In this document, the reviewer’s comments are in black, the authors’ responses are in red.
The authors thank the reviewer for their thoughtful and productive comments.
General comments

The authors have worked to propose a more statistically accurate method for operational AEP wind
farm estimates through correlations with various sources of uncertainty. The topic is certainly
worthwhile, as large projects involve huge financial contributions and associated risk. Overall the
paper is well laid and out and written. As per the comments, there are a number of places where
wording and figure captions need improvement for clarity. Similarly, some specific details of the
method and metric equations need better definition.

Thank you for finding our manuscript interesting and well written. We have addressed your
specific comments to add clarity to our paper.

My main challenge with the paper is the use of the word ‘uncertainty’ in a non-precise manner.
Uncertainty accrues from various sources including measurement errors (epistemic) and
underlying stochastic processes (aleatoric). Moreover, the statistical quantification of that
uncertainty has to be careful, whether it’s a uniform, normal, or other distribution that describes
the range of uncertain values (PDF of values). The paper is a bit too loose in using the term
uncertainty, and also in the numerical MC sampling of those variables assumed uncertain.
Tightening up the presentation in this respect would really help statistical validity and
understanding of the method and results.

We have addressed your specific comments on the theme, to add more rigor to the description of
our analysis.

Specific Comments

1. In25; 1 wonder given the emphasis of the paper on AEP if better figures to quote would be
GWh produced vs. (or in addition to) GW installed capacity?
We have added the following sentence to the paragraph: “In the United States, wind farms
generated over 300,000 GWh in 2019, about 7.5 % of the total US electricity generation
from utility-scale facilities that year, with a 50% increase over a 6-year period (Energy
Information Administration, 2020).”.

2. Around Table 1: Need to define windiness correction factor (formula, etc). The word
‘accuracy’ used throughout table; is that true? or is it really combination of epistemic and
aleatoric uncertainties? Really need to discuss more on sources of uncertainty in terms of
measurement errors and underlying stochastic processes involved.

We have aligned the terminology used in Table 1:



Uncertainty component Description

On-site measurements Measurement error in met mast wind speeds (pre-construction) or power at the
revenue meter (operational)

Reference wind speed data Measurement or modeling error in long-term reference measured or modeled
wind speed data

Losses Error in estimated or reported availability and curtailment losses

Regression Sensitivity in the regression relationship between on-site measurements and ref-
erence wind speeds

Long-term (windiness) correction Sensitivity in the long-term correction applied to the regression relationship
between on-site measurements and reference wind speeds

Inter-annual variability of resource Sensitivity in future energy production because of resource variability

Table 1. Main Sources of Uncertainty in a Long-Term Operational AEP Estimate.

3.

4.

In the intro discussion on operational AEP estimates, the wording seems a little
counterintuitive, in that AEP can be calculated exactly (in terms of delivered energy) given
the data (and just whatever error in the power meter itself). I think a little rewording here
talking more about the purpose of operational AEP for e.g. future year operations, etc.
would help reveal the intent and importance of the work.

We have now referred to operational AEP as “long-term operational AEP” in many places
throughout the introduction. Moreover, we think the following sentence in the introduction
will clarify the point to the reader: “operational estimates of long-term AEP are required
for important wind farm transactions, such as refinancing, purchasing/selling, and
mergers/acquisitions.”

Would be nice to explicitly relate eqn 2 back to CP equation for readers to understand
exponential weighting.
We have rephrased this part as:

The wind speed data are density-corrected at their native time resolutions to correlate more strongly with wind farm power
production (i.e., higher density air in winter produces more power than lower density air in summer, wind speed being the

same):
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where Ugens corr 1s the density-corrected wind speed, U is the wind speed, p is air density (calculated at the same height as wind

speed), pmean is the mean density over the entire period of record of the reanalysis product, and the exponent 1/3 is derived

from the basic relationship between wind power and wind speed cubed (Manwell et al., 2010). To calculate air density at the

In 95; the data exclusions that end up being geographically driven suggest the need for
some more discussion here (or later) on the ramifications for the correlations uncovered;
i.e. are there physical reasons the correlations would be different for more complex terrain
locations?

We have added the following sentence at the end of Section 3.2: “Finally, we note that
although the sites selected for this analysis are primarily in simple terrain (Figure 1), we
do not expect more complex topography to impact the correlations revealed from the Monte
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Carlo analysis, as all the underlying relationships would also be applicable to more
complex sites.”.

list in Ins 105-115; not clear what ’regression’ in item 5. Also 10-20 years of hindcast (vs.
forward prediction) right?

We have rephrased this part to make more explicit which regression is performed: “A linear
regression between monthly gross energy production and concurrent monthly average wind
speeds is performed.”

We have also added details to the description of the long-term data used to clarify that these
are past data, i.e. a hindcast approach: “Long-term monthly average wind speed is then
calculated for each calendar month (i.e., average January wind speed, average February
wind speed, and so forth) with a hindcast approach, using 10--20 years of the available
long-term reference monthly wind resource data (reanalysis products, long-term reference
measurements, ...).”

Fig 2 ‘Wind IAV’ not defined.
The caption of the Figure now states: “Note: IAV denotes inter-annual variability.”

Did you consider more efficient Monte Carlo sampling methods, and/or convergence of
statistics at 10000 samples?

We have tested the convergence of the Monte Carlo AEP distribution at 10,000 samples,
and added the following sentence to the paragraph: “Convergence of the AEP distribution
within 0.5% of the true mean after the 10,000 Monte Carlo runs was verified for all
projects, with a 95% confidence.”

Table 2; need to define pdf type for each uncertain variable (uniform, normal, etc.) Would
also be nice to see more justification for e.g. 0.5% uncertainty values assumed.

We have greatly improved the description of the single uncertainty components considered
in our analysis. We have added information on the pdf type used, and justified the choice
of 0.5% for the revenue meter uncertainty. The paragraphs now read:

2.3 Monte Carlo Analysis

To quantify the uncertainty of the long-term operational AEP estimate obtained using the methodology described in the previ-
ous section, we implement a Monte Carlo approach. In general, a Monte Carlo method involves the randomized sampling of
inputs to or calculations within a method which, when repeated many times, results in a distribution of possible outcomes from
which uncertainty can be deduced, usually calculated as the standard deviation or the coefficient of variation of the resulting
distribution (ISO and OIML, 1995; Dimitrov et al., 2018). Here, we apply this approach to derive a distribution of long-term
operational AEP values, from which its uncertainty can be calculated. To do so, we consider and include in the Monte Carlo
approach five operational-based uncertainty components, so that five different samplings are performed at each Monte Carlo
iteration. The following uncertainty components are included in our proposed Monte Carlo methodology for long-term opera-

tional AEP:
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— Revenue meter measurement error. We incorporate this uncertainty component in the Monte Carlo simulation by sam-

pling monthly revenue meter data from a normal distribution centered on the reported value, and 0.5% standard devia-
tion. In fact, a value of 0.5% is coherent with what is typically assumed in the wind energy community as revenue meter

uncertainty (IEC 60688:2012; ANSI C12.1-2014).

Reference wind speed data modeling error. Quantifying the uncertainty of the long-term wind resource data used in
the operational AEP assessment is challenging, as it can vary based on the location, long-term wind speed product
used, or instrument from which reference observations are taken. To include this uncertainty component in a systematic
way across the 472 locations considered in our analysis, we incorporate it in the Monte Carlo simulation by randomly

selecting, at each iteration at each site, wind resource data from one of the three considered reanalysis products.

— Linear regression model uncertainty. This component is incorporated in the Monte Carlo method by sampling the regres-

sion slope and intercept values from a multivariate normal distribution centered on their best-fit values and covariance
matrix equal to the one of the best-fit parameters. The diagonal terms in the covariance matrix are given by the square
of the slope and intercept standard errors. For a regression model between an independent variable - and a dependent

variable y the standard error of the regression is defined as

where y; is the regression-predicted value for y;, and n is the number of data points used in the regression. The standard

error of the regression slope:
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2 and e are the diagonal terms in the covariance matrix of the multivariate normal distribution of regression slope and
intercept, from which Monte Carlo values are drawn. Slope and intercept values are strongly negatively correlated, which
is captured by their covariance when performing the linear regression. The off-diagonal terms in the covariance matrix
of the multivariate normal distribution constrain the random sampling of slope and intercept values, to avoid sampling
unrealistic combinations. An example of this sampling is shown in Figure 4 for two projects of different regression
strengths. We sample 500 slope and intercept values from a multivariate normal distribution centered around the best-fit
parameters, and with covariance matrix derived from the standard errors of slope and intercept and their covariance. As
shown in the Figure, the low standard errors found for the leftmost regression relationship constrain the possible slope
and intercept values that can be sampled while the high standard errors in the rightmost regression relationship allow for

a much wider sampling.



— Long-term (windiness) correction uncertainty. We incorporate this component by sampling the number of years (between
185 10 and 20) to use as the long-term wind resource data to which the regression coefficients are applied to derive long-term

energy production data (the so-called windiness correction).

— Wind resource inter-annual variability (IAV) uncertainty. We incorporate this uncertainty component in the Monte Carlo

method by sampling the long-term (reanalysis) average calendar monthly wind speeds (i.e., average January, average

February) used to calculate long-term monthly energy production data. The sampling distribution is normal, centered

190 on the calculated long-term average calendar monthly wind speed, and with a standard deviation equal to the 20-year

standard deviation of the long-term average monthly wind speed for each calendar month.

Each of the listed sources of uncertainty corresponds to a Monte Carlo sampling, and is highlighted by a probability distribution
in the flowchart in Figure 3. Note that uncertainty components related to availability and curtailment losses are not considered

in our approach because the EIA 923 database does not include measurements of these losses.

10. Fully linking Table 2 variables explicitly in Fig 2 would help to understand the method.
The last part of the paragraph copied above connects the detailed explanation of the
uncertainty components with what shown in Figure 2. We have also changed the diagram
to have it better match the description in the test:
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Figure 3. Long-term annual energy production (AEP) estimation process using operational data under a Monte Carlo approach; sources of

|I|.,.

uncertainty and points of Monte Carlo sampling are denoted by probability distribution images. Note: IAV denotes inter-annual variability.



11.

12.

13.

14.

15.

Around In 140; define how covariance defined, and numerical procedure in MC for
ensuring the covariance is respected.

We have added more details to the description of the technique used, as can be seen in the
linear regression model uncertainty paragraph shown in the answer to specific comment
#9.

Throughout the word uncertainty is used; I think you’re always meaning standard
deviation, but need to explicitly define as numerical results are presented

We have clarified in many parts throughout the manuscript that we quantify uncertainty in
terms of the coefficient of variation of the AEP distribution.

In Section 2.3, we have added the following sentences to make clear how we calculate the
total AEP uncertainty and its components: “The total uncertainty in operational AEP is
then estimated as the coefficient of variation of the resulting distribution.” And also “We
quantify the impact of each single uncertainty component on the operational AEP in terms
of the coefficient of variation of the distribution of operational AEP resulting from the
Monte Carlo simulation run when sampling only that single uncertainty component.”

In Section 3.1 we now have: “The application of the different setups of the Monte Carlo
approach first allows for an assessment of the distributions of the total operational-based
AEP uncertainty and of its single components across the 472 wind farms, expressed as
percent coefficient of variation (Figure 5).”

Caption of Figure 5 now includes: “Uncertainty values are quantified as the percent
coefficient of variation of the AEP distribution.”

Caption of Figure 6 now explicitly states: “Uncertainty is quantified as the percent
coefficient of variation of the resulting AEP distribution.”

We have also decided to use CoV instead of ¢ in equation 7.

It’s not clear to me what’s been plotted in Fig 4? How is uncertainty defined in % terms?
How is computed across your results sets? Is that eqn 77
We have clarified this point - see our answer to previous comment.

Define which data used to make Fig 7.

We have rephrased the paragraph as “The correlation between linear regression and
reference wind speed data uncertainties can be justified given the dependence of both these
uncertainty components on the number of data points used in the regression between energy
production data and concurrent wind speed data (Figure 8)”.

We have also changed the caption as “Dependence of linear regression uncertainty and
reference wind speed data uncertainty on the number of data points in the period of record,
for the 471 projects considered in the analysis.”

In conclusions, towards a universal method, should explore MC sampling convergence
requirement. Also, the assumed distribution type (as defined presumably by the
‘uncertainty’) is undefined, so not clear how to implement and assumptions there.

We have added the following sentence: “For all the projects considered in this study, the
Monte Carlo simulation reached convergence within 10,000 runs.” Regarding the
distribution type of the various uncertainty components, since each component involves



different ways to be incorporated in the Monte Carlo approach, we have the details of the
methods in Section 2.3.



