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Abstract. The continuous effort to better predict the mechanical behavior of wind turbine blades is related to lowering the 

cost of energy. But new design strategies and the continuous increase in the size and flexibility of modern blades make their 

aero-elastic modeling ever more challenging. For the structural part, the best compromise between computational efficiency 

and accuracy can be obtained by schematizing the blades as suitable beam-like elements. This paper addresses the modeling 10 

of the mechanical behavior of complex beam-like structures, which are curved, twisted and tapered in their reference state, 

undergo large displacements, 3D cross-sectional warping and small strains. A suitable model for the problem at hand is 

proposed. It can be used to analyze large deflections under prescribed loads and allows the 3D strain and stress fields in the 

structure to be determined. Analytical results obtained by applying the proposed modeling approach are illustrated. 

1 Introduction 15 

In the process of improving horizontal axis wind turbines (HAWT) performance new methods are continuously being sought 

for capturing more energy and developing more reliable structures, all with the ultimate goal of lowering the cost of energy 

(Wiser, 2016). As demonstrated by several researches, such goal can be achieved through the use of advanced materials, the 

optimization of the aerodynamic and structural behavior of the blades, and the exploitation of load control techniques. By 

way of example, one promising load control approach is based on the bend-twist coupling (BTC) of the blades, which can be 20 

obtained by sweeping the shape of the blades or by changing the orientation of their composite fibers (Ashwill 2010, 

Bottasso 2012, Stablein 2017). But new design strategies and the continuous increase in the size and flexibility of modern 

blades make the modeling of their aero-elastic behavior ever more challenging. For the structural part, schematizing the 

blades as suitable beam-like elements can be the best compromise between computational efficiency and accuracy. Modern 

blades can be considered complex beam-like structures, which are curved, twisted and tapered in their reference unstressed 25 

state. Even not considering the complexities related to the materials properties and the actual loading conditions, their shape 

alone is sufficient to make the mathematical description of their mechanical behavior a challenging task. 

The present work addresses the mechanical modeling of modern blades considered as suitable curved, twisted and tapered 

beam-like structures. Beam models have historically found application in many fields, from the helicopter rotor blades in 
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aerospace engineering, to bridges components in civil engineering, and surgical tools in medicine. This contributed to the 30 

development of sophisticated theories over the years (see, for example, Love 1944, Antmann 1966, Rubin 1997). The need 

for geometrically non-linear models for complex beam-like structures has led to further researches also in recent years. One 

of the main drivers for the continuous research in this field is the need for rigorous and application-oriented models. In this 

paper the attention is focused on the effects of important geometrical design features, such as the curvatures of the reference 

center-line and the twist and taper of the cross-sections. After an introduction to modeling approaches for structures of this 35 

kind (section 2), a suitable model for the problem at hand is proposed (section 3). Finally, some analytical results obtained 

by applying the proposed modeling approach are illustrated (section 4). 

2 Overview of modeling approaches 

Aero-elastic modeling of modern blades can be addressed by means of different approaches (Wang 2016). Those ones based 

on 3D FEM and beam-like models (BLM) are two main choices for the structural part of this modeling. Although 3D FEM 40 

can be very accurate and flexible, they can be computationally expensive for the analyses of complex systems, especially if 

CFD aerodynamic analyses are executed in parallel. The overall computational cost can be reduced by using faster 

aerodynamic models, such as the blade element momentum (BEM) model, but even this solution may not be efficient 

enough for aero-elastic analyses and multi-objective optimization tasks. The coupling of BLM and BEM models can provide 

the best compromise between computational efficiency and accuracy. In this work we focus the attention on BLM for 45 

complex beam-like structures, such as modern blades, which can be curved, twisted and tapered in their unstressed state, be 

subjected to large deflections and 3D cross-sectional warpings. Suitable models are needed to simulate their mechanical 

behavior. In general, classical beam models (see Love 1944), which include extension, twist and bending, as well as the 

formulation of Reissner (1981), also accounting for transverse shear deformation, may not be sufficient. Geometrically exact 

models are a better choice, but a way to put them into a suitable form for engineering applications is usually needed (Antman 50 

1966). In general, suitable models should be both rigorous and application-oriented, two important requirements pursued 

over the years by many investigators (see, for example, Simo 1985, Ibrahimbegovic 1995, Pai 2011, and Yu 2012).  

For over a century researchers have sought to represent beam-like structures by means of 1D models. Several theories have 

been developed, from the elementary Euler-Bernoulli theory, to the classical theory which includes Saint-Venant torsion, up 

to more refined theories, such as the Timoshenko theory for transverse shear deformations, the Vlasov theory for torsional 55 

warping restraint, and 3D beam theories which include 3D warping fields. Broadly speaking, beam theories can be grouped 

into engineering and mathematical theories. Among the engineering theories, some formulations are based on ad-hoc 

corrections to simpler theories (Rosen 1978), while others are based on geometrically exact approaches (Hodges 2018). 

Among the mathematical theories, some approaches are based on the directed continuum (Rubin 1997), some others exploit 

asymptotic methods (Yu 2012). The reason for the extensive and continuous research efforts on beam theory is that it has 60 

always found applications in many fields. For example, many approaches have been developed for helicopter rotor blades 
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with an initial twist. Pre-twisted rods have attracted the interest of researchers in different fields. A wide-ranging review on 

this subject is due to Rosen (1991). In the 1990’s, Kunz (1994) provided an overview also on modeling methods for rotating 

beams, illustrating how engineering theories for rotor blades evolved over the years. In those same years, Hodges (1990) 

reviewed the modeling approaches for composite rotor blades, discussing the importance of 3D warping and deformation 65 

coupling. More recently, Rafiee (2017) discussed vibrations control issues for rotating beams, summarizing beam theories 

and complicating effects, such as non-uniform cross-sections, initial curvatures, twist and sweep. It seems that, unlike the 

case of the pre-twisted rods, the published results for curved rotating beams with initial taper and sweep are quite scarce. 

Up to now much has been done to develop powerful beam theories. However, there is still a gap between existing theories 

and those that could be suitable for complex beam-like structures. In general, the geometry of the reference and current states 70 

must be appropriately described. The curvature, twist and taper are important design features and should be explicitly 

included in the model. The analysis should not be restricted to small displacements and should consider deformation 

couplings. The model should provide the strain and stress fields, be rigorous and usable by engineers, and provide classical 

results when applied to prismatic isotropic homogeneous beams. Following these guidelines, a mathematical model to 

simulate the mechanical behavior of complex beam-like structures is proposed hereafter. 75 

3 Mechanical model for complex beam-like structures 

Here we are concerned with developing a mathematical model to describe the mechanical behavior of beam-like structures 

which are curved, twisted and tapered in their reference state and undergo large displacements. One of the main issues with 

such a task is how to describe the motion of the structure (see, for example, Simo 1985, Ruta 2006, and Pai 2014). The 

approach considered in this work is to imagine a beam-like structure as a collection of plane figures (i.e. the cross-sections) 80 

along a regular and simple three-dimensional curve (i.e. the center-line). We assume that each point of each cross-section in 

the reference state moves to a position in the current state through a global rigid motion on which a local general motion is 

superimposed. In this manner, the cross-sectional deformation can be examined independently of the global motion of the 

center-line. So, it is possible to consider the global motion to be large, while the local motion and the strain may be small. 

3.1 Kinematics and strain measures 85 

We begin by introducing two local triads of orthogonal unit vectors. The first one is the local triad, bi, in the reference state, 

with b1 aligned to the tangent vector of the reference center-line. This frame is a function of the reference arch-length 

parameter only, that is bi=bi(s). The second local triad, ai, is a suitable image of the local triad bi in the current state. This 

frame is a function of the reference arch-length parameter and the time, that is ai=ai(s,t). In general, a1 is not required to be 

aligned to the tangent vector of the current center-line. See Figure 1. 90 
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Figure 1: Schematic of the reference and current states, center-lines, cross-sections and local frames 

We continue by introducing the kinematical variables we use to describe the motion of the considered structure. To this aim, 

the orientation of the frame ai and bi relative to a fixed rectangular frame, ci, are defined as follows 

 ,i i i ia Ac b Bc       (1) 95 

where A and B are two proper orthogonal tensor fields. We introduce an orthogonal tensor field T, which defines the relative 

orientation between the frames ai and bi and can be used to identify the deformed configuration of the structure, as 

T

i i ia Tb AB b       (2) 

We also define two skew tensor fields, KA and KB, and their axial vectors, kA and kB, which are related to the curvatures of 

the center-line of the structure, respectively in the current and reference states, as follows 100 

,

,

T

A i A i A i

T

B i B i B i

K A A a K a k a

K B B b K b k b

   

   

' '

' '
    (3) 

The prime denotes derivative with respect to the arch-length parameter s. Then, we introduce the skew tensor field Ω, and its 

axial vector field ω, associated with the variation of the vectors ai over the time, t, as follows 

,T

i i iA A a a a        (4) 

The dot denotes derivative over the time t. At this point, it is easy to obtain the following identities 105 

,

,

T T T

A B

T T

A B

T T K TK T T T

T T k Tk T T  

   

       

'

'
    (5) 

where the operator ϕ[] provides the axial vector of the skew tensor between brackets. 
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The function R0B, which maps the points of the center-line in the reference state, does not depend on time, while R0A can 

change over the time t. Its variation is the time rate of change of the position of the points of the current center-line 

0 0AR v       (6) 110 

We are now in a position to introduce two important kinematic identities 

0 0 Av R T

Tk

 



  



' '

'
     (7) 

where γ and k are well-defined measures of deformation for beam-like structures. They vanish for pure rigid motions and 

transform in the proper manner when a rigid motion is superposed to a not rigid motion. They are defined as 

0 0

T

A B

T

A B

T R R

k T k k

  

 

' '

     (8) 115 

Now we start modeling the motion of the points of the cross-sections. In particular, we introduce two mapping functions, RA 

and RB, to identify the positions of the points of the 3D beam-like structure in its current and reference states. For what the 

reference state is concerned, we define the (reference) mapping function 

0 1 1( ) ( ) ( ) ( )B i B iR z R z x z b z       (9) 

where R0B is the position of the points of the reference center-line relative to the frame ci, bα are the vectors of such local 120 

frame in the plane of the reference cross-section, xα identify the position of the points in the reference cross-section relative 

to the reference center-line, and, finally, zi are suitable coordinates which do not depend on time, with z1=s.  

Throughout this paper, Greek indices assume values 2 and 3, Latin indices assumes values 1, 2 and 3, and repeated indices 

are summed over their range. 

It is worth noting that xk may or may not be equal to zk, with the first choice leading to the most common modeling 125 

approaches available in the literature (see, for example, Simo 1985, Pai 2011, and Yu 2012). In this work we use a different 

approach, by choosing suitable relations between xk and zk to simulate the shape of the considered beam-like structure, 

which is curved, twisted and tapered in its reference unstressed state. In particular, the span-wise variation of the shape of the 

cross-sections is analytically modeled by means of a mapping of this kind 

i Bij jx z        (10) 130 

where the coefficients ΛBij are suitable functions of z1. In the following we will consider the interesting class of the curved 

and twisted beam-like structures with bi-tapered cross-sections, in which case the map of Eq. (10) reduces to 

1 1 2 2 2 1 3 3 3 1, ( ), ( )x xx z x z z x z z       (11) 

where the coefficients λxα are suitable functions of z1. It is worth noting that a suitable definition of such functions gives the 

possibility to reproduce interesting shapes, such as, for example, the one reported in Figure 2. 135 
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Figure 2: Schematic of a curved, twisted, and tapered beam-like structure 

The position of the points in the current state are defined in a similar manner by means of the (current) mapping function 

0 1 1 1( , ) ( , ) ( ) ( , ) ( , ) ( , )A i A i k i kR z t R z t y z a z t w z t a z t      (12) 

where R0A is a function mapping the position of the points of the center-line in the current state, while wk are the components 140 

of the 3D warping displacements in the local frame ak. Again, yk is not equal to zk. In general, we reserve the possibility to 

choose relations similar to Eq. (10), even with coefficients ΛAij (and λyα) different from ΛBij (and λxα). The main formal 

difference between the reference and current maps is due to the warping, w, introduced to describe the geometry of the 

deformed state without a-priori approximation. 

The 3D deformation gradient, H, between the reference and current configurations, can now be calculated as follows 145 

k

kH G g        (13) 

where Gk and gk are the covariant and controvariant base vectors in the current and reference states, respectively. They can 

be determined by using standard means. When the deformation gradient is given, the Green-Lagrange strain tensor, E, can be 

calculated. In particular, we write the Green-Lagrange strain tensor in a form based on simplifying assumptions applicable to 

the considered beam-like structure. To this end, we introduce the characteristic dimension of the cross-sections, h, the 150 

longitudinal dimension of the reference line, L, and assume h to be much smaller than L. Considering a thin structure, we 

assume its curvatures are much smaller than 1/h. The warping displacements wk are also assumed to be small. More 

precisely, by introducing a non-dimensional parameter ε much smaller than one, they are considered of the order of hε, while 

their derivative with respect to z1 is of the order of εh/L. In addition, all deformations are assumed to be small. In particular, 

γ is much smaller than one and kh is of the order of ε. 155 
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For the considered structure, in the case of small strains and small local rotations, the following relation holds 

2

T TT H H T
E I


      (14) 

By way of example, in the case of uniform initial taper (ΛB22=ΛB33=Λ0), yk=xk, and neglecting some higher order terms, the 

components of the Green-Lagrange strain tensor may be written in the form 

   

 

 

11 1 0 2 3 3 2 1 1,2 3 1,3 2

1,2

21 2 1 0 3 1 2,2 3 2,3 2 3

0

1,3

31 3 1 0 2 1 3,2 3 3,3 2 2

0

2,2 3,3 2,3 3,2

22 33 23

0 0 0

2

2

, , 2

B

B

B

E k z k z k w z w z

w
E k z k w z w z w

w
E k z k w z w z w

w w w w
E E E







    

      


      



  
  

   (15) 160 

where 

ij i jE E b b        (16) 

3.2 Stress fields and constitutive models 

Given the strain tensor, the stress fields in the structure can be calculated when a constitutive model is chosen. Limiting our 

attention to elastic bodies, in a pure mechanical theory, in the case of small strain, we use a linear relation between the 165 

second Piola-Kirchhoff stress tensor and the Green-Lagrange strain tensor (Gurtin 2003), as follows 

2S E trE I        (17) 

In the case of small strain and small local rotations, we can also write 

, TP TS C TST      (18) 

where P is the first Piola-Kirchhoff stress tensor and C is the Cauchy stress tensor. In the considered case the tensor field T is 170 

sufficient to perform the pull back and push forward operations between the stress tensor fields S, P and C.  

Now, we define the stress resultants, namely the force F and moment M, on each cross-section of the structure. Using the 

first Piola-Kirchhoff stress tensor, in the case of small warpings, small strains and small local rotations, we write 

1 1,i i i iF T P b M T y P b b 
 

        (19) 

where Σ is the domain corresponding to the cross-section on which the integration is performed and  175 

ij i jP P a b        (20) 

By combining Eqs. (15)-(19), the force and moment stress resultants can be related to the geometrical parameters of the 

structure and the 1D strain measures (8). However, such relations are actually known if we know the warping fields wk. An 

approach to obtain suitable warping fields is illustrated in section 3.4. 
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3.3 Expended power and balance equations 180 

To complete the formulation, we conclude with considerations on the principle of expended power and the balance equations 

for the considered structure. For hyper-elastic bodies (Gurtin 2003), we write the principle of expended power in the form 

A V V

d
p v b v

dt
           (21) 

where p are surface loads per unit reference surface (A), b are body loads per unit reference volume (V), Φ is the 3D energy 

density function of the body, and v is the time rate of change of the current position of its points, which is given by 185 

0v v y a w          (22) 

where w• is the time rate of change of the warping displacement. 

For small warpings, small strains, and small local rotations, it can be shown that the power expended by the surface and body 

loads on the warping velocities can be neglected. By using this simplification, the external power, Πe, reduces to 

 0 0e s s
s

F v M F v M              (23) 190 

where the vector field v0 is the time rate of change of the position of the points of the current center-line, the vector field ω is 

the time rate of change of the orientation of the vectors ai, the terms Fs and Ms are suitable resultants of inertial actions and 

prescribed loads per unit length in the reference state, while the symbol Δ simply means that the function between brackets is 

evaluated at both the ends of the beam and the difference between those values is taken. 

The 3D cross-sectional warpings may be important in calculating the 3D energy function, so they cannot be neglected in the 195 

internal power, Πi. However, the internal power may be reduced to a useful form for beam-like structures by introducing a 

suitable 1D strain energy function, U. For example, if U can be expressed in terms of the strain measures, γ and k, we obtain 

( , , )i
s s

d
U k s f m k

dt
            (24) 

where f and m are the pulled back vector fields of the force and moment stress resultants, F and M, and are defined as 

,T Tf T F m T M       (25) 200 

By using the principle of expended power, we also obtain balance equations for the vector fields F and M in the form 

0 0

s

A s

F + F = 0

M R F M   

'

' '
    (26) 

At this point, we have kinematic equations, (6), strain measures, (8) and (14), force and moment balance equations, (26), and 

the principle of expended power, Πe=Πi, in a suitable form for beam-like structures, (23)-(24). To complete the formulation 

of the model we need relations providing the 1D stress resultants in terms of the 1D strain measures. To this end, we need to 205 

know the warping fields. An approach to obtain suitable warping functions is discussed hereafter. 
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3.4 Warping displacements 

In general, a 3D nonlinear elasticity problem can be formulated as a variational problem. In any case, if we try to solve the 

variational problem directly, the difficulties encountered in solving the elasticity problem remain. For beam-like structures 

whose transversal dimensions are much smaller than the longitudinal one, assumptions based on the shape of the structure 210 

can lead to important simplifications. In particular, the 3D nonlinear problem can be split into a 1D nonlinear problem, 

governing the global deformation of the center-line and cross-sectional frames, and a 2D problem, governing the local 

distortion of the cross-sections. The warping displacements can be obtained by solving the 2D problem. Using such an 

approach, for small warpings, strain and local rotations, the following variational statement can be used 

0
V

         (27) 215 

where δ is the variation of the functional for a corresponding variation of the warping fields.  

The warping fields satisfying (27) can be obtained by the corresponding Euler-Lagrange equations. When the 2D problem is 

solved, the stiffness properties of the cross-sections are known. From the 1D problem we obtain the 1D strain measures (8). 

Finally, given the warping fields and the 1D strain measures, the 3D strain and stress fields can be determined (14)-(18). 

4 An example with analytical results 220 

An example illustrates the results the proposed modeling approach can provide. In particular, we consider a curved, twisted 

and tapered beam-like structure with elliptical cross-sections. The structure is clamped at one end and it is loaded by given 

forces at the other end. We use the assumptions introduced in the foregoing about the smallness of the warpings, strains and 

local rotations. In addition, here, we assume the initial twist is negligible and the initial taper is uniform (ΛB22=ΛB33=Λ0).  

The 3D nonlinear problem is split, as discussed, into a 2D linear problem and a 1D nonlinear problem. The 1D problem can 225 

be solved numerically when the stiffness properties of the cross-sections have been obtained from the 2D problem. Here we 

focus the attention on this latter problem, leaving to a successive paper the discussion on the numerical procedure we have 

implemented in MatLab to solve the 1D nonlinear problem. For the 2D problem, in the considered case, the Euler-Lagrange 

equations corresponding to (27), for the effects of extension, γ1, and curvatures, ki, are satisfied by the warping fields 

2 2
23 2

1 1 0 2 32 2

3 2

2 2 2 2

2 1 0 2 2 0 2 3 3 0 2 3

2 2 2 2

3 1 0 3 3 0 2 3 2 0 3 2

( ) / 2

( ) / 2

d d
w k z z

d d

w z k z z k z z

w z k z z k z z

  

  


 



       

       

   (28) 230 

where d2 and d3 are the semi-major axes of the reference elliptical cross-section. Using this result, we can calculate the strain 

and stress fields, (14)-(18), the force and moment stress resultants, (19), and the strain energy function U. For example, if we 

consider a local frame in the reference cross-section with its origin at the cross-section’s center of mass and its axes aligned 

with the cross-section’s principal axes of inertia, we can write the 1D strain energy function, U, in the form 
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2 2 4 2 4 2 4 2

0 1 1 0 1 2 0 2 3 0 3

1 1 1 1

2 2 2 2
U EA GJ k EJ k EJ k          (29) 235 

In Eq. (29), E is the Young modulus, G is the shear modulus, while A, J1, J2 and J3 are the following geometrical constants 

2 2 2 2 2 2

2 3 1 2 3 2 3 2 3 3 2, / ( ), / 4, / 4A d d J Ad d d d J Ad J Ad       (30) 

An interesting result is that the initial taper, Λ0, appears explicitly in all the previous relations, allowing us to analytically 

evaluate its effect. The effects of the not uniform initial taper, initial twist and other terms, on the strain energy function, on 

the strain and stress tensor fields, and on the force and moment stress resultants, will be discussed in a successive work. 240 

5 Conclusions 

Modern blades can be considered complex beam-like structures, with one dimension much larger than the other two and a 

shape that is curved, twisted and tapered already in the unstressed state. Their mechanical behavior can be simulated through 

suitable 3D beam models, which explicitly consider their main geometrical characteristics, possible large displacements of 

their center-line and 3D local warping of their cross-sections. In this work, curved, twisted and tapered beam-like structures 245 

have been modeled analytically. The main geometrical design features, such as the curvatures of the center-line and the twist 

and taper of the cross-sections, have been explicitly included in the model. The warping displacement has been thought of as 

additional small motion superimposed to the global generic motion of the cross-sectional frames. The resulting model is 

suitable to simulate large deflections of the center-line, large rotations of the cross-sectional frames and small deformation of 

the cross-sections. The strain tensor has been calculated analytically in terms of the geometrical parameters of the structure, 250 

the 1D strain measures and the 3D warping fields. The same has been done for the 3D and 1D energy functions. An approach 

based on energy functionals and the slenderness of the structure have been used to obtain suitable warping fields. The 

principle of expended power for curved, twisted and tapered beam-like structure has been discussed, as well as the balance 

equations for the force and moment stress resultants. Finally, an application example, which includes analytical results, has 

been presented to show the information the proposed modeling approach can provide. 255 
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