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Reviewer 1: 
Reviewer: Thank you for this submission. I found the concepts presented in this paper to be very interesting, 

and very convincingly presented. I strongly agree with the authors proposal, laid out in the introduction, 

that a compromise of using engineering models, with corrections learned from SCADA data is a good way 

to maintain the advantages of model-based and data-driven approaches. The authors make a convincing 

case, using wind tunnel and SCADA studies that the approach outlined in the paper successfully delivers 

these benefits. Therefore, I believe the paper is of high practical value as wake control, based on 

engineering models, is increasingly deployed in field campaigns.  

An additional overall comment is that the introduction provides good motivations behind developing these 

techniques, and the references to existing literature and putting this work into context is very well done. 

Authors: Thank you for your words and positive feedback.  

General Comments: 

Reviewer: I wasn’t clear on the concept of node locations (for example c(.) p(.)) in equation 3). Do these 

node correspond to specific locations, for example turbine locations? If they are defined wrt inflow wind 

direction, do they need to rotate with wind direction? 

Authors: We improved the text to clarify the definition of the correction terms, including nodes and nodal 

values.  

Reviewer: Another point of confusion related to which online versions of tools is being discussed. FLORIS 

itself is available but the citation for FLORIS is a paper from Doekemeijer. Is this a specific version of the 

code, and also, is it also available online? Further, are the tools, modifications discussed in this paper 

available anywhere online as well? 

Authors: The citation for the FLORIS framework in section 2.1 describes the model equations and therein 

a reference to the Github repository is given (Doekemeijer, 2018; reference 42). Due to updates in this 

repository, the work on wind tunnel experiments used a different version of the software (Doekemeijer 

and Storm, 2018) than the one on field data (Doekemeijer and Storm, 2019). A software implementation 

of the methods described here is available by contacting the authors, as noted at the end of the paper.  

Reviewer: Could you speak a little bit to one question I wondered about? If each parameter is assigned a 

normal tuning parameter, as well as a correction term, is there a not an issue of non-uniqueness, and an 

infinite (maybe bounded by the tuning parameter) set of identical options? Is there a danger also of over-

fitting given the expanded set of parameters? 



Authors: If the reviewer is referring to Eq. (1), then there is a misunderstanding: the initial values indicated 

with 𝑘∗ are held fixed, while only the correction parameters 𝑝𝑘 are assumed as unknown and identified. 

The text was improved to clarify this point. On the other hand, if the reviewer refers to the general concept 

of model augmentation, then it should be remarked that the original model parameters and the extra 

correction terms have a different functional form in the augmented governing equations. Hence, they 

should be distinguishable from each other, as they imply different effects on the model. Having said this, 

it is however in general impossible to guarantee the uniqueness of the solution. This is indeed the reason 

why we employ the special SVD-based identification, which is capable of highlighting the collinearity of 

group of parameters. This problem is addressed first in the introduction and then explained in detail in 

sections “Identifiability of parameters” and “Problem transformation using the SVD” (now moved from 

the appendix into Section 2). The introduction has been slightly rephrased to clarify this point. 

Specific Comments: 

Reviewer: Page 6, line 25: "is the lateral distance to the wake centerline", isn’t this made complex in wake 

steering if we assume effects such as curl, to define the wake centerline? Or is there an "effective" centerline 

(such as position of minimum production?) 

Authors: The baseline wind farm model used in this work has a wake centerline definition, which 

corresponds to the minimum velocity within the wake. We rephrased the text to clarify this point. 

Reviewer: Fig 2: Would it be possible to note the node locations in this figure? 

Authors: The figure was updated with the inflow node locations. 

Reviewer: Page 15: Ref to Wang paper, will this paper be available soon? 

Authors: The paper Wang et al., 2020 is in its final stages of internal revision, and will soon be submitted 

to Wind Energy Science. However, we eliminated this sentence and the reference, as we cannot guarantee 

that the paper by Wang will be available before the present one is published. 

Reviewer: Fig 7: Is there any meaning to the x’s being on the f = -0.2 line or is this just an obstructed place?  

Authors: There’s no meaning, and the markers have been moved to the lower edge of the figure. 

Reviewer: Conclusion: I understand this method mostly from fitting to a single direction and learning the 

corrections, but does it still afford a wind rose type calculation across wind speeds and directions? 

Authors: Indeed yes, inflow corrections depend on wind direction because they account for orographic 

effects that are clearly different depending on where the wind is blowing from. This aspect has been 

further clarified in the text, and the whole explanation of the correction term expressed by Eq. (2) has 

been re-written. 

 

Reviewer 2: 
Reviewer: In this manuscript, the authors propose a method to improve the calibration of wind farm 

models, specifically FLORIS in this work, by using power measurements of the wind turbines. After the 

introduction providing motivations for this work, the methodology is quickly summarized in Sect. 2. The 

method is then applied for two cases, namely a wind tunnel test with three turbine models and a real 

onshore wind farm on complex terrain. 

I believe this work is highly relevant for the wind energy community and it presents some novel and 

interesting results. The “augmentation” of the model parameters is not a trivial problem and here is well 

presented and these preliminary results are convincing. My main criticism is about the organization of the 



paper. I believe that the methodology for the model calibration, which is currently described in Appendix 

A, should be moved to the main text body and merged with Sect. 2. I personally jumped from Sect. 2 to 

Appendix A, before reading Sect. 3, otherwise it was difficult for me to fully understand, for instance, the 

parameters provided in Table 2, the observability of the parameters, why the parameters suddenly become 

“orthogonal parameters “at L12 of page 14, what is the transformation matrix reported in Table 3 or the 

correlation coefficient matrix of Table 4. Therefore, my suggestion, in general, is to enhance the readability 

of this manuscript even for readers who are not experts on this kind of technique. More detailed comments 

are reported below. 

Authors: Thank you for your positive feedback and comments. We appreciate your main criticism about 

the organization of the paper and followed your proposal to include Appendix A into the main body in 

Section 2. 

Reviewer: 1. P1L17, “This paper describes a new method to estimate turbine inflow within a wind farm.”. 

This does not seem to be the objective of the work, at least not the main one. 

Authors: We rephrased the sentence to “This paper describes a new method to improve a wind farm flow 

model directly from standard operational data.”, which repeats the title and is the objective of this paper.   

Reviewer: 2. P3L7, cross-check this sentence… “can help clarify” …  

Authors: The sentence was modified. 

Reviewer: 3. P3L25, cross-check 

Authors: Thank you. 

Reviewer: 4. P4L12, provide more details on how you calculate turbine thrust.  

Authors: This is explained in the model setup Sections 3.1.2 (wind tunnel) and 3.2.2 (full-scale). We slightly 

rephrased the relevant parts. 

Reviewer: 5. P6L28, can you provide a more detailed explanation of why this correction is performed with 

two Gaussian functions? Then, clarify if you mean sum or difference of these two functions, see Eq. 5.  

Authors: The explanation included already in the paper has been updated to: “This particular choice of 

shape functions is motivated by the results shown in Fig. 8b of Wang et al. (2018). Indeed, large-eddy 

simulations and measurements reveal the presence of a stronger lateral velocity component directed 

towards the wake on the leeward side of the wake itself, and of an opposite and weaker lateral component 

on the windward side. Such a distribution can be approximated by two Gaussian functions using Eq. (5). ” 

 



Regarding the question on the sum or difference, in Eq. (5) we mean the difference of the two Gaussian 

functions, and therefore we have changed the text accordingly. 

Reviewer: 6. P7L16, cross-check  

Authors: Thank you. 

Reviewer: 7. P8L2, provide references for these aisle jets. Is this a new terminology or it has already been 

used in literature?  

Authors: It is an already used term, and aisle jets (whose meaning is explained in our paper) are mentioned 

in Xie and Archer, 2017, which is one of the sources used here to discuss this topic. 

Reviewer: 8. Table 1, please clarify how these initial parameters are estimated.  

Authors: All baseline model parameters, reported in Table 1, are taken from Campagnolo et al. 

(Campagnolo, 2019), where they were identified based on single turbine wake measurements. The text 

was updated to clarify this point. 

Reviewer: 9. P13L5, the values of Cspeed should be provided in a non-dimensional form.  

Authors: We now included the non-dimensional node locations. 

Reviewer: 10. Table 2, how did you select these bound values?  

Authors: The initial parameters and bound values have been chosen by an educated guess, as now noted 

in the text. 

Reviewer: 11. P14L12, in the text is not clear how you switch from the actual model parameters to the 

orthogonal parameters. It becomes clear only after reading Appendix A.  

Authors: We reorganized the paper. 

Reviewer: 12. P14L14, Similarly to the concept of observability.  

Authors: We reorganized the paper. 

Reviewer: 13. P14L18, check on in Fig. 7 

Authors: Thank you. 

Reviewer: 14. P15L18, check the new line 

Authors: Thank you. 
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Abstract. This paper describes a method to improve and correct an engineering wind farm flow model by using operational

data. Wind farm models represent an approximation of reality and therefore often lack accuracy and suffer from unmodeled

physical effects. It is shown here that, by surgically inserting error terms in the model equations and learning the associated

parameters from operational data, the performance of a baseline model can be improved significantly. Compared to a purely

data-driven approach, the resulting model encapsulates prior knowledge beyond the one contained in the training data set,5

which has a number of advantages. To assure a wide applicability of the method —including also to existing assets— learning

is here purely driven by standard operational (SCADA) data. The proposed method is demonstrated first using a cluster of

three scaled wind turbines operated in a boundary layer wind tunnel. Given that inflow, wakes and operational conditions

can be precisely measured in the repeatable and controllable environment of the wind tunnel, this first application serves the

purpose of showing that the correct error terms can indeed be identified. Next, the method is applied to a real wind farm situated10

in a complex terrain environment. Here again learning from operational data is shown to improve the prediction capabilities of

the baseline model.

1 Introduction

Knowledge of the flow at the rotor disk of each wind turbine in a wind power plant enables several applications, including wind

farm control, the provision of grid services, predictive maintenance, the estimation of life consumption, the feed-in to digital15

twins and power forecasting, among others.

This paper describes a new method to estimate turbine inflow within
::::::
improve

:
a wind farm

:::
flow

::::::
model

::::::
directly

::::
from

::::::::
standard

:::::::::
operational

::::
data. The main idea

::::::
pursued

::::
here

:
is to use an existing wind farm flow model to provide a baseline predictive

capability; however, as all models contain approximations and may lack
:::
the

:::::::::
description

:::
of

:
some physical phenomena, the

baseline model is improved (or “augmented”, which is the term used in this work) by adding parametric correction terms.20

In turn, these extra elements of the model are learnt by using operational data. The correction terms capture effects that are

typically not present in standard flow models (as, for example, secondary steering (Fleming et al., 2018) or wind farm blockage

(Bleeg et al., 2018)), or that are highly dependent on a specific site or difficult to model upfront (as, for example, non-uniform

inflow caused by local orography and vegetation).

Various wind farm flow models have been developed and are described in the literature. While
:::::::
Whereas

:
Direct Numerical25

Simulation (DNS) is still out of reach for practical applications due to its overwhelming computational cost, Large Eddy Sim-
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ulation (LES) methods are now routinely used for the modeling of wind farm flows (Fleming et al., 2014; Breton et al., 2017).

Although invaluable for the understanding of the behavior of the atmospheric boundary layer and of wakes, LES is however

still very expensive, so that its use outside of some specialized applications is limited. To reduce cost, one can resort to lower

fidelity CFD models (Boersma et al., 2017), or to the extraction of reduced order models (ROMs) from higher fidelity ones

(Bastine et al., 2014). Instead of deriving models from first principles, another widely adopted approach is to use engineering5

models, which are expressed in the form of parametric analytical formulas with a limited number of degrees of freedom and

hence a much reduced numerical complexity (Frandsen et al., 2006; Gebraad et al., 2014; Bastankhah and Porté-Agel, 2016).

The present paper uses this last family of methods, although ideas similar to the ones developed here could be applicable also

to higher fidelity models.

Even though engineering models are constantly improved and refined (Fleming et al., 2018), they will most likely always10

exhibit only a limited accuracy in many practical applications, for example whenever an important role is played by effects

such as orography, (seasonal) vegetation, spatial variability of the wind, sea state roughness, the erection of other neighbouring

wind turbines, the presence of obstacles, and others. In addition, low fidelity models often lack some physics, e.g. the flow

acceleration caused by wake and rotor blockage, secondary steering or others. The idea pursued in this paper is then to take a

rather pragmatic approach: based on the realization that it will always be difficult —if not altogether impossible— to include15

all effects and all physics in a model of limited numerical complexity, a given model is corrected by unknown parametric terms,

which are then learnt by using operational data.

The idea of improving an existing model based on measurements is hardly new, and it is actually an important topic in

the areas of controls and system identification. For example, in the field of wind farm flows, a Kalman filtering approach has

been proposed by Doekemeijer et al. (2017) to update model predictions based on Lidar measurements. Here again the present20

paper takes a more pragmatic approach, and model updating is based exclusively on data provided by the standard Supervisory

Control And Data Acquisition (SCADA) systems that are typically available on contemporary wind turbines. On the one hand

this has the advantage that the proposed method is applicable to existing assets, as it does not necessitate of extra sensors. On

the other, given that stored SCADA data typically represents 10-minute averages, this also implies that the models obtained by

this technique are of a steady-state nature. Although unsteady effects in wind farms are clearly important, steady-state models25

are still very valuable and can support many of the applications listed above. In addition, nothing prevents the generalization

of the proposed approach to unsteady flow models, assuming that the relevant higher frequency data sets are available, which

is already the subject of ongoing work from these authors.

The contemporary literature —and not only in the field of wind energy— indicates an increasing interest in data-driven ap-

proaches. Just to give one single example related to wake modeling, a purely data-driven approach has been recently described30

by Göçmen and Giebel (2018). However, the current enthusiasm for data should not make one forget that physics-based and

analytical models are also extremely valuable because they often encapsulate significant knowledge on a given problem, often

corroborated by a long experience. In fact, purely data-driven approaches suffer from a number of limitations that descend

directly from a very simple and inevitable fact: a model that is exclusively based on data can only know what is contained in

the data set that was used to build it. Typically, this means that a very significant amount of data is necessary to obtain a model35
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that is sufficiently general and accurate. Furthermore, the data has to cover the entire spectrum of operation of the system. This

also means that the model might have very poor knowledge (and hence poor performance) for rare situations or conditions that

take place at the boundaries of the operating envelope, where few if any data points might be available.

An alternative to the purely data-driven approach is presented in this work, where a reference baseline model is augmented

with parametric error terms, which are then identified using data. The baseline model already includes prior knowledge based5

on physics, empirical observations and experience. Therefore, even prior to the use of data, a minimum performance can be

guaranteed. The model is augmented with parametric error terms, whose choice is driven by physics and the knowledge of

the limitations of the baseline model. Once the errors are identified using operational data, their inspection can help clarify

the causes of discrepancy between model and measurements. Eventually, this can be used to improve the underlying baseline

model. Furthermore, by looking at the magnitude of the identified errors, significant deviations from the baseline model can be10

flagged to highlight issues with the model itself, the data or the training process.

Finally, it should be noted that the identification of the error terms can be combined with the tuning of the parameters of

the baseline model. This addresses yet another problem: tuning the parameters of a model that lacks some physics may lead

to unreasonable values for the parameters, as the model is “stretched” to represent phenomena that is does not contain. By the

proposed hybrid approach, the simultaneous identification of the parameters of the baseline model together with the ones of the15

error terms eases this problem, as unmodeled phenomena can be captured by the model-augmenting terms, thereby reducing

the chances of nonphysical tuning of the baseline parameters.

As
:::
The

:::::::
baseline

:::::
model

:::::::::
parameters

:::
and

:::
the

:::::
extra

::::::::
correction

:::::
terms

::::
have

:
a
::::::::
different

::::::::
functional

::::
form

::
in

:::
the

:::::::::
augmented

:::::::::
governing

::::::::
equations.

::::::
Hence,

::::
they

::::::
should

:::
be

:::::::::::::
distinguishable

::::
from

::::
each

::::::
other,

::
as

::::
they

:::::
imply

::::::::
different

:::::
effects

:::
on

:::
the

::::::
model.

::::::::
However,

:::
as

for many identification problems, it is in general not possible to guarantee that all unknown parameters are observable and20

non-collinear given a set of measurements and, hence, given a certain informational content. To address this problem, the

method proposed by Bottasso et al. (2014a) is used here, where the original unknown parameters are recast into a new set of

statistically uncorrelated variables by using the Singular Value Decomposition (SVD) of the inverse Fisher information matrix.

Once the problem has been solved in the space of the orthogonal uncorrelated parameters, the solution is mapped back into

::::
onto the original physical space. This approach not only avoids the ill-posedness of the original problem, but also allows one25

to clarify which physical parameters are visible given a certain data set.

The paper is organized as follows.

First, the baseline model is introduced
:
in

::::
§2.1, together with a detailed description of its

:::
the proposed parametric corrections

::
in

::::
§2.2. Next, the new approach is applied

:::::::::
SVD-based

:::::::::
parameter

:::::::::::
identification

::::::
method

::
is
::::::::
presented

:::
in

::::
§2.3.

::::
The

::::::::
approach

::
is

:::
then

:::::::
applied

::
in

::::
§3.1

:
to a cluster of scaled wind turbines operating in the atmospheric test section of the

::::
wind

:::::
tunnel

:::
of

:::
the30

Politecnico di Milano wind tunnel (Bottasso et al., 2014b). Goal of this first application is that of showing that
::
to

:::::
show

:::
that

:
a

correct identification of the error terms can be achieved. This is indeed possible in the controllable and repeatable conditions

of a wind tunnel, where inflow and wake characteristics can be precisely measured, something that is hardly possible today in

the field. Specifically, it is shown that the method can correctly learn the lack of uniformity of the wind tunnel inflow, which is

3



akin to what happens in a real wind farm because of orographic effects. Similarly, it is shown that secondary steering, which is

completely absent from the baseline model used here, can be learnt by using turbine power measurements only.

:
A
:::::

more
::::::::
extended

::::
view

:::
on

:::
the

:::::
wind

:::::
tunnel

::::::
results

::
is

:::::::
reported

::
in

::::::::
appendix

:::
A. After having demonstrated the method in the

known and controlled wind tunnel environment, a second application is developed
::
in

::::
§3.2 that targets a real 43-turbine wind

farm. Here results indicate that the augmented model has a markedly improved prediction capability when compared to the5

baseline one, thanks primarily to the identification of orographic effects on the inflow and the tuning of other model parameters.

::::::
Finally,

::::::::::
conclusions

:::
are

:::::
drawn

::
in
:::::
Sect.

::
4.

The paper is completed by two appendices, the first discussing the details of the SVD-based identification method, and the

second reporting a more extended view of the results achieved in the wind tunnel.

2 Methods10

2.1 Baseline wind farm flow model

The proposed method is applied here to the augmentation of the baseline wake model of Bastankhah and Porté-Agel (2016),

implemented within the FLORIS framework (Doekemeijer et al., 2018).

By this model, given
::::
Given

:
ambient wind conditions, steady state velocities within a wind farm can be computed

::
by

::::
this

:::::
model, together with the corresponding operating states and power outputs of all its turbines. First, ambient conditions are15

estimated from un-waked machines operating in free stream, which in turn are identified by using the turbine yaw orientations

and the wake model (Schreiber et al., 2018). Then, power and thrust of the upstream turbines are computed based on the turbine

aerodynamic characteristics,
::::::::
regulation

::::::::
strategy,

:::
and alignment with the local wind directionand regulation strategy. Next, the

wakes shed by these turbines are calculated in terms of their trajectory and speed deficit. In turn, this allows one to calculate

:::::
yields the velocity at the rotor disks of the turbines immediately downstream. In case of multiple wake impingements on a20

rotor, a combination model is used to superimpose multiple wake deficits. Similarly, an added turbulence model is used to

estimate the turbulence intensity at a downstream turbine rotor disk, as this local ambient parameter affects the expansion of

the turbine wake. This process is repeated marching downstream throughout the wind farm until the last downstream turbine

is reached.

In this work, the implementation uses the selfSimilar FLORIS velocity deficit model, the rans deflection model, the quadrati-25

cRotorVelocity wake combination model, and the crespoHernandez added turbulence model. The interested reader is referred

to Bastankhah and Porté-Agel (2016), Crespo and Hernández (1996) and Doekemeijer et al. (2018) and references therein for

detailed descriptions and derivations of these models.

Engineering wake models depend on a number of parameters, which should be tuned in order to obtain accurate predictions.

For the specific model used in this work, these tunable factors are the wake parameters α, β, ka, kb, ad, and bd, and the30

turbulence model parameters TIa, TIb, TIc, TId (Bastankhah and Porté-Agel, 2016).

In this work, the parameters are first set to an initial value, either taken from the literature or identified with ad hoc measure-

ments;
:::::
these

:::::
initial

::::::
values

:::
are

::::
held

::::
fixed

::::::::::
throughout

:::
the

:::::::
analysis

:::
and

:::
not

:::::::
changed

::::::
further. Corrections to the initial values are
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then expressed as

k = k∗+ pk, (1)

where k is a model parameter, k∗ its initial value and pk the correction. Although this is not strictly necessary, this redundant

notation helps highlight the changes to the nominal model parameters obtained by the proposed procedure.

2.2 Model augmentation5

The engineering model described earlier is a rather simple approximation of a flow through a wind power plant and it is

therefore bound to have only a limited fidelity to reality, with a consequent
::::::::::
consequently

:
only limited predictive accuracy.

Even for more sophisticated future models, it is difficult to imagine that all relevant physics will ever be precisely accounted

for. But even if such a model existed, in practice one might simply not have all necessary detailed information on the relevant

boundary and operating conditions that would be required. For example, one might not know with precision the conditions of10

the vegetation around and within a wind farm, with its effects on roughness and, hence, on the flow characteristics. In other

words, it is safe to assume that all models are in error to some extent, and will probably always be.

To address this problem, the model can be pragmatically augmented with correction terms. Here one could take two alter-

native approaches: either a generic all-encompassing error term is added to the model, or “surgical” errors are introduced at

ad-hoc locations in the model to target specific presumed deficiencies. The first approach could be treated with a brute-force15

parametric modeling approach, as for example by using a neural network. Here, the second approach was used, as it allows

for more insight into the nature of the identified corrections. The specific parametric corrections used in the present paper are

reviewed next. It is clear that these are only some of the many corrections that could be applied to the present baseline model,

so that the following does not pretend to be a comprehensive treatment of the topic. Nonetheless, results indicate that some of

these corrections are indeed significant, and provide for a marked improvement of the baseline model.20

Non-uniform inflow. The inflow to a wind farm can exhibit spatial variability, mostly because of orographic and local effects,

especially in complex terrain conditions. For example, commercial wind resource assessment tools include topographic

speed-up ratios customarily computed by CFD models (Jacobsen, 2019). In contrast to this established practice, no direct

or equivalent modeling of orographic effects are at present available in engineering wake models. Another reason for

inflow variability may be due to wind farm blockage effects (Bleeg et al., 2018). Indeed, current wake models as the25

one used here assume that upstream turbines affect downstream ones through their wakes, but do not model the effects

of downstream machines on the upstream ones. Depending
::
In

:
a
:::::
wind

::::
farm,

:::::::::
depending

:
on the wind direction and cross-

wind location considered, the number and operating state of downstream turbines varies, which may induce a cross-wind

speed variability in the inflow.

To capture some of these effects, the model ambient flow speed V∞ is expressed here as a function of height above30

ground Z, cross-wind lateral position Y and ambient wind direction Γ as

V∞(Y,Z,Γ) =
(

1 + faugm,speed(Y,Γ,cspeed,pspeed)
)
V∞,0

( Z
zh

)αvs

, (2)
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where V∞,0 is the reference (baseline uncorrected) ambient flow speed, and zh the reference height of the vertically

sheared flow with exponent αvs. Function faugm,speed(Y,Γ,cspeed,pspeed) is the speed correction term
:
.
::::
This

:::::::
function

::
is

::::::
defined

::
in

:::
the

:::
2D

:::::
space

:::::::::::::::
Y ∈ [Ymin,Ymax],

:::::::::::::::
Γ ∈ [Γmin,Γmax].

:::
For

::::
each

:::::
value

:::
of

:::
the

:::::::
ambient

::::
wind

::::::::
direction

::
Γ, modeled

here with simple
:
Y

::
is
::
a

:::::
lateral

:::::::::
coordinate

:::::::::
orthogonal

::
to

::
it

:::
that

:::::
spans

:::
the

:::::
width

::
of

:::
the

:::::
farm;

::::::
hence,

::
by

::::::::
selecting

::::
Γmin::::

and

::::
Γmax::

a
:::::
lateral

::::::
inflow

::::::::::::
non-uniformity

::::
can

::
be

::::::::
modelled

:::
for

:
a
:::::
given

:::::
sector

::
or

:::
the

::::::
whole

::::
wind

::::
rose

::
of

:::::::::
directions.

:::
The

::::::
(Y,Γ)5

::::
space

::
is
:::::::::
discretized

::::
into

:::::::::
rectangular

:::::
cells

::::
with

:::::
corner

:::::
nodes

:::::::::::::::::::::
cspeed = [. . . ; (Yi,Γi); . . .]::::

(for
::
an

::::::::
example,

:::
see

::::
Fig.

:::
16).

::::
The

:::::::::::
corresponding

::::::::
unknown

:::::
error

:::::
nodal

:::::
values

:::
are

::::::
stored

::
in

:::::
vector

::::::
pspeed,

::::
and bilinear shape functions with node locations

cspeed and nodal values pspeed. Note that Eq.
::::::::
interpolate

:::
the

:::::
error

::
in

::::
each

::::
cell

:::::
based

:::
on

:::
the

:::::
nodal

:::::
values

::
at
:::
its

:::::::
corners.

:::::::
Equation (2) could be extended to include also a longitudinal wind-aligned coordinate, similarly to the localized speed-

up ratios of Jacobsen (2019). For simplicity, the present correction does not include the operating conditions of the10

downstream machines that, in principle, would be necessary in order to more accurately
:
,
::
to model wind farm blockage

effects. Therefore, the present correction can be interpreted as a primarily orography-induced one.

Local orographic effects and blockage may also induce variability of
:
in

:
the wind direction Γ. Similarly, the vertical

shear exponent αvs and turbulence intensity I may vary, for example on account of non-uniform roughness induced by

vegetation or other obstacles. To include these effects in the farm flow model, the baseline quantities are augmented as15

Γ(Y ) = Γref +Y faugm,dir(Γref ,cdir,pdir), (3a)

αvs(Γ) = αvs,ref + faugm,shear(Γ,cshear,pshear), (3b)

I(Γ) = Iref + faugm,I(Γ,cI,pI). (3c)

In all these expressions, (·)ref indicates a baseline reference quantity, while function faugm,(·) is a correction termbased

here on .
::::
This

:::::::
function

::
is
:::::::
defined

::
on

:::
the

:::
1D

:::::
space

:::::::::::::::
Γ ∈ [Γmin,Γmax],

:::::::::
discretized

::::
with

::::::
nodes

:::::::::::::::::
c(·) = [. . . ;Γi; . . .](·),:::::

using20

linear shape functions , with c(·) ::
to

:::::::::
interpolate

:::
the

::::::::::::
corresponding

:::::
nodal

:::::
values

:::::
p(·). ::::

Here
:::::
again,

:::
by

::::::::
selecting

::::
Γmin:

and

p(·) the corresponding node locations and nodal values , respectively
:::::
Γmax,

:::::::::
corrections

:::
can

:::
be

::::::
applied

::
to

:::
the

:::::
whole

:::::
wind

:::
rose

::
or
::::
just

::
to

:
a
::::::
sector.

Secondary steering. By misaligning a wind turbine rotor with respect to the incoming flow direction, the rotor thrust force

is tilted, thereby generating a cross-flow force that laterally deflects the wake. As shown with the help of numerical25

simulations by Fleming et al. (2018), this cross-flow force induces two counter rotating vortices that, combining with the

wake swirl induced by the rotor torque, lead to a curled wake shape. As observed experimentally by Wang et al. (2018),

the effects of these vortices result in additional lateral flow speed components, which are not limited to the wake itself

but extend also outside of it. By this phenomenon, the flow direction within and around a deflected wake is tilted with

respect to the upstream undisturbed direction. Therefore, when a turbine is operating within or close to a deflected wake,30

its own wake undergoes a change of trajectory —termed secondary steering— induced by the locally modified wind

direction. Although models of this phenomenon are being developed (Martínez-Tossas et al., 2019), they significantly
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increase the computational cost and are not yet available in standard implementations of engineering wake models as the

one used here.

The change of wind direction ∆Γ at a downstream turbine induced by secondary steering (indicated by the subscript ss)

is modeled here as

∆Γ(y) = faugm,ss(Y − ywcỹ,Γinit,pss), (4)5

where faugm,ss is the correction term and ỹ = Y − ywc is the lateral distance to the wake centerline

(see Fig. 1),
:::::::
defined

::
in

:::
the

:::::::
baseline

::::
wind

::::
farm

::::::
model

::
as

:::
the

:::::
locus

::
of

:::
the

:::::
points

::
of

::::::::
minimum

::::
flow

:::::
speed. According to the

notation used in Eq. (6.12) of Bastankhah and Porté-Agel (2016), Γinit indicates the initial wake direction of the closest

upstream turbine. The correction term is expressed as the sum
::::::::
difference

:
of two Gaussian functions, and more precisely

10

faugm,ss(ỹ,Γinit,pss) =

Γinit

(
pss,1 exp

(
− 0.5

( ỹ+ sgn(Γinit)pss,3

pss,2

)2)
− pss,4 exp

(
− 0.5

( ỹ+ sgn(Γinit)pss,6

pss,5

)2))
, (5)

where pss = (pss,1,pss,2,pss,3,pss,4,pss,5,pss,6) is the vector of free parameters, where parameters 1 and 4 are related

to the amplitude, 3 and 6 to the standard deviation, and 2 and 5 to the location of the correction functions. As
:::::
Since

the Gaussian functions are not centered at the wake centerline and the effect of secondary steering is assumed to be15

symmetric with respect to the misalignment angle, the correction term depends also on the direction of wake deflection

sgn(Γinit).

This particular choice of
::
the

:
shape functions is motivated by the experimental results shown in Fig. 8b of Wang et al.

(2018). Indeed,
::::
LES

:::::::::
simulations

::::
and

:
measurements reveal the presence of a lateral wake velocity whose maximum is

displaced with respect to the wake centerline, as well as a slight lateral flow in the opposite direction that motivates20

the use of the second Gaussian function in the correction term introduced here.
::::::
stronger

::::::
lateral

:::::::
velocity

::::::::::
component

::::::
directed

:::::::
towards

:::
the

:::::
wake

:::
on

:::
the

:::::::
leeward

:::
side

:::
of

:::
the

:::::
wake

:::::
itself,

:::
and

::
of

:::
an

:::::::
opposite

::::
and

::::::
weaker

::::::
lateral

:::::::::
component

:::
on

::
the

:::::::::
windward

::::
side.

:::::
Such

:
a
::::::::::
distribution

:::
can

::
be

::::::::::::
approximated

::
by

::::
two

::::::::
Gaussian

::::::::
functions

::::
using

::::
Eq.

:::
(5).

:

Note that the change in local wind direction also leads to a slight lateral deflection of the non-uniform wind farm inflow

introduced previously. More precisely, for a turbine that is located ∆X behind an upstream turbine, the non-uniform25

inflow expressed by Eq. (2) is evaluated at Y + ∆X sin(∆Γ) instead of Y .

The upper subplot of Fig. 1 shows the hub height flow speed for two wind turbines modeled in FLORIS, the turbine rotor

disks being indicated with thick black lines. The wake centerlines and the undisturbed free stream wind direction are

indicated by black dotted and dashed lines, respectively. The upstream turbine is misaligned with respect to the incoming

flow and therefore its wake is deflected laterally. Using the baseline wake model, the downstream turbine wake develops30

along the free stream wind direction. The lower subplot of the same figure shows the

effects of the secondary steering correction term presented above.
::::
given

:::
by

:::
Eq.

::::
(5).

:
The plot clearly shows that the

downstream turbine wake path is affected by the locally changed wind direction.
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Figure 1. Effect of secondary steering on the trajectory of a downstream turbine. Top subplot: baseline wake model; lower subplot: baseline

model augmented with the empirical correction term of Eq. (5).

Non-Gaussian wake and flow acceleration. Engineering wake models are based, among other hypotheses, on assumed shapes

of the speed deficit. For example, the present baseline model assumes a Gaussian distribution of the speed deficit within

the wake. Another assumption is that the flow outside the wake is undisturbed, and equal to the free-stream. However,

these assumption
::::::::::
assumptions

:
can at times not be exactly satisfied, as already observed by Xie and Archer (2017) and

Martínez-Tossas et al. (2019), among others. For example, aisle jets are local accelerations of the flow outside of the5

wake, produced by local blocking in the neighborhood of an operating turbine. It has been reported that aisle jets can

induce local flow speedups in excess of 10% of the undisturbed inflow (Dörenkämper et al., 2015).

To account for such effects, the wake velocity Vwake of the baseline model is corrected as

Vwake(dwc) = Vwake,FLORIS(dwc)
(

1 + faugm,acc(dwc,cacc,pacc)
)
, (6)

where Vwake,FLORIS is the baseline Gaussian wake speed profile, dwc is the absolute distance to the wake center (which,10

at hub height, is equivalent to |ỹ|), and faugm,acc represents the correction term, modeled here as
:::::
which

::::::::::
—similarly

::
to

::
the

::::::::
previous

:::::::::::
corrections—

::
is
::::::::
modeled

::::
with linear shape functions characterized by cacc node locations and pacc nodal

values
:::
node

::::::::
locations

::::
cacc:::

(in
:::::
terms

::
of

::::
dwc)

:::
and

:::::
nodal

::::::
values

::::
pacc.

Reduced power extraction due to non-uniform wind turbine inflow. Numerical simulations conducted in FAST (Jonkman

and Jonkman, 2018) using its Blade Element Momentum (BEM) implementation yielded a slight reduction in the rotor15

power coefficient for horizontally sheared flow, when compared to unsheared conditions with the same hub wind speed.

Even though BEM can only give a rough indication for such
::
an effect, a correction of the power coefficient of the baseline

model is introduced here in the form

CP = CP,κ=0

(
1 + pκκ

2
)
, (7)
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where CP,κ=0 is the nominal power coefficient, κ the equivalent horizontal linear shear coefficient on the rotor disk and

pκ the free correction parameter. The linear shear κ is either due to a lack of lateral uniformity of the inflow or to the

impingement of a wake, and it is evaluated accordingly within the farm model.

Wind speed dependent power loss in yaw misalignment. The present baseline formulation models the power extraction of

a misaligned wind turbine using the cosine-law CP(γ) = CP cos(γ)pP , where CP is the power coefficient of the wind-5

aligned turbine, γ the misalignment angle with respect to
:::
the local flow direction, and pP the power loss exponent.

Different values for the power loss exponent
:::::
power

:::
loss

:::::::::
exponents

:
have been reported in the literature, ranging from the

value of 1.4 found by Fleming et al. (2017), to 1.8 according to Schreiber et al. (2017), 1.9 for Gebraad et al. (2015), all

the way to the ideal value of 3 that is expected if only the rotor-orthogonal ambient flow component contributes to power

extraction (Boersma et al., 2017). In addition, pP might also depend on the regulation strategy used by the on-board10

::::::
turbine controller. Here, the turbine power coefficient in misaligned operation is augmented as

CP = CP cos(γ+ pP0)pP+pP,a(V−Vrated)+pP,b , (8)

where CP is the power coefficient of the flow-aligned turbine (possibly reduced by shear effects, as argued above), pP0

is the misalignment angle at which the turbine produces maximum power, while V and Vrated are, respectively, the rotor

effective and rated wind speeds. Finally, pP is the baseline exponent, while pP,a and pP,b are free parameters that model15

a linear wind speed dependency of the cosine law.

2.3 Parameter identification method

The parameters of the baseline model and of its corrections terms are identified with the method developed by Bottasso et al.

(2014a). Details of the formulation are reported in Appendix ??.

The formulation of the parameter estimation problem is independent on whether the parameters belong to the baseline model20

or to its correction factors. In this sense, one can use the same method to just tune the baseline parameters without considering

the correction terms, just identify the correction terms at frozen baseline model, or identify concurrently both sets.

The formulation is based on the classical likelihood function, which describes the probability that a given set of noisy obser-

vations can be explained by a specific set of model parameters. By numerically maximizing this function, a set of parameters

can be
:
is identified that most probably explains the measurements. Bound constraints are used to guide the process, and ensure25

convergence to meaningful results.

The accuracy with which the parameters can be estimated depends on how flat the likelihood function is with respect to

changes in the parameters. For example, a flat maximum of the function implies that different nearby values of the model

parameters are associated with similar values of the likelihood. These characteristics of the solution space are captured by the

Fisher information matrix, which can be interpreted as a measure of the curvature of the likelihood function. Furthermore, it30

can be shown that the variance of the estimates is bound from below (Cramér-Rao bound) by the inverse of the Fisher matrix

(Jategaonkar, 2015). Although the analysis of the Fisher information is useful for the understanding of the well-posedness

of an estimation problem and of the quality of the identified model, it does not offer a constructive way of reformulating a
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given ill-posed problem. Indeed, a flat solution space and collinear parameters are to be expected in the present case, given the

complex couplings and dependencies that may exist among the various parameters of a wind farm flow model and its correction

terms.

To overcome this limitation of the classical maximum likelihood formulation, following Bottasso et al. (2014a), the original

physical parameters of the model are transformed into an orthogonal parameter space, by diagonalizing the Fisher matrix using5

the SVD. This way, as the parameters are now statistically decoupled, one can set a lower observability threshold, and retain in

the analysis only the ones that are in fact observable given the available set of measurements. Once the problem is solved, the

uncorrelated parameters are mapped back into
::::
onto the original physical space.

As shown later on, this approach achieves multiple goals: it allows one to successfully solve a maximization problem with

many free parameters, some of which might be interdependent on one other
::::::
another

:
or not observable in a given data set; it10

reduces the problem size, retaining only the orthogonal parameters that are indeed observable; it highlights, through the singular

vectors, the interdependencies that may exist among some parameters of the model, which provides for a useful interpretation

tool that may guide the reformulation of parts of the model and its correction terms.

3 Results

2.0.1
:::::::::
Maximum

:::::::::
likelihood

:::::::::
estimation

::
of

::::::
model

::::::::::
parameters15

The results section is split into two parts: the application of the method to wind tunnel measurements
:
A

::::::::::
steady-state

:::::
wind

::::
farm

:::::
model

::::
can

:::
be

::::::::::::
mathematically

:::::::::
expressed

::
as

:

y = f(p,u),
::::::::::

(9)

:::::
where

:::::::
f(·, ·, ·)

::
is

:::
the

:::::::::
non-linear

::::
static

::::::::
function

:::::::::
describing

:::
the

:::::
wind

::::
farm

::::::
model,

::::::
which

:::::::
depends

::
on

::::
free

::::::::::
parameters

:::::::
p ∈ Rn.

:::::
These

:::::::::
parameters

:::
can

:::::::
include

::::
both

::::
wake

::::::
model

:::::::::
parameters

:::::
and/or

::::::
model

:::::::::::
augmentation

::::::::::
parameters.

::::
The

:::::
model

:::::
inputs

::::::::
u ∈ Rnu20

::::::
include

:::::::
ambient

::::
wind

:::::::::
conditions

::::
(i.e.

:::::::
ambient

:::::
wind

:::::
speed,

::::::::
direction,

:::
air

:::::::
density,

:::::::::
turbulence

::::::::
intensity,

::::
etc.)

:::
and

::::::
control

::::::
inputs

:::
(i.e.

::::
yaw

::::::::::::
misalignment,

:::::::::::
partialization

:::::
factor,

:::::
blade

:::::
pitch,

::::
rotor

:::::
speed,

::::
etc.

::
of

::::
each

:::::::
turbine).

:::
The

::::::
model

::::::
outputs

:::::::
y ∈ Rm

::::::::
represent

::::::::
quantities

::
of

:::::::
interest

::
for

::::::
which

::::::::::::
measurements

:::
are

::::::::
available,

:::
in

:::
the

::::::
present

:::::
work

::::
these

:::::
being

:::
the

::::::
power

:::::::
outputs

::
of

::::
each

:::::
wind

::::::
turbine

::
in

:::
the

::::
farm.

::::::::::::
Experimental

::::::::::
observations

::
z

::
of

:::
the

::::::::
simulated

:::::::
outputs

:
y
::::
will

::
in

::::::
general

:::::
result

::
in

::
a

:::::::
residual

:::::::
r ∈ Rm,

::::::
caused

::
by

:::::::::::
measurement

::::
and

::::::
process

:::::
noise

::::
(e.g.

::::::::::
plant-model

:::::::::
mismatch),

:::
so

:::
that

:
25

z = y+ r.
::::::::

(10)

:::::
Given

:
a
:::
set

:::::::::::::::::
S = {z1,z2, ...,zN}::

of
:::
N

::::::::::
independent

:::::::::::
observations,

:::
the

::::::::
likelihood

:::::::
function

:::::::::::::::::
(Jategaonkar, 2015)

:::
can

::
be

:::::::
defined

::
as

L(S
∣∣
p
) =

N∏
i=1

p(zi
∣∣
p
),

:::::::::::::::::

(11)
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:::::
where

::::
p(·)

:
is
:::
the

::::::::::
probability

::
of

::
S

:::::
given

::
p.

:::::::::
Assuming

:::
the

:::::::
residuals

::
r
::::
with

:::::::::
covariance

:::
R

::
to

::
be

::::::::::
statistically

::::::::::
independent

::::::
within

::
the

:::
set

:::
of

::::::::::::
measurements

::::
(i.e.

::::::::::::::::
E[rirj

T ] =Rδi,j , :::::
where

::::
δi,j ::

is
:::
the

:::::::::
Kronecker

::::::
delta),

:::
the

:::::::::
likelihood

:::::::
function

:::
can

:::
be

:::::::
written,

::::::::
following

::::::::::::::::
Jategaonkar (2015),

::
as

:

L(S
∣∣
p
) =

(
(2π)mdet(R−1)

)−N/2
exp

(
−1

2

N∑
i=1

ri
TRri

)
.

::::::::::::::::::::::::::::::::::::::::::::::::

(12)

::::::::::
Maximizing

::
L

::
(or

::::::::::
minimizing

:::
its

:::::::
negative

:::::::::
logarithm),

::
a

::::::::
maximum

:::::::::
likelihood

:::::::
estimate

::
of

:::
the

:::::::::
parameters

::::
can

::
be

:::::::
obtained

:::
as5

pMLE = argmin
p
J(p),

::::::::::::::::::

(13)

:::::
where

:::::::::::::::::
J(p) =− ln(L(S

∣∣
p
).
::::
The

:::::::::::
measurement

:::::
noise

:::::::::
covariance

:::::
matrix

::
R

:::
can

:::
be

::::::::
estimated

:::::
under

::::
mild

:::::::::
hypotheses

::
as

:::::::::::::::
R=

∑N
i=1 ri

Tri,

:::::::
yielding

:::::::::::::
J(p) = det(R),

:::::::
leading

:
to
:::
an

:::::::
iteration

:::::::
between

:
a
:::::::
solution

::
at

::::
given

:::::::::
covariance

::::
and

:
a
:::::::::
covariance

::::::
update

:::
step

::::::::::::::::
(Jategaonkar, 2015)

:
.
::::::::
However,

::
in

:::
this

::::::
paper

:::
the

:::::::::::
measurement

:::::
noise

:::::::::
covariance

::::::
matrix

::
is

::::::::
estimated

::
a

:::::
priori

:::
and

::::::::
therefore

::::::::
assumed

::
to

::
be

:::::::
known.

:::
The

::::
cost

:::::::
function

:::::::
becomes

::::::::
therefore

:
10

J(p) =
1

2

N∑
i=1

ri
TR−1ri.

::::::::::::::::::::

(14)

::
To

::::::
ensure

:::::::::
reasonable

::::
and

::::::::
physically

::::::
viable

::::::::
solutions,

::::::::::
parameters

:::
can

:::
be

:::::
forced

::
to
::::

stay
::::::
within

:::::::::
predefined

:::::
upper

:::::::::
(subscript

:::
ub)

:::
and

:::::
lower

:::::::::
(subscript

:::
lb)

:::::::
bounds,

::
by

::::::
adding

:::
the

:::::::::::::
corresponding

::::::::
inequality

:::::::::
constraints

:::::::::::::
plb ≤ p≤ pub::

to
:::::::
problem

:::::
(13).

:::
As

::
the

:::::::::
parameter

::::::
values

:::
and

:::::::::
constraints

::::
can

:::::
differ

::
in

:::::::::
magnitude,

::
it
::
is

:
a
:::::
good

:::::::
practice

::
to

::::
scale

:::
all

:::::::::
parameters

:::::
such

:::
that

::
a

::::
value

:::
of

:
1
::::::::::
corresponds

::
to

:::
the

:::::
upper

::::::
bound

:::
pub::::

and
:
a
:::::
value

::
of

:::
−1

::
to

:::
the

:::::
lower

::::
one

:::
plb.

::::
The

::::::::::
optimization

::::::::
problem

:::
can

::::::
finally

::
be

::::::
solved15

::::::::::
numerically

::
by

:
a
:::::::
suitable

:::::::::
algorithm,

::::
such

::
as

:::::::::
Sequential

:::::::::
Quadratic

:::::::::::
Programming

::::::
(SQP)

:::::::::::::::::::::::
(Nocedal and Wright, 2006).

:

2.0.2
::::::::::::
Identifiability

::
of

::::::::::
parameters

:::
The

::::::
Fisher

::::::::::
information

:::::
matrix

:::::::::
F ∈ Rn×n

::
is
:::::::
defined

::
as

F =

N∑
i=1

[∂yi
∂p

]T
R−1

[∂yi
∂p

]
,

:::::::::::::::::::::::

(15)

:::
and

::::::::
describes

:::
the

:::::::
curvature

::
of

:::
the

:::::::::
likelihood

:::::::
function.

::
It

:::
can

::
be

::::::
shown

:::::::::::::::::
(Jategaonkar, 2015)

:::
that

:
a
:::::
lower

:::::
bound

:::::::
(termed

::::::::::
Cramér-Rao20

::::::
bound)

::
of

:::
the

:::::::::
covariance

::
of

:::
the

::::::::
estimated

:::::::::
parameter

:
is
:::::
given

:::
by

F−1 = P ≤Var(pMLE−ptrue),
::::::::::::::::::::::::::

(16)

:::::
where

:::::
ptrue :::

are
:::
the

::::
true

:::
but

::::::::
unknown

::::::::::
parameters.

::::
The

::::
k-th

:::::::
diagonal

:::::::
element

::
of

:::
P

::
is

:
a
::::::

lower
:::::
bound

:::
on

:::
the

:::::::
variance

:::
of

:::
the

:::
k-th

::::::::
estimated

:::::::::
parameter,

:::::
while

:::
the

:::::::::
correlation

:::::::
between

::::::::
different

:::::::::
parameters

::
is

:::::::
captured

::
by

:::
the

:::::::::::
off-diagonal

:::::
terms

::
of

:::
that

:::::
same

::::::
matrix.

:::
The

:::::::::
correlation

:::::::::
coefficient

::::::::
between

:::
two

:::::::::
parameters

:
i
::::
and

:
j
::
is
:::::::
defined

::
as25

Ψpi,pj =
Pi,j√
Pi,iPj,j

,

::::::::::::::::

(17)
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:::::
where

::::
Pi,j :::::::

denotes
:::
the

:::::
i, j-th

:::::::
element

:::::
(row,

:::::::
column)

:::
of

:::
P .

:::
By

::::::::
analyzing

::::
the

::::::::
estimated

:::::::::
parameter

::::::::
variance,

::
as

::::
well

:::
as

:::
the

:::::::::
correlation

:::::::
between

:::::::::
parameters,

::::::::
valuable

::::::
insight

:::
into

:::
the

:::::::::::::
well-posedness

::
of

:::
the

::::::::
parameter

:::::::::::
identification

:::::::
problem

:::
can

:::
be

::::::
readily

:::::::
obtained.

:

2.0.3
:::::::
Problem

::::::::::::::
transformation

:::
and

::::::::::
untangling

:::::
using

:::
the

:::::
SVD

:::::
When

:::::
some

::::::::::
parameters

:::
are

::::::
highly

:::::::::
correlated

::
or

:::::
have

:::::
large

::::::::
variance,

:::
the

::::::::
problem

::
is

::::::::
ill-posed:

::
it
::::::

might
::::::
exhibit

::::::::
sluggish5

::::::::::
convergence,

:::
or

:::
not

:::::::
converge

::
at

:::
all,

::::
and

::::
small

:::::::
changes

::
in

:::
the

::::::
inputs

::::
may

:::
lead

::
to
:::::
large

:::::::
changes

::
in

:::
the

::::::::
estimates.

:::::
Such

::::::::
situations

::
are

:::::::
difficult

::
to

:::::
solve

::
in

:::
the

:::::::
physical

:::::
space,

:::::::
because

:::::::::
parameters

:::
are

:::::::
typically

:::::::
coupled

:::::::
together

::
to

:::::
some

:::::
degree

:::::::
through

:::
the

::::::
model.

::
To

:::::::
untangle

:::
the

::::::::::
parameters,

:::
one

::::
may

:::::
resort

::
to

:::
the

::::
SVD

:::::::::::::::::::::::
(Golub and van Loan, 2013)

:
.
::
By

::::
this

:::::::
approach

::::::::::::::::::::::::::::::::::::::::::::
(Hansen, 1987; Waiboer, 2007; Bottasso et al., 2014a)

:
,
:::
the

:::::::
original

:::::::::
parameters

:::
are

:::::::
mapped

::::
into

::
a

::::
new

:::
set

::
of

:::::::::::
uncorrelated

::::::::::
(orthogonal)

::::::::::
parameters.

::::::
Since

:::
the

::::
new

:::::::::
unknowns

:::
are10

::::::::::
uncorrelated,

::::
one

::::
can

::
set

::
a
::::::::
threshold

::
to

:::::
their

:::::::
variance

:::
by

:::::
using

:::
the

::::::::::
Cramér-Rao

:::::::
bound,

:::
and

::::
only

::::::
retain

::
in

:::
the

:::::::::::
optimization

::::
those

::::
that

:::
are

:::::::::
observable

:::::
within

:::
the

:::::
given

::::
data

:::
set.

:

:::
The

::::::
Fisher

:::::
matrix

:::
F

:
is
::::
first

::::::::
factorized

:::
as

:::::::::::
F =MTM ,

:::::
where

::::::::::::
M ∈ RNm×n

::
is

:::::::
defined

::
as

M =


R−1/2 ∂y1

∂p

R−1/2 ∂y2

∂p

...

R−1/2 ∂yN

∂p

 .
:::::::::::::::::

(18)

::::::::
Assuming

:
a
::::::

larger
::::::
number

::
of

::::::::::::
measurements

::::
than

::::::::::
parameters

:::::::::
(Nm> n),

::::::
matrix

:::
M

:::
can

:::
be

::::::::::
decomposed

::::
into15

M =UΣV T ,
::::::::::::

(19)

:::::
where

:::::::::::::
U ∈ RNm×Nm

:::
and

::::::::::
V ∈ Rn×n

:::
are

:::
the

:::::::
matrices

::
of

:::
left

::::
and

::::
right,

:::::::::::
respectively,

:::::::
singular

::::::
vectors,

:::::
while

:

Σ =

S
0

 ,
:::::::::

(20)

:::::
where

:::::::::
S ∈ Rn×n

::
is

:
a
:::::::
diagonal

:::::::
matrix,

:::::
whose

::::::
entries

::
si:::

are
:::
the

:::::::
singular

::::::
values

:::::
sorted

::
in

::::::::::
descending

:::::
order.

::
By

:::::
using

:::
Eq.

::::
(19)

::::
and

:::
the

::::::::::
factorization

::
of

:::
F ,

:::
the

::::::
inverse

::
of

:::
the

::::::
Fisher

::::::::::
information

:::::
matrix

::::
can

::
be

::::::
written

::
as

:
20

P = V S−2V T .
:::::::::::::

(21)

::::
Note

::::
that

:::
the

:::::::
columns

:::
of

:::
the

:::::::::
orthogonal

::::::
matrix

:::
V

:::
are

::::
also

:::
the

:::::::::::
eigenvectors

::
of

::
P

::::
and

::::
s−2
i :::

the
::::::::::::
corresponding

:::::::::::
eigenvalues.

::::::::::
Furthermore,

:::
P

:::
and

::
F

:::
are

:::::::::
symmetric

::::
and,

:::::
based

:::
on

:::
the

::::::
spectral

::::::::
theorem,

:::::::::::::
diagonalizable.

:::
The

:::::::
physical

::::::::::
parameters

:
p
:::
can

::::
now

:::
be

::::::::::
transformed

::::
into

:
a
::::
new

::
set

:::
of

:::::::::
orthogonal

:::::::::
parameters

::
Θ

:::
by

:
a
:::::::
rotation

:::::::::
performed

::::
with

::
the

:::::
right

:::::::
singular

::::::
values:25

Θ = V Tp.
:::::::::

(22)
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:::
For

:::
the

::::::::::
transformed

::
set

::
of

::::::::::
parameters,

:::
the

::::::::::
Cramér-Rao

:::::
bound

:::
on

:::
the

:::::::
variance

::
of

:::
the

:::::::
estimates

::
is

:::
the

:::::::
diagonal

::::::
matrix

::::::::::::::::::::::::
S−2 ≤Var(ΘMLE−Θtrue).

::::::::
Therefore,

::
a
:::::
small

:::::::
singular

::::
value

::
si:::::::::::

corresponds
::
to

:
a
:::::
large

:::::::::
uncertainty

::
in

:::
the

::::::::::::
corresponding

:::::::::
orthogonal

:::::::::
parameter

:::::::::
estimation.

::
To

:::::::
remove

:::::::::
parameters

:::
that

::::::
cannot

::
be

:::::::::
estimated

::::
with

::::::::
sufficient

::::::::
accuracy,

:::::
matrix

::
S

::::
can

::
be

:::::::::
partitioned

::
as

:

S =

SID 0

0 SNID

 ,
:::::::::::::::::

(23)

:::::
where

::::
SID :::::::

contains
:::
the

:::::::::
identifiable

:::::::
singular

::::::
values,

:::
i.e.

:::::
those

::::
such

:::
that

:::::::::
s−2
i < σ2

t , reported in Section 3.1,
::
σt ::::

being
::
a
::::::::
threshold5

::
on

:::
the

::::::
highest

:::::::::
acceptable

:::::::
standard

::::::::
deviation

::
in

:::
the

:::::::
estimate.

:::
On

:::
the

::::
other

:::::
hand,

::::::
matrix

:::::
SNID :::::::

contains
:::::::
singular

:::::
values

:::::::::
associated

::::
with

:::::::::
parameters

:::
that

::::::
cannot

::
be

::::::::
identified

::::
with

::::::::
sufficient

::::::::
accuracy,

:::
and

:::
are

:::::::
therefore

:::::::::
discarded.

:::::::::::
Accordingly,

::
V

:
is
::::
also

:::::::::
partitioned

::
as

::::::::::::::::
V = [V ID,V NID],

::::
while

:::
the

::::::::::
orthogonal

:::::::::
parameters

:::
are

:::::::::
partitioned

::
as

:::::::::::::::::
Θ = [ΘT

ID,Θ
T
NID]T .

::::::
Finally,

:::
the

:::::::
physical

::::::::::
parameters

::
are

:::::::::
expressed

::
in

:::::
terms

::
of

:::
the

::::
sole

:::::::::
identifiable

:::::::::
orthogonal

::::::::::
parameters:

:

p≈ V IDΘID.
:::::::::::

(24)10

:::::
Given

:::
that

:::
the

::::::
Fisher

::::::
matrix

:::::::
depends

::
on

:::
the

::::::
values

::
of

:::
the

::::::::::
parameters

::
p,

::
an

:::::::
iterative

:::::::::
procedure

::::::
should

::
be

::::::::
followed,

::::::
where

:::
the

::::::::::::
diagonalization

::
of
:::
the

::::::::
problem

:
is
::::::::
repeated

::
at

::::
each

::::::
update

::
of

:::
the

::::::::
parameter

::::::
vector.

:

2.0.4
:::::::::::
Identification

:::::::
method

:::::
with

:::::::
variable

::::::::::::
measurement

:::::::
weights

::
In

::::
some

::::::
cases,

:
it
::::

may
:::

be
:::::
useful

::
to
::::::::

increase
:::
the

:::::::::
importance

::
of

:::::
some

::::::::::::
measurements

::
in
:::
the

:::::::::
parameter

:::::::::
estimation

::::::::
problem.

::::
This

:::
can

::
be

::::::
readily

::::::::
obtained

::
by

::::::
simply

:::::::
treating

:::
an

:::::::::
observation

:::::
with

::::::
weight

::
w

::
as

::
if

:
it
::::::::
appeared

::
w

:::::
times

::
in

:::
the

::::::::::
observation

::::
data

:::
set15

::::::::::::::::::::::::::::::
(Karampatziakis and Langford, 2011)

:
.
::::
Cost

:::::::
function

::::
(14)

::::
then

:::::::
becomes

:

J(p) =
1

2

N∑
i=1

wiri
TR−1ri,

::::::::::::::::::::::

(25)

:::::
where

::
wi::

is
:::
the

:::::::
relative

::::::
weight

::
of

::::::::::
observation

:
i and

::::::::::::

∑N
i=1wi =N .

::::::::
Similarly,

:::
the

:::::
Fisher

::::::
matrix

::::::::
becomes

F =

N∑
i=1

wi

[∂yi
∂p

]T
R−1

[∂yi
∂p

]
,

:::::::::::::::::::::::::

(26)

:::
and

::
its

:::::::::::
factorization

::
is20

M =


√
w1R

−1/2 ∂y1

∂p
√
w2R

−1/2 ∂y2

∂p

...
√
wNR

−1/2 ∂yN

∂p

 .
::::::::::::::::::::::

(27)

:::
The

:::::::::
remainder

::
of

:::
the

::::::::::
formulation

::
is

:::
not

:::::::
affected

::
by

:::
the

::::::::::
introduction

::
of

::::::::
weights.
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3
::::::
Results

:::
The

::::::::
proposed

::::::
method

::
is
::::
first

::::::
applied

::
in
::::
§3.1

:::
to

:
a
::::
wind

::::::
tunnel

:::::::::
experiment

:::::
with

:
a
:::::
small

::::::
cluster

::
of

::::
three

:::::
wind

:::::::
turbines,

::::
and

::::
then

::
in

::::
§3.2 to a real wind farm consisting of 43 wind turbines, described in Section 3.2. The former

:::::::
example aims at a verification

of the correctness of the identified augmentations, given the known and controllable conditions of the scaled experiments,

while
::::::
whereas

:
the latter is meant to offer a first glimpse on the practical applicability of the new method in the field.5

3.1 Wind tunnel verification

Whether some identified model corrections are indeed physical or only an artefact of the model-measurement mismatch is

difficult to prove in general. From this point of view, wind tunnel experiments provide for a unique opportunity to verify the

concept proposed in this paper. Indeed, the overall flow within a cluster of turbines can be measured with good accuracy, and

the experiments can be repeated in multiple desired operating conditions. The aim of this section is then to show that, even in10

the presence of multiple possibly overlapping model terms, the correct improvements to a baseline model can be learnt from

operational data only.

3.1.1 Experimental setup

The experimental setup is composed by a scaled cluster of three G1 wind turbines, each of them equipped with active yaw,

pitch and torque control. The turbines were operated in the boundary layer test section of the wind tunnel of the Politecnico di15

Milano. Details on the models and the wind tunnel are reported, among other publications, in Campagnolo et al. (2016c, a, b)

:::::::::::::::::::::::::
Campagnolo et al. (2016a, b, c).

The turbines are labelled WT1, WT2 and WT3, starting from the most upstream one and moving downstream. The machines

are mounted on a turntable, which allows for changing
:::::
whose

:::::::
rotation

::
is

::::
used

::
to

::::::
change

:
the wind direction with respect to the

wind farm layout. In the nominal configuration, i.e. for a turntable rotation γTT = 0◦, the three turbines are aligned with the20

wind tunnel main axis —and hence with the flow velocity vector. The turbines are installed with a longitudinal spacing of 5

diameters (D), as shown in the left part of Fig. 2 with a view looking down towards the wind tunnel floor. As indicated in

the figure, positive turntable rotations are clockwise. For γTT 6= 0◦, the longitudinal distance between the turbines decreases

slightly. However, considering that in this work the largest investigated turntable angle was ±11.5◦, the longitudinal distance

varied only between 4.9D and 5D.25

A pitot probe was placed at turbine hub height, 3D upstream of the first G1 in the nominal configuration. The probe was

therefore not placed on the turntable, and its position remained fixed with respect to the wind tunnel test section. A wind-

tunnel-fixed reference frame, used in the following to discuss the results, is also depicted in Fig. 2. Its origin is placed at the

turntable center, while the frame X axis is aligned with the wind direction, the Y axis points left looking downstream, and

hence Z points vertically up from the floor to complete a right handed triad.30

The yaw angle γWTi of the i-th wind turbine is positive for a counterclockwise rotation looking down onto the floor, as

shown for WT1 in Fig. 2, and null when the rotor disk is orthogonal to X and, therefore, to the nominal wind direction.

14



The right part of Fig.
::::::
Figure 3 shows a photo of the cluster of turbines, looking downstream with WT1 in the foreground.

The wind tunnel floor is of a blue color, whereas the turntable is black.

Figure 2. Wind farm layout for a null turntable rotation, looking down onto the wind

tunnel floor.

Figure 3. View looking downstream of the clus-

ter of three G1 turbines.

The ambient wind speed V∞,0 measured by the pitot tube was, for all conducted experiments, between 5.20 and 5.75 m/s,

which correspond to slightly below-rated conditions. The ambient turbulence intensity was equal to 6.12%, while the vertical

shear was αvs = 0.144.5

3.1.2 Model setup

The FLORIS model implementation used in this work is the one available online (Doekemeijer and Storm, 2018). All the

baseline model parameters were first identified based on single turbine wake measurements (Campagnolo et al., 2019), and

their values are reported in Table 1
:::
and

:::::
taken

:::::
from

:::::::::::::::::::::
Campagnolo et al. (2019)

:
,
:::::
where

:::::
they

::::
were

:::::::::
identified

:::::
based

:::
on

:::::
wake

:::::::::::
measurements

:::
of

:
a
:::::
single

:::::::
isolated

:::
G1

::::::
turbine.10
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Table 1. Initial FLORIS parameters for the G1 turbine.

α∗ β∗ k∗a k∗b a∗d b∗d TI∗a TI∗b TI∗c TI∗d

0.9523 0.2617 0.0892 0.027 0 0 0.082 0.608 −0.551 −0.2773

2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

2 3 4 5 6 7 8 9 10
0

0.5

1

Figure 4. Power and thrust coefficients vs. wind speed for the G1 turbine.

Figure 4 shows the G1 power CP and thrust CT coefficients as functions of wind speed V . The curves were obtained

from dynamic simulations conducted in turbulent inflow, using the same controllers implemented on the scaled models. The

CP and CT vs. tip-speed-ratio (TSR) and blade pitch setting curves were obtained based on
:::
with

:
a BEM formulation using

experimentally-tuned airfoil polars (Bottasso et al., 2014a). As the turbine controller does not consider variations of air density

ρ, the coefficients shown in the figure exhibit a slight dependency on this ambient parameter. Within FLORIS, this effect is5

taken into account by interpolating between
:::::
within

:
the coefficients based on the actual density measured in the wind tunnel

during each experiment. For all reported test conditions, air density varied in the range ρ ∈ [1.159,1.185] kg/m3. The power

loss exponent in misaligned conditions was evaluated experimentally to be pP = 2.1741, while for thrust the coefficient was

found to be pT = 1.4248.

The ambient wind speed was determined from the pitot tube. It was observed that, by using this value, the power of a10

free-stream turbine predicted by the FLORIS model was slightly underestimated, most probably due to the sheared flow. To

correct for this effect, measurements provided by the pitot tube were scaled by the factor 1.0176, which was computed in

order to match simulated and measured power. Furthermore, in the original FLORIS implementation the power of a turbine is

computed as P = 1/2ρAV 3
avgCP, where Vavg is the average wind speed at the rotor disk and A the rotor disk area. Here, power
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was computed by integrating over the rotor disk area, i.e. P = 1/2ρ
∫
A
V 3CPdA, which is believed to be

:::::::
probably

:
slightly

more accurate even though it involves a minor increase in computational effort.

3.1.3 Ranking of correction terms

To initially assess the role of the various parameters, a ranking analysis was conducted. The parameters were clustered in sets,

depending on their role in the model. A first identification was performed using all parameter sets, yielding the presumed best5

value, denoted as Jref , of the cost function expressed by Eq. (14). The analysis was then repeated multiple times, each time

removing one parameter set from the optimization. By looking at the resulting change in the value of the cost function, one may

then rank the various parameter sets in order of importance. The analysis is based on a total of 190 experimental observations,

as described in greater detail in the followingsubsection.

All augmentation terms described inSection
::

§2.2 were considered, except for the lateral variation in wind direction and10

the wind direction dependent vertical shear, as they are not applicable to the wind tunnel experiments. The non-uniform

flow speed was modeled using five nodes located at cspeed(Y ) = [−3,−2,−1,0,1] m .
::::::
(which

:::::::::
correspond

::
to

::::::::::::::
approximatively

::::::::::::::::::::
[−2.7,−1.8,−0.9,0,0.9]

:::
D),

::::
and

::::
also

::::::::
indicated

::
in

::::
Fig.

:
2
:::::
using

::
×

::::::::
symbols.

:
As only the turbine positions with respect to the

flow is altered by using
::
are

::::::::
modified

:::
by

::::::
rotating

:
the turntable, a wind direction dependency was not included in this correction

term. For the non-uniform inflow and secondary steering augmentations, the parameter initial values , lower and upper bounds15

::::
Table

::
2
::::::
reports

::::
the

:::::
initial

::::::
values

:
and definitions are shown in Table 2

:::::::::
lower/upper

:::::::
bounds

::::::::
—chosen

::::::
based

::
on

:::
an

::::::::
educated

::::::
guess—

:::
for

:::
the

:::::::::::
non-uniform

:::::
inflow

::::
and

::::::::
secondary

:::::::
steering

:::::::::
correction

:::::
terms.

Table 2. Definition of the parameters, together with their initial values, lower and upper bounds, and identified values.

i pi plb,i pub,i pinit,i popt,i Implementation

1− 5 pspeed −0.1 0.1 0 [0.079,0.029, ... faugm,speed(Y,Z,0,cspeed,pspeed)

−0.051,−0.006,0] cspeed = [−3,−2,−1,0,1] m

6− 11 pss [−3,0, ... [3,1.5, ... [−0.5,0.5, ... [−0.94,0.63, ... faugm,ss(ỹ,Γinit,pss)

−3,−3, ... 3,3, ... 0.2,−0.25, ... 0.20,−0.48, ...

0,−3] 1.5,3] 0.5,−0.2] 0.73,−0.28]

Figure 5 shows the relative increase of the cost function when eliminating one parameter set at a time. The figure clearly

indicates that the most important parameters are the ones modeling laterally non-uniform speed and secondary steering. Indeed,

this particular wind tunnel, due to its internal configuration and large width, does present a significant non-uniform flow speed,20

as already discussed by Campagnolo et al. (2019). Likewise, the effect of secondary steering is particularly important and

should not be neglected for accurate predictions in misaligned conditions, as already reported in various publications. Based

on these results, in the following only non-uniform inflow and secondary steering corrections are considered.
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Figure 5. Relative increase of the optimization cost function when eliminating one parameter set at a time.

3.1.4 Results

A total of 451 observations were available, including 11 different turntable positions and thus wind farm layouts, with turbine

yaw misalignments ranging from −40◦ to +40◦. A total of 190 observations were used to identify the 5 parameters associated

with non-uniform inflow speed and the 6 associated with secondary steering, whereas the remaining data points were used for

model validation. The various tested configurations in terms of turbine misalignments and turntable positions are reported in5

the figures of Appendix A.

Among all the available measurements gathered at each operating condition, only the steady-state power of the wind turbines

was utilized,
:::::::::
mimicking

:::::
what

:::::
could

::
be

::::
done

::
at

:::
full

:::::
scale

::
in

:::
the

::::
field

:::::
using

:::::::
SCADA

::::
data. The model outputs y (see Eq. (9)) are

defined as

y =
1

Pref


PWT1

PWT2

PWT3

 , (28)10

where PWTi is the power of the i-th wind turbine and Pref = 37.6 W is a reference value used as scaling factor. Based on

experience, a diagonal measurement noise covariance matrixR with all three terms equal to σ2 = 0.0252 was specified.

The threshold of the highest acceptable standard variance σ2
t for the orthogonal parameters was set to 0.01. As the parameters

are scaled within a range [−1,1], the threshold corresponds to a relative variance of 2%. Wind-aligned operating condition

::::::::
conditions

:
(i.e. , γWT1 = γWT2 = γWT3 = 0◦) were weighted with a factor of 2, to increased

:::::::
increase their importance in the15

parameter estimation process.
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The constrained optimization problem (13) was solved in Matlab using the fmincon function with the interior-point algorithm

(Mathworks, 2019). As the baseline model with its initial nominal values (p= pinit) is far away from the optimal solution, a

first optimization was performed including only the inflow correction. Afterwards, three iterations were conducted including all

11 parameters. At each iteration, a total of 8 orthogonal parameters could be identified within the specified variance threshold.

The method converged very quickly, as the identified parameters and the residual did not change significantly after the first5

iteration. Figure 6 shows on the left the initial variance of all 11 orthogonal parameters, and on the right the variance computed

after the first iteration. The horizontal black line indicates the threshold σ2
t .
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Figure 6. Variance of the orthogonal parameters before (left) and after (right) the first iteration. The identifiable orthogonal parameters are

shown in red, whereas all others are shown in blue.

Interestingly, the 11-th orthogonal parameter seems to have a very low observability. Table 3 shows the transformation matrix

V T that links the physical parameters to the orthogonal ones (Θ = V Tp, see Eq.( 22)). The 11-th orthogonal parameter is

almost entirely associated with pspeed,5, which corresponds to the inflow speed augmentation node at position Y = 1 m. Indeed,10

the location of this node is such that it has only a very marginal effect on the turbine outputs and, hence, a very low observability,

as shown later on in Fig. 7. The transformation matrix reported in Table 3 also shows that the other two orthogonal parameters

with low observability (9 and 10) represent secondary steering modes, mainly associated with the second Gaussian function of

the correction term.

Table 4 presents the correlation matrix Ψ (cf. Eq. (17)), and shows a clear and to be expected dependency among neigh-15

bouring inflow parameters. Among the secondary steering parameters, strong but less obvious correlations are present, which

suggest that a simplification of the assumed correction term might be possible.
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Table 3. Transformation matrix V T after the first iteration. Each row corresponds to a different orthogonal parameter.

p
sp

e
e
d
,1

p
sp

e
e
d
,2

p
sp

e
e
d
,3

p
sp

e
e
d
,4

p
sp

e
e
d
,5

p
ss
,1

p
ss
,2

p
ss
,3

p
ss
,4

p
ss
,5

p
ss
,6

1 -0.0 0.0 0.0 -0.0 -0.0 -0.7 0.2 -0.0 0.7 -0.1 -0.1

2 -0.2 -0.4 -0.3 -0.1 -0.0 0.2 -0.1 -0.7 0.3 0.1 0.3

3 0.0 -0.6 -0.6 -0.1 0.0 -0.1 0.0 0.4 -0.1 -0.0 -0.2

4 -0.4 -0.6 0.6 0.3 0.0 -0.0 0.0 0.1 -0.0 -0.0 -0.0

5 -0.7 0.2 -0.1 -0.2 -0.0 0.2 0.5 0.2 0.1 -0.1 0.1

6 -0.5 0.2 -0.1 -0.1 0.0 -0.4 -0.7 -0.0 -0.2 0.1 -0.2

7 0.1 -0.2 0.3 -0.9 -0.0 -0.0 -0.1 0.1 -0.0 -0.0 0.1

8 0.0 0.0 -0.0 0.1 -0.0 0.3 -0.5 0.5 0.5 0.1 0.4

9 -0.1 0.0 0.0 -0.1 0.0 0.2 0.1 0.0 0.2 0.8 -0.5

10 0.0 -0.0 0.0 -0.0 -0.0 0.4 -0.2 -0.1 0.3 -0.6 -0.6

11 0.0 -0.0 0.0 -0.0 1.0 -0.0 -0.0 0.0 -0.0 -0.0 0.0

Table 4. Correlation coefficients Ψ after the first iteration.
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pspeed,1 1.0 -0.5 0.2 -0.1 0.2 -0.1 -0.1 -0.0 -0.1 -0.2 0.2

pspeed,2 -0.5 1.0 -0.7 0.5 -0.2 -0.0 0.0 0.1 0.0 0.2 0.0

pspeed,3 0.2 -0.7 1.0 -0.7 0.2 0.1 -0.0 -0.1 0.1 -0.1 -0.2

pspeed,4 -0.1 0.5 -0.7 1.0 -0.4 -0.1 -0.0 0.1 -0.0 0.1 0.2

pspeed,5 0.2 -0.2 0.2 -0.4 1.0 -0.1 -0.1 0.0 -0.1 -0.3 0.2

pss,1 -0.1 -0.0 0.1 -0.1 -0.1 1.0 -0.6 -0.1 0.9 -0.4 -0.8

pss,2 -0.1 0.0 -0.0 -0.0 -0.1 -0.6 1.0 -0.3 -0.7 0.6 0.3

pss,3 -0.0 0.1 -0.1 0.1 0.0 -0.1 -0.3 1.0 0.2 0.4 0.6

pss,4 -0.1 0.0 0.1 -0.0 -0.1 0.9 -0.7 0.2 1.0 -0.2 -0.6

pss,5 -0.2 0.2 -0.1 0.1 -0.3 -0.4 0.6 0.4 -0.2 1.0 0.3

pss,6 0.2 0.0 -0.2 0.2 0.2 -0.8 0.3 0.6 -0.6 0.3 1.0
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Figure 7 shows the identified inflow augmentation function. In the picture, whiskers indicate the parameter uncertainty σi,

computed based on the Cramér-Rao lower error bound as σ =
√

diag(P ) (cf. Eq. (16)). The same figure reports also measure-

ments obtained with hot wire probes in the empty wind tunnel at three different heights above the floor. These measurements,

and especially the ones at hub height, are in good agreement with the estimates provided by the proposed method. The figure

also reports (with × symbols) the lateral position of the upstream turbine for the investigated turntable rotations. Noting that5

all points are shifted to the left, helps explain why the parameter associated with the inflow node at Y = 1 m has a very low

—but still finite— observability.
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Figure 7. Identified non-uniform inflow speed augmentation term (solid line) and associated standard deviation (whiskers). Hot wire mea-

surements at different heights above the floor are shown in thin solid lines. The upstream turbine (WT1)
:
y position

::
for

::
all

::::::::::
investigated

::::::
turntable

:::::::
rotations

:
is shown by × markers for all investigated turntable positions

:::::
placed

::::
along

:::
the

::::
lower

::::
edge

::
of

:::
the

::::
figure.

The identified secondary steering augmentation term is visualized in Fig. 8. The plot shows the wind direction change ∆Γ

as a function of the distance ỹ to the wake centerline for a turbine misalignment of 20◦. The gray shaded area shows the

uncertainty band popt,i±σi. Consistently with the findings of Wang et al. (2018), the maximum change in wind direction is10

found at approximatively 0.3 D on the leeward side of a deflected wake. The maximum magnitude of secondary steering in this

operating condition is

1.9◦, which is is again comparable to the results of Wang et al. (2018).

The validity of the augmentation terms, identified as explained, was assessed by comparing the results of the simulation

model with experimental wake measurements from a different test campaign. The setup was identical to the one considered15

here, except for the fact that only the first two upstream wind turbines were installed in the wind tunnel. At the downstream

distance where the third wind turbine should have been installed, flow velocity measurements were obtained at turbine hub

height using hot wire probes. Figure 9 shows wake profiles for the turntable position γTT = 0◦ for various combinations of

turbine yaw misalignments, as indicated by the subplot titles. Each subplot is accompanied by two flow visualizations, one
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Figure 8. Identified wind direction change ∆Γ due to secondary steering as a function of distance ỹ to the wake centerline for a turbine

misalignment of 20◦. The grey shaded area shows the uncertainty band.

based on the baseline FLORIS model and the other on its augmented version. The figures also include the points at which the

flow was measured with the probes.

In the left subplots, the improvements of the augmented model with respect to the baseline FLORIS are exclusively due to

the inflow correction, as the upstream turbine is aligned with the flow , and therefore there are no secondary steering effects.

In the right subplots, the upstream turbine is misaligned (γWT1 = 30◦) and secondary steering effects are present. Taking into5

account that model augmentation was obtained exclusively by turbine power measurements, the improved matching of the

wake profiles is remarkable. Still, even with the extra correction terms some
:::::
small model mismatches are present; these might

be caused by the wake combination model, which was not augmented in this study.

The turbine power coefficients are computed as

CP,i =
PWTi

0.5ρAV∞(YWTi,zh,0)3
, (29)10

where V∞ is the augmented inflow function given by Eq. (2), evaluated at the respective turbine position YWTi and hub

height zh. A detailed overview of the results is offered by the figures of Appendix A, which report the power outputs and the

model errors for all wind farm configurations. For readability, here a more synthetic overview of the results is presented, by

condensing the information contained in Fig
:::
Figs. A1, A2 and A3 in the probability density plots of Fig. 10. This figure shows

the results for the baseline FLORIS model using a black dashed line, for the 11-parameter augmented model (i.e. ,
::::::::
including15

only non-uniform inflow speed and secondary steering corrections) using a red solid line, and
::
for

:
the 27-parameter augmented

model (i.e. , including all additional augmentation terms presented earlieron) using a red dotted line. The root mean squared

errors εRMS are shown in the respective legends.
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Figure 9. Wake profiles 5D behind WT2 for various combinations of turbine yaw misalignment. Experimental values are indicated by the ×

symbols. Each subplot is accompanied by two flow visualizations based on the FLORIS model and its augmented version.

Note that the FLORIS error distribution shows two peaks for WT1 and WT3, indicating the presence of two uncorrelated

errors. The 11-parameter model removes these peaks, even though a smaller pair of peaks remains for WT2 and WT3, indicating

additional errors that only the 27-parameter augmented model is able to capture.

Here again the trend is clear: the addition of non-uniform speed and secondary steering increases substantially the accuracy

of the baseline model, with additional small —but not insignificant— gains offered by the additional correction terms. Finally,5

there is still room for improvement, possibly through extra correction terms not yet explored.

3.2 Field application

In this section the model augmentation and identification method is applied to a full scale wind farm, to test its applicability

and usability in a realistic scenario. In such conditions, it is often difficult to assess weather
:::::::
whether the identified model

corrections are indeed physical or not, due to a lack of knowledge of the actual ground truth. To deal with this problem, the10

classical approach of splitting the data set was used here: first, a relatively small subset of measurements is used for model and

error identification; then, the rest of the data set is used for a verification of the generality of the identified model, and of its

improved performance with respect to the baseline one.
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Figure 10. Error distributions for each turbine for all tested configurations, for the baseline FLORIS model (black dashed line), the 11-

parameter augmented model (red solid line) and the 27-parameter augmented model (red dotted line).

3.2.1 Wind farm and data pre-processing

The onshore wind farm is situated close to Sedini, on the Italian island of Sardinia, and it consists of 43 GE1.5s and GE1.5sle

wind turbines, as specified in Table 5.

Table 5. Turbine specifications

Type Rated power Cut-in wind speed Rated wind speed Rotor diameter Hub height Installed units

[MW] [m/s] [m/s] [m] [m] [-]

GE1.5s 1.5 4 13 70.5 65 36

GE1.5sle 1.5 3.5 12 77 80 7
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The wind farm is located at a rather complex terrain site, as shown in Fig. 11. Blue turbines are of type GE1.5sle, black and

red turbines are of type GE1.5s, the latter being used as sensing turbines as explained lateron. Figure 12 shows a top view of

the wind farm, including the turbine identifiers.

Figure 11. 3D view of the Sedini wind farm with terrain elevation, as seen from Γ = 260◦.

Figure 12. Top view of the Sedini wind farm with turbine identifiers. The gray arrows indicate the X and Y axes for an ambient wind

direction Γ = 260◦.
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Historical 10 min SCADA data was made available for this research for a period of 24 months, throughout the years 2015 and

2016. The recorded turbine yaw orientations exhibit sudden jumps and long term drifts. An ad-hoc algorithm was developed

for detecting and correcting these data issues. On average, for each turbine 45% of the data points were missing, while
:::
and

23% were discarded because of low power output (< 5 kW) or rotor speed (< 1 rpm). As a result, about 33,700 data points

were available for each turbine. Regarding the missing data points, it is unknown whether the turbines were operating or just5

not reporting. To avoid eliminating a large fraction of the data set, it was assumed that the turbines were indeed operational and

thus shedding wakes. This way, even if recordings of one or more turbines were missing at a specific time instance, the data

points of the other turbines could still be used.

As no direct measurements of ambient conditions were available, the method described by Schreiber et al. (2018) was used

to identify ambient wind speed and direction. The procedure works as follows. First, the ambient wind direction is estimated10

from turbine yaw orientations. Second, the ambient wind speed is estimated from the rotor effective wind speed of the free-

stream turbines, computed from the turbine power curve below rated wind speed. To this purpose, the three sensing turbines

A5-24, A5-25 and A5-26 indicated in red in Fig. 12 were used, checking that they were unwaked by using the flow model;

the average of these speeds was attributed to the location of turbine A5-25. This way, 5,667 ambient wind conditions could be

processed for a range of wind directions Γ ∈ [184◦,320◦]. Based on the ambient wind conditions, the data of all turbines was15

aggregated in two-dimensional bins: ambient wind speed (bin width of 2 m/s) and ambient wind direction (bin width of 5◦).

Figure 13 shows the scaled number of measurements in each bin between 6 and 12 m/s.

180 210 240 270 300
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0.4

0.6

0.8

1

Figure 13. Scaled number of measurement data points (10 min mean) within each speed and direction bin.

3.2.2 Model setup

Here again the FLORIS implementation was based on the version available online (Doekemeijer and Storm, 2019). The initial

values of both the wake and turbulence model parameters were set according to Bastankhah and Porté-Agel (2016) for (α∗,β∗),20

Crespo and Hernández (1996) for (TI∗a ,T I
∗
b ,T I

∗
c ,T I

∗
d), Niayifar and Porté-Agel (2015) for (k∗a ,k

∗
b), and Gebraad et al. (2014)

for (a∗d, b
∗
d), as reported in Table 6.
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Table 6. Initial FLORIS parameters for the Sedini wind farm.

α∗ β∗ k∗a k∗b a∗d b∗d TI∗a TI∗b TI∗c TI∗d

2.32 0.154 0.3837 0.0037 −0.0356 −0.01 0.73 0.8325 0.0325 −0.32

The required turbine power and thrust versus wind speed curves were provided by the turbine manufacturer. The vertical

shear exponent of the inflow was set to αvs = 0.143 and the turbulence intensity to 14%, which represent annual average values

measured at 65 m of height by an on-site met-mast. Air density was set to the constant value ρ= 1.177 kg/m3.

The different turbine foundation heights were accounted for by accordingly increasing the tower heights, using the lowest

foundation height as reference (turbine A1-02). Indeed, power measurements of the upstream turbines show a correlation5

with the actual turbine hub height with respect to sea level (SL), as shown in Fig. 14. As indicated by the only approximate

correlation shown by the figure, it is clear that such simple correction might not provide satisfactory results for all wind

directions and all turbines, because complex orthographic flow effects might also play a role. Nonetheless, this approximate

correction seems to be a step in the right direction. In addition, some of these effects may be corrected by the lateral non-

uniformity terms added to the augmented model. The reference height of the sheared inflow zh (see Eq. (2)) was set to the hub10

height of the sensing turbine A5-25.
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Figure 14. Correlation between power output and hub height with respect to SL. Left subplot: power (× symbols and left y axis) and rotor

height above SL (◦ symbols and right y axis) vs. lateral turbine position for a wind direction Γ = 240◦. Right subplot: power vs. rotor height

above SL for Γ ∈ [220◦,275◦] and V∞ ∈ [8,10] m/s. All conditions are free-stream and all turbines of type GE1.5s.

3.2.3 Ranking of correction terms

As for the wind tunnel experiments, here again a first analysis was aimed at ranking the various correction terms. However,

since the turbines were operated with a conventional wind-aligned strategy, secondary steering corrections were neglected. The

ranking is based on data points in the range V ∈ [6,10]
:::::::::
V ∈ [8,10] m/s, as described in greater detail in the followingsubsection.15
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Figure 15 shows the relative increase of
:
in

:
the cost function after optimization eliminating one set of parameters at a time.

The results clearly indicate that the non-uniform wind farm inflow speed pspeed is the most important correction. In fact,

this was to be expected, given that the Sedini wind farm is located in
:
at

:
a rather complex terrain site. Results indicate also a

non-negligible effect of the wake deflection parameters for non-misaligned operation (ad, bd).

On the other hand, the additional model augmentation parameters (pTI,pwinddir,pacc,pshear) do not seem to contribute to a5

significant extent. Note also the slight retuning of parameters (α,β,ka,kb) and (TIa,T Ib,T Ic,T Id), which can be explained

with the fact that their initial values were taken from the literature, and therefore apply to different turbine types and sites.

Figure 15. Relative increase of the optimization cost function for the Sedini wind farm when eliminating one parameter set at a time.

Given these results, the rest of the analysis is based only on the sub-set of parameters pinflow, (pad ,pbd), (pα,pβ), (pka ,pkb),

(pTIa ,pTIb ,pTIc ,pTId). The augmentation term for non-uniform inflow speed is modeled using five nodes along the lateral po-

sition Y located at [−2000;−1000;0;1000;2000] m
:::::::::::::::::::::::::
[−2000;−1000;0;1000;2000]

::
m

::::::
(which

:
is
::::::::::::::
approximatively

::::::::::::::::
[−28;−14;0;14;28]

::::::::
DGE1.5s)10

and six nodes in wind direction Γ at [180;210;140;270;300;330]◦
::::::::::::::::::::::::
[180;210;140;270;300;330]◦, resulting in 30 nodes. The

Y -coordinate axis is orthogonal to the wind direction and its origin Y = 0 m is located at the position of wind turbine A5-25,

as shown in Fig. 12.

The correction parameter definitions
::::::::
definitions

::
of

:::
the

:::::::::
correction

::::::::
parameter, together with their bounds and converged values,

are reported in Table 7. Note that all parameters were set to zero at the beginning of the identification process.15
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Table 7. Definition of the parameters, together with their lower and upper bounds, and initial and identified values.

i pi plb,i pub,i pinit,i popt,i Implementation

1− 30 pinflow −0.1 0.1 0 see Fig. 16 faugm,speed(Y,Z,Γ,cspeed,pspeed)

31 pα −α∗ 4 0 0.7837 α= α∗+ pα

32 pβ −β∗ 2 0 1.063 β = β∗+ pβ

33 pka −k∗a 1 0 −0.2440 ka = k∗a + pka

34 pkb −k∗b 0.1 0 0.01862 kb = k∗b + pkb

35 pad −0.5 0.5 0 −0.3169 ad = a∗d + pad

36 pbd −0.1 0.1 0 −0.02246 bd = b∗d + pbd

37 pTIa −TI∗a 1 0 −0.09577 TIa = TI∗a + pTIa

38 pTIb −1 1 0 0.3403 TIb = TI∗b + pTIb

39 pTIc −1 1 0 0.4452 TIc = TI∗c + pTIc

40 pTId −1 1 0 −0.3337 TId = TI∗d + pTId

3.2.4 Results

To identify the 40 parameters of Table 7, only aggregated mean power measurements for wind speeds V ∈ [6,10]
::::::::
V ∈ [8,10] m/s

were used. In addition, only one third of all wind direction bins were employed, with bin centers at [192.5 : 15 : 312.5]◦,

resulting in a total of 9 measurement corridors. The remaining wind direction and speed bins were reserved for validation.

The model outputs y (cf. Eq. (9)) were defined as5

y =
1

Pref


PWT1

...

PWT43

 , (30)

where PWTi is the power of wind turbine i and Pref = 1.11 MW a reference wind turbine value used as scaling factor. A

diagonal measurement noise covariance matrix R was used, with all diagonal terms equal to σ2 = 0.012. The threshold of the

highest acceptable variance in the orthogonal parameter estimate was set to σ2
t = 0.01, which corresponds to a relative variance

of 2%. The relative weight of each observation was set proportional to the number of measurement points within the respective10

bin. In a first iteration, 29 orthogonal parameters could be identified. In the second and third iteration only 23 and 25 orthogonal

parameters fell below the threshold, although results changed only marginally after the first iteration.

The identified optimal parameter values popt,i are included in Table 7 and, for the inflow augmentation, are also reported in

Fig. 16. The latter
::::
plot shows, according to the colormap, the inflow augmentation function values faugm,speed(Y,Γ,cspeed,pspeed)

in the left subplot
:::
part

::
of

:::
the

:::::
figure. Each nodal point is indicated by a circle marker. The figure shows that significant variations15

in the inflow speed have been detected: for example, considering Γ = 270◦, the inflow speed at Y = +1000 m (approximately

at the location of wind turbines A3-19/20/21) is 3.5% smaller than the one measured at the reference turbines A5-24/25/26.

For the same wind direction, the speed at Y =−1000 m (approximately located at the wind turbines A4-36/37/38) is 4.8%
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larger. These variations are expected to be mainly caused by terrain effects. The right subplot of Fig. 16 shows the parameter

uncertainty (Cramér-Rao bounds). The parameter at the nodal point (Y =−2000 m; Γ = 330◦) is completely unobservable,

because it lies far outside of the wind farm perimeter (see Fig. 12). Some of the outer nodal points at Y =±2000 m do show

significantly increased uncertainties. However, the corresponding augmentation parameters (left subplot) are approximatively

zero.5
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Figure 16. Identified inflow augmentation parameters (left subplot) and their uncertainties (right subplot). Nodal points are indicated by the

circle markers.

Figure 17 shows the power coefficient of each individual wind turbine, as indicated by the subplot title, as function of wind

direction. The power coefficient is computed as CP = P/(0.5ρAV 3), where ρ= 1.177 kg/m3 is the constant air density, A=

π(70.5/2)2 m2 a reference rotor area, and V the corresponding estimated ambient wind speed. Blue crosses indicate SCADA

data points, the ones used for identification having been encircled. The gray shaded area indicates the standard deviation within

the binned measurements. The FLORIS (non-augmented) power estimates are shown by the black dashed lines, whereas the10

augmented model results are shown using red solid lines.

Even though the baseline FLORIS power estimates already exhibit a reasonable correlation with the measurements for

many turbines and wind directions, a significant improvement is achieved by the augmented model. Note that for Γ< 210◦

and Γ> 300◦ the number of measurement points within each bin becomes smaller
:
is
:::::::

reduced
:

(see Fig. 13), limiting the

measurement quality/trustworthiness. More specifically, the augmented model shows improvements in the modeling of the15

free stream turbine power, due to the effects of the wind farm inflow augmentation terms. Furthermore, the predictions of the

wake-induced power deficits are corrected, improving in many cases the deficit depth as well as the deficit location in terms of

wind direction.

The same results of Fig. 17 are also presented in a more synthetic form in terms of error probability densities in Fig. 18, where

the error is defined as ε= CP,Meas.−CP,FLORIS/Augm.. Each subplot shows the results for a different wind speed range. Note20

that the modeling error is reduced also for wind speed ranges that have not been used for model identification (i.e. V ∈ [6,8] m/s
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Figure 17. Power coefficient of each individual wind turbine, as indicated by the subplot title, as function of wind direction Γ for wind speeds

V ∈ [8,10] m/s. The gray shaded area indicates the standard deviation within the binned measurements. The number of measurements within

each bin is reported in Fig. 13.
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and V ∈ [10,12] m/s). The overall root mean squared error is reported within the legend, showing error reductions of 14%,

22% and 19%, respectively, highlighting the generality of the identified model and augmentation parameters.
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Figure 18. Error probability density functions for different wind speed ranges.

4 Conclusions

This paper has presented a new method to calibrate and augment parametric wind farm models. The proposed approach builds

on the vast body of knowledge and experience embedded in available reduced wind farm flow models. However, recognizing5

that any such model will always have only a limited prediction accuracy, the present approach augments a baseline model

with ad-hoc extra terms designed to correct some of its presumed specific deficiencies. These additional elements of the model

are then learnt from operational data. Optionally, the baseline model parameters can also be tuned within a single integrated

process. By design, the method has been exclusively based here on SCADA power measurements; therefore, it is readily
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applicable to most operational wind farms, whenever such data is available. However, the concept of model augmentation is

very general and could clearly be used also with additional
::::
other measurements.

To limit the number of free parameters and to overcome the fact that the identification problem can be over-parameterized

and hence ill-posed, a parameter transformation into an orthogonal space has been used. Thereby, only parameters that are

sufficiently visible within a given data set enter into the identification process.5

The method was first applied to a large data set obtained with scaled wind turbines operating in a boundary layer wind tunnel.

Thereby, it was shown that a correct learning of the extra modeling terms is achieved. These conclusions are made possible by

the fact that, in this case, the flow and wake characteristics are known with good accuracy. Next, the method was tested on a

real wind farm, in a realistic and highly complex situation.

Based on the results shown here, the following conclusions can be drawn:10

– Within the wind tunnel environment, a correct learning of non-uniform wind farm inflow speed and of secondary steer-

ing effects has been achieved. In particular, the latter shows a good match with detailed wake measurements in wind

misaligned conditions. It is remarkable, and very promising, that such detailed features of the solution could be inferred

purely from power operational
:::::::::
operational

:::::
power

:
data, even when starting from a baseline model that does not consider

at all secondary steering.15

– The application to field data has shown that, as expected for the complex terrain site analyzed here, orographic effects

play a driving role. A marked model improvement could be observed, even in conditions where the model was used for

extrapolating outside of the training conditions. It is worth noting that, in many practical onshore applications, orographic

effects will be present, and the fact that on
:::
one

:
can learn them from

::::::
simple

:::
and

::::::
readily

::::::::
available operational data is very

encouraging. Again, it should be explicitly pointed out that the baseline model did not include any orographic corrections.20

– It has been shown that model tuning and the learning of extra correction terms can be achieved simultaneously. This

reduces the risk of adapting the baseline parameters beyond their reasonable limits, driven by umodeled
:::::::::
unmodeled

physics.

– Although the augmented models show a much improved accuracy with respect to the baseline, some model mismatch still

remains. Although these remaining errors may often be caused by issues in the data rather than in the model, additional25

improvements are thought to be possible.

Future work will apply the proposed method to other wind farms, to increase confidence in the obtained results. From longer

and richer data sets, possibly in conjunction with meteorological reanalyses, it is presumed that yearly and seasonal variations

could be observed. The integration of CFD analyses can be used to support and confirm the identification of orographic effects.

Attention should also be paid to improved and additional forms of model corrections, including wake overlap models. Finally,30

it is worth pointing out again that an improved knowledge of the flow within a wind farm finds applicability in a potentially

large range of digitally-driven applications, including wind farm control, lifetime estimation, power forecasting, predictive
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maintenance and others. Therefore, it is expected that methods of deriving
::
for

:
high-accuracy flow predictions in wind farms

will be the subject of significant future research efforts.

Code and data availability. A MATLAB implementation of the wind farm model can be obtained by contacting the authors.

Appendix A: Identification method

1 Maximum Likelihood estimation of model parameters5

A steady-state wind farm model can be mathematically expressed as

y = f(p,u),

where f(·, ·, ·) is the non-linear static function describing the wind farm model, which depends on free parameters p ∈ Rn.

These parameters can include both wake model parameters and/or model augmentation parameters. The model inputs u ∈ Rnu

can include ambient wind conditions (i.e. ambient wind speed, direction, air density, turbulence intensity, etc.) and control10

inputs (i.e. yaw misalignment, partialization factor, blade pitch, rotor speed, etc. of each turbine). The model outputs y ∈ Rm

represent quantities of interest for which measurements are available, in the present work typically the power output of each

wind turbine. Experimental observations z of the simulated outputs will in general result in a residual r ∈ Rm, caused by

measurement and process noise (e.g. plant-model mismatch), so that

z = y+ r.15

Note that within this classical formulation, inputs are assumed to be exactly known. A generalized formulation that assumes

also uncertain inputs can be obtained by promoting the inputs to outputs and introducing new state variables (Wang et al., 2020)

.

Given a set S = {z1,z2, ...,zN} of N independent observations, the likelihood function (Jategaonkar, 2015) can be defined

as20

L(S
∣∣
p
) =

N∏
i=1

p(zi
∣∣
p
),

where p(·) is the probability of S given p. Assuming the residuals r with covariance R to be statistically independent within

the set of measurements (i.e., E[rirj
T ] =Rδi,j , where δi,j is the Kronecker delta), the likelihood function can be written as

(Jategaonkar, 2015)

L(S
∣∣
p
) =

(
(2π)mdet(R−1)

)−N/2
exp

(
−1

2

N∑
i=1

ri
TRri

)
.25
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Maximizing L (or minimizing its negative logarithm), a maximum likelihood estimate of the parameters can be obtained as

pMLE = argmin
p
J(p),

where J(p) =− ln(L(S
∣∣
p
). The measurement noise covariance matrixR can be estimated under mild hypotheses asR=

∑N
i=1 ri

Tri,

yielding J(p) = det(R), leading to an iteration between a solution at given covariance and a covariance update step (Jategaonkar, 2015)

. However, in this paper the measurement noise covariance matrix is estimated a priori and therefore assumed to be known.5

The cost function becomes therefore

J(p) =
1

2

N∑
i=1

ri
TR−1ri.

To ensure reasonable and physically viable solutions, parameters can be forced to stay within predefined upper (subscript

ub) and lower (subscript lb) bounds, by adding the corresponding inequality constraints plb ≤ p≤ pub to problem (13). As

the parameter values and constraints can differ in magnitude, it is a good practice to scale all parameters such that a value of10

1 corresponds to the upper bound pub and a value of −1 to the lower one plb. The optimization problem can finally be solved

numerically by a suitable algorithm, such as Sequential Quadratic Programming (SQP) (Nocedal and Wright, 2006).

0.1 Identifiability of parameters

The Fisher information matrix F ∈ Rn×n is defined as

F =

N∑
i=1

[∂yi
∂p

]T
R−1

[∂yi
∂p

]
,15

and describes the curvature of the likelihood function. It can be shown (Jategaonkar, 2015) that a lower bound (termed Cramér-Rao

bound) of the covariance of the estimated parameter is given by

F−1 = P ≤Var(pMLE−ptrue),

where ptrue are the true but unknown parameters. The k-th diagonal element of P is a lower bound on the variance of the

k-th estimated parameter, while the correlation between different parameters is captured by the off-diagonal terms of that same20

matrix. The correlation coefficient between two parameters i and j is defined as

Ψpi,pj =
Pi,j√
Pi,iPj,j

,

where Pi,j denotes the i, j-th element (row, column) of P . By analyzing the estimated parameter variance, as well as the

correlation between the parameters, valuable insight into the well-posedness of the parameter identification problem can be

readily obtained.25
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0.1 Problem transformation using the SVD

When some parameters are highly correlated or have large variance, the problem is ill-posed: it might exhibit sluggish

convergence, or not converge at all, and small changes in the inputs may lead to large changes in the estimates. Such situations

are difficult to solve in the physical space, because parameters are typically coupled together to some degree through the model.

5

To untangle the parameters, one may resort to the SVD (Golub and van Loan, 2013). By this approach (Hansen, 1987; Waiboer, 2007; Bottasso et al., 2014a)

, the original parameters are mapped into a new set of uncorrelated (orthogonal) parameters. Since the new unknowns are

uncorrelated, one can set a threshold to their variance by using the Cramér-Rao bound, and only retain in the optimization

those that are observable within the given data set.

The Fisher matrix F is first factorized as F =MTM , whereM ∈ RNm×n is defined as10

M =


R−1/2 ∂y1

∂p

R−1/2 ∂y2

∂p

...

R−1/2 ∂yN

∂p

 .

Assuming a larger number of measurements than parameters (Nm> n), matrixM can be decomposed into

M =UΣV T ,

where U ∈ RNm×Nm and V ∈ Rn×n are the matrices of left and right, respectively, singular vectors, while

Σ =

S
0

 ,15

where S ∈ Rn×n is a diagonal matrix, whose entries si are the singular values sorted in descending order.

By using Eq. (19) and the factorization of F , the inverse of the Fisher information matrix can be written as

P = V S−2V T .

Note that the columns of the orthogonal matrix V are also the eigenvectors of P and s−2
i the corresponding eigenvalues.

Furthermore, P and F are symmetric and, based on the spectral theorem, diagonalizable.20

The physical parameters p can now be transformed into a new set of orthogonal parameters Θ by a rotation performed with

the right singular values:

Θ = V Tp.

For the transformed set of parameters, the Cramér-Rao bound on the variance of the estimates is the diagonal matrixS−2 ≤Var(ΘMLE−Θtrue).

Therefore, a small singular value si corresponds to a large uncertainty in the corresponding orthogonal parameter estimation.25
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To remove parameters that cannot be estimated with sufficient accuracy, matrix S can be partitioned as

S =

SID 0

0 SNID

 ,
whereSID contains the identifiable singular values, i.e. those such that s−2

i < σ2
t , σt being a threshold on the highest acceptable

standard deviation in the estimate. On the other hand, matrix SNID contains singular values associated with parameters that

cannot be identified with sufficient accuracy, and are therefore discarded. Accordingly,V is also partitioned asV = [V ID,V NID],5

while the orthogonal parameters are partitioned as Θ = [ΘT
ID,Θ

T
NID]T . Finally, the physical parameters are expressed in terms

of the sole identifiable orthogonal parameters:

p≈ V IDΘID.

Given that the Fisher matrix depends on the values of the parameters p, an iterative procedure should be followed, where the

diagonalization of the problem is repeated at each update of the parameter vector.10

0.1 Identification method with variable measurement weights

In some cases, it may be useful to increase the importance of some measurements in the parameter estimation problem. This

can be readily obtained by simply treating an observation with weight w as if it appeared w times in the observation data set

(Karampatziakis and Langford, 2011). Cost function (14) then becomes

J(p) =
1

2

N∑
i=1

wiri
TR−1ri,15

where wi is the relative weight of observation i and
∑N
i=1wi =N . Similarly, the Fisher matrix becomes

F =
N∑
i=1

wi

[∂yi
∂p

]T
R−1

[∂yi
∂p

]
,

and its factorization is

M =


√
w1R

−1/2 ∂y1

∂p
√
w2R

−1/2 ∂y2

∂p

...
√
wNR

−1/2 ∂yN

∂p

 .

The remainder of the formulation is not affected by the introduction of weights.20
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Appendix A: Extended wind tunnel results

Figures A1, A2 and A3 report the power outputs of WT1, WT2 and WT3, respectively, for all tested configurations. In each

figure, clusters of three subplots represent a unique turntable position, as indicated by the title and the wind farm layout sketch

therein. The left part of each subplot shows the turbine power coefficient CP,WTi as a function of γWT1 (x-axis) and γWT2

(y-axis). All measured configurations are indicated by a small cross symbol, whereas the measurements used for parameter5

identification are circled. The central part of each subplot shows the FLORIS model error εFLORIS = CP,Meas.−CP,FLORIS,

including an annotation of the root mean squared error εRMS. Similarly, the right part of each subplot shows the augmented

model error εAugm..

For the first upstream wind turbine, WT1, the baseline FLORIS shows significant errors depending on the turntable position.

For γTT < 0◦ the model under-predicts turbine power because of the lack of uniformity of the flow, as also shown in Fig. 7. The10

opposite behaviour can be seen for γTT > 0◦. The augmented model however shows significant improvements, which are due

to the inflow correction. Still some under-prediction for γTT =−11.5◦ is present, which is probably caused by an excessively

small number of parameters in the inflow augmentation function and/or by the third wind turbine power measurements, which

are also strongly affected by lateral inflow variations.

The power of WT2, shown in Fig. A2, is only weakly affected or improved by the model corrections. In fact, in all inves-15

tigated conditions, the second turbine lateral position remains almost constant, such that the inflow correction does not have

much
:
a
:::::::::
significant direct effect. However, secondary steering only slightly changes the inflow direction at WT2; for example,

as shown in Fig. 8, a 20◦ misalignment of WT1 changes the wind direction by about 1.9◦. This leads to small misalignments

and thus only very small changes in power output considering the cosine-law. In addition, secondary steering leads also to a

slight lateral deflection of the non-uniform inflow.20

The power of WT3, reported in Fig. A3, shows significant improvements when using the augmentation terms. For example,

for γTT > 0◦ the baseline model under-predicts the real flow velocities —and hence the power output— at WT3, an error that

is corrected by the augmented model. In addition, for | γWT1 |> 0, secondary steering augmentation affects the deflection of

the second turbine wake (as shown in Fig. 8), leading to further improvements.

Author contributions. JS conducted the main research work. CLB developed the core idea of model augmentation, its formulation and the25

overall solution methodology, and supervised the whole research. JS and CLB wrote the manuscript. BS pre-processed the field measure-

ments. FC was responsible for the execution of the wind tunnel tests and the elaboration of the experimental results. All authors provided

important input to this research work through discussions, feedback and by improving the manuscript.
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Figure A1. Wind turbine WT1. Each cluster of three subplots represents a unique turntable position, as indicated by the title and the wind farm

layout sketch. Left subplot: turbine power coefficient CP,WT1 as a function of γWT1 (x-axis) and γWT2 (y-axis). Middle subplot: FLORIS

model error. Right subplot: augmented model error. Cross symbols: all measured configurations. Circles: conditions used for parameter

identification.
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Figure A2. Wind turbine WT2. Each cluster of three subplots represents a unique turntable position, as indicated by the title and the wind farm

layout sketch. Left subplot: turbine power coefficient CP,WT2 as a function of γWT1 (x-axis) and γWT2 (y-axis). Middle subplot: FLORIS

model error. Right subplot: augmented model error. Cross symbols: all measured configurations. Circles: conditions used for parameter

identification.
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Figure A3. Wind turbine WT3. Each cluster of three subplots represents a unique turntable position, as indicated by the title and the wind farm

layout sketch. Left subplot: turbine power coefficient CP,WT3 as a function of γWT1 (x-axis) and γWT2 (y-axis). Middle subplot: FLORIS

model error. Right subplot: augmented model error. Cross symbols: all measured configurations. Circles: conditions used for parameter

identification.
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