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Abstract.

Airborne wind energy system (AWES) aim to operate at altitudes above conventional wind turbines where reliable high-resolution

wind data is scarce. Wind light detection and ranging (LiDAR) measurements and mesoscale models both have their advan-

tages and disadvantages when assessing the wind resource at such heights. This article study investigates whether assimilating

measurements into the mesoscale weather research and forecasting (WRF) model using observation nudging generates a more5

accurate, complete data set. The impact of continuous observation nudging at multiple altitudes on simulated wind conditions

is compared to an unnudged reference run and to the LiDAR measurements themselves. We compare the impact on wind speed

and direction for individual days, average diurnal variability and long-term statistics. Finally, wind speed data is used to esti-

mate optimal traction power and operating altitudes of AWES. Observation nudging improves the overall accuracy of WRF.

Observation nudging improves the WRF accuracy at the measurement location. Close to the surface the impact of nudging is10

limited as effects of the air-surface interaction dominate, but becomes more prominent at mid-altitudes and decreases towards

high-altitudes. The wind speed probability distribution shows a multi-modality caused by changing atmospheric stability con-

ditions. Therefore, wind conditions under various stability conditions are investigated. Based on a simplified AWES model the

most probable optimal altitude will be around 400 m is between 200 and 600 m. This wide range of heights emphasizes the

benefit of such systems will benefit from to dynamically adjusting their operating altitude.15

Keywords: Airborne Wind Energy, Wind Measurement, Onshore Wind, Weather Research and Forecasting Model, Obser-

vation Nudging, Statistic Wind Conditions, LiDAR, WRF
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1 Introduction

The prospects of higher energy potential and more consistent strong winds and less turbulence in comparison to near surface

winds sparked the interest in mid-altitude, here defined as heights above 100 m and below 1500 m, wind energy systems.

airborne wind energy system (AWES) are a novel renewable energy source class of renewable energy technology that harvest

stronger winds at altitudes which are unreachable by current wind turbines, at potentially much reduced capital cost (Lunney5

et al., 2017; Fagiano and Milanese, 2012). For practical and economical reasons we focus on resource assessment within

the lower part of the atmosphere, an altitude range spanned by the highly-variable boundary layer. Unlike conventional wind

energy which has converged to a single concept with three blades and a conical tower, several different AWES designs are

under investigation by numerous companies and research institutes worldwide (Cherubini et al., 2015). Various concepts from

ring shaped aerostats, to rigid wings and soft kites with different sizes, rated power and altitude ranges compete for entry into10

the marketplace. Since this technology is still in an early stage, none are currently commercially available.

Developers and operators of large conventional wind turbines, AWES and drones require accurate wind data to estimate

power output and mechanical loads. They currently rely on oversimplified approximations such as the logarithmic wind profile

(Optis et al., 2016) or coarsely resolved reanalysis data sets (Archer and Caldeira, 2009; Bechtle et al., 2019) as the applicability

of conventional spectral wind models (Burton, 2011) have not been verified for these altitudes. First investigations (Fechner15

and Schmehl, 2018) resorting to the Mann model (Mann, 1994; IEC, 2005) have been conducted.

Recent advancements in wind LiDAR technology enable high-resolution measurements in at higher altitudes. This measure-

ment technique however suffers from reduced data availability with increasing altitude caused by a decrease in aerosol density

which is needed for the backscattering of the LiDAR signal (Peña et al., 2015). No mid-altitude measurement device can

reliably gather long-term, high-frequency data. Temporal and spatial resolution of LiDAR devices is insufficient to precisely20

measure high-frequency fluctuations, but estimated turbulence intensity correlates with sonic turbulence measurements for

lower altitudes (Sathe et al., 2011). Balloon mounted sonic anemometer are in early development (Canut et al., 2016). The

expensive and time consuming nature of LiDAR measurements motivates the usage of numerical weather prediction (NWP)

models such as the mesoscale model weather research and forecasting (WRF) as an adequate tool to assess synoptic character-

istics of the atmospheric boundary layer (ABL) (Al-Yahyai et al., 2010). These models typically have a spatial resolution that25

ranges from one kilometer to tens of kilometers and a temporal resolution in the order of minutes. Sub-gridscale high-frequency

variations to of resolved quantities are parameterized. Mesoscale models can be used to produced long-term reference data sets

up to higher altitudes such as the New European Wind Atlas(Witha et al., 2019) No mid-altitude measurement device can

reliably gather long-term, high-frequency data. However, LiDAR estimated TI correlate with sonic turbulence measurements

for lower altitudes (Sathe et al., 2011). As such the here presented TI estimates only present a rough estimate and will be30

complemented with high-resolution large eddy simulations data presented in future work.

This work is a continuation of a previous investigation of mid-altitude wind LiDAR measurements (Sommerfeld et al., 2019).

The measurements used in these studies were gathered as part of the OnKites II project (Gambier et al., 2017) at the Fraunhofer

institute for wind energy systems (IWES) with the goal of evaluating the potential of AWES. This paper makes use of various
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statistical tools to describe the relationship between the mesoscale WRF model and LiDAR measurements to determine the

impact of wind speed observation nudging (Mylonas-Dirdiris et al., 2016).

Section 2 describes the measurement campaign. Section 3 introduces the mesoscale model and observation nudging method-

ology used in this article. Section 4 quantifies the impact of observation nudging and summarizes the statistical differences

between WRF and LiDAR. Results are applied to estimate optimal operating altitude and power output based on a simplified5

AWES model in section 4.7. Section 5 concludes the article with an outlook and motivation for future work.

2 Measurement Campaign

The LiDAR data used in this study (Bastigkeit et al., 2017) were collected between September 1st, 2015 and February 29th,

2016 at the ‘Pritzwalk Sommersberg’ airport (Coordinates: Lat: 53◦ 10’ 47.00"N, Lon: 12◦ 11’ 20.98"E) in Northern Germany

(see white X in figure 2). The area surrounding the airport mostly consists of flat agricultural land with the town of Pritzwalk10

to the South. A Galion4000 single beam pulsed wind LiDAR from SgurrEnergy was used (Gottschall et al., 2009). Wind speed

data were collected using the doppler beam swinging (DBS) method (opening angle of 62◦) which averaged multiple line of

sight measurements at constant elevation angle and four azimuth angles to calculate the 10 min mean wind speed at 40 range

gates up to an altitude of about 1100 m. Reference measurement found the mean LiDAR error to be around 1% with a standard

deviation of 5% (Gottschall, 2013). The resulting wind speed is inherently spatially and temporally averaged. At an altitude15

of 1100 m the radius of the averaging disc defined by the four azimuth positions with 90◦ increments is about 585 m. For

the reconstruction of 10 min mean wind speed it is thus assumed that the wind vector does not change over this area, a valid

assumption for these heights over flat terrain.

LiDAR data availability highly depends on the applied carrier-to-noise ratio (CNR) filter and the aerosol content of the air

as the wind speed is calculated based on the backscatter of the emitted laser beam. Most aerosols originate from the surface20

and are transported aloft. Particle density decreases with height and drops to almost zero within the free atmosphere above the

ABL (Matthias and Bösenberg, 2002). Data quality quantified by the CNR dropped on average by approximately 5 dB over

the course of 1000 m. A fixed CNR threshold of CNRdB > -25 dB combined with additional self-defined filters (Sommerfeld

et al., 2019) were applied and insufficient data was discarded. As a result, data availability dropped from about 81% at 100 m

and about 24% at 1000 m. Low data availability caused by weather effects (e.g. strong precipitation) further emphasizes the25

importance of simulations for mid-altitude wind resource assessment as no measurement technique with sufficient spatial and

temporal resolution is available at this point.

Unstable and stable stratifications were identified by partitioning the data based on the sign of WRF-calculated sensible

surface heat flux (SHF). These two atmospheric conditions lead to bi-modal wind speed probability distributions aloft which is

not adequately represented by a single Weibull distribution fit. Mid-altitude wind speeds are better represented by the weighted30

sum of two wind speed probability density function (PDF) fits conditioned by the sign of the SHF.
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(a) Three nested WRF domains (b) Inner WRF domain

Figure 1. Topography map of all three WRF model domains (a) and a magnification of the innermost domain (b) with the LiDAR

measurement site marked by a white X.

3 Mesoscale Modeling Framework

To complement the 6 months LiDAR data set two WRF (v. 3.6.1) simulations using the advanced research weather research and

forecasting (ARW) model (Skamarock and Klemp, 2008) were carried out. The ‘baseline run’ (, which is hereinafter referred

to as NoOBS, ) is a 12 month study of the area around the measurement location (see figure 2) from the 1st of September 2015

used to derive annual statistics. LiDAR measurements (Sommerfeld et al., 2019) (see section 2) were incorporated into the six

months test model between September 2015 and February 2016 using OBSGRID (Wang et al., 2015) (, which is hereinafter5

referred to as OBS).

This methodology uses the difference between model and measurements to calculate a non-physical forcing term that which

is added to the governing conservation equations of the simulation to gradually nudges the model towards the observation

(see equation 1) (Stauffer et al., 1991; Deng et al., 2007). Each simulation is composed of three nested domains with 27-, 9-

and 3-km grid spacing and horizontal grid dimensions of about 120 × 120 elements at 60 pressure heights along the terrain10

following vertical hybrid pressure coordinate η. Differences between the simulation runs (see section 3.1) are compared within

the innermost domain of the simulation. Output data was stored in 10 min intervals. Figure 2 shows the topography map of the

simulation. Initial and boundary conditions of both simulations are based on the ERA-Interim (Dee et al., 2011) reanalysis data

set by the European centre for medium-range weather forecasts (ECMWF) which consists of 6 hourly atmospheric fields with a

spatial resolution of roughly 80 km horizontally and 60 η levels. Turbulent Kinetic Energy closure within the ABL was achieved15
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(a) Three nested WRF domains (b) Inner WRF domain

Figure 2. Topography map of all three WRF model domains (a) and a magnification of the innermost domain (b) with the LiDAR

measurement site marked by a white X.

by using the Mellor Yamada Nakanishi Niino (MYNN) 2.5 scheme which predicts sub-grid turbulent kinetic energy (TKE)

as a prognostic variable (Nakanishi and Niino, 2004; Lee and Lundquist, 2017). The Noah-MP land-surface model, MYNN

surface layer scheme were used. The rrtm long wave radiation and Dudhia short wave radiation scheme were used (see: table

A1 in the appendix). In addition to observation nudging (see subsection 3.1) analysis nudging was performed on every domain

of each simulation . where Analysis nudging nudges each grid point is nudged towards a time-interpolated value from gridded

analyses of synoptic observations (Stauffer et al., 1991) whereas observation nudging directly drives the simulation towards5

the additional observations. Within the planetary boundary layer (PBL) of the inner domain analysis nudging was switched off

(see nudging settings in table A1 in the appendix). All simulations were run on the EDDY citation replaced with footnote 1

High-Performance Computing clusters at the University of Oldenburg. Table 1 summarizes the WRF domain size.

1EDDY: HPC cluster at the Carl von Ossietzky Universität Oldenburg, see: https://www.uni-oldenburg.de/fk5/wr/hochleistungsrechnen/hpc-facilities/eddy/
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Table 1. Resolution and grid size of WRF domains

Name domain size grid spacing temporal

resolution

[km x km] [km x km] [sec]

Domain 1 3240x3240 27 x 27 90

Domain 2 1080x1080 9 x 9 30

Domain 3 360x360 3x 3 30

3.1 Observation Nudging

Observation nudging also referred to as ‘dynamic analysis’ is a form of four-dimensional data assimilation (FDDA) where

each grid point within the radius of influence and time window is nudged towards observations using a weighted average of

differences between model (qm interpolated at the observation location) and observations (qo) (Dudhia, 2012; Reen, 2016).

In this study horizontal wind speed U and direction Φ were nudged towards measurements with a time interval of six hours

between an altitude of 66 m and 1100 m, in order to not overly constrain the simulation. Nudging could not be performed at5

times and altitudes where LiDAR data was not available. The non-physical forcing term is implemented in form of prognostic

equations (Deng et al., 2007):

∂qµ

∂t
(x,y,z, t) = Fq(x,y,z, t) +µGq

∑N
i=1W

2
q (i,x,y,z, t) [qo(i)− qm(xi,yi,zi, t)]∑N

i=1Wq(i,x,y,z, t)
(1)

q refers to the quantity that is nudged, µ is the dry hydrostatic pressure, Fq(x,y,z,t) is the physical tendency term of q, Gq is

the nudging strength of q, N is the total number of assimilated observations, i is the index of the current observation, Wq is the10

weighting function based temporal and spatial separation between grid cell and observation (Dudhia, 2012). Four weighting

functions Gq , Wt(x,y,z, t), Wz(x,y,z, t) and Wxy(x,y,z, t) describe the temporal and spatial nudging strength. Values used

in this study can be found in the appendix (table A1). The inverse of Gq (here about 1/6e−4s 1/6 10−4s ≈ 46 min) can be

interpreted as a nudging time scale as it dictates how quickly the model approaches the observation.

Wxy andWz define the spatial nudging weight while the temporal weighting functionWt defines the duration and weighting15

strength in time. Wt ramps from 0 to 1 and back to 0 (Reen, 2016). The nudging time window and the time between imple-

mented observations was chosen to be 6 hours so that the implemented observations don’t overlap each other. This ensures all

time steps are nudged while not excessively limiting the model.

Vertical influence was set very small so that observations only affect their own η level (Dudhia, 2012). The horizontal

weighting factorWxy (see equation: 2 is calculated based on the radius of influence R and the distance between the observation20
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and the grid locationD. We used the ‘Cressman scheme’ as the horizontal nudging weighting function with a radius of influence

of R= 180 km, thereby containing affecting the whole inner domain.

wxy =

 R2−D2

R2+D2 0≤D ≤R
0 else

(2)

4 Results

It is important to keep the differences in temporal and spatial resolution between LiDAR measurements and WRF simulation

in mind. Furthermore, data availability highly influences the ability to nudge the simulation (see section 2) and compare wind5

speed statistics.

To quantify the local effect of observation nudging, we investigate the cell closest to the LiDAR measurement location

and compare measured and modeled horizontal wind speeds U and direction. Additionally we investigate several sections

at different locations and altitudes within the inner domain to quantify the spatial and temporal impact of single location

observation nudging on the entire domain. Vector values of each WRF cell are calculated on the faces of each cell, linearly10

interpolated to the cell center and rotated from the grid projection to earth coordinate system.

4.1 Impact of nudging on wind statistics

Figure 3 shows the scatter plots of measured and simulated horizontal wind speed at various altitudes for times at which

LiDAR data is available. The continuous line represents the linear regression of the data (regression coefficient is displayed

in the legend) while the dotted line shows an ideal correlation. The color of the scatter points corresponds to the occurrence15

probability frequency of occurrence. Multiple wind speed clusters caused by stratification can be identified. While there is

a trend towards higher wind speeds with increasing altitude, low wind speeds (<8 6 m/s) still occur at high-altitudes. Both

simulations overpredict horizontal wind speeds at low-altitudes which is a known problem of WRF and could be attributed

to the model not resolving sub-grid scale roughness elements properly (e.g. modeling strongly simplified parameterization of

forests and/or cities) or flaws in the planetary boundary layer model which lead to overly geostrophic winds over land (Mass and20

Ovens, 2011). Observation nudging improves the overall correlation with measurements at the measurement location as surface

influence decays. Both models approach similar values at higher altitudes which could be caused by the lack of observations

and therefore observation nudging due to reduced data availability or is indicative of WRF generally being better at modeling

more geostrophic winds.
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(a) LiDAR-NoOBS z ≈ 100m
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(b) LiDAR-OBS z ≈ 100m
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(c) LiDAR-NoOBS z ≈ 300m
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(d) LiDAR-OBS z ≈ 300m
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(e) LiDAR-NoOBS z ≈ 500m
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(f) LiDAR-OBS z ≈ 500m

Figure 3. Linear Regression of LiDAR-measured wind speeds against NoOBS-modeled (WRF ‘baseline run’ without observation nudging)

wind speeds (left side) and OBS-modeled (‘test run’ with obsgrid observation nudging) wind speeds (right side), at 100 m (a-b), 300 m (c-d),

500 m (e-f) updated legend

The statistical analysis of the absolute difference between the WRF simulated quantities at the measurement location and the25

LiDAR observations (∆U = UWRF −ULiDAR; ∆Φ = ΦWRF −ΦLiDAR wrapped on an interval between [−π,π]) is shown

in figure 4 in form of a box plot. The circle corresponds to the median, the colored box indicate the 25 % and 75 % percentile

8



and the whiskers to both sides mark ±2.7 times standard deviation (σ). Outliers beyond ±2.7σ are hidden to maintain clarity

and readability. The continuous line in the left sub-figure represents the root mean square error (RMSE) of wind speed between

the measured ULiDAR and simulated wind speed UWRF . The unnudged simulation (NoOBS) shows an almost constant wind

direction bias at all altitudes.

observation nudging (OBS) generally outperforms NoOBS and is in better agreement with the measurements particularly at

altitudes of interest to high-altitude wind energy systems. It furthermore reduces the spread of the bias, illustrated by the smaller5

whiskers and boxes. The RMSE ∆U of both simulations shows similar results for both simulations below 100 m and above

700 m. The largest improvement or smallest error can be found between 250 m 300 m and 600 m. This could be explained by

a better performance of the mesoscale model at these altitudes due to a reduced impact of the air surface interaction that which

is strongly parameterized or due to a reduced nudging due to low LiDAR data availability.
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Figure 4. Statistical analysis of the bias between simulated and measured wind speed (∆U ) and direction bias (∆Φ). The circle corresponds

to the median, the colored box indicates the 25 % and 75 % percentile and the whiskers mark ±2.7σ. The solid lines in the left figure show

the RMSE between the modeled and measured wind speed. changed caption to include RMSE

The NoOBS shows an almost constant wind direction bias at all altitudes. Observation nudging substantially reduces the10

directional bias ∆Φ up to high-altitudes as can be seen in the right box plot in figure 4. Similar to the wind speed bias, wind

direction bias at 1100 m is almost the same for both simulations. The negative wind direction bias represents an anti-clockwise

deviation. Other studies (Carvalho et al., 2014; Giannakopoulou and Nhili, 2014) have found similar wind direction biases.

A possible reason for this systematic bias error is that WRF does not adequately resolve surface roughness resulting in lower
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surface friction leading to overly geostrophic winds (Mass and Ovens, 2010). The almost constant median wind direction bias15

indicates that WRF is able to capture the clockwise rotation of the ‘Ekman Spiral’ in the Northern hemisphere.

4.2 Representative nudging results

We compare 10 min mean horizontal wind speed for 24 hours on the 21st of September 2015 in figure 5 (an additional day

can be found in the appendix figure A1) to visualize the impact of observation nudging on the mesoscale model output. White

space in the LiDAR measurements (see figure 5a) are data points that have been filtered out due to insufficient data quality.5

The dashed line is the WRF modeled SHF used to estimate atmospheric stability (see sub-section 4.5). The color of the profiles

indicate the wind direction and LiDAR measured profiles are shown in grey for comparison. The black dot in each profile

marks the altitude of highest wind speed while the black circle indicates the optimal altitude for the operation of an airborne

wind energy system based on a simplified power approximation (see section 4.7). However, the single point representation is

only a rough measure of operational altitude since AWES generally sweep a range of altitudes.10

Even though observation nudging leads to statistical improvements in wind speed and wind direction prediction over the

entire period (compare sub-section 4.1 and 4.4), individual days can still show a decline in model accuracy. The low level jet

(LLJ) as well as the high wind speeds at higher altitudes, which the NoOBS model captures fairly well, are significantly weaker

in the OBS model. Implementing additional measurements at a higher frequency might yield results closer to measurements,

but adding too many unphysical forcing terms might overly restrict the simulation.15

The planetary boundary layer height (PBLH) (black line), which in the MYNN scheme is calculated from the profile of

virtual potential temperature and from the profile of the TKE (Brunner et al., 2015; Nakanishi and Niino, 2004), is directly

affected by wind speed observation nudging. During the investigated day, observation nudging leads to a lower daytime PBLH.
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Figure 5. Visualization of modeled and measured 10 min mean wind speed, wind direction for 21st September 2015. The respective top

figure shows the wind speed and WRF calculated SHF (dashed line). The bottom figure shows each hours 10 min mean wind speed profile

colored according to wind direction. X marks the altitude of highest wind speed and © the optimal operating altitude calculated as described

in section 4.7
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4.3 Spatial influence

Single location observation nudging influences the area within the radius of influence (Rxy = 180 km, see table A1 in the

appendix) which here includes the entire inner domain (150 km × 150 km). Figure 6 shows the mean absolute difference of

horizontal wind speed (∆U = |UOBS | − |UNoOBS |) between the OBS and NoOBS model along lines of constant longitude

and latitude for the entire simulation period. The grid cell where observations were assimilated is indicated by the vertical line

and highlighted by the square marker. The four colors indicate different altitudes. As the outer domains remain unnudged, the5

boundary conditions of the inner domain remain the same which leads to the rapid decline in absolute difference towards the

outside of the domain. The difference in wind speed ∆U 6= 0 does not go to exact zero, because results are interpolated to the

center of each grid cell. Near surface results close to the measurement location , which is highlighted by the black vertical

line, experience the largest change in wind speed especially close to the surface (red line, z = 12 m). The asymmetry could be

caused by the downstream transportation of nudging effects (dominant wind direction: West).10
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Figure 6. Mean absolute wind speed difference ∆U along lines of constant longitude (top a) and latitude (bottom b) within the nudged

domain. Approximate distance of d3 ≈ 180km (dotted lines), d2 ≈ 75 km (dashed lines), d1 ≈ 0 km (solid line) from the center (Lat: 53◦

10’ 47.00"N, Lon: 12◦ 11’ 20.98"E) Vertical line highlights the grid cell closest to observation.reduced size of figures to fit next to each

other

The effect of observation nudging on horizontal wind speed remains almost unchanged along lines of constant longitude or

latitude. The difference peaks between 400 m and 600 m and drops towards higher altitudes (as seen in figure 7) which shows

the average absolute difference in wind speed along a slice of constant longitude and latitude through the center cell of the

inner domain for the entire simulation period. Wind speeds at low and high-altitudes are less affected by nudging while OBS

wind speeds at mid-altitudes throughout the entire domain tend to be lower than the reference NoOBS. This can be attributed15

to surface and geostrophic effects dominating over observation nudging. The reduction in available high-altitude LiDAR data

(see section 2) also reduces the effect of high-altitude nudging.
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Figure 7. Absolute difference in horizontal wind speed ∆UWRF along lines of constant longitude (Lon: 12◦ 11’ 20.98"E) and constant

latitude (Lat: 53◦ 10’ 47.00"N) through the center nudging point (i.e. the LiDAR measurement location).

4.4 Diurnal Variability

Average diurnal variation indicates typical wind speed variations for a given location and period. It further reinforces the benefit

of dynamically adapting operating altitudes of AWES. The hourly average LiDAR wind speed depends on data availability
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described in section 2. LiDAR availability below 100m on average decreases by about 10 percentage points during the noon

hours, while it remains fairly constant at altitudes between 100m and 300m. Above this altitude, data availability increases in

the afternoon by up to about 15 percentage points (Sommerfeld et al., 2019).

Figure 8 shows the LiDAR measured and mesoscale modeled diurnal wind speed variation at the measurement location

filtered by LiDAR availability, i.e. times where no LiDAR data were available were disregarded. A clear diurnal wind speed

variation resulting from the cycle of stable and unstable stratification can be identified. On average OBS shows lower hourly5

wind speeds than NoOBS and is closer to measurements. The diurnal variation of the 6 months OBS, the 6 months NoOBS

the 12 months NoOBS unfiltered data sets (Figure 9) deviate significantly from the measurements. Observation nudging leads

to overall lower wind speeds and wind shear throughout the day in the unfiltered data set. Due to the large difference in

average measured and unfiltered modeled diurnal wind speeds, it seems that LiDAR measurements alone can not appropriately

represent average wind conditions aloft due to availability bias which also has been observed at other locations (Gryning and10

Floors, 2019). Therefore, we believe that the nudged data set yields more representative results than the unnudged model or

the measurements alone.
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Figure 8. Hourly average diurnal variation of LiDAR measured (top), OBS (center) and NoOBS (bottom) modeled horizontal wind speed U

filtered by LiDAR availability.
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Figure 9. Hourly average diurnal variation of unfiltered OBS (top), 6 months NoOBS (center) and 12 months NoOBS (bottom) modeled

horizontal wind speed U filtered by LiDAR availability.

4.5 Wind speed probability distribution

The common way to approximate the probability distribution of the horizontal wind speed f(U) is the Weibull distribution fit

(eq. 3) which describes the statistical distribution as a function of the scale parameter A and the shape parameter k (Troen and

Lundtang Petersen, 1989).

fWeibull(u) =
k

A

( u
A

)k−1

e−( u
A )

k

(3)

Previous investigation of the LiDAR measurements showed a multi-modality in the wind speed probability distribution5

caused by different atmospheric stability (Sommerfeld et al., 2019). The left column in figure 10 visualizes the entire wind

speed probability distribution. Its corresponding Weibull fit is shown in the center column and the difference between both

can be found on the right hand side. Each row summarizes the various data sets first 6 months LiDAR, then 6 months OBS, 6

months NoOBS followed by 12 months NoOBS.
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Figure 10. Probability distribution (left), Weibull fit (center) and difference between both (right) of 6 months LiDAR measurements (top

row), 6 months OBS model (second row), 6 months NoOBS model (third row) and 12 months NoOBS (bottom row). The entire, (not filtered

by LiDAR data availability) was used for the WRF data set.

All 6 months data sets show a high occurrence of low and high wind speeds which indicates a multi-modal probability10

distribution. This effect is most pronounced in the LiDAR data set. The comparison of wind speed PDF with the Weibull fit

(right column) further emphasizes the multi-modality as a simple Weibull fit is not able to capture the higher probability at low

and high wind speeds. These distinct flow situations further drift apart with increasing surface-distance. As a result the Weibull

distribution overestimates the occurrence of wind speeds in between the two peaks (blue area in right column). Both OBS and

NoOBS slightly overestimate low altitude wind speed (see figure 4) compared to LiDAR measurements. Both models and the5

LiDAR measurements show a broadening of the probability distribution towards higher altitudes. High wind speeds become

more likely while low wind speeds still occur. Therefore, AWES need to be able to operate in a wide range of wind speeds or be

controlled in a way that they avoid extreme conditions. The 12 months NoOBS simulation shows lower wind speeds than the

6 months simulations as the included summer months generally have lower wind speeds due to higher probability of unstable

stratification due to the lower synoptic pressure gradients.10

The Weibull fit of this simulation tends to overestimate higher wind speeds and underestimate low wind speeds at all alti-

tudes.
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We use the sign Using the sign of the WRF-calculated SHF as a simple proxy to differentiate stable and unstable wind

conditions similar to (Sommerfeld et al., 2019). The wind speed probability distribution follow the expected trends of low

wind shear during unstable stratification and higher wind shear and wind speeds during stable stratification (Arya and Holton,

2001). Observation nudging reduces the occurrence of high wind speeds at high-altitudes in comparison to NoOBS and leads

to an increase in the probability of wind speeds around 5 m/s during times of positive SHF. The Weibull distribution fit of these

sub-states is generally better at representing the modeled wind conditions.5

Figure 11 shows the scale parameter A, shape parameter k and Hellinger distance H (Upton and Cook, 2008) between the

wind speed PDF and the corresponding Weibull distribution fit for LiDAR (1st row), 6 months OBS (2nd row), 6 months

NoOBS (3rd row) and 12 months NoOBS (4th row).

The different trends under positive and and negative SHF of both Weibull parameters visualize the existence of entirely

different flow regimes. The Hellinger distance between the Weibull fit and PDF (negative SHF: blue and positive SHF: red),10

the total data and a simple fit (black) as well as between the total data and the weighted sum of both Weibull fits (green) is

shown in the right graph. All WRF models show an overall smaller H than a similar analysis of the LiDAR data set (see

(Sommerfeld et al., 2019). The sharp bend in both A and k of the LiDAR data above 750 m is likely caused by insufficient

data availability. NoOBS results show a sharp increase of A up to 250 m and a slight reduction above while OBS shows a trend

close to the surface, A values remain almost constant above 500 m. No data set shows a convergence of A at higher altitudes15

indicating that these wind conditions are driven by different conditions in the free atmosphere. 12 months NoOBS simulations

show lower scale parameter values as they include generally slower winds during summer. While A trends are quite different

for LiDAR and WRF, k trends are more similar. They peak between 150 and 250 m and are especially high during stable

stratification (Monahan et al., 2011). OBS trends of k are generally closer to measurement results than NoOBS.

Even though the Hellinger distance of individual Weibull fits for times of positive or negative SHF is generally higher than20

the Weibull fit of the entire data set, the weighted sum of both individual fits yields the best result at all altitudes.
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Figure 11. Weibull parameter trends over altitude and goodness of fit quantified by the Hellinger distance (right) over altitude for 6 months

of LiDAR measurements (1st row), the 6 months OBS model (2nd row), 6 months NoOBS model (3rd row) and the 12 months NoOBS

model (4th row)

4.6 Effect of stability on average wind shear

Atmospheric stability highly influences the shape of wind speed profiles which is important for determining optimal operating

conditions for AWES (see section 4.7). We quantify the impact of observation nudging on various Stability classes were

categorized based on defined by the Obukhov length OL (Obukhov, 1971) . calculated from OL is defined by the simulated

friction velocity u∗, virtual potential temperature θv , potential temperature θ, kinematic virtual sensible surface heat flux QS ,

kinematic virtual latent heat flux QL, the von Kármán constant k and gravitational acceleration g. Table 3 summarizes the5

frequency of occurrence of each stability class.

LWRF =
−u3∗θ
kgHsfc

(4)

OL=

(
−u3∗θv
kg

)(
1

QS
+

0.61

QLθ

)
(5)
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Table 3 summarizes the Obukhov length bins and frequency of occurrence of each stability class.10

Table 2. Stability classes according to Obukhov length (OL)calculated based on WRF results (Floors et al., 2011)

Stability classes L [m] # OBS 6 mon # NoOBS 6 mon # NoOBS 12 mon

Unstable (u) −200≤ LWRF ≤−100 1509 1042 3827

Near unstable (nu) −500≤ LWRF ≤−200 2121 1658 3736

Neutral (n) |LWRF | ≥ 500 7342 7648 10756

Near stable (ns) 200≤ LWRF ≤ 500 4791 4987 6590

Stable (s) 50≤ LWRF ≤ 200 4862 4861 9114

Very stable (vs) 10≤ LWRF ≤ 50 1567 1765 5306

Other −100≤ LWRF ≤ 10 3729 3960 13231

Table 3. Stability classes according to Obukhov length calculated based on WRF results (Floors et al., 2011)

Stability classes L [m] OBS 6 mon NoOBS 6 mon NoOBS 12 mon

Unstable (u) −200≤OL≤−100 5.8 % 4.0 % 7.3 %

Near unstable (nu) −500≤OL≤−200 8.2 % 6.4 % 7.1 %

Neutral (n) |OL| ≥ 500 28.3 % 29.5 % 20.5 %

Near stable (ns) 200≤OL≤ 500 18.5 % 19.2 % 12.5 %

Stable (s) 50≤OL≤ 200 18.8 % 18.8 % 17.3 %

Very stable (vs) 10≤OL≤ 50 6.0 % 6.8 % 10.1 %

Other −100≤OL≤ 10 14.4 % 15.3 % 25.2 %

In comparison with the unnudged simulation, OBS shows an increase in unstable and near unstable situations. Stable and

near stable stratification seems almost unaffected by OBS nudging, while neutral and very stable stratification occur slightly less

often. This might improve the overall predicting capabilities of WRF as the MYNN 2.5 boundary layer scheme overestimates

the frequency of very stable conditions with an error of up to 9 % (Krogsæter and Reuder, 2015). Neutral conditions, still

commonly used in many wind energy siting applications, only occur about 30 % of the time during the measurement period5

and only about 20 % of the time during the one year reference NoOBS simulation.
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Figure 12 shows the mean wind speed profiles categorized and normalized by the corresponding friction velocity u∗.

We assumed that The nudged simulation OBS is assumed to be sufficiently close to the measurements and is therefore used to normalize and categorize ULiDAR, since no heat flux or friction velocity measurements are available.

the same categorization as in OBS, since no measurements were available to determine LLiDAR. All profiles follow expected

trends with unstable profiles showing the smallest wind shear and stable profiles showing the largest. Altitudes below 200 m

are least affected by observation nudging as OBS remains almost unchanged from NoOBS (see section 4.1). Both models are

in good accordance with measurements during unstable and near unstable conditions. The stable and very stable profiles of the5

unnudged simulation show a peak at around 300 m which is indicative of a characteristic low level jet. The more irregular trend

of the very stable LiDAR data set could be caused by a small sample size since only 5 % of the overall data is considered very

stable.
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Figure 12. 6 months mean HWS profiles of LiDAR, OBS and NoOBS data classified by stability class defined by Obukhov length (table 3).

Expanding on the previous approach (subsection 4.5) of splitting the data into times of positive and negative SHF to

differentiate states of unstable and stable stratification, we make use of k-means clustering (Lloyd, 1982) to identify two10

additional sub-states : stable and very stable as well as unstable and shear driven. to better differentiate between the different flow situations associated with very stable and stable stratification.

We chose To differentiate additional two sub-states which identify stable and very stable as well as unstable and shear driven

conditions. LiDAR results for reference can be found in (Sommerfeld et al., 2019).

Figures 14 to ?? shows the probability distribution of each sub-state the different stability categories for each model

simulation with the cluster centroids mean highlighted by white squares. All clusters categorize show distinct trends and15

distributions that are consistent between data sets , which contribute to the multi-modality of the overall wind speed probability
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distribution. The difference in high-altitude wind speeds between stratifications indicate the influence of different geostrophic

wind conditions. The categorization by OL is based on surface data and seems to be valid within the lower part of the

atmosphere where the spread of the corresponding probability distribution is relatively small in comparison to high altitudes.

This is particularly true for stable and neutral stratification where wind speeds above approximately 200 m spread widely.

Unstable conditions are probably more consistent because of increased mixing up to high altitudes. Altitudes below 200 m

are least affected by observation nudging as OBS remains almost unchanged from NoOBS (see section 4.1). Stable profiles5

show a peak at around 300 m which is indicative of a characteristic low level jet. Comparing OBS and NoOBS 6 months,

observation nudging seems to reduce the spread at higher altitudes within each category except very stable. The impact of

observation nudging on wind profiles during unstable stratification is relatively low while wind speed profiles under neutral

and stable stratification are more affected. The top left plot in each figure shows the probability distribution of a typical unstable

stratification with low wind shear all the way up to 1100 m. The top right plot shows statistics of shear-driven wind profiles10

that occur during times of positive SHF. Stable (bottom right) and very stable stratification (bottom left) are characterized by

strong wind shear and higher average wind speeds. NoOBS predicts a higher chance of wind speed reduction during very stable

stratification above 600 m while wind speeds in OBS steadily increase up to 1100 m. Both models indicate the existence of

LLJ during stable stratification between 200 and 400 m. The difference in high-altitude wind speeds indicate the influence of

different geostrophic winds.15
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12 months NoOBS data.

4.7 Optimal operating altitude and power production

We estimate optimal operating altitude and traction power of a ground-generator AWES using a simple ground-generator

(pumping-mode) AWES point-mass model adapted from (Schmehl et al., 2013). We focus on 6 months OBS as we previously

proved increased accuracy and use 12 months NoOBS to estimate annual values. The estimated optimal power per unit lifting

area of the wing popt is described by:

popt =
ρair

2
U3
√
c2L + c2D

[
1 +

(
cL
cD

)2
]
fopt (cosεcosφ− fopt)2 =

2

27
ρairU

3
√
c2L + c2D

[
1 +

(
cL
cD

)2
]

cosε3 (6)5

Air density ρair is calculated by a linear approximation of the standard atmosphere (ISO 2533:1975) (ρair(z) = 1.225−
0.00011z [kgm−3]. Losses associated with misalignment of mispositioning of the aircraft relative to the wind direction and

the aircraft position , expressed by azimuth angle φ and elevation angle ε relative to the ground station, are included in the

model. Additional losses caused by gravity , tether sagging and tether drag are neglected. As a result, lift FL and drag FD

force and therefore lift (cL =1.7) and drag coefficient and drag coefficient (cD =0.06) , which are assumed to be constant,10

are geometrically related to the radial (va,r = (cosεcosφ− f)U ) and tangential (va,t = (cosεcosφ− f)U FL

FD
) apparent wind

velocity components. The tether speed vt is non-dimensionalized in the form of the reeling factor (f = vt
U ). Assuming an

optimal non-dimensional reeling factor tether speed (fopt = 1
3 cosεcosφ) and a quasi-steady state with the wing moving di-

rectly cross-wind with a zero azimuth angle (φ= 0) relative to the wind direction we can estimate the optimal traction power.
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Optimal elevation angle (εopt) and operating altitude (zopt) are geometrically related to the assumed to be constant tether length15

(Ltether) (sinεopt =
zopt

Ltether
).

Figure 16 summarizes the probability distribution of optimal operating altitude and optimal power assuming a constant tether

length of 1500 m. with The white solid line showsing the cumulative frequency of optimal operating altitude. Both simulations

for this particular location and time period show similar trends with the most probable optimal altitude between approximately

200 and 400 m. Times of very high traction power are fairly rare and likely associated with low level jets. Lower power at5

higher altitudes is caused by the misalignment losses. Here we assume a constant tether length of 1500 m.
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Figure 16. Probability of optimal traction power over optimal operating altitude based on 6 months OBS (top) and 12 months NoOBS

(bottom) assuming a constant tether length of 1500 m. The continuous white line shows the frequency of optimal operating altitude for the

whole power range (top abscissa axis).

Figure 18 estimates the optimal traction power and operating altitude as a function of tether length based on the mean

wind speed profile of atmospheric stability condition (figure: 14) clustered average profiles shown in figure 14. The tether

length of each estimation is assumed to be constant and used to calculate the optimal elevation angle. The axis limits of

different atmospheric conditions had to be adjusted as the calculated power varied in order of magnitudes. All estimates show

diminishing benefits of a longer tether. These incremental gains would probably be negated by additional drag and weight

associated losses. Winds during times of very stable and unstable stratification lead to a clear optimal altitude independent of5

tether length between 200 and 400 m while weakly stable and shear-driven wind speed profiles lead to higher optimal operating

altitudes and a broader range of optimal altitudes as a function of tether length.
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Figure 17. Optimal traction power per wing area popt (dashed lines) and optimal operational altitude (solid line) estimated based on mean

k-means-clustered SHF-sampled wind speed profiles of 6 months OBS, 6 months NoOBS and 12 months NoOBS simulation for varying

tether length (L = 500 - 2500m)
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Figure 18. Optimal traction power per wing area popt (dashed lines) and optimal operational altitude (solid line) estimated based on mean

wind speed profiles categorized by Obukhov length (OL) for 6 months OBS, 6 months NoOBS and 12 months NoOBS simulation with

varying tether length (L = 500 - 2500m)

5 Conclusion

Six months of LiDAR measurements up to 1100 m were assimilated into a mesoscale model WRF using observation nudging.

An unnudged reference model (NoOBS), the nudged model (OBS) outputs and LiDAR measurements were compared in terms

of wind speed and direction statistics, wind profile shape at the measurement site as well as spatial differences were quantified.

Observation nudging only has marginal impact on simulated surface layer wind speeds as ground effects dominate the WRF

model. Wind speeds between 300 and 500 m were most affected by observation nudging. Modeled wind speeds at these5

altitudes are statistically closest to measurements, making this an excellent adequate approach for resource assessment of mid-

altitudes wind energy systems as measurement availability decreases. The impact of nudging weakens above these altitudes.

Whether this is caused by lower measurement data availability or a generally higher better performance of the mesoscale

model above the surface layer could not be determined. Observation nudging reduced the seemingly systematic wind direction

bias between simulation and measurements at all altitudes. Due to the lack of high-resolution measurements at high-altitudes,10

unnudged mesoscale model data present the best we have got in terms of preliminary resource assessment.

Filtering the mesoscale model data according to LiDAR data availability yields similar diurnal variation with OBS be-

ing closer to measurements. Comparing the diurnal variation of the unfiltered model wind speeds to measurements shows
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a significant deviation which is likely caused by insufficient LiDAR data availability at higher altitudes. The bias between

real and LiDAR measured wind speed, which depends on the applied CNR threshold and data availability, can result in a

misrepresentation of the actual wind conditions especially at higher altitudes. Mesoscale models, particularly with observation

nudging, can be used to account for this error. LiDAR measurements seem to be biased towards high wind speeds as measured

winds are generally higher than the unfiltered mesoscale model data. The impact of observation nudging on the wind profiles

in case of an unstably stratified boundary layer is relatively low while wind speed profiles under stable stratification are sig-5

nificantly affected. and At the measurement location OBS is overall closer to measurements especially between 200 and 600

m. Variations of stratification, primarily those associated with the diurnal cycle, lead to a multi-modal wind speed probability

distribution which is better represented by the weighted sum of two Weibull fits than by a single Weibull fit.

Optimal AWES operating altitudes and power output per wing area were estimated based on a simplified model for six

months of OBS and twelve months of NoOBS. The model neglects kite and tether weight as well as tether drag. Accounting10

for these losses, which are proportional to tether length, will reduce the performance of the AWES. Results for both wind speed

data sets show the highest potential at an altitude between 200 and 600 m above which the losses associated with the elevation

angle are too high. A comparison of different tether lengths under average wind speeds associated with different atmospheric

stability conditions show diminishing returns in terms of power output for tether lengths longer than 1500 m. While higher

altitudes can be potentially be reached, optimal operating altitude remains almost unchanged. The highest energy potential15

and operating altitude is associated neutral and stable stratification. Unstable conditions result in significantly lower energy

potential due to lower, almost altitude independent average wind speeds.

Using a simplified AWES model , assuming a constant tether length of 1500 m and neglecting drag and weight all data sets

suggested an optimal operating altitude between 150 and 400 m. However, since stratification leads to a vast range of wind

speed profiles AWES greatly benefit from dynamically adapting their operating altitude to maximize power production and20

minimize losses.

Future studies include using the enhanced mesoscale model output to drive large-eddy simulations, to provide a better insight

into mid-altitude turbulence. The resulting data set will lead to the development of a mid-altitude engineering (spectral) wind

model which can be used for design, load estimation, control and optimization of Airborne Wind Energy Systems. Mesoscale

model data could will be implemented into an AWES optimization framework to quantify the impact of various wind speed25

profiles on power production, optimal trajectory and system size. Furthermore, the possibility of merging the mesoscale output

with LiDAR measurements to fill gaps in the measurement data set to reduce the wind speed bias introduced by LiDAR

availability is being investigated.

27



28



6 Appendix

0

250

500

750

1000

1250

A
lt
it
u
d
e
 [
m

]

-50
0

100

200

S
H

F
 [
W

/m
2
]

0

5

10

15

20

U
 [

m
/s

]

11-Sep-2015 12:00:00 18:00 00:00 06:00 12-Sep-2015 12:00:00

Date and Time (UTC)

0

250

500

750

1000

1250

A
lt
it
u
d
e
 [
m

]

0° N

90° E

180° S

270° W

360° N

U
 d

ir
e
c
ti
o
n

0 15

HWS [m/s]

(a) NoOBS

0

250

500

750

1000

1250

A
lt
it
u

d
e

 [
m

]

-50
0

100

200

S
H

F
 [

W
/m

2
]

0

5

10

15

20

U
 [

m
/s

]

11-Sep-2015 12:00:00 18:00 00:00 06:00 12-Sep-2015 12:00:00

Date and Time (UTC)

0

250

500

750

1000

1250

A
lt
it
u

d
e

 [
m

]

0° N

90° E

180° S

270° W

360° N

U
 d

ir
e
c
ti
o
n

0 15

HWS [m/s]

(b) OBS

0
100
200
300
400
500
600
700
800
900

1000
1100

A
lt
it
u
d
e
 [
m

]

-50
0

100

200

S
H

F
 [
W

/m
2
]

0

5

10

15

20

U
 [

m
/s

]

11-Sep-2015 12:00 18:00 00:00 06:00 12-Sep-2015 12:00

Date and Time (UTC)

0
100
200
300
400
500
600
700
800
900

1000
1100

A
lt
it
u
d
e
 [
m

]

0° N

90° E

180° S

270° W

360° N

U
 d

ir
e

c
ti
o

n

0 15

HWS [m/s]

(c) LiDAR

Figure A1. Contour plot and U profile; instead plot contour plots beneath each other and all profiles in 1 plot?
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Table A1. Namelist parameters for WRF 3.6.1 observation nudging settings

WRF input parameter value

grid_fdda 1,1,1,

gfdda_inname "wrffdda_d<domain>",

gfdda_end_h 99999, 99999, 99999,

gfdda_interval_m 360, 360, 360,

fgdt 0, 0, 0,

if_no_pbl_nudging_uv 0, 0, 1,

if_no_pbl_nudging_t 0, 0, 1,

if_no_pbl_nudging_q 0, 0, 1,

if_zfac_uv 0, 0, 0,

k_zfac_uv 0, 0, 30,

if_zfac_t 0, 0, 0,

k_zfac_t 0, 0, 30,

if_zfac_q 0, 0, 0,

k_zfac_q 0, 0, 30,

guv 0.0003, 0.0003, 0.0003,

gt 0.0003, 0.0003, 0.0003,

gq 0.0003, 0.0003, 0.0003,

if_ramping 1,

dtramp_min 60.0,

io_form_gfdda 2,

30



WRF input parameter value

obs_nudge_opt 0,0,1

Cressman Scheme 1

time_step 60

obs_rinxy 240,240,180

obs_rinsig 0.1

obs_twindo 3, 3,3

auxinput11_interval_s 360, 360, 360

obs_dtramp 40

obs_nudge_wind 1,1,1

obs_coef_wind 6.E-4,6.E-4,6.E-4

iobs_onf 2,2,2

auxinput11_interval_s 360, 360, 360

auxinput11_end_h 6, 6, 6

if_no_pbl_nudging_uv 0, 0, 1

if_zfac_uv (max_dom) 0,0,30

sf_sfclay_physics 5, 5, 5

sf_surface_physics 4, 4, 4

bl_pbl_physics (max_dom) 5, 5, 5

bl_mynn_tkeadvect .true.,.true.,.true.

ra_lw_physics 1 ,1,1

ra_sw_physics 1 ,1,1

mp_physics 5, 5, 5
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