

Final review comments on revised version from March 25 of paper wes-2019-89
Measuring dynamic wake characteristics with nacelle mounted LiDAR systems

by Inga Reinwardt¹, Levin Schilling¹, Peter Dalhoff¹, Dirk Steudel², and Michael Breuer³

¹Dep. Mechanical Engineering & Production, HAW Hamburg, Berliner Tor 21, D-20099 Hamburg, Germany

²Dep. Turbine Load Calculation, Nordex Energy GmbH, Langenhorner Chaussee 600, D-22419 Hamburg, Germany

³Dep. of Fluid Mechanics, Helmut-Schmidt University Hamburg, Holstenhofweg 85, D-22043 Hamburg, Germany

Comments to revised paper published on March 25, 2020

The reviewer is satisfied with the response from the author's and the changes in the modified paper published on March 25.

However just a final comment.

The authors write in lines 61-64

Furthermore, the collected LiDAR measurements are used to recalibrate the DWM model, which enables a more precise modelling of the wake degradation. As a consequence, the calculation of loads and energy yield of the wind farm can be.

The impact of the recalibration on loads and power is of great importance which would have been valuable to in the same paper as the recalibration. However, it's mentioned to be ongoing work to be published soon. Maybe in the present paper the authors could write a few lines about what the impact on power and loads qualitatively will be.

A key issue is that in the DWM-Egmond model the calibration of the coupling of the eddy viscosity to ambient turbulence was carried out on basis of turbine power measurements at different spacings and turbulence intensities whereas now it is on basis of wake flow measurements. Apparently, the two calibration methods give different results.