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Abstract. Turbines in wind power plants experience significant power losses when wakes from upstream turbines affect the
energy production of downstream turbines. A promising plant-level control strategy to reduce these losses is wake steering,
where upstream turbines are yawed to direct wakes away from downstream turbines. However, there are significant uncertain-
ties in many aspects of the wake steering problem. For example, in-field sensors do not give perfect information and inflow
to the plant is complex and difficult to forecast with available information, even over short time periods. Here, we formulate
and solve an optimization under uncertainty (OUU) problem for determining optimal plant-level wake steering strategies in the
presence of uncorrelated uncertainties in the direction, speed, turbulence intensity, and shear of the incoming wind, as well as
in turbine yaw positions. The OUU wake steering strategy is first examined for a two-turbine test case to explore the impacts
of different types of inflow uncertainties, and is then demonstrated for a more realistic 11-turbine wind power plant. Of the
sources of uncertainty considered, we find that wake steering strategies are most sensitive to uncertainties in the wind speed
and direction. The OUU strategy also tends to favor smaller yaw angles when maximizing expected power production. Ulti-
mately, the plant-level wake steering strategy formulated using the OUU approach yields 0.48% more expected annual energy
production than the deterministic strategy when considering stochastic inputs. Thus, not only does the present OUU strategy

produce more power in realistic conditions, it also reduces risk by prescribing strategies that call for less extreme yaw angles.

1 Introduction

A key determinant in the profitability of a wind power plant is its annual energy production (AEP). The traditional strategy
for increasing AEP has been to control each turbine in the plant such that single-turbine power generation is maximized,
irrespective of the generation by other turbines. Plant-level control, by contrast, is an innovative approach that has the potential
to further optimize wind plant performance and increase AEP (Johnson and Thomas, 2009; Marden et al., 2013; Gebraad et al.,
2017; Fleming et al., 2016a; Munters and Meyers, 2018). However, plant-level control presents new challenges in coordinating
a set of complex machines, each operating in a highly uncertain and complex flow environment.

Recently, researchers from the National Renewable Energy Laboratory (NREL) have partnered with utility-scale wind power
plants to demonstrate the potential benefits of the wind plant control strategy known as wake steering (Fleming et al., 2017,
2019). This strategy offsets turbine yaw positions from the incoming wind, which “steers” wakes away from downstream
turbines (Fleming et al., 2016b; Gebraad et al., 2016; Raach et al., 2016). Accurately characterizing the plant and atmospheric

physics is, however, a significant challenge when designing wake steering schemes. In particular, it is difficult to forecast the


Erik Quaeghebeur
11 turbine plant? how sensitive to plant?
which deterministic strategy; not mentioned before…
what are the characteristics of the stochastic inputs? how sensitive to stochastic inputs?

Erik Quaeghebeur
can you make explicit how this reduces risk? (reduced expected loads? reduced production variance?)

Erik Quaeghebeur
independent (this is stronger than uncorrelated)
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future behavior of the atmosphere since the engineering forecast models used in practice are prone to inaccuracies (Nygaard,
2015), in-field sensors are subject to bias (Mittelmeier and Kiihn, 2018), and many quantities of interest must be extrapolated
or interpreted from measured values.

There are also various sources of uncertainty that can have substantial impacts on the success of wake steering strategies.
Vertical mixing in the atmospheric boundary layer caused by temperature differences is difficult to measure and characterize
(Wharton and Lundquist, 2010). Wind speed measurements must also be extrapolated horizontally to forecast conditions far
away from sensors, as well as vertically to characterize the shear in the inflow and wind properties above meteorological mea-
surement tower sensors (Clifton et al., 2016). Moreover, it is common practice to assume a deterministic relationship between
turbine power, thrust coefficients, and wind speed, but there is large scatter in these values when they are measured in practice.
Complex phenomena, such as vorticity generated by the turbine blades, cause yaw alignment sensor errors, introducing signif-
icant uncertainty in measurements of turbine yaw angles relative to the incoming wind. Gaumond et al. (2014) showed that, by
assuming uncertainty in the inflow direction, the predictive capability of engineering wake models may be improved. Although
several studies have reported significant gains in AEP using plant-level control strategies under the assumption of perfect (i.e.,
certain) information (Gebraad et al., 2016; Fleming et al., 2016b; Bossanyi and Jorge, 2016), uncertainties associated with
wind plant model parameters may cause a wake steering strategy in the field to perform differently than anticipated.

Uncertainty in the design process can be addressed using optimization under uncertainty (OUU), a technique that has been
used in several prior wind plant optimization studies to provide a robust solution under varying levels of uncertainty (Gonzalez
et al., 2012; Chen and MacDonald, 2013). Quick et al. (2017) formulated the wake steering problem using OUU, assuming
large uncertainties in the yaw positions of individual turbines. Subsequently, Rott et al. (2018) formulated and solved a wake
steering OUU problem for a nine-turbine plant, assuming uncertainty in the measured inflow direction. More recently, Simley
et al. (2019) formulated an OUU problem taking yaw position uncertainty and inflow direction variability into account.

In this paper, we extend prior work on OUU and plant-level control to address uncertainty in turbine yaw positions and in-
flow direction, speed, shear, and turbulence intensity during the optimization of turbine yaw offsets for wake steering strategies.
In a two-turbine test case, we explore how different magnitudes of uncertainty impact the efficacy of wake steering schemes,
examining the trade-off between the power produced by the front and back turbines. Assuming standard uncertainty distribu-
tions based on available information, we find that the inflow speed and direction are the most influential parameters to the wake
steering design problem. In a more realistic 11 turbine wind-plant test case, we further demonstrate the benefits of the OUU
formulation. In particular, in addition to yielding more robust designs, the OUU formulation results in less-extreme prescribed
yaw offsets.

The paper is organized as follows. In the next section, we outline details of the engineering wake model, the formulation
of the OUU problem, and the specific application examined. Results are outlined for two-turbine and wind-plant test cases in

Section 3, and conclusions are presented at the end.


Erik Quaeghebeur
compared to?

Erik Quaeghebeur
A comparison of your results with those of these two papers would be appropriate, as the results seem to be quite similar.  (Which is good.) This is all the more important given that TI and shear are effectively dropped from consideration after the two-turbine case.
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2 Methodology, application, and approach

In this study, we applied the FLOw Redirection and Induction in Steady State (FLORIS) engineering wake model (NREL,
2019) to a simple two-turbine test case and to a more realistic 11-turbine wind plant to quantify potential benefits of explicitly

taking uncertainty into account when designing plant-level wake steering schemes via OUU.
2.1 Engineering wake model

We used the FLORIS implementation of the Gaussian wake model (Bastankhah and Porté-Agel, 2016; Annoni et al., 2018),

which imposes a velocity deficit given by

U($7y72) (y_(S)Q (Z_Zh)2
M) g _ _
Uoo Cexp 205 202 ’ M

where u(z,y,z) is the velocity component in the direction of the inflow, z is the streamwise direction, y is the crossflow
direction, z is the vertical direction, J is the deflection field, u is the inflow magnitude at the wind turbine hub height, zj, and
C is the velocity deficit in the center of the wake. The standard deviations o, and o, parameterize the width and height of the
wake in the crossflow and vertical directions, respectively.

In this study, we limited the value of the thrust coefficient to be strictly less than one. Without this modification, wake
calculations for low wind speeds may result in inaccurate predictions (in particular, the calculation of C' involves the square
root of one minus the thrust coefficient). Throughout this paper, we use the NREL 5 MW reference turbine (Jonkman et al.,

2009), which has power and thrust coefficient curves shown in Figure 1.

ot
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Figure 1. Power (solid line) and thrust coefficient (dashed line) as functions of wind speed for the NREL 5 MW reference turbine (Jonkman

et al., 2009).


Erik Quaeghebeur
define?

Erik Quaeghebeur
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Erik Quaeghebeur
swap thrust coeff. and power axis labels for better interpretability.
fix axis titles (some letters missing; font problem?)

Erik Quaeghebeur
What is the time scale for which this model is defined? (The wake shape cannot be assumed to change ‘instantaneously’ when the model parameters change, so I feel there must be some minimal appropriate time scale.) I would assume it to be 10 minutes, as it is aimed at AEP calculations as far as I know. If you use it for smaller time scales (I have the impression you do in (2)), I think you should justify that explicitly.
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2.2 Problem formulation

Using the FLORIS wake model, the deterministic power production of a wind plant can be predicted given turbine-specific yaw
positions, y, as well as the direction, 6, speed, uo, turbulence intensity, T1, and shear, «, of the incoming wind. We denote the
deterministic power prediction from FLORIS as f(v), where v = [y, 0, u, TL, @]. It should be noted that y is a vector of yaw
positions for each turbine in a farm and is a relative reference; in this sense, y represents a vector of yaw offsets with respect to
0. The length of the vector y is equal to the number of turbines in the plant. The inflow direction 6 is measured clockwise from
north and the yaw position is measured counterclockwise from the inflow direction.

During plant operation, inflow conditions and yaw misalignment are not perfectly known. These uncertainties stem from
measurement error and aleatoric uncertainty. As a result, we introduce the stochastic expected power, denoted f1o because it is

representative of uncertainties that are relevant on the order of 10 minutes of operational time. It is defined as

Fro = / f () po (v) dv, @

where p,, (v) is a joint probability density function (pdf) that describes the distribution of v in the 10-minute period. Although
this distribution can be empirically determined using real-world measurements and knowledge of turbines in a wind plant,
in this study we instead parameterize p, using the vector of mean values p, = [,uy, 10y o, s TT, o), Where i, denotes the
10-minute average value of variable a, and the hyperparameter vector ¥ (which includes, for example, standard deviations if

P, 1s assumed to be normally distributed). We thus parameterize f1( as

fro(10,) = / F (0)po (0310, S) v, 3)

where p, (v;p,,%) denotes the joint pdf of v parameterized by u, and . We define this joint pdf such that, as ¥ — 0,
Dy (V3 1t,,,2) approaches the Dirac delta function centered on p,,, namely 6 (v — ,,).

The energy production may be estimated for a whole year (i.e., the expected AEP) as a linear sum of each speed- and
direction-specific expected power production, weighted by speed- and direction-specific probabilities and multiplied by 8,760
hours per year. These probabilities are representative of annual variability as opposed to the previously described uncertainty in
operating conditions. Thus, the average inflow speed and direction are cast as being uncertain in order to capture their annual
variability. In practice, these probabilities are empirically determined and jointly distributed. The resulting expression for AEP

is thus given as

AEP(#’y7MTI7MO¢72) = 8760/f10 (“vaz)p# (/’Luoc >M0)dﬂum d,ug 3 (4)

where p,, (1w, , (o) represents the joint distribution of the 10-minute averages i, and pgy over a year.

Using Eq. (4) for the AEP, we can formulate the wake steering OUU problem as

ui?") = argmax AEP (s, pir1, o, B) N

Similarly, the deterministic wake steering optimization is formulated for ¥ = 0 as

,u,;det) = argn}tax AEP(My,MTLMmO)' ©


Erik Quaeghebeur
definition of yaw position not clear enough; take some more time to introduce it.

Using the symbol y suggests that it is a crosswind distance, but given that one associates yaw with an angle, I would guess it to be an angle. (Also what is implied in the last sentence of this paragraph, I think.) In case it is an angle, I suggest using a typical angle symbol, like φ or ψ.

Erik Quaeghebeur
what is α, i.e., how does it describe wind shear (what profile do you assume? what parameter role does α take in that profile?)

Erik Quaeghebeur
Can you say which types of uncertainty affects which components of v and how? (Make this statement a bit more concrete.) Also, I would think there is epistemic uncertainty beyond measurement error, but perhaps that is not modeled. (Perhaps this is clarified below somewhere.)

Erik Quaeghebeur
As per international standards and journal style guide, this should be slanted, because this is a variable and not a constant.

Erik Quaeghebeur
If you are going to leave Σ here in totality on the lhs, then it must be made clear at its introduction that it does not contain variability information for θ and u_∞. Currently there is too much handwaving going on about Σ.

Erik Quaeghebeur
Make it immediately clear that y are the design variables and that the others are not (but are random variables for which the distributions will be given below).

Erik Quaeghebeur
Isn't turbulence intensity effectively defined as the ratio of the 10-minute standard deviation σ_{u_∞} of u_∞ over the 10-minute average μ_{u_∞}  of u_∞? So by definition TI is a constant for every ten-minute period, no?

So, I think that only u_∞ and θ should be integrated out at this point and the rest should be done in (4). Furthermore, as TI=σ_{u_∞}/μ_{u_∞}, there should not be a separate distribution for it.

Erik Quaeghebeur
Is it possible to give the constitutive expressions for this model. (Dependence of C, δ, σ_y, σ_z on the components of v at the very least.)

Erik Quaeghebeur
Can you make this data available? (Beyond giving the plot in Fig. 5.)
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Table 1. Summary of AEP-based metrics used to assess the quality of solutions for given values of prr and po (for simplicity, these

parameters are suppressed as arguments of the AEP in the notation).

Metric Equation Description

VvSS | AEP[{°"Y) B]/AEP[u*Y £ —1 | Stochastic AEP from OUU relative to the deterministic solution

VSS, AEP[{PYY) ]/AEP[0,%] — 1 Stochastic AEP from OUU relative to the baseline solution

VDS AEP[u{**" 0]/AEP[0,0] — 1 Nonstochastic AEP from the deterministic solution relative to the baseline solution
VDS, AEP[u{*" $]/AEP[0,%] — 1 Stochastic AEP from the deterministic solution relative to the baseline solution

The baseline solution corresponds to turbines that are directly aligned with € such that there is no yaw offset, corresponding to
#Z(!base) —0. (7)

We used four metrics to assess the quality of different solutions for p,,. The value of the stochastic solution (VSS) is the
expected value of the stochastic AEP for the OUU solution relative to the deterministic solution. Our VSS definition is similar
to the VSS metric introduced by Birge and Louveaux (2011), but is expressed as a fractional increase in expected AEP rather
than an absolute value increase. As a result, the solution value metrics do not depend on the amount of power produced. We
also examined the expected value of stochastic AEP for the OUU solution relative to the baseline no-offset case, denoted VSS;.
The value of the deterministic solution (VDS) is the nonstochastic value of the AEP for the deterministic solution relative to the
baseline solution. In addition, we report the stochastic value of the AEP for the deterministic solution relative to the baseline

solution, denoted as VDS. Each of these metrics is defined in Table 1.
2.3 Application
2.3.1 Uncertainty estimates

In the present demonstration tests, we considered the effects of uncertainty in turbine yaw offsets and wind inflow speed,
direction, turbulence intensity, and shear. We envision wake steering strategies changing every 10 or 20 minutes, so we worked
to identify reasonable variations in each of these uncertain parameters over that time span. Together, these variations comprise
the joint pdf p, (v;u,,,%).

To estimate the yaw position uncertainty, we compared operational data from an NREL turbine with a nearby meteorological
measuring mast (NWTC Information Portal, 2019); these data were examined previously by Fleming et al. (2018), Annoni et al.
(2018), and Damiani et al. (2018). In the present study, the wind direction recorded at the turbine was compared to the wind
direction measured on the upstream meteorological mast. The mean error, which is sometimes referred to as bias, was removed
to focus on the shape of the distribution of errors, as shown in Figure 2.

Based on the shape of the distribution in Figure 2, we parameterize the yaw misalignment as a two-sided exponential
distribution, termed the Laplace distribution, given by

L(z;p,v) = iexp (|$_N|> , (®)

2v v


Erik Quaeghebeur
You have not introduced this notation with square brackets and two arguments. (You should.) In (4) you define notation with parentheses and four arguments. I'll assume this notation is the same, but with the second and third argument kept the same and therefore elided.

Erik Quaeghebeur
These acronyms are hard to remember (and the ‘V’ is superfluous). Alternatives (just a suggestion):

SUD
SUB
NDB
SDB

Erik Quaeghebeur
What is the sampling frequency of this data?


10

15

https://doi.org/10.5194/wes-2019-72 WIND

Preprint. Discussion started: 14 October 2019 e WE\ ENERGY
Auth 2019. BY 4.0 Li .
© " Or(S) O 9 CC O reense european academy of wind energy SC I E N C E

[ = ] aplace
3 Gaussian
101 3 [ Data q
>, E 77 ‘\
5 q A
21077 F
o]
e}
o
=
A [
107°
1074 || ‘ 1 1 \ L
—20 —10 0 10 20

Yaw position error (degrees)

Figure 2. Errors in the yaw position y for a test turbine at the National Wind Technology Center at NREL (Fleming et al., 2018; Annoni et al.,
2018; Damiani et al., 2018). The solid blue and green lines show Laplace and Gaussian distributions, respectively. The empirical probability

mass function found from the observed yaw errors is shown with white bars.

where p is the mean and v is a shape parameter. The remaining uncertain parameters are assumed to be normally distributed

according to

1 _ 2
N(rip,0) = ——sexp [— (205 ) } , ©)

where p is again the mean and o is the standard deviation. Each of the uncertain parameters are then assumed to be independent

such that the joint pdf p, (v;u,,,X) can be written as
Po (V3 8,,8) = L(Y; 2,y )N (0; 116, 50) N (oo Huse » Oy )N (TL prrr, 0r1) N (6 s 0a) 5 (10)

where the hyperparameter is given as ¥ = [v,,09,0,_,,071,04]. The vector v, represents the shape parameter used in the
yaw offset Laplace distributions for each turbine in a plant. It should be noted that Mittelmeier and Kiihn (2018) reported yaw
misalignment to be a strong function of the inflow wind speed, which is not considered explicitly here.

Estimated values for ¥ are taken from a range of sources. Based on the observational data shown in Figure 2, we measured
a shape parameter of v =6.16°, and we correspondingly set v, = 5° for all turbines. Mittelmeier et al. (2017) discuss a
methodology to estimate inflow conditions from turbine sensor data. They reported Gaussian uncertainties of 3.6° and 0.46 m/s
when predicting the inflow direction and speed, respectively. Similarly, Gaumond et al. (2014) provided direction variations
measured over a 10-minute interval in the Horns Rev power plant, which yielded a standard deviation of 2.67°. Based on
these studies, we propose g = 5° and o, = 1 m/s as reference uncertainty values. Lee and Lundquist (2017) provide lidar
observations of the turbulence intensity in front of a 1.5 MW turbine during evening transition. The late afternoon can be
expected to have large turbulence intensities because that is when convection is strongest. Based on Figure 6 in Lee and
Lundquist (2017), we estimate a large turbulence intensity standard deviation to be oy = 5%. The standard deviation in the

shear parameter « is estimated to be o, = 0.05, which represents a large, worst-case uncertainty for a 10-minute period.


Erik Quaeghebeur
No, ν is a *scale* parameter.

Erik Quaeghebeur
As argued above, TI is completely dependent on μ_{u_∞} and σ_{u_∞}.

Erik Quaeghebeur
As far as I can tell, it isn't modeled implicitly either, no? Rather, it is explicitly modeled to not be dependent on inflow wind speed. (Independence assumption.)

Erik Quaeghebeur
Why not set it to 6.16° (or perhaps 6°, rounded) as 5° represents a smaller yaw misalignment than actually observed in reality.

Erik Quaeghebeur
Why not 3–4° and 0.5 m/s? In this case you take larger values without explanation.

In the MMIJ dataset, for 89 m, I find the average 10-minute σ_θ to be 3.7° and the average 10-minute σ_{u_∞} to be 0.6 m/s. A dataset like this, or the OWEZ and FINO ones, allow you to create joint distributions for  (μ_{u_∞}, σ_{u_∞}, μ_θ, σ_θ) instead of just for (μ_{u_∞}, μ_θ) in (4). That would seem to be a better way than to assume constant values for σ_{u_∞} and σ_θ. It would at the same time allow you to get the correct TI for each 10-minute interval, instead of using a likely inconsistent constant μ_TI as you do now.

Erik Quaeghebeur
In what way is this estimated? Formulated as it is now, it just appears posited without justification.

Erik Quaeghebeur
Percentage points instead of percent (%), I suppose?
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Table 2. Probability distributions and hyperparameter values describing the uncertainty associated with various inputs to the wake model.

Parameter Distribution Hyperparameter
Yaw offsets, y Ly;p,vy) vy, =5°
Wind direction, 6 N(0;p0,00) o9 =5°
Wind speed, too | N(Uoo; uoe , Tuos ) Ous, =1 mis
Turbulence, TT N(TT; pr1,011) or1 = 5%
Shear, « N(a; pa,00) 0o =0.05

The resultant distribution choices and hyperparameter estimates are provided for each uncertain variable in Table 2. These
distributions are intended to capture uncertainty associated with both physical variability and aleatoric uncertainty. It is cau-
tioned that the magnitude of these sources of uncertainty are site specific. For example, a wind plant built in the wake of a large
obstacle would be expected to have larger uncertainty in the inflow direction than a wind plant built offshore. As such, the
uncertainties outlined in Table 2 should be taken as representative of real uncertainties but do not correspond to any particular

site or wind plant.
2.3.2 Calculation of AEP

We approximated the integral in Eq. (3) for f1¢ using polynomial chaos expansion, which uses orthogonal polynomials with
collocated quadrature points to interpolate a quantity of interest through an uncertain parameter space (Eldred and Elman,
2011). We used the polynomial chaos expansion tool in DAKOTA (Adams et al., 2014) in all cases. Padrén et al. (2019) recently
demonstrated the advantages of polynomial chaos expansion in computing AEP as opposed to the traditional simple quadrature.
When computing the integral in the two-turbine cases, we used fifth-order quadrature with uniform p-refinement and two
maximum refinement iterations. In the OUU, we used fifth-order quadrature without refinement during each optimization
iteration and used fifth-order quadrature with p-refinement and two maximum refinement levels to assess the outcome of the
wind plant optimization OUU, deterministic, and baseline solutions.

During computation of the AEP via Eq. (4), the speed and direction joint pdf p,, (g, ftw._ ) is approximated with an empirical
discrete joint probability mass function, denoted p,, (11, uzw). Here,d=[1,...,D] and i = [1,..., 1], where D is the number
of directional bins and I is the number of inflow wind speed bins in the discrete function p,,. This discretization thus yields a
new definition of AEP, given as

D I
AEP(#’yJJ'TIHU/a,E) = 876022p(/ﬁg,ﬂ;w)f10( [ﬂya/”'??”ixvuTlvua] 52) . (11)

d=11i=1

2.3.3 Layouts considered

To demonstrate the benefits of OUU in the development of wake steering strategies, we considered a two-turbine layout as well
as a larger 11-turbine layout. We used the two-turbine layout to explore the basic trade-off between the power production of

front and back turbines as well as the sensitivity to different levels of uncertainty. The wind plant problem was used to assess


Erik Quaeghebeur
These are essentially the same, no? (Does one need to be replaced by ‘measurement uncertainty’?)

Erik Quaeghebeur
Make it clear what this is and why you use it.

Erik Quaeghebeur
Make it explicit what this means. Is this fifth order for each variable or for their product?

Erik Quaeghebeur
What values for D and I did you use?

Erik Quaeghebeur
But wasn't that for calculating Eq. (4), which is different from Eq. (10)? Put differently: is this reference relevant here?

Erik Quaeghebeur
Some more information showing good convergence behavior for your application would be welcome. In my experience, PCE often has convergence issues. (Although the use of independent standard distributions may make this less of an issue.)
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Table 3. Mean value and lower and upper bounds used in two-turbine and wind plant OUU problems. Sequences are expressed as

[start : increment : end].

Parameter | Two-turbines u; Two-turbines 3J; Plant p; Plant 3; Lower Bound Upper Bound
y (%) [-30:1:30] [1:1:15] - 0 —00 ()
0(°) [-60:10:60] [1:1:15] [-60:10:60] 5 —00 o)
Uoso (M/S) [3:1:15] [0.2,0.5,1,2] [3:1:15] 1 3 20
TI (%) 6 [1:1:10] 6 0 1 30
e 0.12 [0.02, 0.05, 0.1, 0.15, 0.2] 0.12 0 -0.5 3.0

Wind speed (m/s)
4 5

0 1 2 3 6 7 8
R ' I
0.2f (2)
=
£ 00f
>
—-0.2 |
1
0.2
=
& o00f
>
—-0.2 I
1 1 1 1 1 1 1 1
0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75
x (km)

Figure 3. Contours of wind speed for a simple two-turbine test case with an inflow speed of 8 m/s. Brighter colors correspond to faster wind

speeds. In (a), the turbines are both directly facing the wind with y set to 0. In (b), the front turbine is offset such that 1 = 30° and y2 = 0°.

the potential benefits of OUU in a more realistic wind plant design problem. The mean values, shape parameters, and upper
and lower bounds associated with each input considered in the two-turbine and wind plant cases are shown in Table 3.

In the two-turbine case, the front turbine directly wakes the back turbine when flow is from the north, as shown in Figure
3(a). The turbines are spaced five rotor diameters apart in the northern direction. We chose this case because it is representative
of the fundamental trade-off between upstream turbines losing power by offsetting their yaw positions and downstream turbines
gaining power when wakes are diverted away from them [as indicated in Figure 3(b)]. We performed a parameter sweep across
possible values of the front turbine yaw offset with a nested sampling routine to find the optimum steering strategy for various

uncertainties in the inflow. We report the maximum VSS across all directions and speeds for each uncertain input using the


Erik Quaeghebeur
A simple grayscale color map (darker=higher deficit) would work better, I think.
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…and standard deviations?
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Figure 4. Contours of wind speed for the 11-turbine wind farm with the baseline yaw configuration (y = 0) and 10 m/s inflow speed. Brighter

colors correspond to faster wind speeds.

reference shape values. Uncertainties with maximum VSS larger than 0.5% were selected to be included in the wind farm
OuU.

The wind farm wake steering optimization problem is intended to provide insights on the benefits of OUU in more realistic
scenarios. The plant layout is shown in Figure 4, and the corresponding annual wind speed and direction probability mass
function is shown in Figure 5. We performed deterministic and stochastic wake steering optimizations for each speed and
direction, reporting the deterministic and expected power production associated with the OUU, deterministic, and baseline
strategies. We used the annual wind speed and direction probability mass function to aggregate these speed- and direction-
specific power production estimates into an estimate of AEP. The expected power production was maximized during the
optimization. The COBYLA optimization driver in DAKOTA (Adams et al., 2014) was used to design the wake steering
strategies. The polynomial chaos expansion tool in DAKOTA (Adams et al., 2014) was used during each optimization iteration

to estimate the stochastic response in the OUU. Each OUU was initialized with the corresponding deterministic solution.

3 Results

In the following, we present results for OUU of the simple two-turbine case, as well as the 11-turbine wind plant. It will be
shown from an analysis of the two-turbine case that wind speed and direction are the most influential parameters, and so we
performed the OUU using only these two uncertain variables, assuming v, o1, and o, to be zero. Optimization results of
wake steering strategies for the 11-turbine wind plant are presented using the OUU and deterministic problem formulations,

and the results are compared to baseline strategies (i.e., using no wake steering).


Erik Quaeghebeur
?

Erik Quaeghebeur
Why this cut-off and e.g., not 1%? Provide a justification.

Erik Quaeghebeur
A simple grayscale color map (darker=higher deficit) would work better, I think.

Erik Quaeghebeur
Perhaps it would be clearer here to just say ‘AEP’. (I guess PCE is used, as presented before in Sec. 2.3.2, to calculate the f_10 values used to calculate AEP.) 

Erik Quaeghebeur
plant OUU

Erik Quaeghebeur
Where was this data obtained from?
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Figure 5. Annual wind speed and direction probability mass function used in the 11-turbine wind plant optimization study.

Table 4. Maximum VSS across all speeds and directions considered, given the reference standard deviation values in Table 2.

Parameter ‘ Y ‘ 0 ‘ Uoo ‘ TI ‘ «a

max(VSS|S) \ 0.32% | 54% | 0.60% | 0.28% | 0.02%

3.1 Two-turbine test case

Figure 3 shows results for the two-turbine test case, where the front turbine wakes the back turbine. For each uncertain param-
eter, we performed a parameter sweep across possible values of the front turbine yaw offset with a nested sampling routine
to find the optimum steering strategy for various levels of uncertainty. The results are summarized in Table 4. Using a VSS
threshold of 0.5%, we found that the wind speed and direction are the most influential parameters and that shear, turbulence
intensity, and yaw misalignment are less important.

Uncertainty in the wind direction affects the path that wakes behind wind turbines will follow. This can be thought of as
spreading out the wake. This effect is explored in Figure 6, which shows that, as the inflow direction uncertainty increases,
the wake becomes spread out such that the power of the back turbine is eventually completely insensitive to the yaw angle
of the front turbine. The effect of uncertainty in direction on the front turbine optimal yaw settings is dramatic. For example,
in Figure 6(c), the optimal yaw offset is around 25° when there is perfect information. As mild uncertainty is introduced,
however, the optimal front turbine yaw angle decreases. When large levels of uncertainty are introduced, the optimal setting
switches to almost no steering. The optimal front turbine yaw offset is shown as a function of inflow direction for different
levels of uncertainty in Figure 6(d). Once again, as uncertainty increases, the optimal yaw offset becomes more gradual and

less extreme.
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Erik Quaeghebeur
Why only [-60,60] and not all directions [-180,180]? (I think a justification should be easy to give, but don't let people guess.)

You appear to be using 10° direction bins. This is too large for wind farm layout optimization (<5° needed). Can you justify its use in your use case of wake angle optimization?

At the very least, the resulting wake steering strategy should be evaluated with far smaller direction bins, i.e., of about 1°, even if optimization is still done with 10° bins. I guess this will also force you to explicitly state how you would interpolate it.

Erik Quaeghebeur
Looking at the table, direction stands out, but not speed. It is only because of the (arbitrary?) threshold that speed is (only just) included. At the very least, this sentence needs reformulating, because the distinction made between speed and, e.g.,  misalignment is unwarranted that they differ only a factor of 2, whereas speed and direction differ a factor of 9.

Also, you chose σ_{u_∞} to be about double as high as warranted by the sources you presented and σ_y lower than the value from the source you presented. This gives me the impression that things may well look different, relatively speaking, when you hadn't made these unjustified choices.

Erik Quaeghebeur
This plot should be antisymmetric because of the problem formulation, no? It's almost, but not entirely antisymmetric. Can you explain why? If it should indeed be antisymmetric, a better plot would be to just consider positive angles.

I do not understand why the maximum is away from 0° for higher uncertainty values (and the value at 0° even goes to zero). Can you explain? (One reason why I'm surprised by this is, is that for the case with uncertainty, you are essentially considering a similar wake model, but now wider, so a qualitative change in behavior is unexpected from this viewpoint.)

Erik Quaeghebeur
Again a grey colormap with 0 corresponding to white would be more effective here, I think.

Erik Quaeghebeur
Actually, I gather this is exactly what happens: the model underlying f gets replaced by the model underlying f_10. This underlying model in this case is essentially FLORIS, whose expectation over the uncertain variables is taken. It would be interesting to see pictures of FLORIS and its averaged-out variant for different values of σ_{u_∞} or even Σ. 
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Figure 6. Power production for the front (a), back (b), and both (c) turbines as a function of front turbine yaw offset in the two-turbine
case with 10 m/s inflow 3° from north. Different line colors indicate different values of o, as indicated in panel (d), with brighter colors
corresponding to larger oy and, hence, greater uncertainty in inflow direction. The black crosses in panel (c) denote optimal front turbine

yaw settings. Panel (d) shows the optimal front turbine yaw offset as a function of inflow direction for 7 m/s inflow.

It is interesting to note that the deterministic solution may be worse than the baseline solution if there is large uncertainty
in the inflow wind direction. This is shown in Figure 7, which indicates that, as inflow direction uncertainty increases, there
is less overall benefit to wake steering. Results for VSS;, in Figure 7(b) show that the increase in power production is reduced
from around 10% to 1% as oy increases from 1° to 15°. The VDS results in Figure 7(c) have a maximum of almost 15% and,
by definition, are not affected by uncertainty. We found that the deterministic strategy performed on the order of 10% worse
than the baseline solution for large levels of direction uncertainty, which may be observed in the VDS, results shown in Figure
7(d).

Uncertainty in the incoming wind speed u., changes the magnitude of the wake velocity deficits, although the wake paths
remain unchanged. When there is variability in the wind speed, the power produced by a wind turbine should generally increase
when there are lower wind speeds, in the cubic region of the power curve, and decrease when there are higher wind speeds.
This is due to Jensen’s inequality and the concavity of different sections of the power curve (Quick et al., 2016). In either
case, the difference in expected power production will result in different deterministic and stochastic operational strategies.
Figure 8 shows that uncertainty in lower inflow speeds caused the optimal front turbine angle to decrease, and uncertainty
in higher wind speeds caused the optimal front turbine offset to increase. The optimal front turbine offset was insensitive to
wind speed uncertainty in the cubic range of the power curve. The increased uncertainty in the inflow speed changes expected
power production, which changes the trade-off between reduced power from the upstream turbine and increased power from

the downstream turbine due to yaw deflection.

11


Erik Quaeghebeur
I guess you mean around rated wind speed, as for speeds well above rated, the wind speed variation will not affect power output, which remains at rated.

Erik Quaeghebeur
You mean offset, I guess. Please stick to one term for consistency.
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show VSS (a), VSS; (b), VDS (c), and VDS, (d), with different values of oy indicated by different line colors (the legend is shown at the
right of the figure).

Overall, we found this two-turbine case to be less sensitive to uncertainties in yaw misalignment, turbulence intensity, and
wind shear. Uncertainty in the turbine yaw positions generally reduces the rotor swept area and spreads out the path of the
turbine wake. As a result, the power of the back turbine may be increased or decreased by yaw misalignment uncertainty
depending on which dynamic dominates. Yaw position uncertainty does not dramatically affect the solution at the reference
uncertainty (v, = 5°), but produces a noticeably different solution near v, = 10°, which has a maximum VSS of 1.23%.
Turbulence intensity affects the wake expansion geometry, which effectively smears out the path of wakes, decreasing the
velocity deficit felt by waked turbines. Although we did not find turbulence intensity uncertainty to be significant here, we found
amaximum VSS of 1.29% when o1 = 10%. Such a large standard deviation in this truncated normal distribution approaches a
uniform distribution, which could be thought of as representing a complete lack of information regarding turbulence intensity.
Introducing Gaussian uncertainty in the shear coefficient did not affect the optimum front turbine angle beyond one or two

degrees, even at dramatic levels of uncertainty.
3.2 Wind plant test case

To quantify the benefits of OUU in a more realistic scenario, we also performed OUU to design wake steering strategies for
an 11-turbine wind power plant. The stochastic average and deterministic AEP associated with the OUU, deterministic opti-
mization, and baseline (i.e., no wake steering) solutions are provided in Table 5. These represent the aggregate of the different

optimization solutions, where powers are weighted by the speed- and direction-specific annual probabilities of occurrence
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Erik Quaeghebeur
Again, because of the symmetry, I'd just plot for positive inflow angles.

Erik Quaeghebeur
This is a common misconception. The uniform distribution does not express a lack of information. It clearly expresses that every value in the interval over which the distribution is defined is equally likely, which is something completely different. I would just leave out this comment.
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Figure 8. Power production for the front (a), back (b), and both (c) turbines as a function of front turbine yaw offset in the two-turbine case
with 13 m/s inflow 7° from north. Different line colors indicate different values of o, __, as indicated by the legend in panel (g), with brighter
colors corresponding to larger o, and, hence, greater uncertainty in inflow speed u.. The black crosses in panel (c) denote optimal front
turbine yaw settings. Panels (d-g) show the optimal front turbine yaw offset as a function of inflow direction for inflow speeds u of 10, 12,

13, and 14 m/s, respectively. Only positive inflow directions are shown to highlight the important effects of uncertainty.

shown in Figure 5. Table 5 shows that, given perfect information, the deterministic strategy is expected to produce 2.6% more
AEP than the baseline strategy. However, for the present assumed input uncertainties, the deterministic strategy may be ex-
pected to perform comparably to the baseline strategy and the OUU strategy may be expected to produce 0.58% and 0.48%
more AEP than the baseline and deterministic strategies, respectively.

It is interesting to note that the uncertain expected AEP is greater than the deterministic AEP in Table 5 for all three
strategies. This represents the aggregate across the annual wind speed and direction probability mass function. We found that
lower wind speeds (below 12 or 13 m/s) were generally associated with increased power production from uncertainty, while
larger wind speeds yielded an expected power less than the deterministic value. When we only considered direction uncertainty,

the expected power was consistently larger than its deterministic counterpart. This is because the wakes are inherently spread

Table 5. Expected and deterministic AEP of OUU, deterministic, and baseline plant-level wake steering strategies for the 11-turbine wind

plant test case.

Expected AEP (GWh) | Deterministic AEP (GWh)
OUU optimization 115.2 113.3
Deterministic optimization | 114.7 114.0
Baseline strategy 114.6 111.1
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out by uncertainty in direction, reducing the expected velocity deficit in waked regions. When we only consider wind speed
uncertainty, larger wind speeds were associated with decreased expected power, and smaller wind speeds were associated with
increased expected power. This matches the intuition from Jensen’s inequality discussed earlier.

Figure 9 summarizes improvements in AEP for the different wake steering strategies for varying wind speed and direction.
Some strategies appear to produce more than 15% more power given perfect inflow information [reflected in the VDS results
in Figure 9(c)], but these same strategies produce almost 2% less power than the baseline no-steering strategy under uncertain
conditions [shown in the VDS, results in Figure 9(d)]. The VSS; and VDS, metrics in Figures 9(b) and (d), show that some
deterministic and OUU solutions may produce 2% and 4% improvements in average power production, respectively, which is
much lower than the increase predicted by the deterministic scenarios indicated in the VDS results shown in Figure 9(c). The
optimization histories of the OUU and deterministic approaches are shown for 12 m/s inflow 30°from north in Figure 10.

In general, we found that by incorporating uncertainty in the wake steering problem formulation, less extreme yaw offsets
were required to optimize AEP. We show the aggregate of yaw positions suggested by the OUU and deterministic optimization
approaches in Figure 11. Although the histogram in Figure 11 is not weighted by probability of inflow occurrence, these results
nevertheless strongly suggest that wind plant designers may expect OUU to yield wake steering strategies with lower-magnitude

yaw offsets than when using the deterministic optimization formulation.

4 Conclusions

In this study, we examined how uncertainty affects wake steering strategies and what benefits may be associated with designing
these strategies in the presence of operational uncertainty using OUU. Uncertainty in yaw positions is epistemic and may be
reduced with more accurate yaw position detection methods. Uncertainty in inflow conditions is more nuanced. While there
are issues with accurately measuring these quantities, fundamentally, there may not be a single characteristic direction, speed,
turbulence intensity, or shear associated with the wind flowing into a utility-scale wind plant. For example, a wind power plant
may be built downstream of a mountain, causing wind to enter from multiple directions. So, the uncertainties in these inflow
parameters may be thought of as a combination of epistemic and aleatoric, irreducible, or model-form uncertainties.

The fact that OUU results in more expected power production with less extreme yaw offsets makes a strong case for designers
to move toward OUU formulations in plant-level control strategies. In particular, OUU results in wake steering strategies
that are more conservative than the deterministic approach — the magnitude of the turbine yaw offsets determined by OUU
is diminished compared to those found using deterministic optimization, even though the yaw positions are not part of the
optimization objective. Assuming that the inflow uncertainties were precisely quantified, we have shown that wake strategies
formulated with the OUU approach should produce up to about 4% more power than wake steering strategies formulated using
the deterministic approach.

We are optimistic for the future of plant control strategies and anticipate that uncertainty will become increasingly in-
corporated in future plant control analysis. In future work, we plan to further quantify typical levels of uncertainty in input

parameters, explore higher-fidelity flow models, and to include fatigue loading in the OUU objective function. There are sev-
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Does this effect stay as big when computing AEP using 1° direction bins instead of 10° ones?

Erik Quaeghebeur
I do not understand this: μ_y appears in both (5) and (6), no?

Erik Quaeghebeur
I do not see this claim supported anywhere in the paper. Wasn't this 0.5%?
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Figure 9. Summary statistics from Table 1 for varying inflow direction 6 and wind speed u« in the 11-turbine wind plant test case. Panels

show VSS (a), VSSy (b), VDS (c), and VDS, (d), with different values of u indicated by different line colors (the legend is shown at the
top).

eral other sources of uncertainty that may be injected into this problem. For example, we assumed perfect knowledge of the
turbine power and thrust curves. Typical levels of uncertainty in turbine power and thrust curves probably would have resulted
in somewhat different optimum wake steering strategies. Quantifying fatigue loading is an attractive prospect, though it re-
quires a more advanced wake model. Partial waking may be more detrimental than full exposure to a wake, complicating the
fundamental trade-offs that we explored. The meandering behavior of wakes behind wind turbines is an important factor that

is not captured by the steady-state FLORIS model.
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Figure 11. Probability mass distributions of y summed over all turbines, wind speeds, and wind directions in the 11-turbine wind plant test

case, as prescribed by the OUU and deterministic wind plant optimization strategies.
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