blades 

can be considered are complex beam-like structures, which are . They can be curved, twisted and also tapered in their 
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reference unstressed state. Even not considering the complexities related to the materials properties and the actual loading 30 

conditions, their shape alone is sufficient to make the mathematical description of their mechanical behavior a challenging 

taskvery challenging task. This paper addresses the modeling of the mechanical behaviour of structures of this kind, with a 

particular focus on their main geometrical characteristics, such as the twist and taper of their cross-sections, the in- and out-

of-plane warping of their cross-sections, and the large deflections of their reference center-line. 

The present work addresses the mechanical modeling of modern blades considered as suitable curved, twisted and tapered 35 

Over the years several theories have been developed for beam-like structures. Beam (see, for example, Love 1944, Antmann 

1966, and Rubin 1997). This is because beam models have historically found applicationbeen used in many fields, from the 

helicopter rotor blades in aerospace engineering, to bridges components in civil engineering, and surgical tools in medicine. 

This contributed to the development of sophisticated theories over the years (see, for example, Love 1944, Antmann 1966, 

Rubin 1997). The need for geometrically non-linear models Nevertheless, the interest in advanced theories for complex 40 

beam-like structures has led to further researches also in recent years. One of the main drivers for, due to the continuous 

research in this field is the need forof ever more rigorous and application-oriented models. In this paper the attention is 

focused on the effects of important geometrical design featurescharacteristics of those structures, such as the 

curvaturescurvature of the referencetheir center-line and, as well as the twist and the taper of thetheir cross-sections. After an 

introduction to modeling approaches for structures of this kind (section 2), a suitable model for the problem at hand is 45 

proposed (section 3). Finally, some analytical results and numerical examples obtained by applying the proposed modeling 

approach to reference beam-like structures are illustrated (sectionsections 4 and 5). 

2 Overview of modeling approaches 

Aero-elastic modeling of modern blades can be addressed by means of different approaches (Wang 20162016a). Those ones 

based on 3D FEM and beam-like models (BLM) are two main choices for the structural part of this modeling. Although 3D 50 

FEM approaches can be very accurate and flexible, they can be computationally expensive for the analyses of complex 

systems, especially if CFD aerodynamic analyses are executed in parallel. The overall computational cost can be reduced by 

usingif faster aerodynamic models are used, such as the blade element momentum (BEM) model, but even this solution may 

not be efficient enough for aero-elastic analyses and multi-objective optimization tasks. The coupling of BLM BEM and 

BEM suitable beam models can providebe the best compromise between computational efficiency and accuracy. In this work 55 

we focus the attention on BLM for mathematical models to simulate the mechanical behaviour of complex beam-like 

structures, such  (hereafter referred to as modern blades,beam-like models, or BLM), which can be curved, twisted and also 

tapered in their unstressed state, be subjected toundergo large deflections, in- and 3Dout-of-plane cross-sectional 

warpings.warping and small strain. Suitable models are needed to simulate their mechanical behavior.the behaviour of those 

structures. In general, classical beam models (see, for example, Love 1944), which include extension, twist and bending, as 60 

well as the Reissner’s formulation of Reissner (1981), also accounting for transverse shear deformation, may not be 
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sufficient. Geometrically exact models are a better choice, but a way to put them into a suitable form for engineering 

applications is usually needed (Antman 1966). In general, suitable models should be both rigorous and application-oriented, 

two important requirements pursued over the years by many investigators (see, for examplee.g. Giavotto 1983, Simo 1985, 

Ibrahimbegovic 1995, Ruta 2006, Pai 2011, and Yu 2012).  65 

For over a century researchers have sought to represent beam-like structures by means of 1D models. Several theories have 

been developed, from the elementary Euler-Bernoulli theory, to the classical theory which includes Saint-Venant torsion, up 

to more refined theories, such as the Timoshenko theory for transverse shear deformations, the Vlasov theory for torsional 

warping restraint, and 3D beam theories which include 3D warping fields. Broadly speaking, beam theories can be grouped 

into engineering and mathematical theories. Among theSeveral engineering theories, some formulations are based on ad-hoc 70 

corrections to simpler theories (e.g. Rosen 1978), while others are based on geometrically exact approaches (such as Wang 

2016b and Hodges 2018). Among the mathematical theories, some approaches are based on the directed continuum (Rubin 

1997), some others exploit asymptotic methods (Yu 2012). The reason for the extensive and continuous research effortssuch 

a large amount of works on beam theory is that it has always found applicationsapplication in many fields. ForBy way of 

example, many approaches have been developed for helicopter rotor blades with an initial twist. Pre, but pre-twisted rods 75 

have always attracted the interest of many researchers in differentseveral fields. A wide-ranging review on this subject is due 

to  (Rosen (1991). In the 1990’s, Kunz (1994) provided an overview also on modeling methods for rotating beams, 

illustrating how engineering theories for rotor blades evolved over the years. In those same years, Hodges (1990) reviewed 

the modeling approaches for composite rotor blades, discussing the importance of 3D warping and deformation coupling. 

More recently, Rafiee (2017) discussed vibrations control issues forin rotating beams, summarizing beam theories and 80 

complicating effects, such as non-uniform cross-sections, initial curvatures, twist and sweep. It seems that, unlike the case of 

the pre-twisted rods, the published results for curved rotating beams with initial taper and sweep are quite scarce, although 

all these geometrical characteristics can play an important role. 

Up to now much has been done to develop powerful beam theories. However, there is still a gap between existing theories 

and those that could be suitable for complex beam-like structures. In general, the geometry of the reference and current states 85 

must be appropriately described. The curvature, twist and taper are important design features and should be explicitly 

included in the model. The analysis should not be restricted to small displacements and should consider deformation 

couplings.. The model should provide the strain and stress fields in the three-dimensional beam-like structure, be rigorous 

and usable by engineers, and provide classical results when applied to prismatic isotropic homogeneous beams. Following 

these guidelines, a mathematical model to simulate the mechanical behavior of complexthe considered beam-like structures 90 

is proposed hereafter. 
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3 Mechanical model for complex beam-like structures 

Here we are concerned with developing a mathematical model to describe the mechanical behavior of beam-like structures 

which are curved, twisted and tapered in their reference state and undergo large displacements. One of the main issues with 

such a task is how to describe the motion of the structure (see, for example, Simo 1985, Ruta 2006, and Pai 2014). The 95 

approach considered in this work is to imagine a beam-like structure as a collection of plane figures (i.e. the cross-sections) 

along a regular and simple three-dimensional curve (i.e. the center-line). We assume that each point of each cross-section in 

the reference state moves to a position in the current state through a global rigid motion on which a local general motion is 

superimposed. In this manner, the cross-sectional deformation can be examined independently of the global motion of the 

center-line. So, it is possible to consider the global motion to be large, while the local motion and the strain may be small. 100 

3.1 Kinematics and strain measures 

We begin by introducing two local triads of orthogonal unit vectors. The first one is the local triad, b i, in the reference state, 

with b1 aligned to the tangent vector of the reference center-line. This frame is a function of the reference arch-length 

parameter onlys, that is bi=bi(s). The second local triad, ai, is a suitable image of the local triad bi in the current state. This 

frame is a function of the reference arch-length parameters and the time t, that is ai=ai(s,t). In general, a1 is not required to be 105 

aligned to the tangent vector of the current center-line. See Figure 1. It shows a schematic representation of the reference 

(left) and current (right) states of a beam-like structure. The generic cross-section in the reference state is contained in the 

plane of the vectors b2 and b3. In the current state, if the cross-section remains plane (i.e. un-warped), it can belong to the 

plane of the vectors a2 and a3. But the generic cross-section may not remain plane. So, we consider that its current (warped) 

state is reached by superimposing an additional motion to the positions of the points of the un-warped cross-section, as in 110 

Figure 1 (right). 



 

5 

 

 

 

Figure 1: Schematic of the reference and current states, center-lines, cross-sections and local frames 

We continue by introducing the kinematical variables we use to describe the motion of the considered structure. To this aim, 115 

the orientation of the frameframes ai and bi relative to a fixed rectangular frame, ci, are defined as follows 

 ,
i i i i

a Ac b Bc       (1) 
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where A and B are two proper orthogonal tensor fields. (i.e. their determinant is 1, see, for example, Gurtin 2003). We also 

introduce an orthogonala tensor field, T, which defines the relative orientation between the frames ai and bi and can be used 

to identify the deformed configuration of the structure, asas follows 120 

T

i i i
a Tb AB b       (2) 

We also define two skew tensor fields, KA and KB, and their axial vectors, kA and kB, which are related to the curvatures of 

the center-line of the structure, respectively in the current and reference states, as follows (see, for example, Simo 1985 and 

Gurtin 2003) 

,

,

T

A i A i A i

T

B i B i B i

K A A a K a k a

K B B b K b k b

   

   

' '

' '
    (3) 125 

Thewhere the prime denotes derivative with respect to the arch-length parameter, s. Then, while the operator ∧ is the usual 

cross-product. In a similar manner, we introduce the skew tensor field Ω, and its axial vector field ω, associated withrelated 

to the variation of the vectors ai over the time, t, as follows 

,T

i i i
AA a a a         (4) 

The dot (over the variables) denotes derivative over the time, t. At this point, it is easy to obtain the following identities 130 

,

,

T T T

A B

T T

A B

T T K TK T TT

T T k Tk TT  

   

       

'

'
    (5) 

where the operator ϕ[] provides the axial vector of the skew tensor between brackets. 

The function R0B, which maps the points of the center-line in the reference state, does not depend on time, while R0A can 

change over the time t. Its variation is the time rate of change of the position of the points of the current center-line 

0 0A
R v       (6) 135 

We are now in a position to introduce two important kinematic identities 

0 0 A
v R T

Tk

 



  



' '

'
     (7) 

where γ and k are well-defined measures of deformation for beam-like structures. They vanish for pure rigid motions and 

transform in the proper manner when a rigid motion is superposed to a not rigid motion. They are defined as 

0 0

T

A B

T

A B

T R R

k T k k

  

 

' '

     (8) 140 

It is worth nothing that γ and k vanish for rigid motions and are invariant under superposed rigid motion, hence, they are 

well-defined measures of strain for beam-like structures (see, for example, Ruta 2006 and Rubin 2000). 
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Now, we start modeling the motion of the points of the cross-sections. In particular, we introduce two mapping functions, RA 

and RB, to identify the positions of the points of the 3D beam-like structure in its current and reference states. For what the 

reference state is concerned, we define the (reference) mapping function 145 

0 1 1( ) ( ) ( ) ( )
B i B i

R z R z x z b z       (9) 

where R0B is the position of the points of the reference center-line relative to the frame ci, bα are the vectors of suchthe 

reference local frame in the plane of the reference cross-section, xα identify the position of the points in the reference cross-

section relative to the reference center-line, and, finally, zi are suitable coordinates which do not depend on time, with z1=s.  

independent mathematical variables which do not depend on time. In particular, z1 is equal to the arch-length s, and zα 150 

belong to a bi-dimensional mathematical domain which is used to map the position of the points, xα, of the cross-sections. 

Throughout this paper, Greek indices assume values 2 and 3, Latin indices assumes values 1, 2 and 3, and repeated indices 

are summed over their range.  

It is worth noting that xk may or may not be equal to zk, with the. The first choice leadingleads to the most common 

modeling approaches available in the literature (see, for example, Simo 1985, Pai 2011, and Yu 2012). In this work we 155 

usechoose a different approach, by choosing suitable set of relations between the position variables xk and the mathematical 

variables zk to simulateprovide a description of the shape of the considered beam-like structure, which iscan be curved, 

twisted and also tapered in its reference unstressed state. In particular, the span-wise variation of the shape of the cross-

sections is analytically modeled by means of a mapping of this kind 

i Bij j
x z        (10) 160 

where the coefficients ΛBij are suitable functions of z1. In the following we will consider the interesting classcase of the 

curved and twisted beam-like structures with bi-tapered cross-sections, in which case the map of Eq. (10) reduces to 

1 1 2 2 2 1 3 3 3 1, ( ), ( )
x x

x z x z z x z z       (11) 

where the coefficients λxα are suitable functions of z1. It is worth noting that a suitable definitionchoice of suchthose 

functions gives the possibility to reproduce interesting shapes, such as. See, for example, Figure 2. It shows a 3D beam-like 165 

structure whose center-line is curved, while the one reportedcross-sections are twisted and tapered from the root to tip. The 

reference cross-sections in Figure 2. are ellipses with different sizes and orientations, but any other reference cross-section 

shape can be considered, such as the aerodynamic profiles which are commonly used for wind turbine blades, steam turbines 

blades, and helicopter rotor blades as well (see also Griffith 2011, Bak 2013, Tanuma 2017, and Leishmain 2006 for 

examples of such profiles). 170 
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Figure 2: SchematicExample of a curved, twisted, and tapered beam-like structure and local frame (left), taper and twist functions 

(right) 

The position of the points in the current state are defined in a similar manner by means of the (current) mapping function 175 

0 1 1 1( , ) ( , ) ( ) ( , ) ( , ) ( , )
A i A i k i k

R z t R z t x z a z t w z t a z t      (12) 

where R0A is a function mapping the position of the points of the center-line in the current state, while wk are the components 

of the 3D warping displacements in the local frame ak. Again, yk is not equal to zk. In general, we reserve the possibility to 
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choose relations similar to Eq. (10), even with coefficients ΛAij (and λyα) different from ΛBij (and λxα). The main formal 

difference between the reference and current maps is due to the warping, w, introduced to describe the geometry of the 180 

deformed state without a-priori approximation.  

TheBy using the maps (9) and (12), we can determine the 3D deformationtensor, H, expressing the gradient, H, between of 

the current position, RA, with respect to the reference and current configurations, can now be calculatedposition, RB, as 

follows (see, for example, Rubin 2000) 

A

B

R
H

R





      (13) 185 

where Gk and gk are the covariant and controvariant base vectors in the current and reference states, respectively. They can 

be determined by using standard means. When the deformation gradientH is givenknown, the 3D Green-Lagrange strain 

tensor, E, can be calculated. In particular, we  (see, for example, Rubin 2000 and Gurtin 2003). Hereafter we write the 

Green-Lagrange strain tensor E in a form based on simplifying assumptions applicable to the considered beam-like structure. 

To this endIn particular, we introduce the characteristic dimension of the cross-sections, herein denoted as h, the longitudinal 190 

dimension of the reference center-line, herein denoted as L, and we assume h to be much smaller than L. 

ConsideringMoreover, we consider a thin structure, we and assume its the curvatures of its reference center-line are much 

smaller than 1/h. The  (see also Rubin 2000). In addition, we assume the warping displacements, wk, are also assumed to be 

small. More precisely, by introducing a non-dimensional parameter ε much smaller than one, they are considered of the order 

of hε, while the order of magnitude of their derivative with respect to z1 is of the order of εh/L. In additiongeneral, all 195 

deformationsdeformation measures, i.e. the 1D strain measures γ and k and the components of the 3D strain tensor, E, are 

assumed to be small. In particular, γ is much smaller than one and kh is of the their order of magnitude is at most ε. 

 For the considered structure, in the case of small strains and small local rotations, the we write the strain tensor, E, in the 

following relation holdsform 

2

T T
T H H T

E I


      (14) 200 

By way of example, in the case of uniform initial taper (ΛB22=ΛB33=Λ0), yk=xk, and neglecting some higher order terms, the 

components of the Green-Lagrange strain tensor may be written in the form 

Let’s now calculate the components of E by using (14) and neglecting terms smaller than ε. Algebraic manipulations only, 

too lengthy to be reported here in full, yields the following expressions for bi-tapered cross-sections 
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













 

    

 

 

   

   

  

   (15) 205 

where 

In (15) ΛB22 and ΛB33 are the edge-wise and flap-wise taper coefficients (see, for example, Figure 2), while the components 

of the strain tensor, E, are taken with respect to the reference local frame, bi, i.e. 

ij i j
E E b b       (16) 

where  ∙  is the usual scalar (or dot) product and   is the tensor (or dyadic) product (see, for example, Rubin 2000). 210 

3.2 Stress fields and constitutive models 

Given the strain tensor, E, the stress fields in the structure can be calculated when a constitutive model is chosen. Limiting 

our attention to elastic bodies, in a pure mechanical theory, in the case of small strain, we use athe following linear relation 

between the second Piola-Kirchhoff stress tensor, S, and the Green-Lagrange strain tensor (see, for example, Gurtin 2003), 

as follows) 215 

2S E trE I        (17) 

where μ and λ are known material parameters related to the Young’s modulus and Poisson’s ratio. 

In the case of small strainstrains and small local rotations, we can also write 

, T
P TS C TST      (18) 

where P is the first Piola-Kirchhoff stress tensor and C is the Cauchy stress tensor. In (Gurtin 2003). It is worth noting that in 220 

the considered case the tensor field T is sufficient to performdetermine two of the pull back and push forward operations 

between the above mentioned stress tensor fields S,tensors (e.g. P and C. ) when the other one (e.g. S) is known. 

Now, weWe are now in the position to define the cross-sectional stress resultants, namely the force F and moment M, on 

each cross-section of the structure.. Using the first Piola-Kirchhoff stress tensor, (Gurtin 2003), in the case of small 

warpings, small strains and small local rotations, we write 225 

1 1,
i i i i

F T P b M T x P b b  
        (19) 

where Σ is the domain corresponding to the cross-section on which the integration is performed and  

ij i j
P P a b        (20) 
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By combining Eqs. (15)-(19), the force and moment stress resultants can be related to the geometrical parameters of the 

structure and the 1D strain measures (8). However, such relations are actually known if we know the warping fields wk. An 230 

approach to obtain suitable warping fields is illustrated in section 3.4. 

3.3 Expended power and balance equations 

To complete the formulation, we conclude with considerations on the principle of expended power and the balance equations 

for the considered structure. For hyper-elastic bodies (Gurtin 2003), we write the principle of expended power in the form 

A V V

d
p v b v

dt
           (21) 235 

where p are surface loads per unit reference surface (A), b are body loads per unit reference volume (V), Φ is the 3D energy 

density function of the body, and v is the time rate of change of the current position of its points, which is given by 

0v v y a w          (22) 

where w•the last term in (22) is the time rate of change of the warping displacement. 

For small warpings, small strains, and small local rotations, it can be shown thatif the power expended by the surface and 240 

body loads on the warping velocities can beis neglected. By using this simplification, the external power, Πe, reduces to the 

following form 

 0 0e s s
s

F v M F v M              (23) 

where the vector field v0 is the time rate of change of the position of the points of the current center-line, the vector field ω is 

the time rate of change of the orientation of the vectors ai, the terms Fs and Ms are suitable resultants of inertial actions and 245 

prescribed loads per unit length in the reference state, while the symbol Δ simply means that the function between brackets is 

evaluated at both the ends of the beam and the difference between those values is taken. 

The 3D cross-sectional warpings may be important in calculating the 3D energy function, so they and cannot be neglected in 

the internal power, Πi. However, the internal power may be reduced to a useful form for beam-like structures by introducing 

a suitable 1D strain energy function, U. For example, if U can be expressed in terms of the strain measures, γ and k, we 250 

obtaincan write 

( , , )
i

s s

d
U k s f m k

dt
            (24) 

where f and m are the pulled back vector fields f and m are defined in terms of the force and moment stress resultants, F and 

M, and are defined as follows 

,T T
f T F m T M       (25) 255 

By using the principle of expended power, we also obtain balance equations for the vector fields F and M in the form 
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0 0

s

A s

F + F = 0

M R F M   

'

' '
    (26) 

At this point, we have kinematic equations, (6)-(7), strain measures, (8) and (14), force and moment balance equations, (26), 

and the principle of expended power, Πe=Πi, in a suitable form for beam-like structures, (23)-(24). To complete the 

formulation of the model we need relations providing the 1D stress resultants in terms of the 1D strain measures. To this end, 260 

we need to know the warping fields. An approach to obtain suitable warping functions is discussed hereafter. 

3.4 Warping displacements 

In general, a 3D nonlinear elasticity problem can be formulated as a variational problem. In any case, if we try to solve the 

variational problem directly, the difficulties encountered in solving the elasticity problem remain. For beam-like structures 

whose transversal dimensions are much smaller than the longitudinal one, assumptions based on the shape of the structure 265 

and the smallness of the warping and strain fields can lead to importantuseful simplifications. In particular, the resolution of 

the 3D nonlinear elasticity problem can be split into a 1D nonlinearreduced to the resolution of two main problems. See, for 

example, Berdichevsky (1981), who seems to be the first in the literature to plainly state that for elastic rods. One of those 

problems governs the local distortion of the cross-sections and is here referred to as the cross-sections problem, governing. 

The other problem governs the global deformation of the center-line and cross-sectional frames, and a 2D problem, 270 

governing the local distortion of the cross-sections. The warping displacements can be obtained by solving the 2Dis here 

referred to as the center-line problem. Using such an approach, for small warpings, strain and local rotations,Hereafter, we 

consider the following variational statement can be usedto determine the warping fields which are responsible of the 

deformation of the cross-sections 

0
V

         (27) 275 

whereIn (27) the symbol δ is stands for the variation ofoperator and the functional for a corresponding variation ofdensity 

function Φ depends on the warping fields.  

displacements. The warping fields satisfying (27) can be obtained by the corresponding Euler-Lagrange equations. When the 

2D  (see, for example, Courant 1953), by using numerical methods, in general, or analytical approaches providing closed-

form expressions, in some particular cases. Once such a problem is solved, the stiffness propertiescomponents of the cross-280 

sections are known. Fromstress resultants (19) can be linearly related to the 1D problem we obtaincomponents of the 1D 

strain measures (8). Finally, given the warping fields and the 1D strain measures, the 3D strain and stress fields can be 

determined (14)-(18)., by using equations (14)-(19). Then, if it is preferred or deemed useful, those relations can also be 

arranged in a standard matrix form. 

Note that to determine the current state of the structure we also need the displacements of its center-line points. They can be 285 

determined by solving the center-line problem, which is a non-linear problem governed by the set of kinematic, constitutive 
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and balance equations introduced in section 3 (in particular, we are referring to the constitutive model in section 3.2, which 

relates stress resultants and strain measures, and the balance equations for the stress resultants in section 3.3). 

In the next sections we show some analytical solutions (section 4 An example with analytical ) and numerical results 

An example illustrates the results  (section 5) that can be obtained by applying the proposed modeling approach can provide. 290 

to some reference beam-like structures. 

4 First analytical results for bi-tapered cross-sections 

In particular,this section we consider a curved, twisted and tapered the case of a beam-like structure with bi-tapered elliptical 

cross-sections. The structure is clamped at one end and it is loaded by given forces at the other end. We use the assumptions 

introduced in the foregoing aboutFor this case we can provide analytical solutions in terms of warping fields, while for 295 

generic shapes (e.g. the aerodynamic profiles used in wind turbine blades, steam turbines blades, and helicopter rotor blades 

as well) the problem corresponding to (27) can be solved by using numerical methods. However, this is not surprising, since 

even in the classical linear theory of prismatic beams analytical solutions are available for a limited number of cases only 

(see, for example, Love 1944).  

As discussed in section 3, we are assuming the smallness of the warpings, strains and local rotations. Moreover, hereafter we 300 

choose the current local frames to be tangent to the current center-line and we include possible shear deformations within the 

warping fields. In addition, here, we assume with the aim of showing a first analytical solution for bi-tapered cross-sections, 

in this section we neglect the effects of the initial twist is negligible and the initial taper is uniform (ΛB22=ΛB33=Λ0of the 

cross-sections. Then, we proceed to find a solution that satisfies (27).  

The 3D nonlinear problem is split, as discussed, into a 2D linear problem and a 1D nonlinear problem. The 1D problem can 305 

be solved numerically when the stiffness properties of the cross-sections have been obtained from the 2D problem. Here we 

focus the attention on this latter problem, leaving to a successive paper the discussion on the numerical procedure we have 

implemented in MatLab to solve the 1D nonlinear problem. For the 2D problem, in the considered caseDoing so, the Euler-

Lagrange equations corresponding to (27), for the effects of in the case we neglect the terms smaller than ε and maintain the 

terms related to extension, γ1, and change of curvatures, ki, are satisfied by the following warping fields 310 

2 2 2
23 2

1 1 2 32 2 2

3 2

2 2 2 2 2

2 1 2 2 2 3 3 3 2

2 2 2 2 2

3 1 3 3 2 3 2 3 2

( ) / 2

( ) / 2

d d
w k z z

d d

w z k z z k z z

w z k z z k z z

 
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
 


       
       

   (28) 

where d2 and d3 are the semi-major axes of the a reference elliptical cross-section. (e.g. the one at 18m from root section in 

Figure 2). Using this result, we can calculate the corresponding strain and stress fields, (14)-(18), the force and moment 
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stress resultants, (19), and the strain energy function U. For example, if we consider a local frame in the reference cross-

section with its origin at the cross-section’s center of mass and its axes aligned with the cross-section’s principal axes of 315 

inertia, (as in Figure 2), we can write the 1D strain energy function, U, in the form 

2 2 2 4 2 3 4 2 4 2

1 1 1 2 2 3 3

1 1 1 1

2 2 2 2
U EA GJ k EJ k EJ k                        (29) 

In Eq. (29), E is the Young modulus, G is the shear modulus, while A, J1, J2 and J3 are the following geometrical 

constantsparameters 

2 2 2 1 2 2 2

2 3 1 2 3 3 2 2 3 3 2, / ( ), / 4, / 4A d d J Ad d d d J Ad J Ad         (30) 320 

An interesting result is that the initial taper, Λ0, appears explicitly in all the previous relations, allowing us to analytically 

evaluate (in terms of ρ and Λ). In its effect. The turn, this allows an analytical evaluation of its effects of the not uniform 

initial taper, initial twist and other terms, on the 3D strain energy function, on the strain and stress tensor fields, which can be 

calculated by using (15) and on(28), and which are required to determine the force and moment3D stress resultants, will 

befields (17). 325 

5 Numerical simulations 

In this section we provide the results of simulations conducted by using the modeling approach discussed in section 3, which 

we have implemented into a successive worknumerical code in MATLAB language. Those results are also compared with 

the results that can be obtained by 3D-FEM simulations with the commercial software ANSYS. 

5 In particular, we show a first set of test cases in which a beam-like structure with rectangular cross-sections undergoes 330 

large displacements, while it is fixed at one end and it is loaded at the other end by a force whose magnitude is progressively 

increased. In the second set of test cases we consider a more complex geometry, that is, a beam-like structure with elliptical 

cross-sections, which is curved, twisted and tapered in its reference configuration, while the loading condition is the same as 

in the first set of test cases. Finally, in the third set of test cases, we consider (four) different beam-like structures under the 

same loading condition. In particular, we consider a first prismatic structure with elliptical cross-sections. The second 335 

structure is a modification of the first one, on which we maintain the same cross-section at 18m from root and we add the 

taper according to the taper coefficients of Figure 2. Starting from this latter, we consider a third structure which includes the 

twist of the cross-sections, assuming the twist law of Figure 2. The fourth one is a curved, twisted and tapered structure 

obtained by the third one (tapered and twisted) by adding the center-line curvature. Then, we compare the results obtained by 

simulating the behavior of these four structures to shows the effects related to their geometrical differences. 340 

In all the cases, the displacements of the points of the reference center-line are calculated by solving the center-line nonlinear 

problem through a numerical procedure we have implemented in MATLAB language, which is based on the kinematic, 

constitutive and balance equations introduced in section 3. In particular, we use the constitutive model introduced in section 
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3.2 to relate stress resultants and strain measures. We define the local frames orientation by using Euler angles and simulate 

orientation changes in terms of derivatives of those angles over the arch-length, s (see, for example, Pai 2003). We use the 345 

balance equations for the stress resultants introduced in section 3.3. Finally, we integrate (numerically) the resulting set of 

ordinary differential equations with respect to the arch-length, s. The results of this procedure are illustrated hereafter. 

5.1 First set of test cases 

In this set of test cases we consider a beam-like structure with rectangular cross-sections undergoing large displacements, 

while it is clamped at one end (i.e. the root) and it is loaded at the other end (i.e. the tip) by a force, F, whose magnitude is 350 

progressively increased (see Figure 3). The center-line length is d1=90m. The cross-section sizes are d2=8m (edge-wise) and 

d3=2m (flap-wise). The material properties are summarized by reference values of the Young’s modulus, 70GPa, and 

Poisson’s ratio, 0.25. The flap-wise tip force, F, varies from 100kN to 75000kN.  

The simulations are run for different values of the tip force. The model we have implemented in MATLAB language to solve 

the non-linear problem provides results on the deformed configuration of the structure (e.g. Figure 3, left) within a few 355 

seconds. In all the cases, the simulation time is less than 2.4s. It is significantly less than that required by the corresponding 

non-linear 3D-FEM simulations carried out on the same computer, while the accuracy of the results is almost the same. A 

summary of the obtained results, in terms of global displacements and simulation times, is shown in Figures 3 and 4. 

In particular, Figure 3 (left) shows the un-deformed shape (for F=0), as well as the deformed shapes for F equal to 10000kN, 

25000kN and 50000kN. Figure 3 (right) shows the 3D-FEM deformed shape for F=25000kN (the coloured legend is for the 360 

flap-wise displacements). Then, Figure 4 (left) provides a comparison between the tip displacements obtained with the linear 

3D-FEM, the nonlinear 3D-FEM and our model (therein referred to as 3D-BLM). It also shows the differences (between the 

non-linear 3D-FEM and the 3D-BLM) in terms of tip displacements and simulation times for the considered cases. 

 

 365 

Figure 3: Global deformation with 3D-BLM for F increasing (left) and with 3D-FEM for F=25000kN (right) 
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Figure 4: Comparison of tip displacements (left), tip displacements differences and simulation times (right) 

5.2 Second set of test cases 

Let’s now consider a more complex beam-like structure, more precisely, a 90m curved center-line with constant curvatures, 370 

which schematizes a pre-bent and swept beam whose tip is moved 4m edgewise and 3m flapwise, as in Figure 2. The local 

frames in the reference state are characterized by a pre-twist of 20deg/m. The reference cross-section at 18m from root is an 

ellipse whose semi-major axes are d2=2m (edge-wise) and d3=0.5m (flap-wise). The sizes of the other cross-sections change 

according to the taper coefficients of Figure 2. For what the material properties are concerned, they are summarized by 

reference values of the Young’s modulus, 70GPa, and Poisson’s ratio, 0.25. Finally, the structure is clamped at its root and it 375 

is loaded by a flap-wise tip force, F, which varies from 100kN to 1000kN. 

The simulations are run for different values of the tip force. The model we have implemented in MATLAB language to solve 

the non-linear problem provides the results about the deformed configurations (see, for example, Figure 5, left) within less 

than 2.7 seconds. As in the first set of test cases, the simulation time is significantly less than that required by the nonlinear 

3D-FEM simulations (they differ by at least one or two order of magnitude), while the accuracy of the results is again almost 380 

the same. Hereafter, we continue by showing some other information our model can provide. In particular, we can obtain the 

displacement fields of the points of the reference center-line (Figure 6), as well as the change of curvatures of the beam-like 

structure (Figure 7, left) and the corresponding moment stress resultant (Figure 7, right). The moment components are in the 

current local frame, ai, whose orientation has been determined as part of the solution of the nonlinear problem. For example, 

the orientation of the current local frame, ai, can be provided in terms of a set of Euler angles. See Figure 8. In this case we 385 

have considered the set of Euler angles corresponding to a first rotation, θ, about the initial z-axis, a second rotation, γ, about 

the intermediate y-axis, and a third rotation, ψ, about the final x-axis. 
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Figure 5: Global deformation with 3D-BLM for F increasing (left) and with 3D-FEM for F=250kN (right) 390 

 

Figure 6: Displacement of the points of the reference center-line with 3D-BLM for F increasing 
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Figure 7: Changes of curvatures (left) and moment stress resultants (right) with 3D-BLM for F increasing 

 395 
Figure 8: Local frames orientation in terms of Euler angles before (green-lines) and after deformation 

5.3 Third set of test cases 

Here we consider different beam-like structures, starting with a prismatic elliptical one, including step by step the taper and 

twist of the cross-sections and, finally, the curvature of the center-line, as discussed in the beginning of section 5. Note that 

the “curved-twisted-tapered” case considered here coincides with that discussed with more details in section 5.2 (see Figures 400 

5-8, F=250kN). We proceed by simulating the bahavior of these four structures under a flap-wise tip force of 250kN. Then, 

we analyze the obtained results to show the effect of their geometric differences on their mechanical behaviour. A summary 

of the obtained results is hereafter. In particular, Figure 8 shows the reference and deformed states of the prismatic structure 

(left) and the deformed states of the non-prismatic ones (right), while Figure 9 shows the displacements of their center-lines 

points. The main effect of the considered tip force is a displacement in the z-direction, in all the cases, with a displacement in 405 

the y-direction that we have only for the cases “tapered-twisted” and “tapered-twisted-curved”, as it is expected. 
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Figure 9: Prismatic structure before and after deformation (left) and non-prismatic structures after deformation (right) 

 410 

Figure 10: Displacement of the center-line points of the prismatic structure (blue) and non-prismatic structures (other colours) 

The obtained results have been compared with those of the 3D-FEM commercial software, for this third set of test cases too, 

confirming the computational efficiency and accuracy of the previous sets of test cases. A summary of those results is shown 

in Figure 10, which provides a comparison in terms of tip displacements (components) for the four cases considered here. 

 415 
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Figure 11:  Tip displacements with 3D-BLM (blue) and 3D-FEM (red) for different beam-like structures at F=250kN 

 

As verified by many simulations and shown in the examples, the proposed approach performs well in terms of computational 

efficiency and accuracy. It can be used to study the mechanical behavior of beam-like structures, which are curved, twisted 420 

and tapered in their reference unstressed state and undergo large global displacements. It can provide information on the 

deformed configurations of those structures, such as their displacement fields, as well as the corresponding strain and stress 

measures. It is worth noting that it is suitable for beam-like structures with generic reference cross-sections shapes. However, 

as already pointed out, for bi-tapered elliptical cross-sections we have analytical solutions in terms of warping fields, while 

for generic reference cross-sections shapes the problem (27) has to be solved by using numerical methods. 425 

6 Conclusions 

ModernWind turbine blades, as well as helicopter rotor blades, steam turbine blades and many other engineering structures, 

can be considered complex (non-prismatic) beam-like structures, with one dimension much larger than the other two and a 

shape that is curved, twisted and also tapered already in the reference unstressed state. Their mechanical behavior can be 

simulated through suitable 3D beam models, which are computationally efficient, accurate and explicitly consider theirthe 430 

main geometrical characteristics, possibledesign features of those structures, the large displacementsdeflections of their 

center-line, and 3D localthe in- and out-of-plane warping of their cross-sections. In this work, curved, twisted and tapered 

beam-like structures have been modeled analytically. TheTheir main geometrical design features, such as the curvatures of 

the center-line and the twist and taper of the cross-sections,characteristics have been explicitly included in the model. The 

warping displacement has been thought of as an additional small motion superimposed to the global generic motion of the 435 

cross-sectionallocal frames. The resulting model is suitable to simulate large deflections of the center-line, large rotations of 

the cross-sectionallocal frames and small deformation of the cross-sections. The strain tensor has been calculated analytically 
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in terms of the geometrical parameters of the structureconsidered structures, the 1D strain measures and the 3D warping 

fields. The same has been done for the 3D and 1D energy functions. An approach based on an energy functionalsfunctional 

and the slenderness of the structurea variational statement have been used to obtain suitable warping fields. The principle of 440 

expended power for curved, twisted and tapered beam-like structurestructures has been discussed, as well asalong with the 

balance equations for the force and moment stress resultants. Finally, an application example, which includes analytical 

results, has and numerical examples, which include comparison with 3D FEM simulations, have been presented to show the 

information effectiveness of the proposed modeling approach and the information it can provide. 
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