
In this document, the reviewer’s comments are in black, the authors’ responses are in red. 
 
The authors thank the reviewer for their thoughtful and productive comments. 
 
General comments 
 
This work examines the combination of 5 uncertainty components inherent in operational-based 
windfarm AEP uncertainty estimation, where the estimation is based on production data and a 
particular type of long-term correction (linear regression on monthly means).  
There is some relevant stuff here, and information from production data of > 400 wind farms which 
can be of use. However, unfortunately the draft does not (yet) appear to be sufficiently clear, 
rigorous, or complete; it offers a somewhat qualitative (incomplete) description of quantitative 
methods/analysis/results and subsequent conclusions. Hopefully with some thought and revision, 
it can become useful to a number of readers. 
Thank you for acknowledging the significant amount of data we used in our analysis. We think 
that all the modifications we have included in the revised manuscript have greatly improved its 
scientific and presentation quality.  
 
The title is not honestly representative (nor scientifically accurate), as it connotes/implies 
consideration of all (or even typical) uncertainty components in production estimates—i.e., it 
overstates the scope and results of the work. But this draft only considers the LTC and 
observed/reference data aspects, i.e. operational AEP. The emerging IEC 61400-15 standard 
includes a much longer list of uncertainty components (and subcomponents), including different 
modelling uncertainties and plant- performance aspects, among others (as you mention in the final 
sentence of the conclusion). Further, the emerging standard does allow for correlated uncertainty 
components. An appropriate title would be something more like “Operational-based AEP 
uncertainty: are its components actually uncorrelated?”. Or it could resemble “correlations 
between uncertainties in operational-based (or alternately long-term correction of) wind farm 
annual energy estimates”.  
We agree with the reviewer that our analysis is focused on the operational-based AEP uncertainty, 
as we stated multiple times in the introduction of our manuscript. To make the title of the 
manuscript consistent with the purpose of our study, we have changed it in: “Operational-Based 
Annual Energy Production Uncertainty: Are its Components Actually Uncorrelated?”. We have 
also replaced “AEP” with “operational AEP” or similar wordings in many places throughout the 
manuscript. 
 
The terminology is a bit problematic, in a number of ways: e.g. the definition of ’windiness 
correction’ is unclear (is direction involved as well?); its relationship with the ’regression’ 
uncertainty component is unclear; the classification ‘regression’ refers to only certain type of long-
term correction (linear).  
We have expanded Section 2.2 to add details about the operational AEP methodology applied in 
our analysis (see later comment on this), and the make clear how the linear regression is applied: 
“A linear regression between monthly gross energy production and concurrent monthly average 
wind speeds is performed.” 
We have also clarified what we intend for ‘windiness correction’ in Section 2.2:  



“Slope and intercept values from the regression relationship are then applied to the long-term 
monthly average wind speed data, with the long-term or so-called windiness correction. A long-
term data set of monthly (January, February, ...) gross energy production is obtained.” 
Therefore, the long-term windiness correction only focuses on the uncertainty driven by how 
different historical periods represent the 'long-term' wind resource at a site.  
To make this more explicit, we have also used the term “long-term windiness correction” in many 
places throughout the manuscript to make this concept easier to understand and remember. 
 
To justify our choice of using a linear regression, we have added the following analysis and 
comment in Section 2.1: 
“The fundamental step in an AEP calculation involves a regression between wind speed and 
energy production. To investigate whether a simple linear function can be assumed to express the 
relationship between wind speed and wind farm energy pro- duction when considering monthly 
data, we show a scatterplot between MERRA-2 monthly wind speed and monthly energy 
production across all 472 sites in Figure 2. For each site, data have been normalized by the 
respective site mean. We show best-fits using a linear, quadratic, and cubic function, and calculate 
the mean absolute error of each fit. We find that the difference between the normalized MAE values 
from the considered functions is less than 0.7%. Therefore, the uncertainty connected with the 
choice of using a linear regression in the operational AEP methodology at monthly time resolution 
appears minimal. Moreover, through conversations with wind industry professionals, we found 
that a linear regression based on monthly data is the standard industry approach when performing 
bankable operational AEP analyses.” 
 

 
We have also changed “regression” with “linear regression” in many places throughout the 
manuscript. 
 



Yet more problematic is the lack of mathematical or specific definitions for the individual 
calculations/processes, to which the 5 uncertainty components are ascribed. 
The total uncertainty calculation is missing, or rather mathematical description of the model for 
total operationally-based uncertainty estimation—along with mathematical description of all 
components; e.g. per the latter, the IAV ‘incorporation’ is not clear. 
We have greatly improved the Methodology part of our manuscript (Sections 2.2 and 2.3), to add 
details and clarity to it. We have included the revised version of Section 2.2 in response to the 
reviewer’s specific comment #7. We include here the revised version of Section 2.3: 
 

 

 

 



 

 



 

 
 
The paper first shows the correlations between uncertainty components in § 3.2. But these 
correlations are used to describe the uncertainty contributions in section 3.1, and presumably these 
correlations have already been used to prescribe/run the Monte Carlo simulations which were 
described in section 2.3. But there is no description of the use of the covariance matrix in the MC 
calculations, or how these correlations were incorporated in the MC analysis.  
The correlations between different operational AEP uncertainty components are not 
assigned/prescribed at all in the Monte Carlo approach; rather, they reveal themselves from the 
results of the Monte Carlo runs across the 472 wind farms considered in our analysis. And this is 
one of the main results of our analysis. We understand this was not clear enough in our original 
draft. Therefore, we have refined and improved the discussion of the Results, to make sure this 
essential step is made clear to the reader. As an example, we have rephrased the first part of Section 
3.2 as follows: 
“Because operational AEP uncertainty calculated by assuming a lack of correlation among its 
different components can greatly differ from the uncertainty values obtained when allowing for 



potential correlations, it is worth exploring the correlation between uncertainty components which 
are responsible for this difference. We leverage the results of the Monte Carlo analysis at the 472 
wind farms considered to reveal the correlation between the single operational AEP uncertainty 
components, in terms of their Pearson correlation coefficient. As a result, we obtain the average 
correlation matrix in Figure 6.”. 
We have also rephrased the caption on Figure 6 (the correlation matrix) as “Correlation coefficient 
heat map between operational AEP uncertainty components, as calculated from the results of the 
Monte Carlo approach applied at the 472 wind farms considered in the analysis.”. 
We have also rephrased and improved many parts of Section 3.1, to emphasize that the results 
described in that section are indeed a consequence of the comparison between the two considered 
methods for operational AEP uncertainty assessment (Monte Carlo, which allows for correlations 
to be revealed, vs sum of squares, which instead assumes uncorrelated uncertainty components), 
but can be understood without the need of having read the detailed analysis of the specific 
correlations given later in Section 3.2: 
“[…] The proposed Monte Carlo approach does not require any assumption on the correlation 
between the different uncertainty components; on the other hand, the conventional sum of squares 
approach assumes the uncertainty components are all uncorrelated. Therefore, we compare the 
total operational AEP uncertainty from the Monte Carlo method with all the five simultaneous 
samplings (σ_MonteCarlo) with the total uncertainty σ_uncorrelated calculated using the 
conventional sum of squares approach. For the latter approach, we quantify each of the five 
uncertainty components as the coefficient of variation of the corresponding operational AEP 
distribution obtained by running the Monte Carlo simulation with a single sampling performed. 
We then combine the five uncertainty components into the overall AEP uncertainty using Eq. 1. 
Figure 5 shows the results of this comparison for the 472 wind farms considered, […] 
In other words, if correlations between the different uncertainty components are allowed and taken 
into account in the calculation method, the whole AEP uncertainty is then, on average, slightly 
reduced. […] 
Moreover, assuming that all the uncertainty components are uncorrelated can introduce 
significant errors in the assessment of the AEP uncertainty for the single projects, with about 47% 
(16%) of the considered wind farms showing a ±5% (10%) uncertainty difference compared to the 
values from the Monte-Carlo-based approach.” 
 
The idea (and Fig.11a) about ‘spread’ and variance can be stated succinctly mathematically, and 
in a less confusing manner—instead of with only semi-qualitative demonstration.  
We have eliminated Figure 11, and changed the explanation of the correlation between linear 
regression uncertainty and IAV uncertainty as follows: 
 

 



 
 

 

 



 
Again, as mentioned just above, the MC method itself does not show correlations between 
components; rather, you _assign_ these from having calculated the correlation matrix.  
See the detailed comment above on the topic. Crucially – the MC method does not assign 
correlations between uncertainty categories. Rather, these correlations (or lack thereof) reveal 
themselves when comparing uncertainty categories across the 472 wind farms. 
 
The conclusions also include some overstatement, e.g. labelling Monte Carlo simulations as “our 
technique”. MC methods have become more commonly used in UQ within the wind industry (e.g. 
from Williams et al 2008 for economic analysis, to Takeshi+Yamaguchi 2015 for extremes with 
MCP, to Müller+Cheng 2018 for probabilistic design), and also in some standard references (e.g. 
GUM); this should have been mentioned and referenced.  
We have rephrased the conclusions, to avoid any unwanted overstatements of the results of our 
analysis. 
We have also added the following sentence to the Introduction of the paper: “Monte Carlo methods 
have been used in different applications for uncertainty quantification within the wind industry, 
ranging from the prediction of extreme wind speed events (Ishihara and Yamaguchi, 2015), to 
offshore fatigue design (Müller and Cheng, 2018), to economic analysis of the benefits of wind 
energy projects (Williams et al., 2008).” 
 
 
Specific comments  
 

1. Abstract/l.3: replace ‘standard’ with ‘a popular’, since the uncorrelated assumption is not 
necessarily standard.  
Changed. 
 

2. l.4 and many places: replace ‘categories’ with ‘components’; one does not add up 
categories, but calculates using component uncertainties.  
Changed throughout the manuscript.  
 

3. l.97: include a reference on complex terrain/challenging for RA products. 
We have added a reference to Shravan Kumar et Anandan, GRL 2009. 
 

4. l.106 [point 2]: regarding ‘between monthly energy production and average wind speeds’ 
— be explicit: a linear relationship is assumed for a presumably nonlinear P(U) 
dependence? Or derived wind to long-term wind data? Which "average wind speeds"?  
See answer to comment 7. 
 

5. l.108 [point 3]: perhaps this step should be noted differently because you don’t perform it 
in your analysis. Or, you could indicate clearly the steps that you do calculate.  
See answer to comment 7. 

 
6. l.111–113 [point 5]: how the values are applied needs to be made explicit/clear to the reader 

(without assumptions or ambiguity): which "long-term resource data" is operated upon (i.e. 



scaled and shifted)? One could assume e.g. that measured or production-derived monthly 
speeds are corrected... 
See answer to comment 7. 

 
7. l.114 [point 6]: how are the gross energies ‘denormalized’, and what is meant by ’normal’ 

number of days?  
Thank you for pointing out that this list, which is an essential description of the 
methodology we applied, was not clear and detailed enough. We have significantly 
improved it following all your comments/suggestions, to make our analysis replicable to 
the interested reader: 
 

 

 
 

8. l.119–122: include references for Monte-Carlo approach; e.g. GUM has some guidance, 
others (e.g. Dimitrov et al., 2018 WES) outline use in our field.  
Besides the references to Monte Carlo methods added to the introduction as described 
above, we have also included the suggested references here. 



 
9. Table 2 [p.7]: There is no description explaining/defending your choices of ‘incorporation 

in Monte Carlo approach. 
a. How did you arrive at 0.5% for meter accuracy? 

We have rephrased this part as follows and added references: 
“Revenue  meter accuracy. We incorporate this uncertainty component in the Monte 
Carlo simulation by sampling monthly revenue meter data from a uniform distribution 
centered on the reported value, and with boundaries at ±0.5% from it. In fact, a value 
of 0.5% is coherent with what is typically assumed in the wind energy community as 
revenue meter uncertainty (IEC 60688:2012; ANSI C12.1-2014).” 
 

b. How can one justify that a random choice from 3 RA products is equivalent to the 
uncertainty in that long-term reference dataset or ‘wind measurement accuracy’? For 
example, there are places where all 3 have a similar bias; further, the uncertainty in 
each (as being representative of speeds at a place) can be similar for a number of 
locations, but the variability amongst the 3 sources can then be significantly smaller.  
We agree with the reviewer that representing the uncertainty in long-term reference 
wind speed data is challenging. To justify and provide context to our choice, we have 
rephrased this part of the paper as follows: 
“Reference wind speed data accuracy. Quantifying the uncertainty of the long-term 
wind resource data used in the operational AEP assessment is challenging, as it can 
vary based on the location, long-term wind speed product used, or instrument from 
which reference observations are taken. To include this uncertainty component in a 
systematic way across the 472 locations considered in our analysis, we incorporate it 
in the Monte Carlo simulation by randomly selecting, at each iteration at each site, 
wind resource data from one of the three considered reanalysis products.” 
 

c. How is sampling the number of years for the ‘windiness correction’ accounting for the 
uncertainty in using a linear adjustment? The latter may likely dominate this 
uncertainty component. 
Please see the extensive answer we have given on this topic to the third general 
comment. 
 

10. Fig.5 / p.10: caption should refer to eqn.7, so the reader knows that these are % differences 
of uncertainties (which are also in %, Fig.5a).  
We have added a reference to Eq. 7 in the caption of Figure 5. 
 

11. l.186: need reference and short mention/description of p-test. 
We have rephrased and expanded the paragraph, which now reads: “To assess which 
correlations have statistical significance, we calculate the p−value (Westfall and Young, 
1993) associated with the ten obtained correlation coefficients. The test reveals that for 
three pairs of uncertainty components the probability of finding the observed not-zero 
correlation coefficients if the actual correlation coefficient were in fact zero (p−value) is 
less than 10−5. Therefore, the following three correlations have strong statistical 
significance:”. 
 



12. Fig.9/l.210-212: is this randomly-sampled months, or an increasing sample size building 
consecutively/sequentially from some given time?  
As stated in the caption of the figure, the data used are “periods of record of different 
lengths (all ending in December 2017)”. 

 
Technical corrections  
There are many English usage/grammatical corrections and suggestions, which are included in the 
attached annotated PDF-file. I thus only include a sample of them here in this list. 
 Thank you for the careful review of the manuscript also from a linguistic point of view. We have 
incorporated the changes listed here and those included in the supplement attached by the reviewer. 
 

• l.4: need comma after ‘uncorrelated’; replace ‘through a sum of squares approach’ with ‘as 
the sum of their squares’.  

• l.5: remove ‘In this analysis’; replace ‘rigor’ with ‘practical validity’, add ‘for 
operationally-based uncertainty, which is comprised of components associated with long-
term correction and measurements,’ after ‘assumption’.  

• l.6: replace ‘standard uncertainty assumption’ with ‘uncorrelated sum-of-squares method’; 
replace ‘to uncertainty quantification’ with a comma.  

• l.7: replace first instance of ‘categories’ with ‘components’; replaces second instance with 
‘component pairs.  

• l.8: replace ‘do, in fact, show’ with ‘exhibit’; remove ‘, namely’; replace ‘windiness’ with 
a more accepted term like ‘linearized long-term correction’.  

• l.9: replace comma after ‘(positive correlation)’ with a semicolon; delete ‘wind resource’; 
replace comma after ‘negative)’ with a semicolon.  

• l.12: replace ‘industry standard approach’ with ‘simple approach which neglects 
correlations between uncertainty components’.  

• l.34/p.2: is there not a DNV-GL report on this? Not to our knowledge. We have rephrased 
the sentence as “There are to our knowledge, however, …”  

• l.58–59: rewrite ‘the more simple AEP calculation relative to the preconstruction method’ 
as ‘that the operationally-driven calculation is much simpler than the calculation needed 
for preconstruction estimates’.  

• l.60: replace ‘equally’ with ‘also’  
• l.75,77: need ‘dataset’ after ‘interim)’ and ‘NCEP-2)’.  
• l.104/p.5 [point 1]: remove ‘Analysis is performed on a monthly timescale (i.e.,’; replace 

end parens with ‘are calculated’.  
• l.130–136: cite GUM / textbook(s).  
• l.165–166: remove ‘uncertainty calculated with the current usual industry standard, which 

assumes uncorrelated components and calculates the’.  
• l.167: replace ‘with’ with ‘using’.  
• l.169: replace ‘472 considered wind farms, both in terms of a scatterplot and’ with ‘472 

wind farms considered, as a scatterplot and also as’.  
• l.170: remove ‘, ∆σ,’; change ‘, calculated as’ to a colon.  
• l.172: add comma after ‘observed’.  
 
Please also note the supplement to this comment: https://www.wind-energ-sci-discuss.net/wes-
2019-82/wes-2019-82-RC1- supplement.pdf 



In this document, the reviewer’s comments are in black, the authors’ responses are in red. 
 
The authors thank the reviewer for their thoughtful and productive comments. 
 
General comments 
 
The authors have worked to propose a more statistically accurate method for operational AEP wind 
farm estimates through correlations with various sources of uncertainty. The topic is certainly 
worthwhile, as large projects involve huge financial contributions and associated risk. Overall the 
paper is well laid and out and written. As per the comments, there are a number of places where 
wording and figure captions need improvement for clarity. Similarly, some specific details of the 
method and metric equations need better definition. 
Thank you for finding our manuscript interesting and well written. We have addressed your 
specific comments to add clarity to our paper. 
 
My main challenge with the paper is the use of the word ‘uncertainty’ in a non-precise manner. 
Uncertainty accrues from various sources including measurement errors (epistemic) and 
underlying stochastic processes (aleatoric). Moreover, the statistical quantification of that 
uncertainty has to be careful, whether it’s a uniform, normal, or other distribution that describes 
the range of uncertain values (PDF of values). The paper is a bit too loose in using the term 
uncertainty, and also in the numerical MC sampling of those variables assumed uncertain. 
Tightening up the presentation in this respect would really help statistical validity and 
understanding of the method and results. 
We have addressed your specific comments on the theme, to add more rigor to the description of 
our analysis. 
 
Specific Comments 
 

1. ln 25; I wonder given the emphasis of the paper on AEP if better figures to quote would be 
GWh produced vs. (or in addition to) GW installed capacity? 
We have added the following sentence to the paragraph: “In the United States, wind farms 
generated over 300,000 GWh in 2019, about 7.5 % of the total US electricity generation 
from utility-scale facilities that year, with a 50% increase over a 6-year period (Energy 
Information Administration, 2020).”. 
 

2. Around Table 1: Need to define windiness correction factor (formula, etc). The word 
‘accuracy’ used throughout table; is that true? or is it really combination of epistemic and 
aleatoric uncertainties? Really need to discuss more on sources of uncertainty in terms of 
measurement errors and underlying stochastic processes involved. 
We have aligned the terminology used in Table 1: 



 
 

3. In the intro discussion on operational AEP estimates, the wording seems a little 
counterintuitive, in that AEP can be calculated exactly (in terms of delivered energy) given 
the data (and just whatever error in the power meter itself). I think a little rewording here 
talking more about the purpose of operational AEP for e.g. future year operations, etc. 
would help reveal the intent and importance of the work. 
We have now referred to operational AEP as “long-term operational AEP” in many places 
throughout the introduction. Moreover, we think the following sentence in the introduction 
will clarify the point to the reader: “operational estimates of long-term AEP are required 
for important wind farm transactions, such as refinancing, purchasing/selling, and 
mergers/acquisitions.” 
 

4. Would be nice to explicitly relate eqn 2 back to CP equation for readers to understand 
exponential weighting. 
We have rephrased this part as: 

 
 

5. ln 95; the data exclusions that end up being geographically driven suggest the need for 
some more discussion here (or later) on the ramifications for the correlations uncovered; 
i.e. are there physical reasons the correlations would be different for more complex terrain 
locations? 
We have added the following sentence at the end of Section 3.2: “Finally, we note that 
although the sites selected for this analysis are primarily in simple terrain (Figure 1), we 
do not expect more complex topography to impact the correlations revealed from the Monte 



Carlo analysis, as all the underlying relationships would also be applicable to more 
complex sites.”. 
 

6. list in lns 105-115; not clear what ’regression’ in item 5. Also 10-20 years of hindcast (vs. 
forward prediction) right? 
We have rephrased this part to make more explicit which regression is performed: “A linear 
regression between monthly gross energy production and concurrent monthly average wind 
speeds is performed.” 
We have also added details to the description of the long-term data used to clarify that these 
are past data, i.e. a hindcast approach: “Long-term monthly average wind speed is then 
calculated for each calendar month (i.e., average January wind speed, average February 
wind speed, and so forth) with a hindcast approach, using 10--20 years of the available 
long-term reference monthly wind resource data (reanalysis products, long-term reference 
measurements, ...).” 
 

7. Fig 2 ‘Wind IAV’ not defined. 
The caption of the Figure now states: “Note: IAV denotes inter-annual variability.” 
 

8. Did you consider more efficient Monte Carlo sampling methods, and/or convergence of 
statistics at 10000 samples? 
We have tested the convergence of the Monte Carlo AEP distribution at 10,000 samples, 
and added the following sentence to the paragraph: “Convergence of the AEP distribution 
within 0.5% of the true mean after the 10,000 Monte Carlo runs was verified for all 
projects, with a 95% confidence.” 
 

9. Table 2; need to define pdf type for each uncertain variable (uniform, normal, etc.) Would 
also be nice to see more justification for e.g. 0.5% uncertainty values assumed. 
We have greatly improved the description of the single uncertainty components considered 
in our analysis. We have added information on the pdf type used, and justified the choice 
of 0.5% for the revenue meter uncertainty. The paragraphs now read: 
 

 



 

 



 
 

10. Fully linking Table 2 variables explicitly in Fig 2 would help to understand the method. 
The last part of the paragraph copied above connects the detailed explanation of the 
uncertainty components with what shown in Figure 2. We have also changed the diagram 
to have it better match the description in the test: 
 

 
 

 



11. Around ln 140; define how covariance defined, and numerical procedure in MC for 
ensuring the covariance is respected. 
We have added more details to the description of the technique used, as can be seen in the 
linear regression model uncertainty paragraph shown in the answer to specific comment 
#9. 
 

12. Throughout the word uncertainty is used; I think you’re always meaning standard 
deviation, but need to explicitly define as numerical results are presented 
We have clarified in many parts throughout the manuscript that we quantify uncertainty in 
terms of the coefficient of variation of the AEP distribution. 
In Section 2.3, we have added the following sentences to make clear how we calculate the 
total AEP uncertainty and its components: “The total uncertainty in operational AEP is 
then estimated as the coefficient of variation of the resulting distribution.” And also “We 
quantify the impact of each single uncertainty component on the operational AEP in terms 
of the coefficient of variation of the distribution of operational AEP resulting from the 
Monte Carlo simulation run when sampling only that single uncertainty component.” 
In Section 3.1 we now have: “The application of the different setups of the Monte Carlo 
approach first allows for an assessment of the distributions of the total operational-based 
AEP uncertainty and of its single components across the 472 wind farms, expressed as 
percent coefficient of variation (Figure 5).” 
Caption of Figure 5 now includes: “Uncertainty values are quantified as the percent 
coefficient of variation of the AEP distribution.” 
Caption of Figure 6 now explicitly states: “Uncertainty is quantified as the percent 
coefficient of variation of the resulting AEP distribution.” 
We have also decided to use CoV instead of s in equation 7. 
 

13. It’s not clear to me what’s been plotted in Fig 4? How is uncertainty defined in % terms? 
How is computed across your results sets? Is that eqn 7? 
We have clarified this point - see our answer to previous comment. 
 

14. Define which data used to make Fig 7. 
We have rephrased the paragraph as “The correlation between linear regression and 
reference wind speed data uncertainties can be justified given the dependence of both these 
uncertainty components on the number of data points used in the regression between energy 
production data and concurrent wind speed data (Figure 8)”. 
We have also changed the caption as “Dependence of linear regression uncertainty and 
reference wind speed data uncertainty on the number of data points in the period of record, 
for the 471 projects considered in the analysis.” 
 

15. In conclusions, towards a universal method, should explore MC sampling convergence 
requirement. Also, the assumed distribution type (as defined presumably by the 
‘uncertainty’) is undefined, so not clear how to implement and assumptions there. 
We have added the following sentence: “For all the projects considered in this study, the 
Monte Carlo simulation reached convergence within 10,000 runs.” Regarding the 
distribution type of the various uncertainty components, since each component involves 



different ways to be incorporated in the Monte Carlo approach, we have the details of the 
methods in Section 2.3. 
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Abstract. Calculations of annual energy production (AEP) from a wind farm—whether based on preconstruction
::::::::::::::
pre-construction

or operational data—are critical for wind farm financial transactions. The uncertainty in the AEP calculation is especially im-

portant in quantifying risk and is a key factor in determining financing terms. Standard industry practice assumes
:
A

:::::::
popular

:::::::
industry

::::::
practice

::
is

::
to

::::::
assume

:
that different uncertainty categories

:::::::::
components

:
within an AEP calculation are uncorrelated,

:
and

can therefore be combined through a sum of squares approach. In this analysis, we assess the rigor
::
as

:::
the

:::
sum

:::
of

::::
their

:::::::
squares.5

:::
We

:::::
assess

::::
the

:::::::
practical

:::::::
validity

:
of this assumption

::
for

::::::::::::::::
operational-based

::::::::::
uncertainty,

:::::
which

:::
is

:::::::::
comprised

::
of

:::::::::::
components

::::::::
associated

::::
with

:::::::::
long-term

::::::::
correction

::::
and

::::::::::::
measurements,

:
by performing operational AEP estimates for over 470 wind farms in

the United States. We contrast the standard uncertainty assumption
::::::::::
uncorrelated

:::::::::::::
sum-of-squares

::::::
method

:
with a Monte Carlo

approachto uncertainty quantification
:
, in which no assumptions of correlation between uncertainty categories

::::::::::
components are

made. Results show that several uncertainty categories do, in fact, show
:::::::::
component

:::::
pairs

::::::
exhibit weak to moderate correla-10

tions, namely: wind resource interannual
:
:
::::::::::
inter-annual

:
variability and the windiness

::::::::
linearized

:::::::::
long-term correction (positive

correlation), wind resource interannual variability and ;
:::::
wind

:::::::
resource

::::::::::
inter-annual

:::::::::
variability

:::
and

:::::
linear

:
regression (negative),

and wind speed measurement uncertainty and
:
;
:::
and

:::::::::
reference

::::
wind

::::::
speed

:::::::::
uncertainty

::::
and

:::::
linear

:
regression (positive). The

sources of these correlations are described and illustrated in detail in this paper, and the effect on the total AEP uncertainty

calculation is investigated. Based on these results, we conclude that a Monte Carlo approach to
:::::::::
operational AEP uncertainty15

quantification is more robust and accurate than the industry standard approach
:::::
simple

::::::::
approach

:::::
which

::::::::
neglects

::::::::::
correlations

:::::::
between

:::::::::
uncertainty

::::::::::
components.
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1 Introduction

Calculations of wind farm annual energy production (AEP)—whether based on preconstruction
:::::::::::::
pre-construction data before a25

wind power plant is built or on operational data after a wind farm has started its operations—are vital for wind farm financial

transactions. Preconstruction
:::::::::::::
Pre-construction estimates of AEP are needed to secure and set the terms for new project financ-

ing, whereas operational estimates of
::::::::
long-term AEP are required for important wind farm transactions, such as refinancing,

purchasing/selling, and mergers/acquisitions. The need for AEP analyses of wind farms is increasing, as global wind capacity

increased to 539 GW in 2017, representing 11% and 91% increases over 1-year and 5-year periods, respectively; and capacity30

is expected to increase by another 56% to 841 GW by 2022 (Global Wind Energy Council, 2018).
:
In

:::
the

::::::
United

::::::
States,

:::::
wind

:::::
farms

::::::::
generated

::::
over

:::::::
300,000 GWh

:
in

:::::
2019,

:::::
about

:::::
7.5%

::
of

:::
the

::::
total

:::
US

:::::::::
electricity

::::::::
generation

:::::
from

::::::::::
utility-scale

:::::::
facilities

::::
that

::::
year,

::::
with

:
a
::::
50%

::::::::
increase

::::
over

:
a
::::::
6-year

:::::
period

:::::::::::::::::::::::::::::::::::
(Energy Information Administration, 2020)

:
.

This rapid growth of the wind energy industry is putting an increased spotlight on the accuracy and consistency of AEP

calculations. For preconstruction
:::::::::::::
pre-construction AEP estimates, there has been considerable movement towards standardiza-35

tion. The International Energy Commission (IEC) is currently developing a standard (IEC 61400-15:draft), and there have long

been guidance and best practices available (Brower, 2012). By contrast,
::::::::
long-term

:
operational AEP estimates do not have such

extensive guidance or standards. Only limited standards covering some operational analyses exist:
:
; IEC 61400-12-1:2017 ad-

dresses turbine power curve testing, and IEC 61400-26-3:2016 addresses the derivation and categorization of availability loss

metrics. There are
:
to
:::
our

::::::::::
knowledge, however, no standards and very limited published guidance on calculating

::::::::
long-term AEP40

from operational data. Rather, documentation seems to be limited to a consultant report (Lindvall et al., 2016), an academic

thesis (Khatab, 2017), and limited conference proceedings (Cameron, 2012; Lunacek et al., 2018).

Documentation and standards for preconstruction
:::::::::::::
pre-construction

:
AEP methods are of limited use for operational-based

AEP methods, given the many differences between the two approaches. In general, operational AEP calculations are much

simpler than preconstruction
::::::
simpler

::::
than

::::::::::::::
pre-construction estimates because actual measurements of wind farm power pro-45

duction at the revenue meter replace the complicated preconstruction
:::::::::::::
pre-construction estimate process (e.g., meteorological

measurements, wind and wake-flow modeling, turbine performance, estimates of wind farm losses). However, the two methods

do share several similarities, including regression relationships between on-site measurements and a long-term wind speed ref-

erence, the associated windiness correction
::::::::
long-term

::::::::::
(windiness)

::::::::
correction

:::::::
applied

::
to

::
the

::::::
on-site

::::::::::::
measurements, and estimates

of uncertainty in the resulting AEP calculation. The uncertainty categories
::::::::::
components for operational AEP calculations are50

simplified relative to those in a preconstruction
:::::::::::::
pre-construction

:
estimate (IEC 61400-15:draft); shared categories

::::::::::
components

between the two methods are listed in Table 1.

The uncertainty values from each category
:::::::::
component

:
listed in Table 1 must be combined to produce a total estimate of AEP

uncertainty. We found no guidance in the literature for combining uncertainty categories
::::::::::
components

:
in an operational AEP

estimate. However, considerable guidance exists for combining preconstruction
:::::::::::::
pre-construction

:
uncertainties (Lackner et al.,55

2007; Brower, 2012; Vaisala, 2014; Kalkan, 2015; Clifton et al., 2016). In every case, recommended best practices assume that

2



Category
:::::::::
Uncertainty

::::::::
component

Description

On-site measurements
Accuracy in measured

::::::::::
Measurement

:::::
error

:::
in

:
met mast wind speeds

(preconstruction
::::::::::::
pre-construction) or power at the revenue meter (operational)

Long-term reference

measurements
::::::::
Reference

:::::
wind

:::::
speed

:::
data

Accuracy
::::::::::
Measurement

::
or

::::::::
modeling

::::
error in long-term reference measured or

modeled wind speed data

Losses
Accuracy

::::
Error

:
in estimated or reported availability and curtailment losses

Regression
Confidence

:::::::
Sensitivity

:
in the regression relationship between on-site measure-

ments and long-term reference wind speeds

Windiness correction
:::::::
Long-term

::::::::
(windiness)

::::::::
correction

:

Confidence
::::::::
Sensitivity in the long-term correction applied to the

:::::::
regression

::::::::
relationship

:::::::
between on-site measurements

:::
and

:::::::
reference

::::
wind

::::::
speeds

Interannual
:::::::::
Inter-annual

:
variability of

resource

Uncertainty
::::::::
Sensitivity in future energy production because of resource vari-

ability

Table 1. Main Sources of Uncertainty in an
:
a

::::::::
Long-Term

:
Operational AEP Estimate.

all uncertainties, �i, are uncorrelated and can therefore be combined using a sum of squares approach to give the total AEP

uncertainty, �tot,uncorr:

�tot,uncorr =

sX

i

�2
i (1)

To better understand how uncertainties are combined in
::::::::
long-term

:
operational AEP calculations, we reached out to sev-60

eral wind energy consultants who regularly perform these analyses. These conversations revealed that uncertainties in an
:
a

::::::::
long-term operational AEP calculation are also assumed uncorrelated and combined using Equation 1.

1.1 Goal of Study

The purpose of this study is to examine the extent to which the assumption of uncorrelated uncertainties—and therefore

the combination of those uncertainties through a sum of squares approach—is accurate and appropriate for operational AEP65

calculations. Specifically, this study aims to identify potential correlations between AEP uncertainty categories
::::::::::
components

and propose a Monte Carlo approach to capture such correlations when combining individual uncertainty categories. The focus
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here
::::::::::
components.

::::::
Monte

:::::
Carlo

:::::::
methods

::::
have

::::
been

:::::
used

::
in

:::::::
different

::::::::::
applications

:::
for

:::::::::
uncertainty

::::::::::::
quantification

:::::
within

:::
the

:::::
wind

:::::
energy

::::::::
industry,

::::::
ranging

:::::
from

:::
the

::::::::
prediction

::
of

:::::::
extreme

:::::
wind

:::::
speed

:::::
events

::::::::::::::::::::::::::
(Ishihara and Yamaguchi, 2015)

:
,
::
to

:::::::
offshore

::::::
fatigue

:::::
design

::::::::::::::::::::::
(Müller and Cheng, 2018),

::
to

:::::::::
economic

:::::::
analysis

::
of

:::
the

:::::::
benefits

::
of

:::::
wind

::::::
energy

:::::::
projects

::::::::::::::::::
(Williams et al., 2008)

:
.
:::::
Here,70

::
the

:::::
focus

:
is on operational AEP uncertainty, given

::::
using

:
publicly available wind farm operational dataand the more simple AEP

calculationrelative to the preconstruction method. However, .
::::::
While

::
in

:::
the

:::::::
analysis

:::
we

::::
focus

:::
on

::::::::::
operational

::::
AEP

::::::::::
calculation,

::
we

::::::
expect

::::
that

:::
the

:
results from this analysis—namely the potential identification of correlated uncertainty categories—are

::::::::::::::
components—can

:::
be equally relevant for informing and improving preconstruction

:::::::::::::
pre-construction

:
AEP methods.

In Section 2, we first describe the data sources used in this analysis—namely wind farm operational data and reanal-75

ysis products—as well as the Monte Carlo approach to calculate AEP
:::::::::
operational

::::
AEP

::::
and

:::::::
quantify

:::
its

::::::::::
uncertainty. Sec-

tion 3 presents the main results of our analysis, in terms of uncertainty contributions and correlation among the different

categories
::::::::::
components. We conclude and suggest future work in Section 4.

2 Data and Methods

2.1 Wind Farm Operational Data and Reanalysis Products80

Wind
:::::::::
Operational

:::::
wind farm energy production data for this analysis were

::
are

:
obtained from the publicly available Energy In-

formation Administration (EIA) 923 database (EIA, 2018). This database provides reporting of monthly net energy production

from all power plants in the United States, including wind farms. A total of over 670 unique wind farms were
::
are

:
available

from this data set.

Map of the 472 wind farms that were considered in this study85

Long-term wind speed data (needed to perform the "windiness correction "
::::::::
long-term

::
or

:::::::::
windiness

:::::::::
correction in an AEP

estimate) are used from three reanalysis products over the period of January 1997 through December 2017:

– The Modern-Era Retrospective analysis for Research and Applications v2 (MERRA-2) (Gelaro et al., 2017). We specif-

ically use the M2T1NXSLV data product, which provides diagnostic wind speed at 50 m above ground level (AGL),

interpolated from the lowest model level output (on average about 32 m AGL), using Monin Obukhov similarity theory.90

Data are provided at an hourly time resolution.

– The European Reanalysis Interim (ERA-interim)
::::
data

::
set

:
(Dee et al., 2011). We specifically use output at the 58th model

level, which on average corresponds to a height of about 72 m AGL. Data are provided at 6-hourly time resolution.

– The National Centers for Environmental Prediction v2 (NCEP-2)
:::
data

:::
set

:
(Saha et al., 2014). We specifically use diag-

nostic wind speed data at 10 m AGL. Data are provided at a 6-hourly time resolution.95

The wind speed data are density-corrected at their native time resolutions to correlate more strongly with wind farm power

production (i.e., higher density air in winter produces more power than lower density air in summer, wind speed being the
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Figure 1.
::::
Map

::
of

::
the

:::
472

::::
wind

:::::
farms

:::
that

::::
were

::::::::
considered

::
in

:::
this

:::::
study.

same):

Udens,corr = U

✓
⇢

⇢mean

◆1/3

(2)

where Udens,corr is the density-corrected wind speed, U is the wind speed, ⇢ is air density (calculated at the same height as wind100

speed), and ⇢mean is the mean density over the entire period of record of the reanalysis product.

:
,
:::
and

:::
the

:::::::
exponent

::::
1/3

:
is
:::::::
derived

::::
from

:::
the

::::
basic

::::::::::
relationship

:::::::
between

::::
wind

::::::
power

:::
and

::::
wind

:::::
speed

::::::
cubed

::::::::::::::::::
(Manwell et al., 2010)

:
. To calculate air density at the same height as wind speed, we first extrapolate the reported surface pressure to the wind speed

measurement height, assuming hydrostatic equilibrium:

p= psurf exp


gz

RTavg

�
(3)105

where p is the pressure at the wind speed measurement height, psurf is the surface pressure, g is the acceleration caused by

gravity, z is the wind speed measurement height, R is the gas constant, and Tavg is the average temperature between the

reported value at 2 m AGL and at the wind speed measurement height. To compute air density at the wind speed measurement

height, the ideal gas law assumption is used.

To lessen the impact of limited and/or poor quality
::::::::::
poor-quality

:
data on the results of our analysis, we filter for wind farms110

with at least 8 months of data and with a moderate-to-strong correlation with all three reanalysis products (R2 > 0.6). A

threshold of 8 months is selected in order to investigate uncertainty as it relates to a low number of data points but not so low

as to make the use of a regression relationship questionable. A total of 472 wind farms were
:::
are kept for the final analysis,

and their locations are shown in Figure 1. Because obtaining an accurate representation of wind data in complex terrain by

5



Figure 2.
::::::::
Scatterplot

:::::::
between

::::::::
normalized

:::::::::
MERRA-2

::::::
monthly

::::
wind

:::::
speed

:::
and

::::::
monthly

::::::
energy

::::::::
production

:::::
across

::
all

:::
472

:::::::
selected

::::
sites,

:::
and

::::
linear,

::::::::
quadratic

:::
and

::::
cubic

:::::
best-fit

:::::
lines.

reanalysis products is challenging
::::::::::::::::::::::::::::::
(Shravan Kumar and Anandan, 2009), most of the selected wind plants are located in the115

Midwest and Southern Plains. Notably, no wind farms in California pass the filtering criteria, because they are predominately

located in areas with thermally driven wind regimes such as Tehachapi Pass, where coarse-resolution reanalysis products are

poor predictors of wind energy production.

:::
The

:::::::::::
fundamental

:::
step

::
in
:::
an

::::
AEP

:::::::::
calculation

::::::::
involves

:
a
:::::::::
regression

:::::::
between

:::::
wind

:::::
speed

:::::
(here,

::::
from

:::
the

:::::::::
reanalysis

::::::::
products)

:::
and

::::::
energy

:::::::::
production

:::::
(here,

:::::
from

:::
the

::::
EIA

:::
923

:::::::::
database).

::
To

::::::::::
investigate

:::::::
whether

:
a
::::::
simple

:::::
linear

:::::::
function

::::
can

::
be

::::::::
assumed

::
to120

::::::
express

:::
the

::::::::::
relationship

::::::::
between

::::
wind

:::::
speed

::::
and

:::::
wind

::::
farm

::::::
energy

:::::::::
production

:::::
when

::::::::::
considering

::::::::
monthly

::::
data,

:::
we

:::::
show

::
a

::::::::
scatterplot

::::::::
between

:::::::::
MERRA-2

:::::::
monthly

:::::
wind

:::::
speed

:::
and

:::::::
monthly

::::::
energy

::::::::::
production

:::::
across

:::
all

:::
472

::::
sites

::
in
::::::
Figure

::
2.

::::
For

::::
each

:::
site,

::::
data

:::::
have

::::
been

::::::::::
normalized

::
by

:::
the

:::::::::
respective

:::
site

::::::
mean.

:::
We

:::::
show

:::::::
best-fits

:::::
using

:
a
::::::
linear,

::::::::
quadratic,

::::
and

:::::
cubic

::::::::
function,

:::
and

::::::::
calculate

:::
the

:::::
mean

:::::::
absolute

::::
error

:::
of

::::
each

:::
fit.

:::
We

:::
find

::::
that

:::
the

:::::::::
difference

:::::::
between

:::
the

:::::::::
normalized

::::::
MAE

:::::
values

:::::
from

:::
the

:::::::::
considered

::::::::
functions

::
is

::::
less

::::
than

:::::
0.7%.

::::::::::
Therefore,

:::
the

::::::::::
uncertainty

:::::::::
connected

::::
with

:::
the

::::::
choice

:::
of

:::::
using

:
a
::::::

linear
:::::::::
regression125

::
in

:::
the

::::::::::
operational

::::
AEP

::::::::::::
methodology

::
at

:::::::
monthly

:::::
time

:::::::::
resolution

:::::::
appears

::::::::
minimal.

:::::::::
Moreover,

:::::::
through

:::::::::::
conversations

:::::
with

::::
wind

:::::::
industry

::::::::::::
professionals,

:::
we

:::::
found

:::
that

::
a
:::::
linear

:::::::::
regression

:::::
based

::
on

::::::::
monthly

::::
data

:
is
:::

the
::::::::

standard
:::::::
industry

::::::::
approach

:::::
when

:::::::::
performing

::::::::
bankable1

:::::::::
operational

::::
AEP

::::::::
analyses.

:

1
:::::
Results

::
are

::::::
accepted

::
by

::::
banks,

:::::::
investors,

:::
and

:
so
::

on
:::

for
::
use

::
in

:::::::
financing,

::::::::::
buying/selling,

::
and

:::::::
acquiring

:::
wind

:::::
farms.
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2.2 Operational AEP Methodology

Given the current lack of existing guidelines that offer
::
for

:
a standard approach for operational AEP calculations, we instead base130

our methodology from
::
on conversations with several wind energy consultants. These conversations overwhelmingly revealed

the following characteristics of an industry standard and bankable 2 operational AEP analysis:

1. Analysis is performed on a monthly timescale (i.e., monthly energy production
:::::
Wind

:::::
speed

::::
data

:::::::::
(measured

::
or

::::::::
modeled)

::
are

:::::::::::::::
density-corrected

::
at

::::
their

:::::
native

::::
time

:::::::::
resolution,

:::::
using

::::::::
equation

::
2.

2.
:::::::
Monthly

:::::::
revenue

:::::
meter data, monthly average availability and curtailment losses, and monthly average wind speeds from135

a long-term wind resource product )
::
are

:::::::::
calculated.

3. Linear regression between monthly energy production and average wind speeds is used to perform the windiness

correction
:::::::
Monthly

:::::::
revenue

:::::
meter

::::
data

::::
are

:::::::::
normalized

:::
to

::::::
30-day

:::::::
months

::::
(e.g.

:::
for

:::::::
January,

::::
the

:::::::
revenue

:::::
meter

::::::
values

::
are

:::::::::
multiplied

:::
by

:::::
30/31).

4. Monthly revenue meter data are corrected for monthly availability and curtailment (i.e., to calculate gross energy ) to140

improve the linear regression relationship2
:::::::
monthly

::::
gross

::::::
energy

::::
data

:::
are

:::::::::
calculated).

5. Monthly energy production is normalized to 30-day months to improve the accuracy of the regression relationship.
::
A

:::::
linear

::::::::
regression

:::::::
between

::::::::
monthly

::::
gross

::::::
energy

:::::::::
production

::::
and

:::::::::
concurrent

:::::::
monthly

:::::::
average

::::
wind

::::::
speeds

::
is

:::::::::
performed.

:

6.
:::::::::
Long-term

:::::::
monthly

:::::::
average

::::
wind

:::::
speed

::
is
::::

then
:::::::::

calculated
:::
for

::::
each

::::::::
calendar

::::::
month

::::
(i.e.,

:::::::
average

::::::
January

:::::
wind

::::::
speed,

::::::
average

::::::::
February

:::::
wind

::::::
speed,

:::
and

:::
so

:::::
forth)

::::
with

::
a
:::::::
hindcast

:::::::::
approach,

:::::
using

::::::
10–20

:::::
years

::
of

:::
the

::::::::
available

:::::::::
long-term145

:::::::
reference

::::::::
monthly

::::
wind

:::::::
resource

::::
data

:::::::::
(reanalysis

::::::::
products,

:::::::::
long-term

::::::::
reference

::::::::::::
measurements,

:::
...).

:

7. Slope and intercept values from the regression relationship are then applied to 10–20 years of
:::
the long-term wind resource

datato perform the
::::::
monthly

:::::::
average

:::::
wind

:::::
speed

::::
data,

::::
with

:::
the

:::::::::
long-term

::
or

::::::::
so-called windiness correction. Long-term

monthly gross energy production (i.e., average Januarywind speed, average Februarywind speed, and so forth) is then

calculated
::
A

::::::::
long-term

::::
data

::
set

:::
of

:::::::
monthly

::::::::
(January,

::::::::
February,

::
...)

:::::
gross

::::::
energy

:::::::::
production

::
is

:::::::
obtained.150

8. The resulting long-term monthly gross energy estimatesare then "denormalized " to the normal ,
::::::
which

:::
are

:::::
based

:::
on

::::::
30-day

:::::::
months,

:::
are

::::
then

:::::::::::
denormalized

::
to

:::
the

:::::
actual

:
number of days per month , and long-term

:
in
:::::

each
:::::::
calendar

::::::
month

::::
(e.g.

::
for

:::::::
January,

:::
the

::::::::
obtained

:::::
value

:
is
:::::::::
multiplied

:::
by

::::::
31/30).

9.
:::::::::
Long-term estimates of availability and curtailment losses are finally applied to arrive at an

:::
the

:::::::::::
denormalized

:
long-term

:::::::
monthly

::::
gross

::::::
energy

:::::
data,

::::::
leading

::
to

:
a
:::::::::
long-term calculation of operational AEP.155

2Results are accepted by banks, investors, and so on for use in financing, buying/selling, and acquiring wind farms.
2These loss data are not available in the EIA-923 database and therefore are not considered in this analysis.
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Figure 3. Annual
:::::::
Long-term

::::::
annual energy production

:::::
(AEP) estimation process using operational data under a Monte Carlo approach;

source
::::::
sources of uncertainty and points of Monte Carlo sampling are denoted by probability distribution images. Note: IAV for

::::::
denotes

inter-annual variability.

::
In

:::
the

:::::::
EIA-923

::::::::
database,

::::::::::
availability

:::
and

::::::::::
curtailment

::::
data

:::
are

:::
not

::::::::
available.

:::::::::
Therefore,

::
in

:::
our

:::::::
analysis

:::
we

::::
omit

:::::
steps

:
4
::::
and

:
9
::
of

:::
the

::::
list,

:::
and

::::
only

:::::::
perform

::::::::::
calculations

:::
on

:::
net

::::::
energy

::::
data.

:
A diagram outlining this general process

:::
the

:::::::
resulting

:::::::
general

::::::
process

::
of

:::
the

::::::::::
operational

::::
AEP

:::::::
analysis

:::::::
adopted

::
in

:::
our

:::::
study is shown in Figure 3.

2.3 Monte Carlo Analysis

To quantify uncertainty from the AEP calculation
::
the

::::::::::
uncertainty

::
of

:::
the

::::::::
long-term

:::::::::
operational

:::::
AEP

:::::::
estimate

:::::::
obtained

:::::
using

:::
the160

:::::::::::
methodology described in the previous section, we implement a Monte Carlo approach. In general, a Monte Carlo approach

::::::
method

:
involves the randomized sampling of inputs to or calculations within a method which, when repeated many times, re-
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sults in a distribution of possible outcomes from which uncertainty can be deduced(,
:
usually calculated as the standard deviation

of the distribution). We
::
or

::
the

:::::::::
coefficient

::
of

::::::::
variation

::
of

:::
the

:::::::
resulting

::::::::::
distribution

:::::::::::::::::::::::::::::::::::::
(ISO and OIML, 1995; Dimitrov et al., 2018)

:
.
::::
Here,

:::
we

:
apply this approach to the operational AEP calculation to quantify the key sources of uncertainty. The procedure is165

repeated 10,000 times under random sampling of the key uncertainty sources to produce
:::::
derive

:
a distribution of AEP values

from which total
::::::::
long-term

:::::::::
operational

::::
AEP

::::::
values,

:::::
from

:::::
which

:::
its uncertainty can be quantified. In this process

::::::::
calculated.

:::
To

::
do

::
so, we consider five uncertainty categories and ways to incorporate them

:::
and

:::::::
include in the Monte Carlo approach , as listed

in Table ??. Note that uncertainty categories related to availability and curtailment losses are not considered because the EIA

923 database does not include measurements of these losses.170

Category Incorporation in Monte Carlo approachRevenue meter accuracy Sampling
:::
five

:::::::::::::::
operational-based

::::::::::
uncertainty

::::::::::
components,

::
so

::::
that

:::
five

:::::::
different

:::::::::
samplings

:::
are

::::::::
performed

::
at

::::
each

::::::
Monte

:::::
Carlo

:::::::
iteration.

::::
The

::::::::
following

:::::::::
uncertainty

::::::::::
components

::
are

::::::::
included

::
in

:::
our

::::::::
proposed

::::::
Monte

:::::
Carlo

:::::::::::
methodology

::
for

:::::::::
long-term

:::::::::
operational

:::::
AEP:

:

–
:::::::
Revenue

:::::
meter

:::::::::::
measurement

:::::
error.

:::
We

:::::::::
incorporate

:::
this

::::::::::
uncertainty

:::::::::
component

::
in

:::
the

:::::
Monte

:::::
Carlo

:::::::::
simulation

::
by

::::::::
sampling

monthly revenue meter data from a distribution with an imposed
::::::
normal

:::::::::
distribution

:::::::
centered

:::
on

:::
the

:::::::
reported

:::::
value,

::::
and175

::::
0.5%

::::::::
standard

::::::::
deviation.

::
In

::::
fact,

::
a
:::::
value

::
of

:
0.5% uncertainty.Wind measurement accuracy Randomly selecting one of

the three reanalysis products for each Monte Carlo iteration. Wind interannual variability (IAV) Sampling the
:
is
::::::::
coherent

::::
with

::::
what

::
is

:::::::
typically

:::::::
assumed

::
in

:::
the

::::
wind

::::::
energy

::::::::::
community

::
as

::::::
revenue

:::::
meter

::::::::::
uncertainty

::::::::::::::::::::::::::::::
(IEC 60688:2012; ANSI C12.1-2014)

:
.

–
::::::::
Reference

:::::
wind

:::::
speed

:::
data

::::::::
modeling

:::::
error.

::::::::::
Quantifying

:::
the

::::::::::
uncertainty

::
of

:::
the long-term average calendar monthly wind180

speeds (i.e., average January, average February) based on corresponding
::::
wind

::::::::
resource

::::
data

::::
used

:::
in

:::
the

::::::::::
operational

::::
AEP

:::::::::
assessment

::
is
:::::::::::
challenging,

::
as

::
it

:::
can

::::
vary

::::::
based

::
on

:::
the

::::::::
location,

:
long-term uncertainties for each calendar month

(calculated from 20-year long reanalysis data). Regression model Sampling
::::
wind

:::::
speed

:::::::
product

:::::
used,

::
or

::::::::::
instrument

::::
from

:::::
which

::::::::
reference

:::::::::::
observations

:::
are

:::::
taken.

:::
To

::::::
include

::::
this

:::::::::
uncertainty

:::::::::
component

:::
in

:
a
:::::::::
systematic

::::
way

:::::
across

:::
the

::::
472

:::::::
locations

::::::::::
considered

::
in

:::
our

::::::::
analysis,

:::
we

::::::::::
incorporate

:
it
:::

in
:::
the

::::::
Monte

:::::
Carlo

:::::::::
simulation

:::
by

::::::::
randomly

::::::::
selecting,

::
at
:::::

each185

:::::::
iteration

::
at

::::
each

::::
site,

::::
wind

:::::::
resource

::::
data

:::::
from

:::
one

::
of

:::
the

:::::
three

:::::::::
considered

::::::::
reanalysis

::::::::
products.

:

–
:::::
Linear

:::::::::
regression

::::::
model

::::::::::
uncertainty.

:::::
This

:::::::::
component

:::
is

:::::::::::
incorporated

::
in

:::
the

::::::
Monte

::::::
Carlo

::::::
method

:::
by

::::::::
sampling

::::
the

::::::::
regression

:
slope and intercept values from the distribution derived from their standard errors. Windiness adjustment

Sampling the number of years to use in the windiness correction (between 10 and 20). Sources of Uncertainty and their

incorporation in the Monte Carlo approach for Operational AEP Estimate190

Sampling set of regression lines corresponding to the slope and intercept values derived from their standard errors in the

Monte Carlo approach, for two stations in the EIA dataset.

Given the approach to calculating regression uncertainty described in Table ??, we describe it in more detail here.
:
a

::::::::::
multivariate

::::::
normal

::::::::::
distribution

:::::::
centered

:::
on

::::
their

::::::
best-fit

::::::
values

:::
and

::::::::::
covariance

:::::
matrix

:::::
equal

:::
to

:::
the

:::
one

::
of
::::

the
::::::
best-fit

:::::::::
parameters.

::::
The

::::::::
diagonal

:::::
terms

::
in

:::
the

::::::::::
covariance

:::::
matrix

::::
are

:::::
given

::
by

::::
the

:::::
square

:::
of

:::
the

:::::
slope

::::
and

:::::::
intercept

::::::::
standard195
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:::::
errors.

:
For a regression model between an independent variable , x , and a dependent variable , y , we can define the

standard error of the regression :
:
is

::::::
defined

::
as

:

ey =

sP
(yi � ŷi)

2

n� 2
, (4)

where ŷi is the regression-predicted value for yi, and n is the number of data points used in the regression. We can then

introduce the
:::
The

:
standard error of the regression slope:200

ea =
eyP

(xi �xi)
2 , (5)

and the standard error of the intercept:

eb = ey ea

rP
x2
i

n
. (6)

::
e2a:::

and
:::
e2b :::

are
:::
the

:::::::
diagonal

:::::
terms

::
in

:::
the

:::::::::
covariance

::::::
matrix

::
of

:::
the

::::::::::
multivariate

::::::
normal

::::::::::
distribution

::
of

:::::::::
regression

::::
slope

::::
and

:::::::
intercept,

:::::
from

:::::
which

::::::
Monte

:::::
Carlo

:::::
values

:::
are

::::::
drawn. Slope and intercept values are strongly negatively correlated, which205

is captured by the covariance result when performing
:::
their

::::::::::
covariance

:::::
when

::::::::::
performing

:::
the linear regression. Therefore,

to avoid sampling unrealistic combinations, we
:::
The

:::::::::::
off-diagonal

:::::
terms

::
in

:::
the

::::::::::
covariance

::::::
matrix

::
of

:::
the

:::::::::::
multivariate

::::::
normal

::::::::::
distribution constrain the random sampling of slope and intercept valuesbased on this covariance. ,

:::
to

:::::
avoid

:::::::
sampling

:::::::::
unrealistic

::::::::::::
combinations.

:
An example of this sampling is shown in Figure 4 for two projects of different

regression strengths. We sample 500 slope and intercept values from a
:::::::::
multivariate

:
normal distribution centered around210

the best-fit parameters, and with standard deviation equal to
:::::::::
covariance

::::::
matrix

::::::
derived

::::
from

:
the standard errors of slope

and intercept
:::
and

::::
their

::::::::::
covariance. As shown in the Figure, the low standard errors found for the leftmost regression

relationship constrain the possible slope and intercept values that can be sampled while the high standard errors in the

rightmost regression relationship allow for a much wider sampling.

–
:::::::::
Long-term

:::::::::
(windiness)

:::::::::
correction

::::::::::
uncertainty.

:::
We

:::::::::
incorporate

:::
this

::::::::::
component

::
by

::::::::
sampling

:::
the

::::::
number

::
of

:::::
years

::::::::
(between215

::
10

:::
and

:::
20)

::
to
::::
use

::
as

:::
the

::::::::
long-term

::::
wind

::::::::
resource

:::
data

::
to

::::::
which

:::
the

::::::::
regression

::::::::::
coefficients

:::
are

::::::
applied

::
to

:::::
derive

:::::::::
long-term

:::::
energy

::::::::::
production

:::
data

::::
(the

::::::::
so-called

::::::::
windiness

::::::::::
correction).

:

–
::::
Wind

::::::::
resource

::::::::::
inter-annual

::::::::
variability

:::::
(IAV)

::::::::::
uncertainty.

:::
We

::::::::::
incorporate

:::
this

::::::::::
uncertainty

:::::::::
component

::
in

:::
the

::::::
Monte

:::::
Carlo

::::::
method

:::
by

::::::::
sampling

:::
the

::::::::
long-term

::::::::::
(reanalysis)

:::::::
average

::::::::
calendar

:::::::
monthly

:::::
wind

::::::
speeds

::::
(i.e.,

:::::::
average

:::::::
January,

:::::::
average

::::::::
February)

::::
used

::
to
::::::::

calculate
:::::::::
long-term

:::::::
monthly

::::::
energy

:::::::::
production

:::::
data.

::::
The

::::::::
sampling

:::::::::
distribution

::
is
:::::::

normal,
::::::::
centered220

::
on

:::
the

:::::::::
calculated

::::::::
long-term

:::::::
average

::::::::
calendar

:::::::
monthly

::::
wind

::::::
speed,

::::
and

::::
with

:
a
::::::::
standard

::::::::
deviation

:::::
equal

::
to

:::
the

:::::::
20-year

:::::::
standard

::::::::
deviation

::
of

:::
the

::::::::
long-term

:::::::
average

:::::::
monthly

::::
wind

::::::
speed

::
for

:::::
each

:::::::
calendar

::::::
month.

Each of the previously mentioned
::::
listed

:
sources of uncertainty , which corresponds to a Monte Carlo sampling,

:::
and

:
is high-

lighted by a probability distribution in the flowchart in Figure 3.
::::
Note

::::
that

:::::::::
uncertainty

:::::::::::
components

::::::
related

::
to

:::::::::
availability

::::
and
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Figure 4.
:::::::
Sampling

:::
set

::
of

::::::::
regression

::::
lines

:::::::::::
corresponding

::
to

::
the

:::::
slope

:::
and

:::::::
intercept

:::::
values

::::::
derived

::::
from

:::
their

:::::::
standard

:::::
errors

::
in

::
the

::::::
Monte

::::
Carlo

:::::::
approach,

:::
for

:::
two

::::::
stations

::
in

:::
the

:::
EIA

::::
data

::
set.

:::::::::
curtailment

:::::
losses

:::
are

::::
not

:::::::::
considered

::
in

:::
our

::::::::
approach

:::::::
because

:::
the

::::
EIA

::::
923

:::::::
database

::::
does

:::
not

:::::::
include

::::::::::::
measurements

::
of

:::::
these225

:::::
losses.

:

For each wind farm, we estimate both the total AEP uncertainty and its single components from each uncertainty category

considered . Each uncertainty contribution is quantified from the
::::
total

:::::::::
operational

:::::
AEP

:::::::::
uncertainty

:::
by

:::::::
running

:
a
::::::
Monte

:::::
Carlo

::::::::
simulation

:::::::
10,000

:::::
times.

:::
At

::::
each

::::::::
iteration,

:::
all

:::
five

:::::::::
samplings,

:::::::::::::
corresponding

::
to

:::
the

:::
five

::::::::::
considered

:::::::::
uncertainty

:::::::::::
components

:::::::
(revenue

:::::
meter,

::::::::
reference

:::::
wind

:::::
speed

::::
data,

::::
wind

::::::::
resource

::::
IAV,

:::::
linear

:::::::::
regression,

:::
and

:::::::::
windiness

:::::::::
correction),

:::
are

:::::::::::::
simultaneously230

:::::::::
performed.

:::
The

:::::
total

:::::::::
uncertainty

::
in

:::::::::
long-term

:::::::::
operational

:::::
AEP

:
is
::::
then

:::::::::
estimated

::
as

:::
the coefficient of variation of

::
its

::::::::
resulting

::::::::::
distribution.

:::::::::::
Convergence

::
of

:
the AEP distribution obtained by running the Monte Carlo simulation with a single category of

sampling (
::::::
within

::::
0.5%

::
of

:::
the

::::
true

:::::
mean

::::
after

:::
the

::::::
10,000

:::::
Monte

:::::
Carlo

::::
runs

::::
was

::::::
verified

:::
for

::
all

::::::::
projects,

::::
with

:
a
::::
95%

::::::::::
confidence.

::
To

::::::::::
understand

:::
the

::::::
impact

::
of

:::
the

::::::
single

:::::::::
uncertainty

:::::::::::
components

:::
and

:::::
study

:::::
their

:::::::::
correlation,

:::
we

::::
also

::::
run,

::
at
:::::
each

::::
site,

:::
the235

:::::
Monte

:::::
Carlo

:::::::::
simulation

:::::
with

::::
only

:
a
::::::
single

::::::::
sampling

::::::::
performed

::::
(i.e.

:::::
either

:
revenue meter, wind measurement

:::::::
reference

:::::
wind

:::::
speed

:::
data, IAV,

:::::
linear regression, or windiness ) only. Finally, the total uncertainty is determined by running the

:::::::::
correction).

:::
At

::::
each

::::
wind

:::::
farm,

:::
we

:::
run

:::
the

:::::
Monte

:::::
Carlo

:::::::::
simulation

::::::
10,000

::::
time

:::
for

::::
each

::
of

:::
the

:::
five

::::::
single

:::::::::
operational

::::::::::
uncertainty

::::::::::
components

:::::::::
considered.

:::
We

::::::::
quantify

:::
the

::::::
impact

::
of

::::
each

::::::
single

:::::::::
uncertainty

::::::::::
component

:::
on

:::
the

::::::::
long-term

::::::::::
operational

::::
AEP

::
in

:::::
terms

:::
of

:::
the

::::::::
coefficient

::
of
::::::::
variation

::
of

:::
the

::::::::::
distribution

::
of

:::::::::
operational

::::
AEP

::::::::
resulting

::::
from

:::
the Monte Carlo simulation with all five samplings240

performed simultaneously
:::
run

::::
when

::::::::
sampling

::::
only

::::
that

:::::
single

::::::::::
uncertainty

:::::::::
component.
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Figure 5. Uncertainty
:::::::::::::

Operational-based
::::
AEP

::::::::
uncertainty

:
distributions across projects for the different uncertainty categories

::::::::
components;

mean values across projects are shown in the legend.
:::::::::
Uncertainty

:::::
values

::
are

::::::::
quantified

::
as

::
the

::::::
percent

::::::::
coefficient

::
of

:::::::
variation

::
of

::
the

::::::::
long-term

::::::::
operational

::::
AEP

:::::::::
distribution.

:
Note that the sum of squares of the average values of the single components does not add up to the average of

the total uncertainty.

:::
The

::::
code

::::
used

::
to
:::::::
perform

:::
the

::::
AEP

::::::::::
calculations

::
is
::::::::
published

::::
and

::::::::::
documented

::
in

:::::::
NREL’s

::::::::::
open-source

:::::::::
operational

::::::::::
assessment

:::::::
software,

:::::::::
OpenOA.2 Calculations were performed on Eagle, NREL’s high-performance computing cluster. Specifically, each

wind farm was assigned a different processor and run in parallel. Given the general simplicity of the AEP method used here,

computational requirements were moderate despite the 60,000 simulations (10,000
:::
runs

:
x 6 uncertainty setups) required for245

each wind farm.

Code used to perform the AEP calculations is published and documented in NREL’s open-source operational assessment

software, OpenOA.3

3 Results

3.1
::::::::::::::::

Operational-Based
::::
AEP

:
Uncertainty Contributions250

The application of the
::::::
different

::::::
setups

::
of

:::
the

:
Monte Carlo approach first allows for an assessment of the distributions of the

different components of the AEP uncertainty
:::
total

:::::::::::::::
operational-based

::::
AEP

::::::::::
uncertainty

:::
and

::
of

:::
its

:::::
single

::::::::::
components

::::::
across

:::
the

:::
472

::::
wind

::::::
farms,

::::::::
expressed

::
in
:::::
terms

::
of
:::
the

:::::::
percent

:::::::::
coefficient

::
of

:::::::
variation

:::
of

::
the

::::::::
resulting

::::
AEP

:::::::::::
distributions (Figure 5). Uncer-

tainty connected to wind resource IAV is found to contribute the most (average 4.1% across all wind farms). The uncertainty in

the
:::::
linear regression model has the second largest contribution (1.5%), followed by the uncertainty of the wind measurements255

:::::::
reference

:::::
wind

:::::
speed

::::
data

:
(0.8%; here, of the reanalysis products), and revenue meter data (here, imposed at 0.5%, see Table

??). The
::::::::
long-term

:
windiness correction has the smallest uncertainty component (0.4%). Therefore, the number of years used

2
::::::::::::::::::::::
https://github.com/NREL/OpenOA

3https://github.com/NREL/OpenOA
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Figure 6. (a) Scatterplot of total
::::::::
operational

:
AEP uncertainties

::::::::
uncertainty

:::::
values

:
calculated with the proposed Monte Carlo approach

and assuming uncorrelated uncertainty components for the 472 considered wind farms
::::::::
considered.

:::::::::
Uncertainty

:
is
::::::::

quantified
::
as

:::
the

::::::
percent

::::::::
coefficient

:
of
:::::::

variation
::
of

:::
the

:::::::
resulting

:::::::
long-term

::::
AEP

:::::::::
distribution.

:
(b) Histogram of percentage differences

:::
(Eq.

::
7) between the

::::
AEP uncer-

tainties calculated using the two different approaches.

for the long-term windiness correction does not have a large impact on the overall uncertainty in operational AEP, at least for

the sampled range of 10–20 years. Using as few as 10 years seems sufficient to give stability to the
::::::::
long-term AEP estimate,

and adding additional years does not provide a significant reduction in uncertainty
:::
the

:::::::::
uncertainty

:::::::::
connected

::::
with

::
the

:::::::::
long-term260

:::::::
estimate.

The total AEP uncertainty calculated with the
:::::::
proposed

:
Monte Carlo approach (�Monte Carlo) can be compared with the

uncertainty calculated with the current usual industry standard, which assumes uncorrelated components and calculates the

total uncertainty (�uncorrelated) with a
::::
does

:::
not

:::::::
require

:::
any

::::::::::
assumption

:::
on

:::
the

::::::::::
correlation

:::::::
between

:::
the

::::::::
different

::::::::::
uncertainty

::::::::::
components;

:::
on

::
the

:::::
other

:::::
hand,

:::
the

::::::::::
conventional

::::
sum

::
of

::::::
squares

::::::::
approach

:::::::
assumes

:::
the

:::::::::
uncertainty

::::::::::
components

:::
are

::
all

:::::::::::
uncorrelated.265

::::::::
Therefore,

:::
we

::::::::
compare

:::
the

::::
total

::::::::::
operational

:::::
AEP

:::::::::
uncertainty

:::::
from

:::
the

::::::
Monte

:::::
Carlo

:::::::
method

::::
with

:::
all

:::
the

:::
five

::::::::::::
simultaneous

::::::::
samplings

:::::::::::::
(CoVMonte Carlo)

::::
with

:::
the

::::
total

:::::::::
uncertainty

::::::::
calculated

:::::
using

:::
the

:::::::::::
conventional sum of squares approach

::::::::::::
(CoVuncorrelated).

For the sum of squares approach, each uncertainty contribution is quantified from
::::
latter

::::::::
approach,

:::
we

:::::::
quantify

::::
each

::
of

:::
the

::::
five

:::::::::
uncertainty

::::::::::
components

::
as

:
the coefficient of variation of the

:::::::::::
corresponding

::::::::::
operational AEP distribution obtained by running

the Monte Carlo simulation with a single category of sampling .
:::::::
sampling

::::::::::
performed.

:::
We

::::
then

::::::::
combine

:::
the

:::
five

::::::::::
uncertainty270

::::::::::
components

:::
into

::::
the

::::::
overall

::::
AEP

::::::::::
uncertainty

:::::
using

:::
Eq.

::
1.
:

Figure 6 shows the results of this comparison from
::
for

:
the 472
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considered wind farms , both in terms of
::::
wind

:::::
farms

::::::::::
considered,

:::
as a scatterplot and

:::
also

:::
as a histogram of the percentage

difference , �� , between the two versions of the total uncertainty, calculated as
::::
AEP

::::::::::
uncertainty:

��CoV
::

=
�Monte Carlo ��uncorrelated

0.5 · (�Monte Carlo +�uncorrelated)

CoVMonte Carlo �CoVuncorrelated

0.5 · (CoVMonte Carlo +CoVuncorrelated)
:::::::::::::::::::::::::::::

· 100 (7)

A weak bias can be observed
:
, with a median value of -2%

:::::
�2% in uncertainty percentage difference (which corresponds to a275

-0.25%
:::::::
�0.25% median difference in the actual total uncertainty value). In other words, if the correlations between the different

uncertainty components are
::::::
allowed

::::
and taken into account

::
in

:::
the

:::::::::
calculation

:::::::
method, the whole AEP uncertainty is then,

:::
on

:::::::
average, slightly reduced. This difference can be explained by considering that the two biggest sources of uncertainty (

:::::
linear

regression and IAV) are slightly negatively correlated (as will be shown in detail in the next section), thus making the Monte-

Carlo-based
::::
total

:
uncertainty lower, on average, than the one derived with the uncorrelated assumption. Moreover, ignoring280

the existing correlation between the uncertainty components
:::::::
assuming

::::
that

:::
all

:::
the

::::::::::
uncertainty

::::::::::
components

:::
are

:::::::::::
uncorrelated

can introduce significant errors in the assessment of the AEP uncertainty for the single projects, with about 47% (16%) of

the considered wind farms showing a ±5% (10%) uncertainty difference compared to the values from the Monte-Carlo-based

approach. The mean absolute error of the distribution of uncertainty percentage differences is approximately 6% (Figure shown

in the Supplement).285

3.2
:::::::::

Correlation
::::::::
Between

:::::::::::::::::
Operational-Based

::::
AEP

:
Uncertainty Correlations

:::::::::::
Components

Because
:::::::::
operational

:
AEP uncertainty calculated by ignoring the

::::::::
assuming

:
a
::::
lack

::
of
:

correlation among its different compo-

nents can greatly differ from the uncertainty values obtained when considering these
::::::
allowing

::::
for

:::::::
potential

:
correlations, it

is worth exploring which contributions
::
the

:::::::::
correlation

::::::::
between

::::::::::
uncertainty

::::::::::
components

:::::
which

:
are responsible for this dif-

ference. By calculating the Pearson correlation coefficients between the different uncertainty components from
::
We

::::::::
leverage290

::
the

::::::
results

:::
of

:::
the

::::::
Monte

:::::
Carlo

:::::::
analysis

::
at the 472 wind farms , we derived

::::::::
considered

:::
to

:::::
reveal

:::
the

:::::::::
correlation

::::::::
between

:::
the

:::::
single

:::::::::
operational

:::::
AEP

:::::::::
uncertainty

:::::::::::
components,

::
in
::::::

terms
::
of

::::
their

:::::::
Pearson

:::::::::
correlation

::::::::::
coefficient.

:::
As

:
a
::::::

result,
:::
we

::::::
obtain the

average correlation matrix in Figure 7. Out of the 10 possible assessments of correlation between uncertainty categories, three

pairs are correlated with a
:::
To

:::::
assess

:::::
which

:::
of

:::
the

:::::::
obtained

::::::::::
correlations

::::
have

::::::::
statistical

:::::::::::
significance,

:::
we

:::::::
calculate

:::
the

:
p�

:::::
value

:::::::::::::::::::::::
(Westfall and Young, 1993)

::::::::
associated

::::
with

:::
the

:::
ten

:::::::::
correlation

::::::::::
coefficients.

::::
The

:::
test

::::::
reveals

::::
that

:::
for

::::
three

:::::
pairs

:::
of

::::::::::
uncertainty295

::::::::::
components

:::
the

:::::::::
probability

::
of

:::::::
finding

:::
the

:::::::
observed

:::::::
not-zero

:::::::::
correlation

::::::::::
coefficients

:
if
:::

the
::::::

actual
::::::::
correlation

:::::::::
coefficient

:::::
were

::
in

:::
fact

::::
zero

::::
(p�value)

::
is
:
less than 10�5and therefore of .

:::::::::
Therefore,

:::
the

:::::::::
following

::::
three

::::::::::
correlations

:::::
have strong statistical

significance:

– The wind
:::::::
resource

:
IAV and the

::::::::
long-term windiness correction uncertainties are moderately correlated (R= 0.49, p=

1.9 · 10�29).300

– The regression and wind measurement
::::
linear

:::::::::
regression

::::
and

::::::::
reference

::::
wind

:::::
speed

::::
data

:
uncertainties are weakly corre-

lated (R= 0.35, p= 2.5 · 10�15).
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Figure 7. Correlation coefficient heat map between
::::::::
operational

::::
AEP

:
uncertainty categories

:::::::::
components,

::
as

:::::::
calculated

::::
from

:::
the

:::::
results

::
of

:::
the

:::::
Monte

::::
Carlo

:::::::
approach

::::::
applied

::
at

::
the

:::
472

:::::
wind

::::
farms

::::::::
considered

::
in

:::
the

::::::
analysis. Note: “Rev.” denotes “Revenue".”

– The wind
:::::::
resource

:
IAV and the

::::
linear

:
regression uncertainties appear weakly negatively correlated (R=�0.21, p=

2.6 · 10�6).

The first correlation noted earlier (
::::
wind

:
resource IAV and windiness

::::::::
long-term

:::::::::
windiness

::::::::
correction) is explained simply305

by the fact that both uncertainties
:::::::::
uncertainty

::::::::::
components

:
are driven by wind resource variability. At a site with large wind

variability, IAV will be large by definition, and so will the uncertainty introduced by different lengths of time series used for

the
::::::::
long-term AEP calculation.

The correlation between regression and measurement
::::
linear

:::::::::
regression

:::
and

::::::::
reference

:::::
wind

:::::
speed

::::
data

:
uncertainties can be310

justified , given the dependence of both these uncertainty components on the number of data points
:::
used

:::
in

:::
the

:::::::::
regression

:::::::
between

::::::
energy

:::::::::
production

::::
data

:::
and

:::::::::
concurrent

:::::
wind

:::::
speed

:::
data

:
(Figure 8).

Both the slope and intercept error
::::
errors

:
(Equations 5 and 6), from which the

:::::
linear regression uncertainty depends

:::
(as

::::::::
described

::
in

::::::
Section

::::
2.3), are inversely proportional to the number of data points, so that when a regression is performed on

few data points, its uncertainty increases. This relationship
:::::::::
dependence

:
is exemplified in Figure 4, where we compare

::::
have315

::::::::
compared the sampling sets of regression lines for two stations in the EIA data set: for this case

:::::
these

:::
two

:::::
cases, the standard

errors of regression slope and intercept for the station with 8 data points
:::
(on

:::
the

:::::
right) are 30-50 times larger than what is found

for the station with 90 data points
:::
(on

:::
the

::::
left).

For measurement uncertainty
:::
The

:::::::
number

::
of

::::
data

:::::
points

:::::
used

:::
for

:::
the

:::::::::
regression

:::
has

::::
also

::
an

::::::
impact

:::
on

:::
the

::::::::
reference

:::::
wind

:::::
speed

::::
data

::::::::::
uncertainty.

::
In

::::
fact, short periods of wind plant operation record can lead to different interpretations from the320

15



Figure 8. Dependence of
::::
linear regression uncertainty and measurement

:::::::
reference

::::
wind

:::::
speed

:::
data

:
uncertainty on the number of data points

:
in
:::
the

::::::
period

::
of

::::::
record,

::
for

:::
the

:::
471

::::::
projects

::::::::
considered

::
in

:::
the

::::::
analysis.

Figure 9. Long-term time series of normalized wind speed for EIA station ID 60502 from the three reanalysis products used in the study.

The period of record
:::::
(POR) for the wind farm is highlighted in light blue.
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Figure 10. Ratio of wind speed to the long-term, 20-year average for periods of record of different lengths (all ending in December 2017),

for EIA station ID 60502 using data from the three reanalysis products in the study.

reanalysis products
::::::::
reference

:::::
wind

:::::::
resource

::::
data

::::
sets

::::
used

:
as to whether that

::::
short

:
period of record was above, equal to,

or below the long-term average resource. Over a longer period of record, these potential discrepancies between reanalysis

products
:::::::
different

:::::
wind

:::::::
resource

::::
data

:::
sets

:::
(in

:::
our

:::::
case,

::::::::
reanalysis

::::::::
products)

:
tend to average out, therefore leading to a reduced

measurement uncertainty. We illustrate this phenomenon by exploring the long-term trend of the reanalysis products for the

wind farm with one of the highest reported measurement
::::::::
reference

::::
wind

:::::
speed

::::
data uncertainties (EIA ID 60502, reported 3.7%325

wind speed measurement
:::::::
reference

::::
wind

:::::
speed

::::
data

:
uncertainty). Figure 9 shows the result. The period of record for wind farm

operation (shown as shaded blue
::
by

:
a
::::::
shaded

:::::
blue

:::
area

:
in Figure 9) was only 12 months. As shown in the figure, the various

reanalysis products have very different interpretations of the
::::
wind

::::::::
resource

::
in

::
the

:::::
short period of recordwind resource ,

:
relative

to the long-term (ERA-i: 4% above average, MERRA-2: 1% below average; NCEP-2: 1% above average). Consequently,
:::
the

:::
use

::
of each reanalysis product will make different magnitude

:::
lead

::
to
::::::::
different

::::::::::
magnitudes (both positive and negative)

::
in

:::
the330

::::::::
long-term windiness corrections, leading to high uncertainty in the resulting

:::::::::
operational

:
AEP calculation.

By increasing the period of record (i.e., increasing the number of data points
::::
used

::
in

:::
the

::::::::
regression), such discrepancies tend

to average out. This is illustrated in Figure 10, where we show how the period of record to long-term wind speed ratio varies as

we extend the period of record by increasing the number of months while keeping December 2017 as the constant
::::
fixed ending

time. For short periods of record, there is considerable deviation of this ratio between
:::::
among

:
the different reanalysis products335

(i.e., high wind speed measurement uncertainty
:::
the

::::::::
reference

::::
wind

:::::
speed

::::
data

::::::::::
uncertainty

::
is

::::
high). As the length of the period

of record increases, this ratio tends to converge to 1.0, and the spread between the three reanalysis products decreases (i.e., low

17



Figure 11. Dependence of
::::

linear regression uncertainty and IAV uncertainty on the R2 of the regression between reanalysis wind speed and

energy production data

wind speed measurement uncertainty
:::
the

::::::::
reference

::::
wind

:::::
speed

::::
data

:::::::::
uncertainty

::
is
::::
low).

Finally, the
:::::
(weak)

:
negative correlation between regression and

::::
linear

:::::::::
regression

::::
and

::::
wind

::::::::
resource

:
IAV uncertainties is340

linked to the fact they respond differently to the R2 coefficient between the reanalysis wind speed and the energy production

data (Figure 11). Predictably, the
:::::
linear regression uncertainty is inversely proportional to the coefficient of determination

because a stronger correlation between winds and energy production will lead to a reduced uncertainty of the regression

between the two variables. On the other hand,
::::
wind

::::::::
resource IAV uncertainty shows a direct correlation with

:::
the

:::::::::
regression

R2 . We hypothesize that higher IAV leads to large ranges
::::::::
coefficient.

:::::
This

::::::::::
dependency

:::
can

::
be

::::::::
explained

:::
as

::::
both

::::::::
quantities

:::
are345

::::::
directly

:::::::::
correlated

::::
with

:::
the

::::
total

:::::::
variance of wind speed in the regression relationship , which acts to "stabilize" regression and

increase the regression strength. This phenomenon is illustrated in Figure ??(a). Here,
::
or,

:::::::::::
equivalently,

::::::::
produced

::::::
energy.

::::::
Figure

::
12

::::::
shows

:::
the

::::::::::
relationship

:::::::
between

::::
IAV

:::::::::
uncertainty

::::
and the data set in blue has an equal spread in the regression relationship

than the dataset in orange but over a large range of wind speeds. As shown in the figure, this longer range (quantified by the

coefficient of variation of the wind speeds) leads to a higher R2 in the regression.
::::
total

::::
sum

::
of

::::::
squares

::::::::
SStot, WS::

of
:::::::::
reanalysis350

::::
wind

::::::
speed

:::::
(here,

:::::
using

:::::::::
MERRA-2

:::::::
monthly

:::::
data),

::::::
which

::
is

::::::::::
proportional

::
to

:::
the

:::::::
variance

::
of

:::
the

:::::
data:

SStot, WS =
X

i

(WSi �WS)2

::::::::::::::::::::::::

(8)
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(a) Scatterplot of two ideal variables with equal spread, but different data ranges, and impact on the correspondent R2 and coefficient of

variation. (b) Dependence of the coefficient of variation of MERRA-2 wind speeds on the R2 of the regression between reanalysis wind

speed and energy production data. We test this hypothesis in Figure ??(b) where this coefficient of variation in a period of record wind

speeds is calculated for each wind farm and compared to the regression correlation coefficient. As expected, a moderate correlation is

observed. Therefore, we conclude that sites that experience a more variable wind resource tend to have a broader distribution of monthly

wind speeds over their period of record. This broadness augments the range of the linear regression, which stabilizes the regression itself,

and lowers its uncertainty

Figure 12.
:::::::::
Dependence

::
of

::::
IAV

::::::::
uncertainty

:::
on

:::
the

::::
total

::::
sum

::
of

::::::
squares

:::::::
SStot, WS ::

of
:::::::::
MERRA-2

::::
wind

:::::
speed

::::
data,

:::
for

:::
the

:::
472

:::::::
projects

::::::::
considered.

:
A
::::::

direct
:::::::::
correlation

:::::::
between

::::
IAV

::::::::::
uncertainty

:::
and

::::::::
SStot, WS::::::::

emerges.
::
At

:::
the

:::::
same

:::::
time,

:::
the

:::::
linear

:::::::::
regression

:::
R2

:::::::::
coefficient

:::
also

:::::::
depends

:::
on

:::
the

:::::::
variance

::
of

:::
the

::::::::
produced

::::::
energy

::::
(and,

:::::::::::
equivalently,

::
of

:::::
wind

:::::
speed)

:::
as

:
it
::
is

::::::
defined

:::
as

R2 = 1� SSres

SStot
::::::::::::

(9)355

:::::
where

:::::
SSres ::

is
:::
the

::::
total

::::
sum

::
of

:::
the

::::::::
residuals

::::
from

:::
the

:::::
linear

:::::::::
regression.

:::::::
Equation

::
9
:::::
shows

::::
that

:::::
when

:::
the

::::
total

::::
sum

::
of

:::::::
squares

::::
SStot::::::::

increases,
:::
so

::::
does

:::
R2,

::::
thus

:::::::::
confirming

:::
the

:::::
direct

::::::::::
correlation

:::::::
between

:::
R2

:::
and

:::
the

:::::::
variance

::
in

:::
the

:::::
data.

::::::
Finally,

:::
we

::::
note

:::
that

::::::::
although

:::
the

::::
sites

:::::::
selected

:::
for

:::
this

:::::::
analysis

:::
are

::::::::
primarily

::
in

::::::
simple

::::::
terrain

::::::
(Figure

:::
1),

::
we

:::
do

:::
not

::::::
expect

::::
more

:::::::
complex

::::::::::
topography

::
to

::::::
impact

:::
the

:::::::::
correlations

::::::::
revealed

::::
from

:::
the

:::::
Monte

:::::
Carlo

::::::::
analysis,

::
as

::
all

:::
the

:::::::::
underlying

:::::::::::
relationships

:::::
would

::::
also

::
be

:::::::::
applicable

::
to

::::
more

::::::::
complex

::::
sites.

:
360

4 Conclusions

Financial operations related to wind farms require accurate calculations of the annual energy production (AEP) and its uncer-

tainty , both prior to the construction of the plant and,
:::::
often,

:
in the context of its operational analysis. As the wind energy pene-
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tration keeps increasing
::::::::
increases globally, the need for accurate techniques to

:::::::::
techniques

::
to

:::::::::
accurately assess AEP uncertainty

is a priority for the wind energy industry. Typically, the current industry standard assumes that the
::::::
current

:::::::
industry

:::::::
practice365

:::::::
assumes

:::
that

:
uncertainty components in AEP estimates are uncorrelated, and it combines them with a sum of squares approach.

However, we have shown that this assumption is not valid on the
::
for

:::
the

:::
six

::::::::::
components

::::::
which

::::::::
comprise

::
an

:::::::::::::::
operational-based

:::::::::
uncertainty,

:::::
using

:::
the

:
EIA data set.

In this study , we investigated the assumption of uncorrelated uncertainty components by proposing
:::
we

::::
used

:
a Monte

Carlo approach to assess annual energy production. Our technique not only directly ;
::::
this

:::
not

::::
only

:
accounts for correlations370

between uncertainty categories
::::::::::
components, but also provides quantitative insight into aspects of the AEP process that drive

this
:::::::::
calculation

::::
that

::::
drive

::
its

:
uncertainty. We have applied this approach using operational data from 472 wind farms across the

United States in the EIA-923 database.

Our results show that assuming uncorrelated uncertainties determines
:::::::
ignoring

::::::::::
correlations

:::::::
between

::::::::::
uncertainty

::::::::::
components

:::::
causes

:
a mean absolute percentage difference of 6% compared to the uncertainty calculated with the Monte-Carlo-based ap-375

proach, with larger deviations (up to 20%) for specific sites. Moreover, three pairs of uncertainty components reveal a sta-

tistically significant correlation, which is neglected in the current industry standard: wind IAV and windiness
:
:
::::
wind

::::::::
resource

::::::::::
inter-annual

::::::::
variability

:::::
(IAV)

::::
and

::::::::
long-term

::::::::
windiness

:::::::::
correction (positive correlation), wind IAV and

:
;
::::
wind

::::::::
resource

:::
IAV

::::
and

:::::
linear regression (negative), and wind measurement and

:
;
:::
and

::::::::
reference

::::
wind

:::::
speed

::::
data

::::
and

:::::
linear regression (positive). Wind

IAV and windiness
::::::
resource

::::
IAV

::::
and

::::::::
long-term

::::::::
windiness

:::::::::
correction

:
uncertainties are correlated because they both depend on380

wind resource variability. Wind
::::::
resource

:
IAV uncertainty is correlated with

:::::
linear regression uncertainty because they are both

inversely proportional to the number of data points in the period of record. Finally, measurement (reanalaysis) uncertainty and

:::::::
reference

:::::
wind

:::::
speed

::::
data

:::::::::
uncertainty

::::
and

:::::
linear

:
regression uncertainty show a negative correlation because they respond op-

positely to the R2 coefficient between the reanalysis
:::::::::
(reanalysis)

:
wind speed and energy production data. Therefore, our results

suggest that a Monte Carlo approach should be preferred to take into account these correlations between uncertainty compo-385

nents to lead to more accurate results, compared to the current industry standard approach.
::
For

:::
all

:::
the

::::::
projects

:::::::::
considered

::
in
::::
this

:::::
study,

:::
the

::::::
Monte

:::::
Carlo

:::::::::
simulation

::::::
reached

:::::::::::
convergence

::::::
within

::::::
10,000

::::
runs.

:
To facilitate the transition towards this

::::::::
proposed

new industry standard, NREL’s open-source OpenOA software3 already supports the recommended Monte Carlo approach

to assess AEP. In addition, the benefit of this technique will be further described in a guideline document in preparation for

publication by the AWEA TR-1 working group.390

Additional categories
:::::::::
components

:
of uncertainty in an operational AEP were not considered in our study because of limited

reporting in the EIA-923 database. These categories
:::::::::
components

:
include reported availability, curtailment uncertainty, and

various uncertainties introduced through analyst decision-making (e.g., filtering high-loss months from analysis and regression

outlier detection). Future studies could include the impact of these additional sources of uncertainty on the operational AEP

assessment. Finally, this study focused on correlations between operational AEP uncertainty categories
:::::::::
components. Future395

work could explore correlations between preconstruction AEP categories
:::::::::::::
pre-construction

::::
AEP

::::::::::
uncertainty

::::::::::
components. Given

3https://github.com/NREL/OpenOA
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the numerous categories
::::::::::
components (e.g., wake loss, wind speed extrapolation, wind flow model) and their intercomplexities,

a Monte Carlo approach could reveal correlations that are at present not considered.

Code and data availability. EIA data used in this study are accessible from https://www.eia.gov/electricity/data/eia923/. Geographical data

of the EIA wind farms are available at https://www.eia.gov/maps/layer_info-m.php. Software used to assess operational AEP is available400

from https://github.com/NREL/OpenOA.
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