WIND

Wind Energ. Sci. Discuss.,

. ~
https://doi.org/10.5194/wes-2019-80-RC2, 2020
© Author(s) 2020. This work is distributed under e we \ EN ERGY
the Creative Commons Attribution 4.0 License. european academy of wind energy SC| ENCE

Interactive comment on “Model-free Estimation of
Available Power using Deep Learning” by Tuhfe
Gocmen et al.

Martin Felder (Referee)
martin.felder@zsw-bw.de

Received and published: 25 June 2020

This paper adresses the problem of assessing the instantaneous power available at a
wind turbine from the inflow average wind speed and turbulence intensity. The goal is to
provide accurate 1 min estimates of available power, to compare against actual power
delivered in cases of curtailment. Classical, model-based algorithms are compared
against a novel model free method based on LSTM type neural networks. The whole
study is based purely on simulated data, downsampled to 1 Hz resolution.

Overall, while the method described does seem to solve the problem, some basic rules
of neural network training were followed only haphazardly, if at all. The motivations for
some of the decsions made in the process (e.g. early stopping, network size, post-

C1

WESD

Interactive
comment

Printer-friendly version


https://wes.copernicus.org/preprints/
https://wes.copernicus.org/preprints/wes-2019-80/wes-2019-80-RC2-print.pdf
https://wes.copernicus.org/preprints/wes-2019-80
http://creativecommons.org/licenses/by/3.0/

processing) are not clear. | am aware that this is not a machine learning journal, but
throwing a bunch of data into a ML toolbox and applying some new buzzword method
to them is not good science. Before moving on to advanced methods like transfer
learning, the authors would do well to better understand the basic model first, and find
out what the limitations of a well trained single neural network really are. Because from
a practical standpoint, training a model once and applying it in an unchanged fashion
operationally is much easier than implementing a fault tolerant re-training strategy of
any kind. At least it would be helpful to know how a properly tuned standard machine
learning method, like a single network trained on data from all wind regimes, performes
against the its transfer-learned competitors. So, in my opinion this paper needs some
major rework in order to be considered for publication.

Detailed comments follow:

The citations in the Introduction should be balanced an little more. Despite the paper’s
focus on ML, there are only two relatively old (considering the dynamics of the field)
references to ML use in wind power forecasting (lines 40 and 42), while we find about
15 citations related to grid codes and curtailment, and ~10 on power curve modelling.

On a similar note, it seems questionable to discuss EKF application to the turbine
model on three pages, including mathematics, while only showing one sketch of an
LSTM neuron, with no explanation on how these models are actually trained. There is
no mention of the loss function or the training algorithm used. At this point Appendix
A definitely needs to be included and discussed. For example, why is the perfomance
on the test dataset at the start of training about the same as after training? Why is the
training stopped at epoch 37, while the test error is obviously still decreasing after a
small bump? Why do you need LSTM at all, since your best lag comes out as 29 -
hardly requiring a "long" memory. Also, in Figure A1 please start the ordinate at zero,
otherwise the plot scale is misleading.

Figure 5 should be reduced to a well formatted table: The TensorFlow model dump

C2

WESD

Interactive
comment

Printer-friendly version


https://wes.copernicus.org/preprints/
https://wes.copernicus.org/preprints/wes-2019-80/wes-2019-80-RC2-print.pdf
https://wes.copernicus.org/preprints/wes-2019-80
http://creativecommons.org/licenses/by/3.0/

contains misleading information (e.g. what means "None" for the time step dimension?
Why does "activation" have a shape but no parameters? ...). The block diagram is trivial
and therefore redundant. [FS] das ist ein Screenshot von Keras model.summary() und
der Plot der raus kommt wenn man in Keras plot_model() macht. Auf der einen Seite
kann das jeder lesen und weif3 was das None Zeug bedeuten soll, auf der anderen
Seite ist es etwas lazy ;) Da es die Keras Leute aber alle so kennen kann man das
imho schon so durchgehen lassen.

In line 226, "test dataset" is used to refer to the part of the data which is utilized for
determining the early stopping point during gradient descent. Since several years, it
has been common practice in the ML literature to call this the "validation dataset". The
"test dataset" would then be the shorter time series mentioned in line 227. While I'm
personally not happy with this nomenclature, | strongly suggest adhering to the quasi-
standard here, to avoid further confusion.

The definition of "lag" needs to moved from line 248ff to the start of Sec. 3.1, otherwise
the description of preprocessing is hard to understand.

Line 262ff: It seems very suspicious to me that the simple application of a Gaussian
smoother improves your prediction. What information are you adding here that the
LSTM model does not have? And why does the LSTM not have it? Is there so much
random noise in the network output? Is the loss function for the training exactly the
same as the one you use for estimating the test set errors? What is the width of the
Gaussian smoother, and how was it determined? By introducting a smoothing func-
tion, you introduce correlations between the errors of many neighboring 1 Hz samples.
Hence it could be argued that the statistics presented are no longer comparable, i.e.
you should smoothe the results from the model based methods by the same Gaussian.
Furthermore, the effective number of samples you compare against is reduced by a
factor corresponding to the width of the filter. This raises the question of whether or not
the interval used for evaluation is long enough to draw some of the conclusions in the

paper.
C3

WESD

Interactive
comment

Printer-friendly version


https://wes.copernicus.org/preprints/
https://wes.copernicus.org/preprints/wes-2019-80/wes-2019-80-RC2-print.pdf
https://wes.copernicus.org/preprints/wes-2019-80
http://creativecommons.org/licenses/by/3.0/

Line 280ff: The only hyperparameter "optimized" (if you can call a 5 point 1-dim grid
search "optimizing") for the low wind speed case is the lag, since the rest of the archi-
tecture was apparently derived from some rule of thumb, with no further explanation
given. It is good practice to at least check a few combinations of network depth and
width, including extremely small networks. These may obviate the need for transfer
learning and/or output smoothing altogether.

Line 284: Why is it not possible to perform automatic hyperparameter search when the
training time for the full model is only in the order of an hour? This kind of optimization
is standard procedure in many ML applications.

In Figure 11, a) and b) are described, but not c¢). Designating the operation modes
introduced in Fig. 2 as Max-Omega, Const-Omega and Min-Cp now as Op#1 to 3
is confusing. Please stick to one nomenclature. The comparison between a) and c)
would greatly benefit from not repeating the "Power via Cp" curve from Fig. 8, but
instead using the same vertical scale in both graphs.

Fig. 13/14: Now you are apparently using a 60 min timeseries for evaluation, while
before it was 10 min? Since Fig. 13 and others of the same kind have unclear abscissa
labels (not [s], but days and hours?), it is not clear anymore which data are used for
what. Please clarify.

Since the focus of the investigation is the adherence to the 1 min/3.3% error grid code,
and the errors against the 1 min timeseries are much smaller than the ones against
the 1 Hz timeseries, it would be helpful to see the performance of the model based
algorithms against the 1 min resolution timeseries as well, because this is what we are
eventually interested in.

Another point that needs to be discussed before talking about practical applications is
the validation of the algorithm on real observations, as compared to a pure simulation.
Training neural networks on essentially noise-free input data is of course much less
problematic than dealing with real-world data issues. In fact, the authors claim that

C4

WESD

Interactive
comment

Printer-friendly version


https://wes.copernicus.org/preprints/
https://wes.copernicus.org/preprints/wes-2019-80/wes-2019-80-RC2-print.pdf
https://wes.copernicus.org/preprints/wes-2019-80
http://creativecommons.org/licenses/by/3.0/

their method is superior to model-based approaches because of not explicitly relying on
manufacturer data, but there is no proof to that claim. If no real-world data are available WESD
for testing, the claim could be corroborated for instance by simulating changes to Cp

and observing the result on neural network performance.

Interactive
Interactive comment on Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2019-80, 2019. comment

Printer-friendly version

Discussion paper

N

|


https://wes.copernicus.org/preprints/
https://wes.copernicus.org/preprints/wes-2019-80/wes-2019-80-RC2-print.pdf
https://wes.copernicus.org/preprints/wes-2019-80
http://creativecommons.org/licenses/by/3.0/

