
In this document, the reviewer’s comments are in black, the authors’ responses are in red. 
 
The authors thank the reviewer for their additional thoughtful comments. 
 
General comments 
 
The revised manuscript is significantly improved, also including responses to all of this reviewer's 
comments/questions about the previously submitted (initial) draft.  
The title is now more appropriate (operational AEP only), and numerous (formerly ambiguous or 
unclear) key aspects have been clarified.  
Thank you for acknowledging the improvements in our manuscript.  
We would like to point out that further major changes have been implemented in the latest version 
of the paper, following the comments by both reviewers. 
 
The abstract is also better, though it is still lacking `in conclusion': since the stated purpose is to 
"examine the extent to which the assumption of uncorrelated uncertainties...is accurate and 
appropriate for operational AEP calculations", you should clearly state how large of an effect on 
AEP uncertainty estimation occurs, due to this assumption.  
We have added the following sentence to the abstract: “We quantify that ignoring these 
correlations leads to an underestimation of total AEP uncertainty of, on average, 0.1%, and as large 
as 0.5% for specific sites. Although these are not large increases, these would still impact wind 
plant financing rates; further, we expect these values to increase for wind plants in complex 
terrain.” 
 
Further, it should be made clear that the results are for low-uncertainty sites, i.e. simple flow-
regimes, where you have rejected all sites/data that do not correlate well (R<0.6) with the re-
analysis products. This should perhaps also be included in the abstract.  
It would be useful and honest to state how many sites were rejected based on the LTC R>0.6 
criteria (the conclusions might be different if higher-uncertainty/more complex sites were 
included; low-uncertainty behaviors tend to be more easily linearized and correlated).  
We have included the following additions in the revised manuscript to acknowledge the fair point 
the reviewer is raising: 

• Abstract: “… operational AEP estimates for over 470 wind farms in the United States, 
mostly in simple terrain.” and again: “we expect these values to increase for wind plants in 
complex terrain.” 

• Section 2.1.: “To lessen the impact of limited and/or poor-quality data on the results of our 
analysis, we filter for wind farms with a moderate-to-strong correlation with all three 
reanalysis products (R2 > 0.6). About 25% of the EIA wind farms are discarded with this 
filter.” 

• Section 3.1: “As already mentioned in Section 2, these results are obtained for wind plants 
in mostly simple terrain and with a moderate-to-strong correlation between reanalysis wind 
resource and wind energy production and, therefore, with an overall low operational AEP 
uncertainty. We acknowledge that the inclusion of wind plants with a weaker correlation 
with the reanalysis products would modify the relative contribution of the various 
uncertainty components (e.g., the importance of the regression uncertainty would 
increase).” 



• Conclusions: “Moreover, our analysis excluded sites, mostly in complex terrain, with a 
weak correlation between reanalysis wind resource data and wind power production. 
Future work could explore the magnitude of operational AEP uncertainty and the 
correlation between its components for such complex flow regimes.” 

 
The addition of Figure 2 helps also; though it should be clear that the regression technique is usable 
in part because the speeds have been density-corrected (and normalized).  
As per the reviewer’s specific comments below, we have specified throughout the manuscript that 
the linear regression was performed using density-corrected wind speed data. The same 
specification has been added to the caption of Figure 2. 
 
There is still some lack of clarity about several points, which are mentioned in the specific 
corrections below.  
 
Specific corrections/suggestions 
 

- line 13 (abstract): how is the Monte-Carlo approach more robust than simple sum-of-
squares?  
We have rephrased as “Based on these results, we conclude that correlations between the 
identified uncertainty components should be considered when computing the total AEP 
uncertainty.” 
 

- line 52–53: perhaps there should also be a citation of the general engineering 
(measurement) uncertainty standard, GUM, which includes accounting for correlations 
between uncertainty components.  
We have rephrased the whole paragraph as “The uncertainty values from each component 
listed in Table 1 must be combined to produce a total estimate of AEP uncertainty. While 
general guidelines on how to combine (measurement) uncertainty components exists exists 
(ISO, IEC and OIML, BIPM, 1995), and can be applied to this task, we found no specific 
guidance in the literature for combining uncertainty components in an operational AEP 
estimate. On the other hand, considerable guidance exists for combining preconstruction 
AEP uncertainties (Lackner et al., 2007; Brower, 2012; Vaisala, 2014; Kalkan, 2015; 
Clifton et al., 2016).” 

 
- Line 81: using M-O theory based on MERRA-2 heat and momentum fluxes? 

Correct, but please note that the product we used is provided in MERRA-2 directly, we did 
not apply any interpolation ourselves. 

 
- line 95: reference the International Standard Atmosphere (ISO 2533:1975).  

Added. 
 

- line 101-4: you should state how many sites were rejected due to poor correlation with the 
re-analysis products. Such site/data rejection limits the analysis and conclusions to sites 
with lower uncertainty, particularly regarding the long-term correction (windiness). 
Limiting to low-uncertainty sites can simplify various behaviors; e.g. the correlations may 
be stronger between uncertainty components.  



We have added this information: “To lessen the impact of limited and/or poor-quality data 
on the results of our analysis, we filter for wind farms with a moderate-to-strong correlation 
with all three reanalysis products (R2 > 0.6). About 25% of the EIA wind farms are 
discarded with this filter. We also impose a threshold of eight months of wind plant data 
availability in order to investigate uncertainty as it relates to a low number of data points-
--but not so low as to make the use of a regression relationship questionable. A total of 472 
wind plants are kept for the final analysis, and their locations are shown in Figure 1.” 
 

- Line 109, 111,112: "wind speed" needs to be preceeded by _'density-corrected'_ in order 
to support the linear regression.  
We have added the specification. 
 

- line 120: remove `instead'; perhaps italicize `operational' to emphasize this in comparison 
with non-operational (pre-construction) uncertainties.  
Done. 
 

- l.121-122: How many consultants? The term "industry standard" is (likely) too strong for 
the characteristics you list, unless you can support the variety and number of conversations, 
and their representativeness for the wind industry across the world. (E.g. is this from 
consultants in the Americas, or Europe, or Asian markets?)  
We have rephrased as “we base our methodology on conversations with four major wind 
energy consultants which represent most of the operational market share in North America. 
These conversations overwhelmingly revealed the following characteristics for operational 
AEP analysis:” 
 

- line 130, 131, 134: not just monthly average wind speed, but _density-corrected_ monthly-
average speeds. Be clear about what is being 'operated upon'.  
We have added the specification. 
 

- line 135: not just "gross" energy production, but _estimated_ gross energy production. 
Corrected. 

 
- l.154-5: you don't sample meter data per se, you generated/synthesized using a Gaussian 

distribution. 
Correct, we have rephrased as “To incorporate this uncertainty component in the Monte 
Carlo simulation, we sample monthly revenue meter data from a synthesized normal 
distribution centered on the reported value and 0.5% imposed standard deviation.” 
 

- l.156: "coherent" should be "consistent" (or is it equal to that in the IEC-60688?) 
Corrected. 
 

- lines 160-2: You are in effect using the variability between re-analysis datasets as a proxy 
for uncertainty; this should be stated, because it might be larger or smaller than the 
uncertainty in using a given re-analysis dataset. This is analogous to an _ensemble 
uncertainty_ measure. (perhaps include reference) 



We have rephrased the paragraph as “Quantifying the uncertainty of the long-term wind 
resource data used in the operational AEP assessment is challenging because it can vary 
based on the location, long-term wind speed product used, or instrument from which 
reference observations are taken. To include this uncertainty component in a systematic 
way across the 472 locations considered in our analysis, we adopt an ensemble uncertainty 
approach (Taylor et al., 2009; Zhang et al., 2015), and use as proxy the variability of the 
wind resource between different reanalysis products. Therefore, at each Monte Carlo 
iteration at each site, we randomly select wind resource data from one of the three 
considered reanalysis products.” 
 

- l.166-174: include reference, e.g. to the GUM (JCM100:2008).  
We have added the suggested reference. 
 

- lines 184-7: do you mean that you randomly pick a number of years between 10 and 20? 
Or are you randomizing, or perhaps bootstrap-sampling, in another way? Please clarify.  
We have rephrased as “We incorporate this component by sampling the number of years 
(randomly picked between 10 and 20) to use as the long-term wind resource data …”. 
 

- Fig.5: can't see windiness; why not try a logarithmic scale on y-axis?  
We have tried using a log scale on y-axis, but the result did not look easy to read. We have 
increased the extension of the range shown on y-axis, and also increased the size of all 
labels and plot lines, to make this figure easier to read: 

 
 

- Section 3.1 (l.216-...): The rejection of sites not well-correlated (R<0.6) with the RA 
datasets will affect the uncertainty in the linear regression rather significantly (increasing 
it), and possibly the reference-data uncertainty. As such, the value of 1.5% depends on the 
rejection threshold (what happens when e.g. R<0.5, or 0.8?).  
We have added the following discussion “As already mentioned in Section 2, these results 
are obtained for wind plants in mostly simple terrain and with a moderate-to-strong 
correlation between reanalysis wind resource and wind energy production and, therefore, 
with an overall low operational AEP uncertainty. We acknowledge that the inclusion of 
wind plants with a weaker correlation with the reanalysis products would modify the 



relative contribution of the various uncertainty components (e.g., the importance of the 
regression uncertainty would increase).” 
 

- l.297-8 / Fig.12 caption: not really "dependence", should be 'relationship between' or 
"mutual behavior of" 
Rephrased as “Relationship between IAV uncertainty and the total sum of squares …”. 
 

- l.300: not "direct", but a "positive" correlation emerges 
Corrected (also throughout the manuscript). 
 

- l.305-7: this is not necessarily true -- the correlations are likely to be weaker, when the re-
analysis data are less correlated with the site-specific data. As I noted above, some 
component uncertainties will also increase. 
In light of the additions to the manuscript on the topic (see previous answers on the topic), 
we have removed this sentence. We have also added the following comment to the 
Conclusions: “Moreover, our analysis excluded sites, mostly in complex terrain, with a 
weak correlation between reanalysis wind resource data and wind power production. 
Future work could explore the magnitude of operational AEP uncertainty and the 
correlation between its components for such complex flow regimes.” 
 

- l.319: 6% absolute, or relative to (percent of) %uncertainty? 
We have removed all references to relative percent of %uncertainty quantities throughout 
the manuscript. We have rephrased this specific sentence, according to the latest results, 
as: “Our results show that ignoring these correlations between uncertainty components 
causes an underestimation of the total operational AEP uncertainty of, on average, about 
0.1%, with peak differences of 0.5% for specific sites..” 

 
Technical Corrections 
 

- Table 1: "measured or modeled" should occur before "long-term" in the reference-data 
description.  
Corrected. 

- line 79: Remove "v2" and put "Version 2 of" at the beginning of the line; remove ")(" 
between "MERRA-2" and "Gelaro".  
Corrected. 

- line 203: 10,000 times 
Corrected. 

- Fig.6 caption: percent _difference_ between CoV 
Corrected. 

- l.249: pluralize coefficient 
Done. 

- l.296: dependence, not 'dependency' 
Corrected. 

- l. 313: isn't it five, not six?  
Corrected. 



- Line 379: The ISO reference appears to have been garbled a bit via BibTeX/reference 
manager. 
Corrected. 



In this document, the reviewer’s comments are in black, the authors’ responses are in red. 
 
The authors thank the reviewer for their comments. 
 
I appreciate the authors’ responses to reviewer comments and updating of manuscript. The 
methods followed are much more clear now. Unfortunately, with that greater clarify in the method 
employed, I am less able to recommend publication than originally as the underlying central thesis 
of paper, exploration of input correlations, doesn’t seem to be what’s actually being revealed in 
the paper’s results. My fundamental difficulty with the paper now is I think in-line with other 
reviewer’s comments around seeming absence of a correlation matrix in the Monte Carlo 
procedure. If I understand correctly, the 5 input parameters have been sampled using an MC 
procedure completely independently drawing on non-correlated random number generators for 
each. This was done with individual per-parameter sampling, and then all-at-once sampling from 
all 5 parameters. Pearson coefficients were then used to examine correlation between input 
parameters. 
If my understanding of the procedure presented is correct, then the results are unsurprising. For 
example, Revenue meter measurement error, a priori based on the definition of uncertainty 
included in the MC process could never be correlated with any of the other input parameters. There 
is no mathematical connection between that and the other 4 parameters. The statistical application 
of the MC process to establishing correlation between the inputs is therefore I think erroneous and 
the results are artefacts of the definitional form of the parameters. The main correlation found was 
wind resource IAV and long-term windiness correction; as the authors themselves state, both are 
driven definitionally by the same underlying data set. The MC method is independently randomly 
sampling from the input data sets, and so it’s not clear to me that the statistical results obtained are 
actually representing the true correlation statistics between the input parameters. 
Ultimately too, the connection from parameter correlated uncertainty back to operational AEP is 
not well articulated, but in any case, as per above comments I’m not convinced the MC method 
used is actually exploring parameter correlation. 
 
We thank the reviewer for their thoughtful comments, which gave us an opportunity to revisit our 
analysis and address some weaknesses in the procedure we had originally applied. 
 
We agree with the reviewer that the Monte Carlo approach itself does not reveal correlations 
between uncertainty components, nor it can be applied to obtain an assessment of the overall AEP 
uncertainty that takes into consideration these correlations, if all the parameters are sampled 
independently from each other. We have now made this point clear in many places throughout the 
paper. The differences in overall AEP uncertainty we showed in the previous version of the 
manuscript came from a discrepancy in the use of the reanalysis products between the two 
approaches we were comparing, and therefore were not meaningful. We apologize for that. 
Following these lines, in the revised manuscript we use the Monte Carlo approach just to derive, 
for each wind farm, operational AEP distributions for each single uncertainty component (i.e. with 
individual per-parameter samplings). We have now emphasized in the manuscript how the main 
benefit of a Monte Carlo approach here is that it can be used to directly derive an estimate of AEP 
uncertainty by sampling the relevant parameters for each uncertainty component. For example, in 
section 2.3 we have added the following comment: “Here, we apply this approach to derive a 
distribution of long-term operational AEP values from which its uncertainty can be calculated. 



Using a Monte Carlo approach provides a direct estimate of AEP uncertainty by sampling the 
relevant parameters connected to the various uncertainty components. By contrast, traditional 
approaches to assessing uncertainty are often less direct. For example, wind resource IAV is often 
calculated and then converted to AEP uncertainty through an "energy-velocity" (EV) ratio 
estimated from the wind and energy data. A Monte Carlo approach avoids this intermediate ratio 
and any uncertainty or error associated with it.” 
 
The analysis of the correlation between the various uncertainty components is a separate, a 
posteriori step, that we perform based on the Pearson’s correlation coefficients between the results 
obtained for all 472 wind farms. While we agree with the reviewer that the definitional form of the 
uncertainty components is connected with the results we find, we would like to emphasize how 
these uncertainty components have been defined in terms of the relevant, physical parameters that 
control them. Therefore, while it might not be surprising that a correlation exists between wind 
IAV uncertainty and windiness adjustment uncertainty, this correlation is driven by the physical 
definition of the two, and it is currently neglected by most wind energy consultants. 
 
To quantify the error introduced when these correlations are ignored in the computation of the 
overall operational AEP uncertainty, we have now followed and contrasted two approaches, 
described in the new Section 2.4: 
 

 
 
The results of the updated analysis are then shown and discussed in the rest of the paper. 
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Abstract. Calculations of annual energy production (AEP) from a wind farm—whether based on pre-construction
:::::
power

::::::::::::
plant—whether

::::::
based

::
on

:::::::::::::
preconstruction

:
or operational data—are critical for wind farm

::::
plant financial transactions. The un-

certainty in the AEP calculation is especially important in quantifying risk and is a key factor in determining financing terms.

A popular industry practice is to assume that different uncertainty components within an AEP calculation are uncorrelated ,

and can therefore be combined as the sum of their squares. We assess the practical validity of this assumption for operational-5

based uncertainty, which is comprised of components associated with long-term correction and measurements, by perform-

ing operational AEP estimates for over
:::::
more

::::
than 470 wind farms

::::
plants

:
in the United States. We contrast the uncorrelated

sum-of-squares method with
:
,
::::::
mostly

::
in

::::::
simple

:::::::
terrain.

:::
We

::::::
apply a Monte Carlo approach , in which no assumptions of

correlation between uncertainty components are made. Results show that several component pairs exhibit weak to moderate

correlations : inter-annual
:
to

:::::::
quantify

::::::::::
uncertainty

::
in

:::
five

:::::::::
categories:

:::::::
revenue

:::::
meter

::::
data,

::::
wind

:::::
speed

::::
data,

:::::::::
regression

::::::::::
relationship,10

::::::::
long-term

:::::::::
correction,

:::
and

::::::
future

:::::::::
interannual

:::::::::
variability.

::::
We

::::::
identify

::::::::::
correlations

::::::::
between

::::::::
categories

:::
by

:::::::::
comparing

:::
the

::::::
results

:::::
across

:::
all

:::
470

:::::
wind

:::::
plants.

:::
We

:::::::
observe

::
a

::::::
positive

::::::::::
correlation

:::::::
between

:::::::::
interannual

:
variability and the linearized long-term cor-

rection(positive correlation); wind resource inter-annual
:
;
:
a
:::::::
negative

::::::::::
correlation

:::::::
between

::::
wind

::::::::
resource

:::::::::
interannual

:
variability

and linear regression(negative); and ;
::::
and

:
a
:::::::
positive

:::::::::
correlation

:::::::
between

:
reference wind speed uncertainty and linear regres-

sion(positive). The sources of these correlations are described and illustrated in detail in this paper, and the effect on the
:
.15

:::::
Then,

:::
we

:::::::
contrast

::::
total

:::::::::
operational

:::::
AEP

:::::::::
uncertainty

::::::
values

:::::::::
calculated

::
by

::::::::
omitting

:::
and

::::::::::
considering

:::
the

::::::::::
correlations

::::::::
between

::
the

::::::::::
uncertainty

:::::::::::
components.

:::
We

:::::::
quantify

:::
that

::::::::
ignoring

::::
these

::::::::::
correlations

:::::
leads

::
to

::
an

::::::::::::::
underestimation

::
of total AEP uncertainty

calculation is investigated.
::
of,

::
on

:::::::
average,

::::::
0.1%,

:::
and

::
as

:::::
large

::
as

::::
0.5%

:::
for

:::::::
specific

::::
sites.

::::::::
Although

:::::
these

:::
are

:::
not

::::
large

:::::::::
increases,

::::
these

::::::
would

:::
still

:::::::
impact

::::
wind

:::::
plant

::::::::
financing

:::::
rates;

:::::::
further,

:::
we

::::::
expect

::::
these

::::::
values

::
to
::::::::

increase
:::
for

::::
wind

::::::
plants

::
in

::::::::
complex

::::::
terrain. Based on these results, we conclude that a Monte Carlo approach to operational AEP uncertainty quantification is20

more robust and accurate than the simple approach which neglects correlations between uncertainty components
::::::::::
correlations

:::::::
between

:::
the

::::::::
identified

:::::::::
uncertainty

::::::::::
components

::::::
should

:::
be

:::::::::
considered

:::::
when

:::::::::
computing

:::
the

::::
total

::::
AEP

:::::::::
uncertainty.
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1 Introduction

Calculations of wind farm
::::
plant

:
annual energy production (AEP)—whether based on pre-construction

:::::::::::::
preconstruction data30

before a wind power plant is built or on operational data after a wind farm
::::
plant

:
has started its operations—are vital for wind

farm
::::
plant

:
financial transactions. Pre-construction

:::::::::::::
Preconstruction estimates of AEP are needed to secure and set the terms for

new project financing, whereas operational estimates of long-term AEP are required for important wind farm
::::
plant

:
transactions,

such as refinancing, purchasing/selling, and mergers/acquisitions. The need for AEP analyses of wind farms is increasing , as

:::::
plants

::
is

:::::::::
increasing

:::::::
because global wind capacity increased to 539 GW in 2017, representing 11% and 91% increases over35

1-year and 5-year periods, respectively; and capacity is expected to increase by another 56%,
:
to 841 GW

:
, by 2022 (Global

Wind Energy Council, 2018). In the United States, wind farms generated over
:::::
plants

::::::::
generated

:::::
more

::::
than

:
300,000 GWh in

2019, about 7.5% of the total US
::::
U.S. electricity generation from utility-scale facilities that year, with a 50% increase over a

6-year period (Energy Information Administration, 2020).

This rapid growth of the wind energy industry is putting an increased spotlight on the accuracy and consistency of AEP40

calculations. For pre-construction
:::::::::::::
preconstruction AEP estimates, there has been considerable movement towards

:::::
toward

:
stan-

dardization. The International Energy Commission (IEC) is currently developing a standard (IEC 61400-15:draft) , and there

have long been guidance and best practices available (Brower, 2012). By contrast, long-term operational AEP estimates do not

have such extensive guidance or standards. Only limited standards covering operational analyses exist; IEC 61400-12-1:2017

addresses turbine power curve testing, and IEC 61400-26-3:2016 addresses the derivation and categorization of availability45

loss metrics. There are
::::::::
However, to our knowledge, however,

::::
there

:::
are

:
no standards and very limited published guidance on

calculating long-term AEP from operational data. Rather, documentation seems to be limited to a consultant report (Lindvall

et al., 2016), an academic thesis (Khatab, 2017), and limited conference proceedings (Cameron, 2012; Lunacek et al., 2018).

Documentation and standards for pre-construction
:::::::::::::
preconstruction

:
AEP methods are of limited use for operational-based

AEP methods, given the many differences between the two approaches. In general, operational AEP calculations are sim-50

pler than pre-construction
::::::::::::
preconstruction

:
estimates because actual measurements of wind farm

::::
plant

:
power production at

the revenue meter replace the complicated pre-construction
::::::::::::
preconstruction

:
estimate process (e.g., meteorological measure-

ments, wind and wake-flow modeling, turbine performance, estimates of wind farm
::::
plant

:
losses). However, the two methods

do share several similarities, including regression relationships between on-site measurements and a long-term wind speed

reference, the associated long-term (windiness) correction applied to the on-site measurements,
::::::::
estimates

::
of

:::::
future

::::::::::
interannual55

:::::::::
variability, and estimates of uncertainty in the resulting AEP calculation. The uncertainty components for

::::::
shared

::::::::::
components

:::::::
between operational AEP calculations are simplified relative to those in a pre-construction estimate (IEC 61400-15:draft) ;

shared components between the two methods
:::
and

:::::::::::::
preconstruction

::::::::
estimates

::::::::::::::::::
(IEC 61400-15:draft) are listed in Table 1.
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Uncertainty component Description

On-site measurements Measurement error in met mast wind speeds (pre-construction
:::::::::::
preconstruction)

or power at the revenue meter (operational)

Reference wind speed data Measurement or modeling error in long-term reference measured or modeled

:::::::
long-term

:::::::
reference

:
wind speed data

Losses Error in estimated or reported availability and curtailment losses

Regression Sensitivity in the regression relationship between on-site measurements and ref-

erence wind speeds

Long-term (windiness) correction Sensitivity in the long-term correction applied to the regression relationship

between on-site measurements and reference wind speeds

Inter-annual
::::::::
Interannual

:
variability of

resource

Sensitivity in future energy production because of resource variability

Table 1. Main Sources of Uncertainty in a Long-Term Operational
::
an

:
AEP Estimate.

The uncertainty values from each component listed in Table 1 must be combined to produce a total estimate of AEP uncer-

tainty. We found no
:::::
While

::::::
general

::::::::
guidelines

:::
on

::::
how

::
to

:::::::
combine

::::::::::::
(measurement)

::::::::::
uncertainty

::::::::::
components

:::::
exists

:::::::::::::::::::::::::::::
(ISO, IEC and OIML, BIPM, 1995)60

:::
and

:::
can

::
be

:::::::
applied

::
to

:::
this

::::
task,

:::
we

:::::
found

::
no

:::::::
specific guidance in the literature for combining uncertainty components in an oper-

ational AEP estimate. However
::
On

:::
the

:::::
other

::::
hand, considerable guidance exists for combining pre-construction

:::::::::::::
preconstruction

::::
AEP uncertainties (Lackner et al., 2007; Brower, 2012; Vaisala, 2014; Kalkan, 2015; Clifton et al., 2016). In every case, rec-

ommended best practices assume that all uncertainties, �i :�i, are uncorrelated and can therefore be combined using a sum of

squares approach to give the total AEP uncertainty, �tot,uncorr:65

�tot,uncorr =

sX

i

�2
i

vuut
NX

i=1

�2
i

:::::::

(1)

To better understand how uncertainties are combined in long-term operational AEP calculations, we reached out to several

wind energy consultants who regularly perform these analyses. These conversations revealed that uncertainties in a long-term

operational AEP calculation are also assumed uncorrelated and combined using Equation 1.
:
1.
:

1.1 Goal of Study70

The purpose of this study is to examine the extent to which the assumption of uncorrelated uncertainties—andtherefore
:
,

::::::::
therefore, the combination of those uncertainties through a sum of squares approach—is accurate and appropriate for op-

erational AEP calculations. Specifically, this study aims to identify potential correlations between AEP uncertainty compo-

nentsand propose a Monte Carlo approach to capture such correlations when combining individual uncertainty components.
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Monte Carlo methods have been used in different applications for uncertainty quantification within the wind energy industry,75

ranging from the prediction of extreme wind speed events (Ishihara and Yamaguchi, 2015), to offshore fatigue design (Müller and Cheng, 2018)

, to economic analysis of the benefits of wind energy projects (Williams et al., 2008). Here, the focus is on operational AEP

uncertainty, using publicly available wind farm operational data
:
,
:::::
using

::::
data

:::
for

::::
over

:::
470

:::::
wind

:::::
plants. While in the analysis

we focus on operational AEP calculation, we expect that the results from this analysis—namely
:
, the potential identification

of correlated uncertainty components—can be equally relevant for informing and improving pre-construction
:::::::::::::
preconstruction80

AEP methods.

In Section 2, we first describe the data sources used in this analysis—namely wind farm
::::::
analysis

:::::
(wind

:::::
plant

:
operational

data and reanalysis products—as well as
::::::::
products),

:
the Monte Carlo approach to calculate operational AEPand quantify its

uncertainty
:::::::
quantify

:::::
single

::::::::::
uncertainty

::::::::::
components

::
in

::::::::::
operational

::::
AEP,

::::
and

:::
the

:::::::::
approaches

::::
used

::
to

::::::::
combine

::::
these

::::::::::
uncertainty

::::::::::
components. Section 3 presents the main results of our analysis , in terms of uncertainty contributions and correlation among85

the different components. We conclude and suggest future work in Section 4.

2 Data and Methods

2.1 Wind Farm
::::
plant

:
Operational Data and Reanalysis Products

Operational wind farm
::::
plant energy production data for this analysis are obtained from the publicly available Energy Informa-

tion Administration (EIA) 923 database (EIA, 2018). This database provides reporting of monthly net energy production from90

all power plants in the United States, including wind farms. A total of over
:::::
plants.

:::::
More

::::
than 670 unique wind farms

:::::
plants are

available from this data set.

Long-term wind speed data (needed to perform the long-term or windiness correction in an AEP estimate) are used from

three reanalysis products over the period of January 1997 through December 2017:

– The
:::::::
Version

:
2
::
of

:::
the Modern-Era Retrospective analysis for Research and Applications v2 (MERRA-2) (Gelaro et al., 2017)95

:
,
::::::::::::::::
Gelaro et al. (2017)). We specifically use the M2T1NXSLV data product, which provides diagnostic wind speed at 50

m above ground level (AGL), interpolated from the lowest model level output (on average about 32 m AGL), using

Monin Obukhov similarity theory. Data are provided at an hourly time resolution.

– The European Reanalysis Interim (ERA-interim
::::::::::
ERA-Interim) data set (Dee et al., 2011). We specifically use output at

the 58th
:::
58th

:
model level, which on average corresponds to a height of about 72 m AGL. Data are provided at

:
a
:
6-hourly100

time resolution.

– The National Centers for Environmental Prediction v2 (NCEP-2) data set (Saha et al., 2014). We specifically use diag-

nostic wind speed data at 10 m AGL. Data are provided at a 6-hourly time resolution.

The wind speed data are density-corrected at their native time resolutions to correlate more strongly with wind farm
::::
plant

power production (i.e., higher density
::::::::::::
higher-density air in winter produces more power than lower density

:::::::::::
lower-density

:
air105

4



 

Selected
Wind
Plants

Figure 1. Map of the 472 wind farms
:::::
plants that were considered in this study.

in summer, wind speed being the same):

Udens,corr = U

✓
⇢

⇢mean

◆1/3

(2)

where Udens,corr is the density-corrected wind speed, U is the wind speed, ⇢ is air density (calculated at the same height as wind

speed), ⇢mean is the mean density over the entire period of record of the reanalysis product, and the exponent 1/3 is derived

from the basic relationship between wind power and wind speed cubed (Manwell et al., 2010). To calculate air density at the110

same height as wind speed, we first extrapolate the reported surface pressure to the wind speed measurement height, assuming

hydrostatic equilibrium
:::::::::::::::::::
(ISO 2533:1975, 1975):

p= psurf exp


gz

RTavg

�
(3)

where p is the pressure at the wind speed measurement height, psurf is the surface pressure, g is the acceleration caused by

gravity, z is the wind speed measurement height, R is the gas constant, and Tavg is the average temperature between the115

reported value at 2 m AGL and at the wind speed measurement height.

To lessen the impact of limited and/or poor-quality data on the results of our analysis, we filter for wind farms with at

least 8 months of data and with
:::::
plants

::::
with a moderate-to-strong correlation with all three reanalysis products (R2 > 0.6). A

threshold of 8 months is selected
:::::
About

::::
25%

::
of

:::
the

::::
EIA

:::::
wind

:::::
plants

:::
are

::::::::
discarded

::::
with

::::
this

::::
filter.

:::
We

::::
also

::::::
impose

::
a
::::::::
threshold

::
of

::::
eight

::::::
months

:::
of

::::
wind

::::
plant

::::
data

::::::::::
availability in order to investigate uncertainty as it relates to a low number of data points but120

:::::::::
points—but

:
not so low as to make the use of a regression relationship questionable. A total of 472 wind farms

:::::
plants are kept

for the final analysis, and their locations are shown in Figure 1. Because obtaining an accurate representation of wind data in

5



Figure 2. Scatterplot between normalized MERRA-2
:::::::::::::
density-corrected monthly wind speed and monthly energy production across all 472

selected sites, and linear, quadratic,
:

and cubic best-fit lines.

complex terrain by reanalysis products is challenging (Shravan Kumar and Anandan, 2009), most of the selected wind plants

are located in the Midwest and Southern Plains. Notably, no wind farms
:::::
plants in California pass the filtering criteria , because

they are predominately located in areas with thermally driven wind regimes,
:
such as Tehachapi Pass, where coarse-resolution125

reanalysis products are poor predictors of wind energy production.

The fundamental step in an AEP calculation involves a regression between
::::::::::::::
density-corrected

:
wind speed (here, from the

reanalysis products) and energy production (here, from the EIA 923 database). To investigate whether a simple linear function

can be assumed to express the relationship between
:::::::::::::
density-corrected

:
wind speed and wind farm

::::
plant

:
energy production

when considering monthly data, we show a scatterplot between MERRA-2
::::::::::::::
density-corrected monthly wind speed and monthly130

energy production across all 472 sites in Figure 2. For each site, data have been normalized by the respective site mean. We

show best-fits using a linear, quadratic, and cubic function, and calculate the mean absolute error
::::::
(MAE)

:
of each fit. We find that

the difference between the normalized MAE values from the considered functions is less than 0.7%. Therefore, the uncertainty

connected with the choice of using a linear regression in the operational AEP methodology at monthly time resolution appears

minimal. Moreover, through conversations with wind industry professionals, we found that a linear regression based on monthly135

data is the standard industry approach when performing bankable1 operational AEP analyses.
1Results are accepted by banks, investors, and so on for use in financing, buying/selling, and acquiring wind farms

::::
plants.
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2.2 Operational AEP Methodology

Given the lack of existing guidelines for a standard approach for operational
:::::::::
operational AEP calculations, we instead base our

methodology on conversations with several
::::
four

:::::
major wind energy consultants

::::
who

::::::::
represent

::::
most

::
of

:::
the

::::::::::
operational

::::::
market

::::
share

::
in
::::::

North
:::::::
America. These conversations overwhelmingly revealed the following characteristics of an industry standard140

and bankable
::
for

:
operational AEP analysis

:
,
:::
and

:::
we

::::::
follow

::
the

:::::
same

::::::::
approach

::
in

:::
our

:::::::
analysis:

1. Wind speed data (measured or modeled) are density-corrected at their native time resolution, using equation
:::::::
Equation 2.

2. Monthly revenue meter data, monthly average availability and curtailment losses, and monthly average wind speeds from

a long-term wind resource product are calculated.

3. Monthly revenue meter data are normalized to 30-day months (e.g.
:
, for January, the revenue meter values are multiplied145

by 30/31).

4. Monthly revenue meter data are corrected for monthly availability and curtailment (i.e., monthly gross energy data are

calculated).

5. A linear regression between monthly gross energy production and concurrent
::::::::::::::
density-corrected

:
monthly average wind

speeds is performed.150

6. Long-term
::::::::::::::
density-corrected

:
monthly average wind speed is then calculated for each calendar month (i.e., average Jan-

uary wind speed, average February wind speed, and so forth) with a hindcast approach, using 10–20 years of the available

long-term reference monthly wind resource data (reanalysis products, long-term reference measurements, ...
:::
etc.).

7. Slope and intercept values from the regression relationship are then applied to the long-term
::::::::::::::
density-corrected monthly

average wind speed data , with the long-term or so-called windiness correction. A long-term data set of monthly (January,155

February, ...)
:::
etc.)

::::::::
estimated

:
gross energy production is obtained.

8. The resulting long-term monthly gross energy estimates, which are based on 30-day months, are then denormalized to

the actual number of days in each calendar month (e.g.,
:
for January, the obtained value is multiplied by 31/30).

9. Long-term estimates of availability and curtailment losses are finally applied to the denormalized long-term monthly

gross energy data, leading to a long-term calculation of operational AEP.160

In the EIA-923 database, availability and curtailment data are not available. Therefore, in our analysis we omit steps 4

and 9 of the list, and only perform calculations on net energy data. A diagram outlining the resulting general process of the

operational AEP analysis adopted in our study is shown in Figure 3.
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Figure 3. Long-term annual energy production (AEP ) estimation process using operational data under a Monte Carlo approach; sources of

uncertainty and points of Monte Carlo sampling are denoted by probability distribution images. Note: IAV denotes inter-annual
::::::::
interannual

variability.

2.3 Monte Carlo Analysis

To quantify the uncertainty of the
::::::
impact

::
of

:::
the

::::::
single

:::::::::
uncertainty

:::::::::::
components

:::
on

:::
the long-term operational AEP estimate165

obtained using the methodology described in the previous section, we implement a Monte Carlo approach. In general, a Monte

Carlo method involves the randomized sampling of inputs to,
:
or calculations within

:
,
:
a method which, when repeated many

times, results in a distribution of possible outcomes from which uncertainty can be deduced,
:
.
::::
This

::
is
:
usually calculated as

the standard deviation or the coefficient of variation
:::
(i.e.

::::::::
standard

::::::::
deviation

:::::::::
normalized

:::
by

:::::
mean)

:
of the resulting distribution

(ISO, IEC and OIML, BIPM, 1995; Dimitrov et al., 2018).
::::::
Monte

:::::
Carlo

:::::::
methods

:::::
have

::::
been

:::::
used

::
in

:::::::
different

:::::::::::
applications170

::
for

::::::::::
uncertainty

::::::::::::
quantification

::::::
within

:::
the

:::::
wind

::::::
energy

::::::::
industry,

::::::
ranging

:::::
from

:::
the

:::::::::
prediction

:::
of

:::::::
extreme

:::::
wind

:::::
speed

::::::
events

8



::::::::::::::::::::::::::
(Ishihara and Yamaguchi, 2015),

::
to
::::::::

offshore
::::::
fatigue

::::::
design

::::::::::::::::::::::
(Müller and Cheng, 2018),

::
to
:::::::::

economic
:::::::
analysis

:::
of

:::
the

:::::::
benefits

::
of

::::
wind

:::::::
energy

:::::::
projects

::::::::::::::::::
(Williams et al., 2008)

:
.
:
Here, we apply this approach to derive a distribution of long-term opera-

tional AEP values , from which its uncertainty can be calculated. To do so, we consider and include in the
:::::
Using

::
a
::::::
Monte

::::
Carlo

::::::::
approach

::::::::
provides

:
a
::::::

direct
:::::::
estimate

::
of

:::::
AEP

:::::::::
uncertainty

:::
by

::::::::
sampling

:::
the

:::::::
relevant

:::::::::
parameters

:::::::::
connected

::
to

:::
the

:::::::
various175

:::::::::
uncertainty

:::::::::::
components.

:::
By

:::::::
contrast,

:::::::::
traditional

:::::::::
approaches

:::
to

::::::::
assessing

:::::::::
uncertainty

:::
are

:::::
often

:::
less

::::::
direct.

:::
For

::::::::
example,

:::::
wind

:::::::
resource

:::
IAV

::
is
:::::
often

::::::::
calculated

::::
and

:::
then

:::::::::
converted

::
to

::::
AEP

:::::::::
uncertainty

:::::::
through

::
an

:::::::::::::::
"energy-velocity"

::::
(EV)

::::
ratio

::::::::
estimated

:::::
from

::
the

:::::
wind

:::
and

::::::
energy

:::::
data.

::
A Monte Carlo approach

:::::
avoids

:::
this

:::::::::::
intermediate

::::
ratio

:::
and

::::
any

:::::::::
uncertainty

::
or
:::::

error
:::::::::
associated

::::
with

::
it.

::
In

:::
our

::::::::
analysis,

:::
we

:::::::::
separately

:::::::
consider

:
five operational-based uncertainty components , so that five different samplings180

are performed at
::
so

::::
that

::::
only

:::
the

::::::::
sampling

::
of
::::

one
:::::::::
parameter

::
is

:::::::::
performed

::
in

:
each Monte Carlo iteration

::::::::::
configuration. The

following uncertainty components are included in our proposed Monte Carlo methodology for long-term operational AEP:

– Revenue meter measurement error. We
::
To

:
incorporate this uncertainty component in the Monte Carlo simulationby

sampling ,
:::
we

::::::
sample

:
monthly revenue meter data from a

:::::::::
synthesized

:
normal distribution centered on the reported value

, and 0.5%
:::::::
imposed standard deviation. In fact, a value of 0.5% is coherent

::::::::
consistent

:
with what is typically assumed in185

the wind energy community as revenue meter uncertainty (IEC 60688:2012; ANSI C12.1-2014).

– Reference wind speed data modeling error. Quantifying the uncertainty of the long-term wind resource data used in

the operational AEP assessment is challenging , as
::::::
because

:
it can vary based on the location, long-term wind speed

product used, or instrument from which reference observations are taken. To include this uncertainty component in a

systematic way across the 472 locations considered in our analysis, we incorporate it in the Monte Carlo simulation by190

randomly selecting
:::::
adopt

::
an

::::::::
ensemble

:::::::::
uncertainty

::::::::
approach

:::::::::::::::::::::::::::::::::
(Taylor et al., 2009; Zhang et al., 2015)

::
and

::::
use

::
as

:::::
proxy

:::
the

::::::::
variability

::
of

:::
the

:::::
wind

:::::::
resource

:::::::
between

::::::::
different

::::::::
reanalysis

::::::::
products.

:::::::::
Therefore, at each

:::::
Monte

:::::
Carlo

:
iteration at each

site,
::
we

::::::::
randomly

:::::
select

:
wind resource data from one of the three considered reanalysis products.

– Linear regression model uncertainty. This component is incorporated in the Monte Carlo method by sampling the

:::
We

:::::
adopt

:
a
:::::

novel
:::::

way,
:::::::
directly

::::::
enabled

:::
by

:::
the

::::
use

::
of

::::::
Monte

:::::
Carlo,

:::
to

::::::::::
incorporate

:::
this

::::::::::
uncertainty

:::::::::
component

:::
in

:::
the195

:::::::::
operational

::::
AEP

::::::::::
assessment.

::::
We

::::::
sample

:::
the regression slope and intercept values from a multivariate normal distribu-

tion centered on their best-fit values and covariance matrix equal to the one of the best-fit parameters. The diagonal

terms in the covariance matrix are given by the square of the slope and intercept standard errors. For a regression model

between an independent variable
:
, x,

:
and a dependent variable,

:
y,
:

the standard error of the regression is defined as

:::::::::::::::::::::::::::::
(ISO, IEC and OIML, BIPM, 1995)

::
as:

:
200

ey =

sP
(yi � ŷi)

2

n� 2
, (4)
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Figure 4. Sampling set of regression lines corresponding to the slope and intercept values derived from their standard errors in the Monte

Carlo approach, for two stations in the EIA data set.

where ŷi is the regression-predicted value for yi , and n is the number of data points used in the regression. The standard

error of the regression slope
:
is:

ea =
eyP

(xi �xi)
2 , (5)

and the standard error of the intercept
:
is:205

eb = ey ea

rP
x2
i

n
. (6)

e2a and e2b are the diagonal terms in the covariance matrix of the multivariate normal distribution of regression slope

and intercept , from which Monte Carlo values are drawn. Slope and intercept values are strongly negatively correlated,

which is captured by their covariance when performing the linear regression. The off-diagonal terms in the covariance

matrix of the multivariate normal distribution constrain the random sampling of slope and intercept values , to avoid210

sampling unrealistic combinations. An example of this sampling is shown in Figure 4 for two projects of different

regression strengths. We sample 500 slope and intercept values from a multivariate normal distribution centered around

the best-fit parameters, and with
:::
the covariance matrix derived from the standard errors of slope and intercept and their

covariance. As shown in the Figure
:::::
Figure

::
4, the low standard errors found for the leftmost regression relationship

constrain the possible slope and intercept values that can be sampled
:
,
:
while the high standard errors in the rightmost215

regression relationship allow for a much wider sampling.
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– Long-term (windiness) correction uncertainty. We incorporate this component by sampling the number of years (
:::::::
randomly

:::::
picked

:
between 10 and 20) to use as the long-term wind resource data to which the regression coefficients are applied to

derive long-term energy production data (the so-called windiness correction).

– Wind resource inter-annual
:::::::::
interannual

:
variability (IAV) uncertainty. We incorporate this uncertainty component in the220

Monte Carlo method by sampling the long-term (reanalysis) average calendar monthly wind speeds (i.e., average January,

average February) used to calculate long-term monthly energy production data. The sampling distribution is normal,

centered on the calculated long-term average calendar monthly wind speed, and with a standard deviation equal to the

20-year standard deviation of the long-term average monthly wind speed for each calendar month.

Each of the listed sources of uncertainty corresponds to a Monte Carlo sampling , and is highlighted by a probability distribution225

in the flowchart in Figure 3. Note that uncertainty components related to availability and curtailment losses are not considered

in our approach because the EIA 923 database does not include measurements of these losses.

For each wind farm, we estimate the total operational AEP uncertainty by running a
::
To

:::::::
calculate

:::::
these

:::::::::
uncertainty

::::::::::
components

:
at
:::::
each

::::
wind

:::::
plant,

:::
we

:::
run

:::
the Monte Carlo simulation 10,000 times. At each iteration, all five samplings, corresponding to the

five considered uncertainty components (revenue meter, reference wind speed data, wind resource IAV, linear regression, and230

windiness correction), are simultaneously performed. The total uncertainty in long-term operational AEP is then estimated as

the coefficient of variation of its resulting distribution. Convergence of the AEP distribution within 0.5% of the true mean after

the 10,000 Monte Carlo runs was verified for all projects, with a 95% confidence.

To understand the impact of the single uncertainty components and study their correlation, we also run, at each site, the Monte

Carlo simulation with
:::::
under

:::
five

::::::::
different

::::::
setups,

::::
each

::
of

:::::
them

::::::
having only a single sampling performed (i.e.

:
, either revenue235

meter, reference wind speed data, IAV, linear regression, or windiness correction). At each wind farm
:::
For

::::
each

:::::::::
component, we

run the Monte Carlo simulation 10,000 time for each of the five single operational uncertainty components considered
::::
times.

We quantify the impact of each single uncertainty component on the long-term operational AEP in terms of the coefficient of

variation of the distribution of operational AEP resulting from the Monte Carlo simulation runwhen sampling only that single

uncertainty component.
:
.
:::::::::::
Convergence

::
of

:::
the

::::
AEP

::::::::::
distribution

:::::
within

:::::
0.5%

::
of

:::
the

:::
true

:::::
mean

::::
after

:::
the

::::::
10,000

::::::
Monte

:::::
Carlo

::::
runs240

:::
was

:::::::
verified

:::
for

::
all

:::::::
projects,

::::
with

:::::
95%

:::::::::
confidence.

:

The code used to perform the AEP calculations is published and documented in NREL’s open-source operational assessment

software, OpenOA.2 Calculations were performed on Eagle, NREL’s high-performance computing cluster. Specifically, each

wind farm
::::
plant was assigned a different processor and run in parallel. Given the general simplicity of the AEP method used

here, computational requirements were moderate despite the 60
::
50,000 simulations (10,000 runs x 6

:
5 uncertainty setups)245

required for each wind farm
::::
plant.

2https://github.com/NREL/OpenOA
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3 Results

2.1
:::::::::::

Combination
::
of

:::::::::::
Uncertainty

:::::::::::
Components

2.2 Operational-Based AEP Uncertainty Contributions

::::
Once

:::
the

::::::::::
contribution

:::::
from

::::
each

:::::::::
uncertainty

::::::::::
component

::
to

:::
the

::::::::
long-term

::::::::::
operational

::::
AEP

:::::::::
uncertainty

::::
has

::::
been

:::::::::
quantified,

:::
the250

:::::::
different

::::::::::
components

:::::
need

::
to

::
be

:::::::::
combined

::
to

::::::
obtain

:::
the

::::
total

:::::
AEP

::::::::::
uncertainty.

:::
As

:::::
stated

::
in

:::
the

:::::::::::
Introduction,

::
it
::
is

::::::::
common

::::::
practice

:::
for

:::::
wind

::::::
energy

::::::::::
consultants

::
to

:::::::
assume

::::
that

::
all

::::::::::
uncertainty

::::::::::
components

::::
are

:::::::::::
uncorrelated,

:::
and

::::::::
combine

:::::
them

:::::
using

:::::::
Equation

::
1

::
to

:::::
obtain

::::::::
�tot,uncorr.::

To
::::
test

::
the

:::::::
validity

::
of

:::
this

::::::::::
assumption,

:::
we

:::::
apply

::::::::
Equation

::
1,

::
in

:::::
which

::::
each

::
of

:::
the

::::
five

:::::::::
considered

:::::::::
uncertainty

::::::::::
components

:::
�i::

is
:::::::::

quantified
:::
as

:::
the

:::::::::
coefficient

::
of
::::::::

variation
:::

of
:::
the

::::::::::::
corresponding

::::::::::
operational

:::::
AEP

::::::::::
distribution

:::::::
obtained

::
by

:::::::
running

:::
the

::::::
Monte

:::::
Carlo

:::::::::
simulation

::::
with

::
a

:::::
single

::::::::
sampling

:::::::::
performed.

:::
We

::::
note

::::
that

:::
the

:::::
same

:::::
values

::
of

::::::::
�tot,uncorr255

:::::
would

::
be

::::::::
obtained

::
by

::::::
running

:::
the

::::::
Monte

:::::
Carlo

:::::::::
simulation

::::
with,

::
at

::::
each

:::::::
iteration,

:::
all

::
of

:::
the

:::
five

::::::::
samplings

::::::::::
performed,

:::::::::::
independently

::::
from

::::
each

:::::
other.

:

The application of the different setups of the Monte Carlo approach first allows for an assessment of the distributions of the

total operational-based AEP uncertainty
::
We

:::::::
contrast

:::
the

::::
total

:::::
AEP

:::::::::
uncertainty

:::::::::
calculated

::::::::
assuming

:::::::::::
uncorrelated

::::::::::
components

::::
with

::::
what

:::
we

:::::
obtain

::
by

::::::
taking

:::
into

:::::::
account

::::
these

::::::::::
correlations

::
in

:::
the

:::::::::
calculation.

:::::::::
Following

:::
the

:::::::
guidance

::
in
:::::::::::::::::::::::::::::
ISO, IEC and OIML, BIPM (1995)260

:
,
::
we

::::::::
combine

:::
the

::::::
various

:::::::::
uncertainty

:::::::::::
components

:::
and

::::::::
calculate

:::
the

::::
total

::::::::
long-term

:::::::::
operational

:::::
AEP

:::::::::
uncertainty

:::
for

::::
each

:::::
wind

::::
plant

::::
as:

�tot,corr =

vuut
NX

i=1

�2
i +2

N-1X

i=1

NX

j=i+1

Rij�i�j

::::::::::::::::::::::::::::::

(7)

:::::
where,

:::
in

:::
our

:::::::
analysis,

::::::
N = 5

:
and of its single components across the

:::
Rij::

is
:::
the

:::::::::
correlation

:::::::::
coefficient

:::::::
between

:::::
each

:::
pair

:::
of

:::::::::
uncertainty

::::::::::
components

:::::::::
calculated

::::
from

:::
the

::::::
results

:::::::
obtained

:::
for

:::
all 472 wind farms

::::
plants

::::::::::
considered

::
in

:::
the

:::::::
analysis.265

:::
The

::::::::::
comparison

:::::::
between

:::::::
�tot,uncorr::::

and
:::::
�tot,corr::::

will
::::
give

:::::::
insights

:::
into

:::
the

:::::
error

:::::
arising

:::::
from

:::::::
ignoring

:::
the

::::::::::
correlations

:::::::
existing

:::::::
between

:::
the

::::::
various

:::::::::
uncertainty

:::::::::::
components.

:

3
::::::
Results

3.1
::::::::::::::::
Operational-Based

::::
AEP

:::::::::::
Uncertainty

::::::::::::
Contributions

::::::::::
Distributions

:::
of

::::
each

::::::::::
uncertainty

:::::::::
component, expressed in terms of the percent coefficient of variation of the resulting AEP270

distributions(Figure 5 ). ,
::::::

across
:::
all

:::
472

:::::
wind

:::::
plants

::::
are

:::::
shown

:::
in

:::::
Figure

::
5
:

Uncertainty connected to wind resource IAV is

found to contribute the most (average 4.1% across all wind farms
:::::
plants). The uncertainty in the linear regression model has

the second largest
::::::::::::
second-largest

:
contribution (1.5%), followed by the uncertainty of the reference wind speed data (0.8%;

here, of the reanalysis products), and revenue meter data (here, imposed at 0.5%). The long-term windiness correction has the

smallest uncertainty component (0.4%). Therefore, the number of years used for the long-term windiness correction does not275
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Figure 5. Operational-based AEP uncertainty distributions across projects for the different uncertainty components; mean values across

projects are shown in the legend. Uncertainty values are quantified as the percent coefficient of variation of the long-term operational AEP

distribution.Note that the sum of squares of the average values of the single components does not add up to the average of the total uncertainty.

have a large impact on the overall uncertainty in operational AEP, at least for the sampled range of 10–20 years. Using as few

as 10 years seems sufficient to give stability to the long-term AEP estimate , and adding additional years does not provide a

significant reduction in the uncertainty connected with the long-term estimate.

The proposed Monte Carlo approach does not require any assumption on the correlation between the different uncertainty

components; on the other hand, the conventional sum of squares approach assumes the uncertainty components are all uncorrelated.280

Therefore, we compare the total operational AEP uncertainty from the Monte Carlo method with all the five simultaneous

samplings (CoVMonte Carlo) with the total uncertainty calculated using the conventional sum of squares approach (CoVuncorrelated).

For the latter approach, we quantify each of the five uncertainty components as the coefficient of variation of the corresponding

operational AEP distribution obtained by running the Monte Carlo simulation with a single sampling performed. We then

combine the five uncertainty components into the overall AEP uncertainty using Eq. 1. (a) Scatterplot of total operational AEP285

uncertainty values calculated with the proposed Monte Carlo approach and assuming uncorrelated uncertainty components for

the 472 wind farms considered. Uncertainty is quantified as the percent coefficient of variation of the resulting long-term AEP

distribution. (b) Histogram of percentage differences (Eq. ??) between the AEP uncertainties calculated using the two different

approaches. Figure 12 shows the results of this comparison for
:::
As

::::::
already

:::::::::
mentioned

::
in

:::::::
Section

::
2,

::::
these

::::::
results

:::
are

::::::::
obtained

::
for

:::::
wind

:::::
plants

::
in

::::::
mostly

::::::
simple

::::::
terrain

:::
and

::::
with

:
a
::::::::::::::::
moderate-to-strong

:::::::::
correlation

::::::::
between

::::::::
reanalysis

:::::
wind

:::::::
resource

:::
and

:::::
wind290

:::::
energy

::::::::::
production

:::
and,

:::::::::
therefore,

::::
with

::
an

::::::
overall

:::
low

::::::::::
operational

::::
AEP

::::::::::
uncertainty.

:::
We

:::::::::::
acknowledge

:::
that

:::
the

::::::::
inclusion

::
of

:::::
wind

:::::
plants

::::
with

:
a
::::::
weaker

::::::::::
correlation

::::
with

:::
the

::::::::
reanalysis

:::::::
products

::::::
would

::::::
modify

:::
the

:::::::
relative

::::::::::
contribution

::
of

:::
the

::::::
various

::::::::::
uncertainty

::::::::::
components

::::
(e.g.,

:::
the

::::::::::
importance

::
of the 472 wind farms considered, as a scatterplot and also as a histogram of the percentage

13



difference between the two versions of the total AEP uncertainty:

�CoV =
CoVMonte Carlo �CoVuncorrelated

0.5 · (CoVMonte Carlo +CoVuncorrelated)
· 100295

A weak bias can be observed, with a median value of �2% in uncertainty percentage difference (which corresponds to a

�0.25% median difference in the actual total uncertainty value). In other words, if correlations between the different uncertainty

components are allowed and taken into account in the calculation method, the whole AEP uncertaintyis then, on average,

slightly reduced. This difference can be explained by considering that the two biggest sources of uncertainty (linear regression

and IAV) are slightly negatively correlated (as will be shown in detail in the next section), thus making the Monte-Carlo-based300

total uncertainty lower, on average, than the one derived with the uncorrelated assumption. Moreover, assuming that all the

uncertainty components are uncorrelated can introduce significant errors in the assessment of the AEP uncertainty for the single

projects, with about 47% (16%) of the considered wind farms showing a ±5% (10%) uncertainty difference compared to the

values from the Monte-Carlo-based approach.The mean absolute error of the distribution of uncertainty percentage differences

is approximately 6% (Figure shown in the Supplement
::::::::
regression

:::::::::
uncertainty

::::::
would

:::::::
increase).305

3.2 Correlation Between Operational-Based AEP Uncertainty Components

Because operational AEP uncertainty calculated by assuming a lack of correlation among its different components can greatly

differ from the uncertainty values obtained when allowing for potential correlations , it is worth exploring the correlation
::
To

::
be

::::
able

::
to

::::::
assess

:::
the

:::::::
validity

::
of

:::
the

:::::::::::
uncorrelated

::::::::::
assumption

:::::
when

:::::::::
combining

::::::::
different

:::::::::
uncertainty

:::::::::::
components,

:::
we

::::::
assess

:::::::
potential

::::::::::
correlations between uncertainty components which are responsible for this difference. We leverage the results of the310

Monte Carlo analysis at the 472 wind farms considered to reveal the correlation between the single operational
::
by

:::::::::
analysing

::
the

:::::::::
Pearson’s

:::::::::
correlation

::::::::::
coefficients

:::
Rij:::::::

(needed
::
in

::::::::
Equation

:
7
::
to
::::::::

calculate
:::::::
�tot,corr) ::::

from
::::
each

::::
pair

::
of

:
AEP uncertainty com-

ponents , in terms of their Pearson correlation coefficient. As a result, we obtain the average
:::::
across

:::
the

:::
472

:::::
wind

::::::
plants,

:::
and

:::
we

:::::::::
summarize

:::
the

:::::
results

::
in
:::
the

:
correlation matrix in Figure 6. To assess which of the obtained correlations have statistical signif-

icance, we calculate the p�value (Westfall and Young, 1993) associated with the ten correlation coefficients. The test reveals315

that for three pairs of uncertainty components
:
, the probability of finding the observed not-zero correlation coefficients if the

actual correlation coefficient werein fact ,
::
in

::::
fact,

:
zero (p�value),

:
is less than 10�5. Therefore, the following three correlations

have strong statistical significance:

– The wind resource IAV and the long-term windiness correction uncertainties are moderately correlated (R= 0.49, p=

1.9 · 10�29).320

– The linear regression and reference wind speed data uncertainties are weakly correlated (R= 0.35, p= 2.5 · 10�15).

– The wind resource IAV and the linear regression uncertainties appear weakly negatively correlated (R=�0.21, p=

2.6 · 10�6).
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Figure 6. Correlation coefficient heat map between operational AEP uncertainty components, as calculated from the results of the Monte

Carlo approach applied at the 472 wind farms
:::::
plants considered in the analysis. Note: “Rev.” denotes “Revenue"

:
”.

The first correlation noted earlier (wind resource IAV and long-term windiness correction) is explained simply by the fact

that both uncertainty components are driven by wind resource variability. At a site with large wind variability, IAV will be large325

by definition , and so will the uncertainty introduced by different lengths of time series used for the long-term AEP calculation.

The correlation between linear regression and reference wind speed data uncertainties can be justified given the dependence

of both these uncertainty components on the number of data points used in the regression between energy production data and

concurrent wind speed data (Figure 7).330

Both the slope and intercept errors (Equations 5 and 6), from which the linear regression uncertainty depends (as described

in Section 2.3), are inversely proportional to the number of data points , so that when a regression is performed on few data

points, its uncertainty increases. This dependence is exemplified in Figure 4, where we have compared the sampling sets of

regression lines for two stations in the EIA data set: for these two cases, the standard errors of regression slope and intercept

for the station with 8 data points (on the right) are 30-50
:::::
30–50

:
times larger than what is found for the station with 90 data335

points (on the left).

The number of data points used for the regression has also
:::
also

::::
has an impact on the reference wind speed data uncertainty.

In fact, short periods of wind plant operation record can lead to different interpretations from the reference wind resource data

sets used as to whether that short period of record was above, equal to, or below the long-term average resource. Over a longer

period of record, these potential discrepancies between different wind resource data sets (in our case, reanalysis products) tend340

to average out, therefore
:
;
::::::::
therefore, leading to a reduced uncertainty. We illustrate this phenomenon by exploring the long-term
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Figure 7. Dependence of linear regression uncertainty and reference wind speed data uncertainty on the number of data points in the period

of record, for the 471
::
472

:
projects considered in the analysis.

Figure 8. Long-term time series of normalized wind speed for EIA station ID 60502 from the three reanalysis products used in the study.

The period of record (POR) for the wind farm
:::

plant
:
is highlighted in light blue.
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Figure 9. Ratio of wind speed to the long-term, 20-year average for periods of record of different lengths (all ending in December 2017), for

EIA station ID 60502, using data from the three reanalysis products in the study.

trend of the reanalysis products for the wind farm
::::
plant

:
with one of the highest reported reference wind speed data uncertainties

(EIA ID 60502 , reported 3.7% reference wind speed data uncertainty). Figure 8 shows the result. The period of record for

wind farm
::::
plant operation (shown by a shaded blue area in Figure 8) was only 12 months. As shown in the figure, the various

reanalysis products have very different interpretations of the wind resource in the short period of record , relative to the long-345

term (ERA-i
:::::
ERA-I: 4% above average,

:
; MERRA-2: 1% below average; NCEP-2: 1% above average). Consequently, the use

of each reanalysis product will lead to different magnitudes (both positive and negative) in the long-term windiness corrections,

leading to high uncertainty in the resulting operational AEP calculation. By increasing the period of record (i.e., increasing

the number of data points used in the regression), such discrepancies tend to average out. This is illustrated in Figure 9, where

we show how the period of record to long-term wind speed ratio varies as we extend the period of record by increasing the350

number of months while keeping December 2017 as
::
the

:
fixed ending time. For short periods of record, there is considerable

deviation of this ratio among the different reanalysis products (i.e., the reference wind speed data uncertainty is high). As the

length of the period of record increases, this ratio tends to converge to 1.0, and the spread between the three reanalysis products

decreases (i.e., the reference wind speed data uncertainty is low).

355

Finally, the (weak) negative correlation between linear regression and wind resource IAV uncertainties is linked to the fact

:::
that

:
they respond differently to the R2 coefficient between the reanalysis wind speed and the energy production data (Figure

10). Predictably, the linear regression uncertainty is inversely proportional to the coefficient of determination because a stronger

correlation between winds and energy production will lead to a reduced uncertainty of the regression between the two variables.
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Figure 10. Dependence of linear regression uncertainty and IAV uncertainty on the R2 of the regression between reanalysis wind speed and

energy production data.

On the other hand, wind resource IAV uncertainty shows a direct
::::::
positive

:
correlation with the regression R2 coefficient. This360

dependency
::::::::::
dependence can be explained as

::::::
because both quantities are directly

::::::::
positively correlated with the total variance

of wind speed or, equivalently, produced energy. Figure 11 shows the relationship between IAV uncertainty and the total sum

of squares SStot, WS of reanalysis wind speed (here, using MERRA-2 monthly data), which is proportional to the variance of

the data:

SStot, WS =
X

i(WSi �WS)2i(WSi �WS)2.
:::::::::::::

(8)365

A direct
::::::
positive

:
correlation between IAV uncertainty and SStot, WS emerges. At the same time, the linear regression R2 coef-

ficient also depends on the variance of the produced energy (and, equivalently, of wind speed) as it is defined as
:
:

R2 = 1� SSres

SStot
(9)

where SSres is the total sum of the residuals from the linear regression. Equation 9 shows that when the total sum of squares

SStot increases, so does R2, thus confirming the direct
::::::
positive

:
correlation between R2 and the variance in the data.370

Finally, we note that although the sites selected for this analysis are primarily in simple terrain (Figure 1), we do not expect

more complex topography to impact the correlations revealed from the Monte Carlo analysis, as all the underlying relationships

would also be applicable to more complex sites

3.3
::::::::::

Comparison
::::::::
Between

:::::
Total

::::::::::::::::
Operational-Based

:::::
AEP

::::::::::
Uncertainty

::::::
Under

:::::::::
Different

:::::::::::
Assumptions
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Figure 11. Dependence of
:::::::::
Relationship

::::::
between

:
IAV uncertainty on

:::
and the total sum of squares SStot, WS of MERRA-2 wind speed data ,

for the 472 projects considered.

::::
After

::::::
having

::::::::
revealed

:::
the

::::::::::
correlations

:::::::
existing

:::::::
between

::::::::
different

::::
AEP

::::::::::
uncertainty

::::::::::
components

::::
and

::::::::
explained

:::::
their

:::::::
sources,375

::
we

::::
can

:::::::
compare

:::
the

::::
total

::::::::::
operational

::::
AEP

::::::::::
uncertainty

:::::::::
calculated

:::::
when

:::::::
allowing

:::
for

:::::
these

::::::::::
correlations

::::::::
(Equation

:::
7)

::::
with

:::
the

::::
total

:::::::::
uncertainty

:::::::::
calculated

::::
with

:::
the

:::::::::::
uncorrelated

::::::::::
assumption

:::::
using

:::
the

:::::::::::
conventional

:::
sum

:::
of

::::::
squares

::::::::
approach

:::::::::
(Equation

:::
1).

:::::
Figure

:::
12

:::::
shows

:::
the

::::::
results

::
of

::::
this

::::::::::
comparison

:::
for

:::
the

::::
472

::::
wind

::::::
plants

:::::::::
considered

::
as

::
a
:::::::::
scatterplot

:::
and

::::
also

:::
as

:
a
:::::::::
histogram

::
of

:::
the

::::::::
difference

::::::::::::::::
�tot,corr ��tot,uncorr. ::

A
::::
weak

::::
bias

:::
can

:::
be

::::::::
observed

::::
with

:
a
:::::
mean

:::::
value

::
of

::::::
+0.1%

::
in
::::::::::

uncertainty
:::::::::
difference

::::
(and

:::::::::
differences

::
up

::
to
:::::

0.5%
:::
for

:::::::
specific

::::
wind

:::::::
plants).

::
In

:::::
other

::::::
words,

:
if
::::::::::
correlations

::::::::
between

:::
the

:::::::
different

::::::::::
uncertainty

::::::::::
components380

::
are

:::::::
ignored

::
in

:::
the

:::::::::
calculation

:::::::
method,

:::
the

::::::
whole

:::::::::
operational

::::
AEP

::::::::::
uncertainty

::
is

::::
then,

:::
on

:::::::
average,

::::::
slightly

::::::::::::::
underestimated.

::::
This

::::::::
difference

::::
can

::
be

:::::::::
explained

:::
by

:::::::::
comparing

:::
the

:::::::::::
contributions

:::::::
Rij�i�j ::::

from
::::

the
::::::
various

::::::::::
uncertainty

::::
pairs

:::
in

::::::::
Equation

:
7
::::::::
averaged

::::
over

:::
the

::::
472

:::::::::
considered

:::::
wind

::::::
plants.

: :::::
Figure

:::
13a

::::::
shows

:::
the

:::::
mean

:::::::::
magnitude

:::::::
(across

:::
all

::::
wind

::::::
plants)

:::
of

:::::
these

:::::::::::
contributions

::
for

:::
all

::
of

:::
the

::::::::::
considered

:::::::::
uncertainty

:::::
pairs.

::::
The

:::::::
negative

::::::::::
correlation

:::::::
between

::::
IAV

:::
and

::::::
linear

::::::::
regression

::::
has

:::
the

:::::
largest

::::::
single

::::::
impact

:::::::
because

:::
this

:::::::::
correlation

::::::::
involves

:::
the

:::
two

::::::
largest

::::::::::
uncertainty

::::::::::
components

:::::::
(Figure

::
5).

:::::::::
However,

:::
the

::::
sum385

::
of

:::
the

:::::::::::
contributions

:::::
from

::
all

::
of
::::

the
:::::::
positive

::::::::::
correlations

:::::::
exceeds

:::
the

::::
sum

::
of

:::
the

:::::::::::
contribution

::::
from

:::
the

:::::::::
negatively

:::::::::
correlated

::::::::::
components

::::::
(Figure

::::
13b),

::::
thus

::::::::
resulting

::
in

::
the

::::::
overall

:::::::
average

:::::::
increase

::
in

::::
total

:::::::::
operational

::::
AEP

:::::::::
uncertainty

:::::
when

:::
the

::::::::::
correlations

::
are

:::::
taken

::::
into

:::::::
account

::
in

:::
the

:::::::::
calculation.

4 Conclusions

Financial operations related to wind farms
::::
plants

:
require accurate calculations of the annual energy production (AEP) and390

its uncertainty prior to the construction of the plant and, often, in the context of its operational analysis. As wind energy

penetration increases globally, the need for techniques to accurately assess AEP uncertainty is a priority for the wind energy
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Figure 12.
:::
(left)

:::::::::
Scatterplot

::
of

::::
total

:::::::::
operational

::::
AEP

::::::::
uncertainty

::::::
values

::::::::
calculated

:::
with

::::
and

::::::
without

:::::::
assuming

::::::::::
uncorrelated

:::::::::
uncertainty

:::::::::
components

::
for

:::
the

:::
472

:::::
wind

::::
plants

:::::::::
considered.

:::::::::
Uncertainty

::
is

::::::::
quantified

::
as

:::
the

:::::
percent

::::::::
coefficient

:::
of

::::::
variation

::
of
:::

the
:::::::
resulting

::::::::
long-term

:::
AEP

::::::::::
distribution.

:::::
(right)

::::::::
Histogram

::
of

::::::::
difference

:::::::::::::
�tot,corr ��tot,uncorr:::::::

between
:::
the

:::
total

:::::::::
operational

::::
AEP

:::::::::
uncertainty

::::::::
calculated

:::::::::
considering

:::
and

::::::
ignoring

:::
the

::::::::
correlation

::::::
between

:::
its

::::::::
uncertainty

::::::::::
components.

NREL    |    10

(a) (b)

Figure 13.
::
(a)

:::::::
Average

:::::
(across

:::
472

::::
wind

::::::
plants)

:::::::::
contribution

::
of

::
the

:::::::::
correlation

::::::
between

:::::
single

::::::::
uncertainty

::::
pairs

::
to

:::
the

:::
total

:::::::::
operational

::::
AEP

::::::::
uncertainty,

::::::::
according

::
to

:::::::
Equation

::
7.

:::
(b)

:::::::::
Comparison

::
of

:::
the

::::
total

:::::::::
contribution

::::
from

::::::::
positively

:::
and

::::::::
negatively

::::::::
correlated

::::::::
uncertainty

:::::
pairs,

:::::::
computed

::
by

::::::::
summing

::
the

::::::::::
contributions

:::::
shown

::
in

::::
panel

:::
(a).

industry. Typically, current industry practice assumes that uncertainty components in AEP estimates are uncorrelated. However,
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we have shown that this assumption is not valid for the six components which
:::
five

:::::::::::
components

:::
that

:
comprise an operational-

based uncertainty, using the EIA data set.395

In this study we .
:::
We

:
used a Monte Carlo approach to assess annual energy production; this not only accounts for correlations

between uncertainty components, but also provides quantitative insight
:::::
AEP;

:::
this

::::::::
provides

::::::::::
quantitative

:::::::
insights into aspects

of the AEP calculation that drive its uncertainty. We have applied this approach using operational data from 472 wind farms

:::::
plants,

::::::
mostly

::
in

::::::
simple

::::::
terrain,

:
across the United States in the EIA-923 database.

Our results show that ignoring
:
,
::
in

:::::
order

::
to

:::::
study

::::::::
potential

:
correlations between uncertainty componentscauses a mean400

absolute difference of 6% compared to the uncertainty calculated with the Monte-Carlo-based approach, with larger deviations

(up to 20%) for specific sites. Moreover, three .
::::::
Three pairs of uncertainty components reveal

:::::::
revealed a statistically significant

correlation: wind resource inter-annual
:::::::::
interannual

:
variability (IAV) and long-term windiness correction (positive correlation);

wind resource IAV and linear regression (negative); and reference wind speed data and linear regression (positive). Wind

resource IAV and long-term windiness correction uncertainties are correlated because they both depend on wind resource405

variability. Wind resource IAV uncertainty is correlated with linear regression uncertainty because they are both inversely

proportional to the number of data points in the period of record. Finally, reference wind speed data uncertainty and linear re-

gression uncertainty show a negative correlation because they respond oppositely to the R2 coefficient between the (reanalysis)

wind speed and energy production data. Therefore, our results suggest that a Monte Carlo approach should be preferred to take

into account410

:::
Our

::::::
results

::::
show

::::
that

:::::::
ignoring these correlations between uncertainty components to lead to more accurate results, compared

to the current industry standard approach. For all the projects considered in this study, the Monte Carlo simulation reached

convergence within 10, 000 runs. To facilitate the transition towards this proposed new industry standard, NREL’s open-source

OpenOA software3 already supports the recommended Monte Carlo approach to assess AEP. In addition, the benefit of this

technique will be further described in a guideline document in preparation for publication by the AWEA TR-1 working415

group
:::::
causes

::
an

::::::::::::::
underestimation

::
of

:::
the

:::::
total

:::::::::
operational

:::::
AEP

:::::::::
uncertainty

:::
of,

:::
on

:::::::
average,

:::::
about

::::::
0.1%,

::::
with

::::
peak

::::::::::
differences

::
of

::::
0.5%

:::
for

:::::::
specific

:::::
sites.

:::::
These

::::::::::
differences,

::::::
though

:::
not

:::::
large,

::::::
would

:::
still

:::::
have

:
a
:::::::::
significant

::::::
impact

:::
on

:::::::::
increasing

::::
wind

:::::
plant

:::::::
financing

:::::
rates.

:::::::::
Moreover,

:::
we

::::::
expect

:::::::::
differences

::::::
would

:::::::
become

::::
even

:::::
larger

:::
for

:::::
sites

:::::::::::
characterized

::
by

::
a
:::::
more

:::::::
complex

:::::
wind

::::
flow.

:::::::::
Therefore,

:::
our

::::::
results

:::::::
suggest

::::
that

::::::::::
correlations

::::::::
between

:::::::::
uncertainty

:::::::::::
components

::::::
should

:::
be

:::::
taken

::::
into

:::::::
account

:::::
when

:::::::
assessing

:::
the

::::
total

::::::::::
operational

::::
AEP

::::::::::
uncertainty.420

Additional components of uncertainty in an operational AEP were not considered in our study because of limited reporting in

the EIA-923 database. These components include reported availability, curtailment uncertainty, and various uncertainties intro-

duced through analyst decision-making (e.g., filtering high-loss months from analysis and regression outlier detection). Future

studies could include the impact of these additional sources of uncertainty on the operational AEP assessment.
:::::::::
Moreover,

:::
our

:::::::
analysis

::::::::
excluded

::::
sites,

:::::::
mostly

::
in

:::::::
complex

:::::::
terrain,

::::
with

::
a

:::::
weak

:::::::::
correlation

:::::::
between

:::::::::
reanalysis

:::::
wind

:::::::
resource

::::
data

::::
and425

::::
wind

:::::
power

::::::::::
production.

::::::
Future

::::
work

:::::
could

:::::::
explore

:::
the

:::::::::
magnitude

::
of

:::::::::
operational

:::::
AEP

:::::::::
uncertainty

:::
and

:::
the

::::::::::
correlation

:::::::
between

::
its

::::::::::
components

:::
for

:::::
such

:::::::
complex

::::
flow

::::::::
regimes. Finally, this study focused on correlations between operational AEP uncer-

3https://github.com/NREL/OpenOA
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tainty components. Future work could explore correlations between pre-construction
:::
the

::::::::
numerous

:::::::::::::
preconstruction

:
AEP un-

certainty components . Given the numerous components (e.g., wake loss, wind speed extrapolation, wind flow model)and their

intercomplexities, a Monte Carlo approach could reveal correlations that are at present not considered.430
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