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Abstract. Scanning Doppler lidars have great potential for reducing uncertainty of wind resource estimation in complex terrain.

Due to their scanning capabilities, they can measure at multiple locations over large areas. We demonstrate this ability with

dual-Doppler lidar measurements of flow over two parallel ridges. The data have been collected using two pairs of scanning

lidars operated in a dual-Doppler mode during the Perdigão 2017 measurement campaign. There the scanning lidars mapped

the flow 80 m above ground level along two ridges, which are considered favorable for wind turbine siting. The measurements5

are validated with sonic wind measurements at each ridge. By analyzing the collected data, we found that wind speeds are

on average 10% higher over the southwest ridge compared to the northeast ridge. At the southwest ridge, the data shows, for

approach flow normal to the ridge, a change of 20% in wind speed along the ridge. Fine differences like these are difficult to

reproduce with computational flow model as we demonstrate by comparing the lidar measurements with Weather Research and

Forecasting LES (WRF-LES) simulation results. For the measurement period, we have simulated the flow over the site using10

WRF-LES to compare how well the model can capture wind resources along the ridges. We used two model configurations.

In the first configuration, surface drag is based purely on aerodynamic roughness whereas in the second configuration forest

canopy drag is also considered. We found that simulated winds are underestimated in WRF-LES runs with forest drag due

to an unrealistic forest distribution on the ridge tops. The correlation of simulated and observed winds is, however, improved

when the forest parameterization is applied. WRF-LES results without forest drag overestimated the wind resources over the15

southwest and northeast ridges by 6.5% and 4.5% respectively. Overall, this study demonstrates the ability of scanning lidars

to map wind resources in complex terrain.

1 Introduction

Traditionally, wind resource assessment is done with mast-mounted cup or sonic anemometers. Nowadays, with the commer-

cialization and increasing acceptance of remote sensing devices such as lidars and sodars, this practice is changing due to20

clear advantages of remote sensing devices: they are easily deployed, can be cost-effective, avoid the requirement of building

permits, and can measure at higher heights. However, mast based instruments, especially sonic anemometers, are probably still

better suited for turbulence measurements (Sathe and Mann, 2013).

Vertically profiling wind lidars gained popularity for the assessment of mean wind speeds and are getting recognized by

international standards for wind resource and power performance assessments (Clifton et al., 2018). Most profiling lidars25

1



perform velocity–azimuth display (VAD) scans to estimate the horizontal velocity from line-of-sight (LOS) measurements

under the assumption of horizontal homogeneity. However, this assumption is typically violated in complex terrain. Errors

from profiling lidars can be up to 10% when measuring in complex terrain as shown by Bingöl et al. (2009). One solution to

overcome this problem is to use several lidars that directly measure different components of the wind at the same location.

Moreover, the deployment of several lidars with scanning capabilities allows the assessment of wind conditions over large5

areas (Vasiljević et al., 2019) which can give important insights into the spatial variability of flow over very complex terrain.

Multi-lidars have been proven to have a high measurement accuracy in comparison studies with sonic anemometers (Pauscher

et al., 2016). Moreover, many studies utilized the scanning capability to measure wind fields over large areas for wind energy

purposes in assessing, for example, wind turbine wakes (Trujillo et al., 2011; Iungo et al., 2013; Bodini et al., 2017; Menke

et al., 2018b), the inflow towards wind turbines (Mikkelsen et al., 2013; Simley et al., 2016; Mann et al., 2018), the influence10

of surface and terrain features on the flow (Lange et al., 2016; Mann et al., 2017) and atmospheric phenomena such as gravity

waves (Palma et al., 2019).

In this publication, we use measurements from the Perdigão 2017 campaign (Fernando et al., 2019). For this measurement

campaign, wind lidars were a key measurement technology for the assessment of the flow over the complex terrain site. In

total 7 profiling and 19 scanning lidars (SL) were deployed. The present study focuses on a subset of the entire data collection15

containing measurements of wind resources along two ridges, which are favorable sites for wind turbines, at Perdigão.

The relevance of such measurements is especially important for complex terrain sites where the uncertainty of current flow

models is high (Bechmann et al., 2011). Potential sources of error are the characterization of the roughness resulting from

different types of canopies (Wagner et al., 2019a), the characterization of the stratification in the atmosphere (Palma et al.,

2019), the description of the terrain (Lange et al., 2017; Berg et al., 2018) and model resolution which may not capture all20

important flow phenomena in complex terrain. Therefore creating a good measurement dataset of the flow over such terrain

is imperative to improve the models. In this study, we present dual-Doppler lidar measurements that aim to assess the wind

resource along the ridges at Perdigão. The measurements are validated against mast based ultrasonic anemometers along the

ridges and observed flow structures are analyzed. Moreover, the lidar measurements are compared to WRF-LES simulations

with and without a parametrization of forest drag (Wagner et al., 2019a, b) to test the model capability in reproducing the25

observed flow structures. This comparison reveals large deviations of model data to the lidar measurements, which underlines

the importance of in situ measurements in complex terrain.

The paper is organized in the following way: Section 2 gives an overview of the Perdigão field campaign including a

description of lidar and mast measurements, Section 3 presents the WRF model setup. Section 4 introduces the applied data

processing techniques. Results are presented in Section 5, followed by a discussion in Section 6. Conclusions are given in30

Section 7.

2



2 Field campaign overview

The Perdigão 2017 field campaign took place at a site centered at the village Vale do Cobrão located in Portugal close to the

Spanish border. The main selection criteria for the site was a distinct terrain feature of two parallel ridges of 4 km in length

(Figure 1). The ridges are about 1.5 km apart and the height difference from the valley bottom to the ridge tops is about 250 m.

The northwest – southeast orientation of the ridges is perpendicular to the prevailing wind directions which were assessed5

previously to the campaign with a 30-m measurement mast (Vasiljević et al., 2017).

During the 2017 campaign, measurement devices were set up with a very high density by a large international group of

universities, research institutions and industry partners. Instruments were operated from early 2017 until early 2018 with an

Intensive Operation Period (IOP) from May 1st to June 15th 2017. To map the flow over the measurement site 186 3-component

sonic anemometers were installed on 50 meteorological masts with heights up to 100 m. Also, 26 wind lidars (7 profiling lidars10

and 19 scanning lidars) were deployed. A full overview of the campaign’s objectives and instrumentation may be found in

Fernando et al. (2019). For this study, we analyze measurements from 4 SLs and 4 measurement masts located on the ridge

tops.

2.1 Lidar measurements

As mentioned above, for this study we analyze measurements of four out of the eight SLs that were operated by DTU during15

the measurement campaign. The SLs, of type Leosphere Windcube 200S, were operated as WindScanners (Vasiljevic et al.,

2016). The WindScanner specific modifications allow to measure complex trajectories and the synchronization of multiple

systems. In the following sections we will describe the experiment layout design process, the deployment process including

the calibration procedure, and the design and configuration of the scanning trajectories.

2.1.1 Layout20

Our focus was to measure wind resources above the southwest (SW) and the northeast (NE) ridge since the ridge tops are

areas characterized with high wind resources and thus often used as locations for wind turbine placement in complex terrain.

Accordingly, a measurement scenario is designed probing wind resources above both ridges. The scanning scenario, the so

called ridge scan, is characterized of intersecting lidar beams along the transects following the SW and NE ridge for about

2 km in 80 m height above the ground level (AGL) (Figure 1). This layout presents an extension of the design of the 201525

campaign (Vasiljević et al., 2017). The altitude of 80 m is chosen to match the hub height of the wind turbine located on the

SW ridge. With only a pair of lidars used to measure along each transect, it is not possible to resolve the vertical velocity

component. Thus, the lidar positions and scan strategy needed to be chosen to keep the elevation angles of the laser beams

as low as possible (preferably below 5◦). Also, the intersecting angle between the laser beams must be at least 30◦. Having

elevation angles below 5◦ensures that the influence of the vertical wind component is kept below 0.5% as cos(5◦) = 0.996.30

The in-field placement of the lidars is based on high precision terrain data and orthophotos acquired prior to the Perdigão 2015

campaign (Vasiljević et al., 2017).
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(a) (b)

(c)

Figure 1. (a) Elevation map of the Perdigão site in the PT-TM06/ETRS89 coordinate system. (b) Tree height map. (c) View from the

southwest of the ridges with lidar and sonic anemometer sampling positions, and wind turbine at center of the southwest ridge.

2.1.2 Deployment

After the SLs were positioned at their designated locations, their orientation and leveling were determined by mapping the

lightning rods of measurement masts using the SLs’ laser beams (Vasiljevic, 2014, p.157). Both the position of SLs and lighting

rods had been measured with centimeter accuracy (Menke et al., 2019a). By comparing referenced and mapped positions the

leveling and orientation of SLs were improved resulting in a pointing accuracy of about 0.05◦. To retain the pointing accuracy,5

the target mapping was repeated several times during the campaign to ensure that the leveling and orientation of the SLs

remained unchanged.
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2.1.3 Scanning strategy

The two trajectories, which follow the ridge top line 80 m AGL, were designed using the high precision terrain data. The

traverses were 1.8 km long and described by points evenly spaced every 20 m. Accordingly we programmed the SLs to measure

continuously along the trajectories by moving the beams through the trajectory points with the speed of 40 m s−1 and an

accumulation time of 500 ms. As a result, spatial averaging takes place normal to the beam direction. Along the beam, range5

gates were placed every 10 m, starting at 700 m, and extending to 2640 m (Table 1). Range gates represent slices (a certain

number of samples) of the sampled backscattered light which are analyzed to estimate the wind vector component along the

LOS. Each range gate corresponds to a spatial location for which the radial velocity is evaluated. The SLs were configured to

emit 200 ns laser pulses, and sample the resulting backscattered light with a frequency of 250 MHz. In the analysis of the back-

scattered light each range gate is represented by 64 consecutive samples resulting in a weighting function with a full-width half10

maximum of about 30 m. One scan took 48 s of which 45 s were spent on measurements, 0.5 s for acceleration and deceleration

of the scanner heads and 2 s to return to the trajectory start point.

Typically, the WindScanner system uses a master computer to keep the synchronization of SLs to about 10 ms (Vasiljevic

et al., 2016). This synchronization requires a stable network connection between the SLs and the master computer. At the

Perdigão site, due to the unstable network conditions, the SLs were configured to start the measurements in a scheduled15

fashion according to GPS time, thus independently from the master computer. This introduced time offsets due to a system

dependent startup time which varies over time and among the different SLs. However, the SLs could perform measurements

independent of the network connection which results in higher data availability. The average time offset between SL 105 and

106 is 0.42 s± 1.03 s and 0.7 s± 0.65 s between SL 107 and 108.

Table 1. Scanning lidar coordinates and details about the measurement settings.

Scanning lidar 105 106 107 108

northing (m) 32926.47 33888.66 33990.61 34804.57

easting (m) 4874.29 3798.01 5695.30 4807.90

elevation (m) 485.94 486.34 437.06 452.81

azimuth range (◦) 38.54 - 97.36 357.39 - 54.45 246.88 - 183.48 279.43 - 221.17

mean elevation (◦) 1.83 1.79 4.71 3.80

range gates 195 (from 700 m every 10 m up to 2640 m)

accumulation time (ms) 500

pulse length (ns) 200

5



2.2 Mast measurements

For this study, we use measurements from four masts. One 100 m mast was located on the NE ridge and a 100 m and two 60 m

masts that were located on the SW ridge. All masts are equipped with 3-D ultrasonic anemometers (Gill WindMaster Pro) and

temperature/relative humidity sensors (NCAR SHT75) at the heights of 10, 20, 30, 40 and 60 m AGL and 2, 10, 20, 40 and

60 m AGL, respectively. The 100 m masts also have ultrasonic anemometers and temperature/relative humidity sensors at 805

and 100 m AGL. Data were acquired at 20 samples per second with a 1 µs resolution GPS-based time stamp on every sample.

3 Flow modeling overview

In this study, long-term simulations of Wagner et al. (2019a, b) are compared to lidar ridge scans to determine the quality

of a numerical model over complex terrain. Model simulations were performed with the Weather Research and Forecasting

(WRF) model (Skamarock et al., 2008) on three nested domains D1 to D3 with horizontal resolutions of 5 km, 1 km, and10

200 m, respectively. The innermost domain D3 is run in large-eddy simulation (LES) mode. The LES set-up was chosen to be

independent of boundary layer parameterizations in domain D3, although a horizontal resolution of 200 m is relatively coarse

for an LES run. Vertical nesting is applied to define individual levels in the vertical for each model domain (Daniels et al.,

2016). For domains D1–D3, 36, 57, and 70 vertically stretched levels are used and the respective lowest model levels are set to

80, 50, and 15 m above ground level. The model top is defined at 200 hPa (about 12 km height) to include radiation and cloud15

effects at the tropopause. At the model top, a 3 km thick Rayleigh damping layer is applied to prevent wave reflection (Klemp

et al., 2008). The simulation is initialized once at 00:00 UTC on 30 April 2017 and run for 49 days and 18 h until 18:00 UTC on

18 June 2017. The initial and boundary conditions are supplied by the European Centre for Medium-Range Weather Forecasts

(ECMWF) operational analyses on 137 model levels with a horizontal resolution of 8 km and a temporal resolution of 6 h. The

WRF output interval of domain D3 was set to 10 min. The complete model setup including the physical parameterizations that20

were used is described in detail in Wagner et al. (2019a) and in Wagner et al. (2019b). Two simulations were performed for

the whole IOP of the Perdigão 2017 campaign and are run with (WRF_F) and without (WRF_NF) a forest parameterization in

the LES domain D3. Without forest parameterization, surface drag is defined by an aerodynamic roughness length z0, which

is obtained from the CORINE 2012 land-use data set and converted to land-use types according to Pineda et al. (2004). In the

WRF_F run, an additional forest drag term following Shaw and Schumann (1992) is implemented, which decelerates the flow25

on the lowermost model levels. The forest cover and leaf area index (LAI) are retrieved from the CORINE data set. As no

information about the tree height at the point of the model configuration was available, a randomly uniformly distributed forest

height of 30 m ± 5 m is used for the modeling domains. The high resolution aerial scans are only available for a smaller area

centered around the measurement site (Figure 1b). A detailed description of the forest parameterization and the differences

between the WRF_F and WRF_NF simulations is given in Wagner et al. (2019b).30

Model data of the LES domain D3 is available with a 10 minute output interval. This means that every 10 minutes a snapshot

of the simulated meteorological condition is written to the output file. The three-dimensional fields are interpolated linearly
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in both the horizontal and vertical direction to the lidar ridge scan coordinates. This results in time series of meteorological

variables at each lidar scanning point, which can be compared to lidar data.

4 Data overview and processing methods

4.1 Mast data

The anemometer data are rotated into a vertical coordinate system (i.e.w is aligned with the vertical axis of the local coordinate,5

PT-TM06/ETRS89, system which is also used for the lidar data) and oriented to true North from angles determined by laser

multistation scans of each instrument. No issues are determined in the quality control process, so the reported data from the

anemometers is used unedited.

The fans used to aspirate the temperature/relative humidity sensors on the masts occasionally failed during the project. Data

from these periods were removed. Also, for some of these sensors, laboratory post-experiment calibrations indicated larger than10

expected differences from the pre-calibrations (usually less than 0.5 degC and 4%RH). For these sensors, the post-calibrations

are applied.

For the comparison of sonic and lidar measurements, we project the 80 m sonic wind speeds to the SL LOSs using equation

1 and calculate the sonic wind speed projected to the plane spanned by the two lidars. The former is calculated as,

Vr_sonic = u sinφ cosϑ+ v cosφ cosϑ+w cosϑ (1)15

where Vr_sonic is the sonic wind speed projected to the individual LOSs of the SLs and u, v and w are the wind vector

components. The sonic data are averaged exactly during the accumulation period (500 ms) of the SLs at the two closest range

gates to the masts that are not affected by the measurement mast structures. These range gates are about 40 m to NW (northwest)

and SE (southeast) of the masts.

The latter, the sonic wind speed projected to the plane spanned by the two lidars, is used to investigate the correlation of20

horizontal wind speeds measured by the sonics and the lidars. For the sonic measurements we consider the horizontal wind

speed (Uhor =
√
u2 + v2) and the wind speed projected to the plane spanned by the two lidars (Uproj =

√
u2proj + v2proj). Where

the projected wind vector is calculated as:

Uproj = n× (U ×n) (2)

with n being the unit normal vector of the plane spanned by the two lidar beams.25

Furthermore, the mast data is used to determine the atmospheric stability based on the Richardson number (Ri) calculated

at the upstream mast as defined in Menke et al. (2019b) based on the potential temperature gradient from 20 m to 100 m and

the 100 m wind speed. It is not obvious how to define limits for different stability regimes thus we define stable conditions as

periods with Ri > 0 and unstable conditions as Ri < 0. Neutral conditions are only expected to occur during short transition

periods.30
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4.2 Lidar data

We process the lidar data in three consecutive steps. First, the data are filtered using the method described in section 4.2.1.

Next, the measurements of the filtered scans along the ridge trajectories are combined to horizontal winds, see section 4.2.2.

Finally, the combined measurements are averaged over 10 minute periods.

4.2.1 Filtering5

Most commonly, lidar data are filtered by thresholding using the carrier-to-noise ratio (CNR) as a quality indicator. These

methods are described by Beck and Kühn (2017) who give a general overview of lidar data filtering approaches and also

present highly innovative methods. Here we are proposing a new approach which is based on the assumption that the wind

field has a certain degree of continuity. We filter the lidar data in a three-stage process that is applied to each scan: In stage

one, the data are filtered based on a moving median value of the LOS velocities measured along each LOS. The median is10

calculated for a window that stretches over 15 range gates corresponding to a distance of 150 m. All range gates that deviate

by a threshold of 3 m s−1 from the median are excluded.

In stage two, all measurements that exceed the median of radial velocities along an entire LOS by a threshold value of

6 m s−1 are filtered out. Both thresholds were determined by visual inspections of plotted data and tuned to the present values.

After each stage, missing range gates are linearly interpolated by the value of the two neighboring range gates in case they15

have valid values. In a final stage, range gates with valid values that are surrounded by three or more invalid range gates out of

the two previous and two following range gates are excluded. These range gates are considered as scatter that are unlikely to

have a valid measurement or have a meaningful contribution to the analysis. The first two stages are intended to remove local

and global artifacts in the measurements. Finally, all filtering stages are repeated across LOSs in the azimuthal direction.

We demonstrate the performance of this method compared to CNR filters with the thresholds of -24 dB and -27 dB (Figure20

2). Our approach recovers more data in the far range of the scans thus extends the range of the scans during periods with low

CNR and can remove artifacts caused by e.g. hard targets or second return pulses originating from, for example, a cloud base

at a higher elevation. The average availability with our filtering approach is 91.8% compared to 77.7% (92.2%) with a -24 dB

(-27 dB) filter. The high availability of the -27 dB filter is misleading in the sense that this method does not remove all artifacts

from the scans (compare Figure 2c).25

4.2.2 Wind vector reconstruction

The horizontal components of the wind vector (u positive east and v positive north) are reconstructed from measurements

of the two SLs measuring along the same ridge. The measurements at the 92 ridge trajectory points are combined applying

equation 3:

u
v

=

sinφ1 cosϑ1 cosφ1 cosϑ1

sinφ2 cosϑ2 cosφ2 cosϑ2

−1

·

Vr1
Vr2

 (3)30
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(a)

(c) (d)

(b)

Figure 2. Comparison of data recovery with different filters for the 10 minute period starting at May 03, 2017 13:40 UTC. a) unfiltered data,

b) filter data following the approach described in section 4.2.1, c) -27 dB filter, and d) -24 dB filter.

with Vr being the radial or LOS velocities measured by the two SLs, φ the azimuth angles using the geographical convention,

i.e. 0◦ is pointing north and φ increases clockwise, and ϑ the elevations angles of the scanners. In this calculation the influence

of the vertical wind component w is considered to be negligible since we measured at low elevation angles. We combine 10-

minute averaged radial velocity components. Measurement points with less than 10 independent samples are disregarded as

well as complete scans with more than 20% invalid data.5

4.2.3 Data availability

The four SLs operated for different periods from March 22 to July 24. Individual system availability in these periods range

from 59% to 80% (Table 2). During the IOP, due to the permanent presence of people at the site to aid in the case of a power

grid or system failures, the SLs’ availability is higher (71% to 92%). For dual-Doppler retrievals at the individual ridges,

concurrent availability of SL 105 and SL 106 for the NE ridge and SL 107 and SL 108 for the SW ridge is required. The10

combined availability during the IOP is 79% and 51% for the NE and SW ridge, respectively. Simultaneous measurements

at both ridges are available for 44% of the period of the IOP. After applying filtering processes as explained in section 4.2.1,

the data availability reduces to 31.6%. For the analysis, we only use measurements of the IOP period, due to the higher data
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availability, and removed periods with wind speeds below 3 m s−1 at 80 m height (measured at the mast tse04) which leaves

507 10 minute periods, corresponding to 23% of the IOP period.

Table 2. Operation time and data availability of SLs. Number in brackets is the number of available 10 minute periods.

Scanning lidar 105 106 107 108

start of operation March 27, 16:50 March 27, 16:50 March 22, 17:50 March 27, 16:50

end of operation June 17, 15:20 June 17, 09:50 July 10, 16:50 July 24, 15:50

scanner availability 72.8% (2863) 79.8% (3130) 58.6% (3094) 63.2% (3608)

scanner availability IOP 82.2% (1815) 91.6% (2023) 70.7% (1562) 77.0% (1701)

combined availability IOP (per ridge)
NE ridge SW ridge

79.3% (1751) 51.3% (1133)

combined availability IOP (both ridges) 44.2% (976)

combined availability IOP (after filtering) 31.6% (698)

combined availability IOP (after filtering, U > 3 m s−1) 23.0% (507)

5 Results

5.1 Comparison of mast and lidar measurements

The correlation of radial velocities measured by the individual SLs and of the reconstructed wind vectors with the sonic wind5

speeds is calculated. For all SLs the correlation coefficient for the LOS measurements are better than 0.994, offsets are less than

0.45 m s−1 and slopes deviate by less than 0.04 from 1 (Figure 3). Considering that the measurements are not collocated and

that the measurement volumes of lidars and sonics differ by about two orders of magnitude these correlations can be considered

as good. For this comparison, only measurements from IOP are selected, and measurements are limited to the prevailing wind

directions (± 15◦centered around the transect orientated 54◦towards north) to eliminate the effects of mast wind shadow and10

to be consistent with the data fraction used for the further analysis.

The correlation based on the reconstructed wind vectors is calculated for 10-minute averages at all four masts for horizontal

wind speeds and wind speeds projected to the plane spanned by the two lidar beams. Both correlation coefficients with the two

80 m sonics are both better than 0.94, with offsets smaller than 0.25 m s−1 and slopes close to 1 (1.04 at tower tse04 and 0.94 at

tower tse13, Figure 4). At the 60 m masts the correlation of lidar and sonic measurements is lower due to the spatial difference15

in height. The correlation coefficients at both masts are 0.9.

Overall, the comparison aids as validation of the lidar measurements. However, the measurements cannot be compared to

studies that were purely designed for a comparison of different measurement technologies as e.g. done by Pauscher et al.

(2016). Moreover, the correlation of reconstructed wind speeds in the present study shows that differences when comparing
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Figure 3. Correlation of radial lidar wind speeds with the sonic wind speeds projected to the lidar LOSs. Only southwesterly and northeasterly

wind directions are selected for sectors of ± 15◦centered around the transect orientated 54◦towards north.

the lidar wind speeds to the projected or the horizontal sonic winds speeds are negligibly small. This affirms that the decisions,

of using elevation angles below 5◦, is adequate to measure the horizontal wind with the present scanning trajectories.

5.2 Observed flow patterns

Considering all available ridge scan periods (507) we find that the mean wind speed is 10% higher at the SW ridge. Relative

changes in wind speed along the SW ridge are below 2%. At the NE ridge, the lowest relative wind speeds are found at the5

terrain dip at 400 m and a change of 7% in mean wind speed is found along the ridge (not shown). This picture changes

significantly during specific atmospheric conditions which are analyzed in the following subsections. We segregate the data

by the prevailing flow directions from the northeast and the southwest for sectors of ± 15◦centered perpendicular to the ridge,
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Figure 4. Correlation of reconstructed lidar wind speeds with the horizontal sonic wind speeds and the sonic wind speeds projected to the

plane spanned by the lidars. Only southwesterly and northeasterly wind directions are selected for sectors of ± 15◦centered around the

transect orientated 54◦towards north. Wind speeds at tse04, rsw06 and rsw03 are derived from the SLs 107 and 108, and at tse13 from the

SLs 105 and 106.

orientated at 54◦(geographical convention). Furthermore, the data are segregated by the atmospheric stability characterized by

the Richardson number (Ri).

5.2.1 Dependence on wind direction

For southwesterly flows, an increase of more than 20% in relative wind speeds is observed along the SW ridge with higher

wind speeds in the southeast (SE) and lower wind speeds in the northwest (NW) (Figure 5). At the NE ridge, for southwesterly5
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Figure 5. Normalized wind speeds measured by the lidars and sonics during different atmospheric conditions. The wind speeds are normal-

ized by the mean along the upstream ridge e.g. for southwesterly wind directions all measurements are normalized with the mean wind speed

along the SW ridge. N number of 10-minute periods, u horizontal wind speed measured by the 80 m sonic anemometer, elev flow elevation

angle measured by the 80 m sonic anemometer.

flow, increased relative wind speeds of up to 13% are observed at the NW end of the ridge where the elevation is increasing.

All values are relative to the mean wind speed along the upstream ridge.

For northeasterly flow, significantly higher wind speeds of about 25% are observed at the SW ridge. Additionally, a change

in wind speed along the SW ridge is observed with higher speeds in the NW and lower in the SE which is opposite to the

observation under southwesterly flow. For some conditions, the change in relative wind speed is higher than 20%.5

We considered these observations as statistically significant as the mean of standard deviations calculated at each point along

the ridge is much lower than the observed changes (Table 3).
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Table 3. Observation from tower tse04 (SW ridge) and tse13 (NE ridge). Turbulence intensity is defined as TI = σUU
−1
sonic where U sonic is

the mean wind speed and σU the standard deviation of Usonic. Turbulent kinetic energy is calculated as e= 1
2

[
u′2 + v′2 +w′2

]
, where u′, v′

and w′ are the fluctuating parts of the wind vector components as measured by the sonic anemometers. Wind shear and veer are calculated

over 60 m (40 m – 100 m AGL). The flow inclination angle τ is calculated as arctan(w
√
u2 + v2

−1
), where u and v are the mean horizontal

wind vector components, and w the vertical. All averages are taken over 10 minutes. U lidar is the mean of the wind speeds measured by the

lidars averaged over the entire ridge. σlidar is the standard deviations also averaged along the ridge. N is the number of available 10-minute

periods.

U lidar σlidar/U lidar U sonic TI e shear veer τ N

southwesterly flow ( m s−1) (%) ( m s−1) (%) (m2 s−2) (ms−1) (◦m−1) (◦m−1)

stable SW ridge 5.43 3.9 5.13 11.27 0.29 0.012 -0.074 4.18
14

NE ridge 5.75 7.6 5.41 17.33 0.63 0.011 -1.036 1.75

unstable SW ridge 5.01 10.5 5.11 32.96 1.29 -0.006 0.029 12.12
21

NE ridge 4.56 13.3 4.35 43.58 1.51 0.001 -0.003 5.57

northeasterly flow

stable SW ridge 7.66 4.9 7.33 11.96 0.52 0.016 -0.073 -1.74
77

NE ridge 5.90 5.3 6.09 8.52 0.18 0.020 -0.147 0.67

unstable SW ridge 5.67 10.0 5.70 30.94 1.37 -0.001 0.084 2.90
39

NE ridge 5.10 8.5 5.60 29.15 1.24 -0.001 -0.040 7.09

5.2.2 Dependence on atmospheric stability

It is most notable that wind speeds at the downwind ridge are always higher than at the upstream ridge during stable conditions

(Figure 5). The mean wind speeds along the downwind ridge measured by the lidars are 1.8 m s−1 higher during northeasterly

flow and 0.3 m s−1 for southwesterly flows. Moreover, the mast measurements show consistently negative wind shear during

stable conditions at both masts and as expected, lower levels of turbulence intensity and turbulent kinetic energy (Table 3).5

During unstable atmospheric conditions, wind speeds are higher at the SW ridge for both flow directions. Remarkable is also

the large flow inclination angles measured by the sonics at the upstream ridges of 12.12◦ (7.09◦) for SW flow (NE flow). The

much higher flow inclination angle for SW flow over the SW ridge supports the findings of Menke et al. (2018b) that the wind

turbine wake is lifted higher during the day (unstable) than during the night (stable).

5.3 Comparison of lidar measurements and simulations10

As described in section 3, we compare the ridge scan measurements to the WRF-LES simulations with and without forest drag

implementation. Data from both simulations are extracted at the coordinates of the ridge scan points and interpolated to the

exact measurement periods in time.

14



Table 4. Mean difference of WRF simulations and ridge scans calculated as (UWRF−Ulidar)U
−1
lidar · 100 and averaged along the entire ridge.

Correlation coefficient (COR) and root mean square error (RMSE) values for the comparison of WRF data with the ridge scan measurements.

The first number states the value for the WRF_NF simulation without forest and in brackets the value for the WRF_F run with forest

parameterization. Bold values indicating the best model per parameter. The percentage of lidar observations, which describe the respective

flow condition is indicated in the last column.

all directions Mean difference (%) COR RMSE (m s−1) bias (m s−1) Fraction of used data (%)

all SW ridge 6.5 ( -35.2 ) 0.43 ( 0.49 ) 2.76 ( 3.43 ) -0.07 ( -2.52 ) 100

NE ridge 4.1 ( -32.2 ) 0.46 ( 0.44 ) 2.78 ( 2.94 ) -0.16 ( -2.09 )

stable SW ridge -3.6 ( -39.0 ) 0.40 (0.52 ) 2.68 ( 3.68 ) -0.77 ( -2.91 ) 57.4

NE ridge -9.9 ( -36.1 ) 0.48 ( 0.48 ) 2.56 ( 2.90 ) -0.83 ( -2.27 )

unstable SW ridge 25.1 ( -29.1 ) 0.50 ( 0.47 ) 2.83 ( 2.90 ) 1.19 ( -1.89 ) 37.1

NE ridge 29.9 ( -24.2 ) 0.44 ( 0.42 ) 3.06 ( 2.86 ) 1.11 ( -1.69 )

southwesterly flow

all SW ridge 9.0 ( -36.6 ) 0.38 ( 0.45 ) 2.61 ( 2.65 ) -0.01 ( -1.96 ) 9.3

NE ridge 10.3 ( -43.5 ) 0.40 ( 0.43 ) 3.49 ( 3.06 ) 0.06 ( -2.41 )

stable SW ridge 0.0 ( -42.4 ) 0.19 ( 0.46 ) 2.19 ( 2.99 ) -0.51 ( -2.41 ) 2.8

NE ridge -22.1 ( -56.4 ) 0.35 ( 0.40 ) 3.24 ( 4.08 ) -1.75 ( -3.55 )

unstable SW ridge 30.4 ( -32.7 ) 0.43 ( 0.54 ) 2.84 ( 2.17 ) 1.08 ( -1.50 ) 4.1

NE ridge 53.8 ( -39.7 ) 0.46 ( 0.49 ) 4.05 ( 2.54 ) 2.39 ( -1.85 )

northeasterly flow

all SW ridge -6.6 ( -30.8 ) 0.40 ( 0.41 ) 2.97 ( 3.87 ) -0.96 ( -2.63 ) 22.9

NE ridge -1.3 ( -23.7 ) 0.43 ( 0.43 ) 2.82 ( 2.68 ) -0.44 ( -1.61 )

stable SW ridge -20.1 ( -43.2 ) 0.43 ( 0.45 ) 3.20 ( 4.44 ) -1.90 ( -3.63 ) 15.2

NE ridge -19.1 ( -35.3 ) 0.45 ( 0.45 ) 2.91 ( 3.09 ) -1.39 ( -2.28 )

unstable SW ridge 19.9 ( -6.2 ) 0.51 ( 0.48 ) 2.35 ( 2.22 ) 0.93 ( -0.62 ) 7.7

NE ridge 33.7 ( -0.7 ) 0.48 ( 0.49 ) 2.68 ( 1.73 ) 1.44 ( -0.25 )

Table 5. As in Table 4, but for comparison of WRF simulations with tower T20 (tse04) and T29 (tse13) on the SW and NE ridge, respectively.

all directions Mean difference (%) COR RMSE (m s−1) bias (m s−1)

all T20 31.0 ( -23.1 ) 0.44 ( 0.65 ) 3.18 ( 2.35 ) 1.49 ( -1.11 )

T29 23.1 ( -29.2 ) 0.46 ( 0.56 ) 3.03 ( 2.45 ) 1.07 ( -1.35 )
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Figure 6. Comparison of WRF wind speeds and lidar ridge scan measurements for southwesterly flow segregated into stable and unstable

conditions.

The best agreement, considering all available ridge scan periods, is reached for the WRF_NF simulation without forest

drag in terms of mean difference, root mean square error and bias. In this case, the WRF model is overestimating the wind

speeds by 6.5% and 4.1% at the SW ridge and NE ridge, respectively (see Table 4). The WRF_F simulation with forest

drag implementation underestimates the wind speeds along the ridges by −35.2% (−32.2%) at the SW (NE) ridge. This

underestimation of simulated wind speeds on the ridge tops was also observed by Wagner et al. (2019b) and is most likely5

caused by an over-representation of the forest drag due to incorrect forest coverage on the ridge tops and too high trees in the

model. As described in section 3 an average canopy height of 30 m was used, whereas real tree heights obtained from an aerial

laser scan in 2015 were in the order of 15 m (see Fig. 1b). The distribution of forested areas in Fig. 1b further indicates that the

ridge tops were mostly free of trees, whereas both ridge tops are forested in the model according to the CORINE landuse data

set (see Fig. 3 in Wagner et al., 2019b).10

Even though the simulation with forest drag underestimates wind speeds at the ridges, it shows improved correlation with

the measurements (see Table 4). Correlation coefficients are consistently better for southwesterly wind directions and better or

similar to the correlations of the simulation without forest drag for northeasterly flow. A comparison of the same simulations

with multiple meteorological masts across the double ridge along transect southeast (TSE; equal to transect 2 in Fernando

et al., 2019) in Wagner et al. (2019b) shows a clear improvement of simulated wind speeds in the WRF_F simulation with15
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forest parameterization. This means that the forest parameterization enhances the simulated flow especially along the slopes

of the ridges, where wind speeds are overestimated in the WRF_NF simulation. When comparing the simulations only to the

two 100 m towers tse04 (T20) and tse13 (T29) on the SW and NE ridge, respectively, the WRF_F run underestimates wind

speeds at 80 m AGL, but shows improved correlation values and root-mean-square errors (RMSE) (see Table 5 in this paper

and Table 4 in Wagner et al., 2019b). The better results for the WRF_F run for the comparison with tse04 and tse13 may be5

induced by the larger number of samples that are available in the tower data set (about 13500 data points) compared to lidar

data (507 points in time) representing a larger spectrum of different meteorological conditions.

Segregating the data into different atmospheric conditions shows that the WRF_NF run performs best under stable atmo-

spheric conditions (Table 4). For unstable conditions, the WRF_F simulation performs better at the NE ridge and for northeast-

erly wind also at the SW ridge. Considering that the flow is more turbulent under unstable conditions, it can be assumed that10

more mixing and interaction with the forest is taking place compared to stable conditions during which the forest rather acts as

a displacement. For northeasterly winds, the high forest density for the fetch upstream of the NE ridge (see Figure 3 in Wagner

et al., 2019b) might lead to better results of WRF with forest drag.

Figure 6 shows the spatial distribution of averaged wind speeds along the SW and NE ridges during southwesterly flow.

The general underestimation of wind speeds in the WRF_F simulation is visible. Disregarding this negative offset, the WRF_F15

simulation shows spatial changes of wind speed along the ridges that are more similar to changes measured with the lidars

compared to stronger gradients along the ridges in the WRF_NF simulation.

6 Discussion

The results and observations outlined above demonstrate the ability of the SLs to perform flow measurements over large areas.

The design of the scanning scenario allowed us to capture fine differences in the flow field along the two ridges at Perdigão.20

Here we want to discuss three of the observed flow characteristics. Firstly, we observed on average a slow down of the flow at

the terrain dip which seems to be in accordance with the classical linear flow perturbation theory. Apparently, the influence of

channeling effects, which are expected under stably stratified conditions as described by Vassallo et al. (2020), is not significant

enough to affect the mean wind. Most likely the ratio of ridge height to dip height is too large to cause channeling effects that

have a significant influence on the mean flow field at 80 m height AGL i.e. heights of interest for wind energy production.25

Secondly, we want to focus the discussion on the wind speed changes along the SW ridge. The linear theory says that orog-

raphy gives a speed up with the same magnitude for opposite wind directions. Accordingly, if orography is solely responsible

for the speed up along the ridge the trend would be the same whether the wind is from the SW or NE. As we observed the exact

opposite, for SW wind directions flow speed are highest in the SE end of the SW ridge and higher flow speeds in the NW end

for NE wind directions, we can conclude that orography is not solely responsible. Likely is that the trend observed along the30

SW ridge is an interaction of orography and roughness effects. For roughness, contrary to orography, the speed up along the

ridge is only affected by the roughness (i.e. the friction drag) of the terrain upstream. This explains the lower wind speeds in

the SE of the SW ridge for NE winds as the density of larger trees increases to the SE (Figure 1b). For SW winds the higher
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winds in the SE end are most likely caused by an increasing steepness of the terrain and a decreasing steepness of the terrain

from the NW towards the SE (Figure 1a and Menke et al. (2018b, Figure 2)).

Lastly, we want to focus on the flow observations under stably stratified conditions. The higher wind speeds observed at the

downstream ridges under these conditions as described in (Section 5.2.2) are explainable by the speed up that is caused by the

formation of atmospheric waves during stable conditions as shown in Palma et al. (2019) and Fernando et al. (2019, Figure5

7d).

The observations show that as expected the flow is as complex as the terrain. Thus, reproducing the flow conditions with

simulations is challenging as shown by the comparison with WRF-LES simulation results (Section 5.3). Summarizing, we

find a high sensitivity of the WRF-LES simulations to the parameterization of surface friction. Adding a forest drag term

significantly changes the results. The comparison of the simulations with the lidar ridge scans reveals that the forest drag is too10

strong on the ridge tops, which results in underestimated wind speeds. Without forest drag, wind speeds are overestimated on

average. The comparison of the same simulations with multiple meteorological towers across the double ridge in Wagner et al.

(2019b) shows an improvement of the simulated flow with forest parameterization. Also, relative changes in wind speed along

the ridges are more similar for the simulation with forest drag when comparing to the relative changes observed with the SLs.

This shows that the forest parameterization has a positive effect on simulated wind speeds over Perdigão, but makes clear that15

the horizontal distribution of forested areas and the tree heights have to be more realistic in future model setups. This will only

be possible by using the high-resolution aerial laser scans used for the canopy height estimation in figure 1b, or by introducing

better land-use data sets, which include seasonal variability of the canopy layer, e.g., caused by forestry and agriculture.

7 Conclusions

Flow over complex terrain causes challenges for wind energy projects. High spatial variability makes the selection of sites20

for wind turbines far from obvious. Capturing the spatial variability with measurements and flow simulation is generally

challenging. On the measurement site, the spatial variability can be addressed by increasing the number of measurement

locations. This can be done with scanning lidars as they can provide wind measurements over areas of several square kilometer.

For simulating the flow advanced highly-resolved computer models are needed.

In our study, we present measurements of two pairs of SLs that were designed to assess the flow conditions at locations25

favorable for wind turbines during the Perdigão measurement campaign. The SLs retrieve the horizontal mean velocity profiles

of 1.8 km length along two ridges. We find a good correlation of the lidar measurements with sonic wind measurements at masts

along on ridges. Moreover, we show that using advanced lidar data filtering methods improves the measurement availability by

20%. Our analysis of the flow fields along the ridges demonstrates the ability of the SLs to reveal significant details about the

flow that would remain unrecognized when only few measurement locations are available.30

The comparison of measurements and two WRF-LES simulations reveals a high sensitivity of the model to the parame-

terization of surface friction causing significant deviations between measurements and simulation. It is assumed that a wrong

forest distribution in the model on the ridge tops and a overrated tree height are the main reason for the poor agreement of

18



the simulation with additional forest parameterization. However, this study and Wagner et al. (2019b) show a considerably

improved correlation of measurements and simulation when the parameterization is used.

Overall, we conclude that SL measurements are a valuable tool to assess wind resources in complex terrain. They help to

understand the flow conditions and to validate simulations which are still challenged by the complexity of the topography. In

the future, the SL system availability, which was only at 44% for the period investigated in this study, has to be improved. The5

main factors influencing the availability were software issues, hardware failures, and power outages. Moreover, we recommend

to base flow simulations on as realistic as possible land-use data as e.g. acquired by Boudreault et al. (2015) and to including

seasonal variability of the canopy distribution.
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