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Abstract. This paper describes a method to improve and correct an engineering wind farm flow model by using operational

data. Wind farm models represent an approximation of reality and therefore often lack accuracy and suffer from unmodeled

physical effects. It is shown here that, by surgically inserting error terms in the model equations and learning the associated

parameters from operational data, the performance of a baseline model can be improved significantly. Compared to a purely

data-driven approach, the resulting model encapsulates prior knowledge beyond the one contained in the training data set,5

which has a number of advantages. To assure a wide applicability of the method —including also to existing assets— learning

is here purely driven by standard operational (SCADA) data. The proposed method is demonstrated first using a cluster of

three scaled wind turbines operated in a boundary layer wind tunnel. Given that inflow, wakes and operational conditions

can be precisely measured in the repeatable and controllable environment of the wind tunnel, this first application serves the

purpose of showing that the correct error terms can indeed be identified. Next, the method is applied to a real wind farm situated10

in a complex terrain environment. Here again learning from operational data is shown to improve the prediction capabilities of

the baseline model.

1 Introduction

Knowledge of the flow at the rotor disk of each wind turbine in a wind power plant enables several applications, including wind

farm control, the provision of grid services, predictive maintenance, the estimation of life consumption, the feed-in to digital15

twins and power forecasting, among others.

This paper describes a new method to estimate turbine inflow within a wind farm. The main idea is to use an existing wind

farm flow model to provide a baseline predictive capability; however, as all models contain approximations and may lack

some physical phenomena, the baseline model is improved (or “augmented”, which is the term used in this work) by adding

parametric correction terms. In turn, these extra elements of the model are learnt by using operational data. The correction20

terms capture effects that are typically not present in standard flow models (as, for example, secondary steering (Fleming et al.,

2018) or wind farm blockage (Bleeg et al., 2018)), or that are highly dependent on a specific site or difficult to model upfront

(as, for example, non-uniform inflow caused by local orography and vegetation).

Various wind farm flow models have been developed and are described in the literature. While Direct Numerical Simulation

(DNS) is still out of reach for practical applications due to its overwhelming computational cost, Large Eddy Simulation (LES)25

methods are now routinely used for the modeling of wind farm flows (Fleming et al., 2014; Breton et al., 2017). Although
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invaluable for the understanding of the behavior of the atmospheric boundary layer and of wakes, LES is however still very

expensive, so that its use outside of some specialized applications is limited. To reduce cost, one can resort to lower fidelity

CFD models (Boersma et al., 2017), or to the extraction of reduced order models (ROMs) from higher fidelity ones (Bastine

et al., 2014). Instead of deriving models from first principles, another widely adopted approach is to use engineering models,

which are expressed in the form of parametric analytical formulas with a limited number of degrees of freedom and hence5

a much reduced numerical complexity (Frandsen et al., 2006; Gebraad et al., 2014; Bastankhah and Porté-Agel, 2016). The

present paper uses this last family of methods, although ideas similar to the ones developed here could be applicable also to

higher fidelity models.

Even though engineering models are constantly improved and refined (Fleming et al., 2018), they will most likely always

exhibit only a limited accuracy in many practical applications, for example whenever an important role is played by effects10

such as orography, (seasonal) vegetation, spatial variability of the wind, sea state roughness, the erection of other neighbouring

wind turbines, the presence of obstacles, and others. In addition, low fidelity models often lack some physics, e.g. the flow

acceleration caused by wake and rotor blockage, secondary steering or others. The idea pursued in this paper is then to take a

rather pragmatic approach: based on the realization that it will always be difficult —if not altogether impossible— to include

all effects and all physics in a model of limited numerical complexity, a given model is corrected by unknown parametric terms,15

which are then learnt by using operational data.

The idea of improving an existing model based on measurements is hardly new, and it is actually an important topic in

the areas of controls and system identification. For example, in the field of wind farm flows, a Kalman filtering approach has

been proposed by Doekemeijer et al. (2017) to update model predictions based on Lidar measurements. Here again the present

paper takes a more pragmatic approach, and model updating is based exclusively on data provided by the standard Supervisory20

Control And Data Acquisition (SCADA) systems that are typically available on contemporary wind turbines. On the one hand

this has the advantage that the proposed method is applicable to existing assets, as it does not necessitate of extra sensors. On

the other, given that stored SCADA data typically represents 10-minute averages, this also implies that the models obtained by

this technique are of a steady-state nature. Although unsteady effects in wind farms are clearly important, steady-state models

are still very valuable and can support many of the applications listed above. In addition, nothing prevents the generalization25

of the proposed approach to unsteady flow models, assuming that the relevant higher frequency data sets are available, which

is already the subject of ongoing work from these authors.

The contemporary literature —and not only in the field of wind energy— indicates an increasing interest in data-driven ap-

proaches. Just to give one single example related to wake modeling, a purely data-driven approach has been recently described

by Göçmen and Giebel (2018). However, the current enthusiasm for data should not make one forget that physics-based and30

analytical models are also extremely valuable because they often encapsulate significant knowledge on a given problem, often

corroborated by a long experience. In fact, purely data-driven approaches suffer from a number of limitations that descend

directly from a very simple and inevitable fact: a model that is exclusively based on data can only know what is contained in

the data set that was used to build it. Typically, this means that a very significant amount of data is necessary to obtain a model

that is sufficiently general and accurate. Furthermore, the data has to cover the entire spectrum of operation of the system. This35
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also means that the model might have very poor knowledge (and hence poor performance) for rare situations or conditions that

take place at the boundaries of the operating envelope, where few if any data points might be available.

An alternative to the purely data-driven approach is presented in this work, where a reference baseline model is augmented

with parametric error terms, which are then identified using data. The baseline model already includes prior knowledge based

on physics, empirical observations and experience. Therefore, even prior to the use of data, a minimum performance can be5

guaranteed. The model is augmented with parametric error terms, whose choice is driven by physics and the knowledge of

the limitations of the baseline model. Once the errors are identified using operational data, their inspection can help clarify

the causes of discrepancy between model and measurements. Eventually, this can be used to improve the underlying baseline

model. Furthermore, by looking at the magnitude of the identified errors, significant deviations from the baseline model can be

flagged to highlight issues with the model itself, the data or the training process.10

Finally, it should be noted that the identification of the error terms can be combined with the tuning of the parameters of

the baseline model. This addresses yet another problem: tuning the parameters of a model that lacks some physics may lead

to unreasonable values for the parameters, as the model is “stretched” to represent phenomena that is does not contain. By the

proposed hybrid approach, the simultaneous identification of the parameters of the baseline model together with the ones of the

error terms eases this problem, as unmodeled phenomena can be captured by the model-augmenting terms, thereby reducing15

the chances of nonphysical tuning of the baseline parameters.

As for many identification problems, it is in general not possible to guarantee that all unknown parameters are observable

and non-collinear given a set of measurements and, hence, given a certain informational content. To address this problem, the

method proposed by Bottasso et al. (2014a) is used here, where the original unknown parameters are recast into a new set of

statistically uncorrelated variables by using the Singular Value Decomposition (SVD) of the inverse Fisher information matrix.20

Once the problem has been solved in the space of the orthogonal uncorrelated parameters, the solution is mapped back into the

original physical space. This approach not only avoids the ill-posedness of the original problem, but also allows one to clarify

which physical parameters are visible given a certain data set.

The paper is organized as follows.

First, the baseline model is introduced, together with a detailed description of its proposed parametric corrections. Next,25

the new approach is applied to a cluster of scaled wind turbines operating in the atmospheric test section of the Politecnico

di Milano wind tunnel (Bottasso et al., 2014b). Goal of this first application is that of showing that a correct identification of

the error terms can be achieved. This is indeed possible in the controllable and repeatable conditions of a wind tunnel, where

inflow and wake characteristics can be precisely measured, something that is hardly possible today in the field. Specifically, it

is shown that the method can correctly learn the lack of uniformity of the wind tunnel inflow, which is akin to what happens in30

a real wind farm because of orographic effects. Similarly, it is shown that secondary steering, which is completely absent from

the baseline model used here, can be learnt by using turbine power measurements only.

After having demonstrated the method in the known and controlled wind tunnel environment, a second application is de-

veloped that targets a real 43-turbine wind farm. Here results indicate that the augmented model has a markedly improved
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prediction capability when compared to the baseline one, thanks primarily to the identification of orographic effects on the

inflow and the tuning of other model parameters.

The paper is completed by two appendices, the first discussing the details of the SVD-based identification method, and the

second reporting a more extended view of the results achieved in the wind tunnel.

2 Methods5

2.1 Baseline wind farm flow model

The proposed method is applied here to the augmentation of the baseline wake model of Bastankhah and Porté-Agel (2016),

implemented within the FLORIS framework (Doekemeijer et al., 2018).

By this model, given ambient wind conditions, steady state velocities within a wind farm can be computed, together with

the corresponding operating states and power outputs of all its turbines. First, ambient conditions are estimated from un-waked10

machines operating in free stream, which in turn are identified by using the turbine yaw orientations and the wake model

(Schreiber et al., 2018). Then, power and thrust of the upstream turbines are computed based on the turbine aerodynamic

characteristics, alignment with the local wind direction and regulation strategy. Next, the wakes shed by these turbines are

calculated in terms of their trajectory and speed deficit. In turn, this allows one to calculate the velocity at the rotor disks

of the turbines immediately downstream. In case of multiple wake impingements on a rotor, a combination model is used15

to superimpose multiple wake deficits. Similarly, an added turbulence model is used to estimate the turbulence intensity at

a downstream turbine rotor disk, as this local ambient parameter affects the expansion of the turbine wake. This process is

repeated marching downstream throughout the wind farm until the last downstream turbine is reached.

In this work, the implementation uses the selfSimilar FLORIS velocity deficit model, the rans deflection model, the quadrati-

cRotorVelocity wake combination model, and the crespoHernandez added turbulence model. The interested reader is referred20

to Bastankhah and Porté-Agel (2016), Crespo and Hernández (1996) and Doekemeijer et al. (2018) and references therein for

detailed descriptions and derivations of these models.

Engineering wake models depend on a number of parameters, which should be tuned in order to obtain accurate predictions.

For the specific model used in this work, these tunable factors are the wake parameters α, β, ka, kb, ad, and bd, and the

turbulence model parameters TIa, TIb, TIc, TId (Bastankhah and Porté-Agel, 2016).25

In this work, the parameters are first set to an initial value, either taken from the literature or identified with ad hoc measure-

ments. Corrections to the initial values are then expressed as

k = k∗+ pk, (1)

where k is a model parameter, k∗ its initial value and pk the correction. Although this is not strictly necessary, this redundant

notation helps highlight the changes to the nominal model parameters obtained by the proposed procedure.30
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2.2 Model augmentation

The engineering model described earlier is a rather simple approximation of a flow through a wind power plant and it is

therefore bound to have only a limited fidelity to reality, with a consequent only limited predictive accuracy. Even for more

sophisticated future models, it is difficult to imagine that all relevant physics will ever be precisely accounted for. But even if

such a model existed, in practice one might simply not have all necessary detailed information on the relevant boundary and5

operating conditions that would be required. For example, one might not know with precision the conditions of the vegetation

around and within a wind farm, with its effects on roughness and, hence, on the flow characteristics. In other words, it is safe

to assume that all models are in error to some extent, and will probably always be.

To address this problem, the model can be pragmatically augmented with correction terms. Here one could take two alter-

native approaches: either a generic all-encompassing error term is added to the model, or “surgical” errors are introduced at10

ad-hoc locations in the model to target specific presumed deficiencies. The first approach could be treated with a brute-force

parametric modeling approach, as for example by using a neural network. Here, the second approach was used, as it allows

for more insight into the nature of the identified corrections. The specific parametric corrections used in the present paper are

reviewed next. It is clear that these are only some of the many corrections that could be applied to the present baseline model,

so that the following does not pretend to be a comprehensive treatment of the topic. Nonetheless, results indicate that some of15

these corrections are indeed significant, and provide for a marked improvement of the baseline model.

Non-uniform inflow. The inflow to a wind farm can exhibit spatial variability, mostly because of orographic and local effects,

especially in complex terrain conditions. For example, commercial wind resource assessment tools include topographic

speed-up ratios customarily computed by CFD models (Jacobsen, 2019). In contrast to this established practice, no direct

or equivalent modeling of orographic effects are at present available in engineering wake models. Another reason for20

inflow variability may be due to wind farm blockage effects (Bleeg et al., 2018). Indeed, current wake models as the

one used here assume that upstream turbines affect downstream ones through their wakes, but do not model the effects

of downstream machines on the upstream ones. Depending on the wind direction and cross-wind location considered,

the number and operating state of downstream turbines varies, which may induce a cross-wind speed variability in the

inflow.25

To capture some of these effects, the model ambient flow speed V∞ is expressed here as a function of height above

ground Z, cross-wind lateral position Y and ambient wind direction Γ as

V∞(Y,Z,Γ) =
(

1 + faugm,speed(Y,Γ,cspeed,pspeed)
)
V∞,0

( Z
zh

)αvs

, (2)

where V∞,0 is the reference (baseline uncorrected) ambient flow speed, and zh the reference height of the vertically

sheared flow with exponent αvs. Function faugm,speed(Y,Γ,cspeed,pspeed) is the speed correction term, modeled here30

with simple bilinear shape functions with node locations cspeed and nodal values pspeed. Note that Eq. (2) could be

extended to include also a longitudinal wind-aligned coordinate, similarly to the localized speed-up ratios of Jacobsen

(2019). For simplicity, the present correction does not include the operating conditions of the downstream machines that,
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in principle, would be necessary in order to more accurately model wind farm blockage effects. Therefore, the present

correction can be interpreted as a primarily orography-induced one.

Local orographic effects and blockage may also induce variability of the wind direction Γ. Similarly, the vertical shear

exponent αvs and turbulence intensity I may vary, for example on account of non-uniform roughness induced by veg-

etation or other obstacles. To include these effects in the farm flow model, the baseline quantities are augmented as5

Γ(Y ) = Γref +Y faugm,dir(Γref ,cdir,pdir), (3a)

αvs(Γ) = αvs,ref + faugm,shear(Γ,cshear,pshear), (3b)

I(Γ) = Iref + faugm,I(Γ,cI,pI). (3c)

In all these expressions, (·)ref indicates a baseline reference quantity, while function faugm,(·) is a correction term based10

here on linear shape functions, with c(·) and p(·) the corresponding node locations and nodal values, respectively.

Secondary steering. By misaligning a wind turbine rotor with respect to the incoming flow direction, the rotor thrust force

is tilted, thereby generating a cross-flow force that laterally deflects the wake. As shown with the help of numerical

simulations by Fleming et al. (2018), this cross-flow force induces two counter rotating vortices that, combining with the

wake swirl induced by the rotor torque, lead to a curled wake shape. As observed experimentally by Wang et al. (2018),15

the effects of these vortices result in additional lateral flow speed components, which are not limited to the wake itself

but extend also outside of it. By this phenomenon, the flow direction within and around a deflected wake is tilted with

respect to the upstream undisturbed direction. Therefore, when a turbine is operating within or close to a deflected wake,

its own wake undergoes a change of trajectory —termed secondary steering— induced by the locally modified wind

direction. Although models of this phenomenon are being developed (Martínez-Tossas et al., 2019), they significantly20

increase the computational cost and are not yet available in standard implementations of engineering wake models as the

one used here.

The change of wind direction ∆Γ at a downstream turbine induced by secondary steering (indicated by the subscript ss)

is modeled here as

∆Γ(y) = faugm,ss(Y − ywc,Γinit,pss), (4)25

where faugm,ss is the correction term and ỹ = Y − ywc is the lateral distance to the wake centerline

(see Fig. 1). According to the notation used in Eq. (6.12) of Bastankhah and Porté-Agel (2016), Γinit indicates the initial

wake direction of the closest upstream turbine. The correction term is expressed as the sum of two Gaussian functions,

and more precisely
30

faugm,ss(ỹ,Γinit,pss) =

Γinit

(
pss,1 exp

(
− 0.5

( ỹ+ sgn(Γinit)pss,3

pss,2

)2)
− pss,4 exp

(
− 0.5

( ỹ+ sgn(Γinit)pss,6

pss,5

)2)
)
, (5)
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where pss = (pss,1,pss,2,pss,3,pss,4,pss,5,pss,6) is the vector of free parameters, where parameters 1 and 4 are related to

the amplitude, 3 and 6 to the standard deviation, and 2 and 5 to the location of the correction functions. As the Gaussian

functions are not centered at the wake centerline and the effect of secondary steering is assumed to be symmetric with

respect to the misalignment angle, the correction term depends also on the direction of wake deflection sgn(Γinit).

This particular choice of shape functions is motivated by the experimental results shown in Fig. 8b of Wang et al. (2018).5

Indeed, measurements reveal the presence of a lateral wake velocity whose maximum is displaced with respect to the

wake centerline, as well as a slight lateral flow in the opposite direction that motivates the use of the second Gaussian

function in the correction term introduced here.

Note that the change in local wind direction also leads to a slight lateral deflection of the non-uniform wind farm inflow

introduced previously. More precisely, for a turbine that is located ∆X behind an upstream turbine, the non-uniform10

inflow expressed by Eq. (2) is evaluated at Y + ∆X sin(∆Γ) instead of Y .

The upper subplot of Fig. 1 shows the hub height flow speed for two wind turbines modeled in FLORIS, the turbine rotor

disks being indicated with thick black lines. The wake centerlines and the undisturbed free stream wind direction are

indicated by black dotted and dashed lines, respectively. The upstream turbine is misaligned with respect to the incoming

flow and therefore its wake is deflected laterally. Using the baseline wake model, the downstream turbine wake develops15

along the free stream wind direction. The lower subplot of the same figure shows the

effects of the secondary steering correction term presented above. The plot clearly shows that the downstream turbine

wake path is affected by the locally changed wind direction.

Figure 1. Effect of secondary steering on the trajectory of a downstream turbine. Top subplot: baseline wake model; lower subplot: baseline

model augmented with the empirical correction term of Eq. (5).

Non-Gaussian wake and flow acceleration. Engineering wake models are based, among other hypotheses, on assumed shapes

of the speed deficit. For example, the present baseline model assumes a Gaussian distribution of the speed deficit within20

the wake. Another assumption is that the flow outside the wake is undisturbed, and equal to the free-stream. However,
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these assumption can at times not be exactly satisfied, as already observed by Xie and Archer (2017) and Martínez-Tossas

et al. (2019), among others. For example, aisle jets are local accelerations of the flow outside of the wake, produced by

local blocking in the neighborhood of an operating turbine. It has been reported that aisle jets can induce local flow

speedups in excess of 10% of the undisturbed inflow (Dörenkämper et al., 2015).

To account for such effects, the wake velocity Vwake of the baseline model is corrected as5

Vwake(dwc) = Vwake,FLORIS(dwc)
(

1 + faugm,acc(dwc,cacc,pacc)
)
, (6)

where Vwake,FLORIS is the baseline Gaussian wake speed profile, dwc is the absolute distance to the wake center (which,

at hub height, is equivalent to |ỹ|), and faugm,acc represents the correction term, modeled here as linear shape functions

characterized by cacc node locations and pacc nodal values.

Reduced power extraction due to non-uniform wind turbine inflow. Numerical simulations conducted in FAST (Jonkman10

and Jonkman, 2018) using its Blade Element Momentum (BEM) implementation yielded a slight reduction in the rotor

power coefficient for horizontally sheared flow, when compared to unsheared conditions with the same hub wind speed.

Even though BEM can only give a rough indication for such effect, a correction of the power coefficient of the baseline

model is introduced here in the form

CP = CP,κ=0

(
1 + pκκ

2
)
, (7)15

where CP,κ=0 is the nominal power coefficient, κ the equivalent horizontal linear shear coefficient on the rotor disk and

pκ the free correction parameter. The linear shear κ is either due to a lack of lateral uniformity of the inflow or to the

impingement of a wake, and it is evaluated accordingly within the farm model.

Wind speed dependent power loss in yaw misalignment. The present baseline formulation models the power extraction of

a misaligned wind turbine using the cosine-law CP(γ) = CP cos(γ)pP , where CP is the power coefficient of the wind-20

aligned turbine, γ the misalignment angle with respect to local flow direction, and pP the power loss exponent. Different

values for the power loss exponent have been reported in the literature, ranging from the value of 1.4 found by Fleming

et al. (2017), to 1.8 according to Schreiber et al. (2017), 1.9 for Gebraad et al. (2015), all the way to the ideal value of

3 that is expected if only the rotor-orthogonal ambient flow component contributes to power extraction (Boersma et al.,

2017). In addition, pP might also depend on the regulation strategy used by the on-board controller. Here, the turbine25

power coefficient in misaligned operation is augmented as

CP = CP cos(γ+ pP0)pP+pP,a(V−Vrated)+pP,b , (8)

where CP is the power coefficient of the flow-aligned turbine (possibly reduced by shear effects, as argued above), pP0

is the misalignment angle at which the turbine produces maximum power, while V and Vrated are, respectively, the rotor

effective and rated wind speeds. Finally, pP is the baseline exponent, while pP,a and pP,b are free parameters that model30

a linear wind speed dependency of the cosine law.
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2.3 Parameter identification method

The parameters of the baseline model and of its corrections terms are identified with the method developed by Bottasso et al.

(2014a). Details of the formulation are reported in Appendix A.

The formulation of the parameter estimation problem is independent on whether the parameters belong to the baseline model

or to its correction factors. In this sense, one can use the same method to just tune the baseline parameters without considering5

the correction terms, just identify the correction terms at frozen baseline model, or identify concurrently both sets.

The formulation is based on the classical likelihood function, which describes the probability that a given set of noisy obser-

vations can be explained by a specific set of model parameters. By numerically maximizing this function, a set of parameters

can be identified that most probably explains the measurements. Bound constraints are used to guide the process, and ensure

convergence to meaningful results.10

The accuracy with which the parameters can be estimated depends on how flat the likelihood function is with respect to

changes in the parameters. For example, a flat maximum of the function implies that different nearby values of the model

parameters are associated with similar values of the likelihood. These characteristics of the solution space are captured by the

Fisher information matrix, which can be interpreted as a measure of the curvature of the likelihood function. Furthermore, it

can be shown that the variance of the estimates is bound from below (Cramér-Rao bound) by the inverse of the Fisher matrix15

(Jategaonkar, 2015). Although the analysis of the Fisher information is useful for the understanding of the well-posedness

of an estimation problem and of the quality of the identified model, it does not offer a constructive way of reformulating a

given ill-posed problem. Indeed, a flat solution space and collinear parameters are to be expected in the present case, given the

complex couplings and dependencies that may exist among the various parameters of a wind farm flow model and its correction

terms.20

To overcome this limitation of the classical maximum likelihood formulation, following Bottasso et al. (2014a), the original

physical parameters of the model are transformed into an orthogonal parameter space, by diagonalizing the Fisher matrix using

the SVD. This way, as the parameters are now statistically decoupled, one can set a lower observability threshold, and retain in

the analysis only the ones that are in fact observable given the available set of measurements. Once the problem is solved, the

uncorrelated parameters are mapped back into the original physical space.25

As shown later on, this approach achieves multiple goals: it allows one to successfully solve a maximization problem with

many free parameters, some of which might be interdependent on one other or not observable in a given data set; it reduces the

problem size, retaining only the orthogonal parameters that are indeed observable; it highlights, through the singular vectors,

the interdependencies that may exist among some parameters of the model, which provides for a useful interpretation tool that

may guide the reformulation of parts of the model and its correction terms.30

3 Results

The results section is split into two parts: the application of the method to wind tunnel measurements, reported in Section 3.1,

and to a real wind farm consisting of 43 wind turbines, described in Section 3.2. The former aims at a verification of the
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correctness of the identified augmentations, given the known and controllable conditions of the scaled experiments, while the

latter is meant to offer a first glimpse on the practical applicability of the new method in the field.

3.1 Wind tunnel verification

Whether some identified model corrections are indeed physical or only an artefact of the model-measurement mismatch is

difficult to prove in general. From this point of view, wind tunnel experiments provide for a unique opportunity to verify the5

concept proposed in this paper. Indeed, the overall flow within a cluster of turbines can be measured with good accuracy, and

the experiments can be repeated in multiple desired operating conditions. The aim of this section is then to show that, even in

the presence of multiple possibly overlapping model terms, the correct improvements to a baseline model can be learnt from

operational data only.

3.1.1 Experimental setup10

The experimental setup is composed by a scaled cluster of three G1 wind turbines, each of them equipped with active yaw,

pitch and torque control. The turbines were operated in the boundary layer test section of the wind tunnel of the Politecnico di

Milano. Details on the models and the wind tunnel are reported, among other publications, in Campagnolo et al. (2016a, b, c).

The turbines are labelled WT1, WT2 and WT3, starting from the most upstream one and moving downstream. The machines

are mounted on a turntable, which allows for changing the wind direction with respect to the wind farm layout. In the nominal15

configuration, i.e. for a turntable rotation γTT = 0◦, the three turbines are aligned with the wind tunnel main axis —and hence

with the flow velocity vector. The turbines are installed with a longitudinal spacing of 5 diameters (D), as shown in the left part

of Fig. 2 with a view looking down towards the wind tunnel floor. As indicated in the figure, positive turntable rotations are

clockwise. For γTT 6= 0◦, the longitudinal distance between the turbines decreases slightly. However, considering that in this

work the largest investigated turntable angle was ±11.5◦, the longitudinal distance varied only between 4.9D and 5D.20

A pitot probe was placed at turbine hub height, 3D upstream of the first G1 in the nominal configuration. The probe was

therefore not placed on the turntable, and its position remained fixed with respect to the wind tunnel test section. A wind-

tunnel-fixed reference frame, used in the following to discuss the results, is also depicted in Fig. 2. Its origin is placed at the

turntable center, while the frame X axis is aligned with the wind direction, the Y axis points left looking downstream, and

hence Z points vertically up from the floor to complete a right handed triad.25

The yaw angle γWTi of the i-th wind turbine is positive for a counterclockwise rotation looking down onto the floor, as

shown for WT1 in Fig. 2, and null when the rotor disk is orthogonal to X and, therefore, to the nominal wind direction.

The right part of Fig. 3 shows a photo of the cluster of turbines, looking downstream with WT1 in the foreground. The wind

tunnel floor is of a blue color, whereas the turntable is black.

The ambient wind speed V∞,0 measured by the pitot tube was, for all conducted experiments, between 5.20 and 5.75 m/s,30

which correspond to slightly below-rated conditions. The ambient turbulence intensity was equal to 6.12%, while the vertical

shear was αvs = 0.144.

10

https://doi.org/10.5194/wes-2019-91
Preprint. Discussion started: 2 December 2019
c© Author(s) 2019. CC BY 4.0 License.



Figure 2. Wind farm layout for a null turntable rotation, looking down onto the wind

tunnel floor.

Figure 3. View looking downstream of the clus-

ter of three G1 turbines.

3.1.2 Model setup

The FLORIS model implementation used in this work is the one available online (Doekemeijer and Storm, 2018). All the

baseline model parameters were first identified based on single turbine wake measurements (Campagnolo et al., 2019), and

their values are reported in Table 1.

Table 1. Initial FLORIS parameters for the G1 turbine.

α∗ β∗ k∗a k∗b a∗d b∗d TI∗a TI∗b TI∗c TI∗d

0.9523 0.2617 0.0892 0.027 0 0 0.082 0.608 −0.551 −0.2773

Figure 4 shows the G1 powerCP and thrustCT coefficients as functions of wind speed V . The curves were obtained from dy-5

namic simulations conducted in turbulent inflow, using the same controllers implemented on the scaled models. TheCP andCT

vs. tip-speed-ratio (TSR) and blade pitch setting curves were obtained based on a BEM formulation using experimentally-tuned

11
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Figure 4. Power and thrust coefficients vs. wind speed for the G1 turbine.

airfoil polars (Bottasso et al., 2014a). As the turbine controller does not consider variations of air density ρ, the coefficients

shown in the figure exhibit a slight dependency on this ambient parameter. Within FLORIS, this effect is taken into account

by interpolating between the coefficients based on the actual density measured in the wind tunnel during each experiment. For

all reported test conditions, air density varied in the range ρ ∈ [1.159,1.185] kg/m3. The power loss exponent in misaligned

conditions was evaluated experimentally to be pP = 2.1741, while for thrust the coefficient was found to be pT = 1.4248.5

The ambient wind speed was determined from the pitot tube. It was observed that, by using this value, the power of a

free-stream turbine predicted by the FLORIS model was slightly underestimated, most probably due to the sheared flow. To

correct for this effect, measurements provided by the pitot tube were scaled by the factor 1.0176, which was computed in

order to match simulated and measured power. Furthermore, in the original FLORIS implementation the power of a turbine

is computed as P = 1/2ρAV 3
avgCP, where Vavg is the average wind speed at the rotor disk and A the rotor disk area. Here,10

power was computed by integrating over the rotor disk area, i.e. P = 1/2ρ
∫
A
V 3CPdA, which is believed to be slightly more

accurate even though it involves a minor increase in computational effort.

3.1.3 Ranking of correction terms

To initially assess the role of the various parameters, a ranking analysis was conducted. The parameters were clustered in sets,

depending on their role in the model. A first identification was performed using all parameter sets, yielding the presumed best15

value, denoted as Jref , of the cost function expressed by Eq. (A6). The analysis was then repeated multiple times, each time

removing one parameter set from the optimization. By looking at the resulting change in the value of the cost function, one may

12
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then rank the various parameter sets in order of importance. The analysis is based on a total of 190 experimental observations,

as described in greater detail in the following subsection.

All augmentation terms described in Section 2.2 were considered, except for the lateral variation in wind direction and the

wind direction dependent vertical shear, as they are not applicable to the wind tunnel experiments. The non-uniform flow speed

was modeled using five nodes located at cspeed(Y ) = [−3,−2,−1,0,1] m. As only the turbine positions with respect to the flow5

is altered by using the turntable, a wind direction dependency was not included in this correction term. For the non-uniform

inflow and secondary steering augmentations, the parameter initial values, lower and upper bounds and definitions are shown

in Table 2.

Table 2. Definition of the parameters, together with their initial values, lower and upper bounds, and identified values.

i pi plb,i pub,i pinit,i popt,i Implementation

1− 5 pspeed −0.1 0.1 0 [0.079,0.029, ... faugm,speed(Y,Z,0,cspeed,pspeed)

−0.051,−0.006,0] cspeed = [−3,−2,−1,0,1] m

6− 11 pss [−3,0, ... [3,1.5, ... [−0.5,0.5, ... [−0.94,0.63, ... faugm,ss(ỹ,Γinit,pss)

−3,−3, ... 3,3, ... 0.2,−0.25, ... 0.20,−0.48, ...

0,−3] 1.5,3] 0.5,−0.2] 0.73,−0.28]

Figure 5 shows the relative increase of the cost function when eliminating one parameter set at a time. The figure clearly

indicates that the most important parameters are the ones modeling laterally non-uniform speed and secondary steering. Indeed,10

this particular wind tunnel, due to its internal configuration and large width, does present a significant non-uniform flow speed,

as already discussed by Campagnolo et al. (2019). Likewise, the effect of secondary steering is particularly important and

should not be neglected for accurate predictions in misaligned conditions, as already reported in various publications. Based

on these results, in the following only non-uniform inflow and secondary steering corrections are considered.

3.1.4 Results15

A total of 451 observations were available, including 11 different turntable positions and thus wind farm layouts, with turbine

yaw misalignments ranging from −40◦ to +40◦. A total of 190 observations were used to identify the 5 parameters associated

with non-uniform inflow speed and the 6 associated with secondary steering, whereas the remaining data points were used for

model validation. The various tested configurations in terms of turbine misalignments and turntable positions are reported in

the figures of Appendix B.20

Among all the available measurements gathered at each operating condition, only the steady-state power of the wind turbines

was utilized. The model outputs y (see Eq. (A1)) are defined as

y =
1
Pref




PWT1

PWT2

PWT3


 , (9)

13

https://doi.org/10.5194/wes-2019-91
Preprint. Discussion started: 2 December 2019
c© Author(s) 2019. CC BY 4.0 License.



Figure 5. Relative increase of the optimization cost function when eliminating one parameter set at a time.

where PWTi is the power of the i-th wind turbine and Pref = 37.6 W is a reference value used as scaling factor. Based on

experience, a diagonal measurement noise covariance matrixR with all three terms equal to σ2 = 0.0252 was specified.

The threshold of the highest acceptable standard variance σ2
t for the orthogonal parameters was set to 0.01. As the parameters

are scaled within a range [−1,1], the threshold corresponds to a relative variance of 2%. Wind-aligned operating condition

(i.e., γWT1 = γWT2 = γWT3 = 0◦) were weighted with a factor of 2, to increased their importance in the parameter estimation5

process.

The constrained optimization problem (A5) was solved in Matlab using the fmincon function with the interior-point al-

gorithm (Mathworks, 2019). As the baseline model with its initial nominal values (p= pinit) is far away from the optimal

solution, a first optimization was performed including only the inflow correction. Afterwards, three iterations were conducted

including all 11 parameters. At each iteration, a total of 8 orthogonal parameters could be identified within the specified vari-10

ance threshold. The method converged very quickly, as the identified parameters and the residual did not change significantly

after the first iteration. Figure 6 shows on the left the initial variance of all 11 orthogonal parameters, and on the right the

variance computed after the first iteration. The horizontal black line indicates the threshold σ2
t .

Interestingly, the 11-th orthogonal parameter seems to have a very low observability. Table 3 shows the transformation matrix

V T that links the physical parameters to the orthogonal ones (Θ = V Tp, see Eq.( A14)). The 11-th orthogonal parameter is15

almost entirely associated with pspeed,5, which corresponds to the inflow speed augmentation node at position Y = 1 m. Indeed,

the location of this node is such that it has only a very marginal effect on the turbine outputs and, hence, a very low observability,

as shown later on in Fig. 7. The transformation matrix reported in Table 3 also shows that the other two orthogonal parameters

14
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Figure 6. Variance of the orthogonal parameters before (left) and after (right) the first iteration. The identifiable orthogonal parameters are

shown in red, whereas all others are shown in blue.

with low observability (9 and 10) represent secondary steering modes, mainly associated with the second Gaussian function of

the correction term.

Table 4 presents the correlation matrix Ψ (cf. Eq. (A9)), and shows a clear and to be expected dependency among neigh-

bouring inflow parameters. Among the secondary steering parameters, strong but less obvious correlations are present, which

suggest that a simplification of the assumed correction term might be possible.5

Figure 7 shows the identified inflow augmentation function. In the picture, whiskers indicate the parameter uncertainty σi,

computed based on the Cramér-Rao lower error bound as σ =
√

diag(P ) (cf. Eq. (A8)). The same figure reports also measure-

ments obtained with hot wire probes in the empty wind tunnel at three different heights above the floor. These measurements,

and especially the ones at hub height, are in good agreement with the estimates provided by the proposed method. The figure

also reports (with × symbols) the lateral position of the upstream turbine for the investigated turntable rotations. Noting that10

all points are shifted to the left, helps explain why the parameter associated with the inflow node at Y = 1 m has a very low

—but still finite— observability.

The identified secondary steering augmentation term is visualized in Fig. 8. The plot shows the wind direction change ∆Γ

as a function of the distance ỹ to the wake centerline for a turbine misalignment of 20◦. The gray shaded area shows the

uncertainty band popt,i±σi. Consistently with the findings of Wang et al. (2018), the maximum change in wind direction is15

found at approximatively 0.3 D on the leeward side of a deflected wake. The maximum magnitude of secondary steering in this

operating condition is

1.9◦, which is is again comparable to the results of Wang et al. (2018).
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Table 3. Transformation matrix V T after the first iteration. Each row corresponds to a different orthogonal parameter.
p

sp
e
e
d
,1

p
sp

e
e
d
,2

p
sp

e
e
d
,3

p
sp

e
e
d
,4

p
sp

e
e
d
,5

p
ss
,1

p
ss
,2

p
ss
,3

p
ss
,4

p
ss
,5

p
ss
,6

1 -0.0 0.0 0.0 -0.0 -0.0 -0.7 0.2 -0.0 0.7 -0.1 -0.1

2 -0.2 -0.4 -0.3 -0.1 -0.0 0.2 -0.1 -0.7 0.3 0.1 0.3

3 0.0 -0.6 -0.6 -0.1 0.0 -0.1 0.0 0.4 -0.1 -0.0 -0.2

4 -0.4 -0.6 0.6 0.3 0.0 -0.0 0.0 0.1 -0.0 -0.0 -0.0

5 -0.7 0.2 -0.1 -0.2 -0.0 0.2 0.5 0.2 0.1 -0.1 0.1

6 -0.5 0.2 -0.1 -0.1 0.0 -0.4 -0.7 -0.0 -0.2 0.1 -0.2

7 0.1 -0.2 0.3 -0.9 -0.0 -0.0 -0.1 0.1 -0.0 -0.0 0.1

8 0.0 0.0 -0.0 0.1 -0.0 0.3 -0.5 0.5 0.5 0.1 0.4

9 -0.1 0.0 0.0 -0.1 0.0 0.2 0.1 0.0 0.2 0.8 -0.5

10 0.0 -0.0 0.0 -0.0 -0.0 0.4 -0.2 -0.1 0.3 -0.6 -0.6

11 0.0 -0.0 0.0 -0.0 1.0 -0.0 -0.0 0.0 -0.0 -0.0 0.0

Table 4. Correlation coefficients Ψ after the first iteration.

p
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e
e
d
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p
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e
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e
e
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,3

p
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e
e
d
,4

p
sp

e
e
d
,5

p
ss
,1

p
ss
,2

p
ss
,3

p
ss
,4

p
ss
,5

p
ss
,6

pspeed,1 1.0 -0.5 0.2 -0.1 0.2 -0.1 -0.1 -0.0 -0.1 -0.2 0.2

pspeed,2 -0.5 1.0 -0.7 0.5 -0.2 -0.0 0.0 0.1 0.0 0.2 0.0

pspeed,3 0.2 -0.7 1.0 -0.7 0.2 0.1 -0.0 -0.1 0.1 -0.1 -0.2

pspeed,4 -0.1 0.5 -0.7 1.0 -0.4 -0.1 -0.0 0.1 -0.0 0.1 0.2

pspeed,5 0.2 -0.2 0.2 -0.4 1.0 -0.1 -0.1 0.0 -0.1 -0.3 0.2

pss,1 -0.1 -0.0 0.1 -0.1 -0.1 1.0 -0.6 -0.1 0.9 -0.4 -0.8

pss,2 -0.1 0.0 -0.0 -0.0 -0.1 -0.6 1.0 -0.3 -0.7 0.6 0.3

pss,3 -0.0 0.1 -0.1 0.1 0.0 -0.1 -0.3 1.0 0.2 0.4 0.6

pss,4 -0.1 0.0 0.1 -0.0 -0.1 0.9 -0.7 0.2 1.0 -0.2 -0.6

pss,5 -0.2 0.2 -0.1 0.1 -0.3 -0.4 0.6 0.4 -0.2 1.0 0.3

pss,6 0.2 0.0 -0.2 0.2 0.2 -0.8 0.3 0.6 -0.6 0.3 1.0
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Figure 7. Identified non-uniform inflow speed augmentation term (solid line) and associated standard deviation (whiskers). Hot wire mea-

surements at different heights above the floor are shown in thin solid lines. The upstream turbine (WT1) position is shown by × markers for

all investigated turntable positions.
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Figure 8. Identified wind direction change ∆Γ due to secondary steering as a function of distance ỹ to the wake centerline for a turbine

misalignment of 20◦. The grey shaded area shows the uncertainty band.
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The validity of the augmentation terms, identified as explained, was assessed by comparing the results of the simulation

model with experimental wake measurements from a different test campaign. The setup was identical to the one considered

here, except for the fact that only the first two upstream wind turbines were installed in the wind tunnel. At the downstream

distance where the third wind turbine should have been installed, flow velocity measurements were obtained at turbine hub

height using hot wire probes. Figure 9 shows wake profiles for the turntable position γTT = 0◦ for various combinations of5

turbine yaw misalignments, as indicated by the subplot titles. Each subplot is accompanied by two flow visualizations, one

based on the baseline FLORIS model and the other on its augmented version. The figures also include the points at which the

flow was measured with the probes.

In the left subplots, the improvements of the augmented model with respect to the baseline FLORIS are exclusively due to

the inflow correction, as the upstream turbine is aligned with the flow, and therefore there are no secondary steering effects.10

In the right subplots, the upstream turbine is misaligned (γWT1 = 30◦) and secondary steering effects are present. Taking into

account that model augmentation was obtained exclusively by turbine power measurements, the improved matching of the

wake profiles is remarkable. Still, even with the extra correction terms some model mismatches are present; these might be

caused by the wake combination model, which was not augmented in this study.

Figure 9. Wake profiles 5D behind WT2 for various combinations of turbine yaw misalignment. Experimental values are indicated by the ×
symbols. Each subplot is accompanied by two flow visualizations based on the FLORIS model and its augmented version.

The turbine power coefficients are computed as15

CP,i =
PWTi

0.5ρAV∞(YWTi,zh,0)3
, (10)
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where V∞ is the augmented inflow function given by Eq. (2), evaluated at the respective turbine position YWTi and hub height

zh. A detailed overview of the results is offered by the figures of Appendix B, which report the power outputs and the model

errors for all wind farm configurations. For readability, here a more synthetic overview of the results is presented, by condensing

the information contained in Fig. B1, B2 and B3 in the probability density plots of Fig. 10. This figure shows the results for

the baseline FLORIS model using a black dashed line, for the 11-parameter augmented model (i.e., only non-uniform inflow5

speed and secondary steering corrections) using a red solid line, and the 27-parameter augmented model (i.e., including all

additional augmentation terms presented earlier on) using a red dotted line. The root mean squared errors εRMS are shown in

the respective legends.

Note that the FLORIS error distribution shows two peaks for WT1 and WT3, indicating the presence of two uncorrelated

errors. The 11-parameter model removes these peaks, even though a smaller pair of peaks remains for WT2 and WT3, indicating10

additional errors that only the 27-parameter augmented model is able to capture.

Here again the trend is clear: the addition of non-uniform speed and secondary steering increases substantially the accuracy

of the baseline model, with additional small —but not insignificant— gains offered by the additional correction terms. Finally,

there is still room for improvement, possibly through extra correction terms not yet explored.

3.2 Field application15

In this section the model augmentation and identification method is applied to a full scale wind farm, to test its applicability

and usability in a realistic scenario. In such conditions, it is often difficult to assess weather the identified model corrections are

indeed physical or not, due to a lack of knowledge of the actual ground truth. To deal with this problem, the classical approach

of splitting the data set was used here: first, a relatively small subset of measurements is used for model and error identification;

then, the rest of the data set is used for a verification of the generality of the identified model, and of its improved performance20

with respect to the baseline one.

3.2.1 Wind farm and data pre-processing

The onshore wind farm is situated close to Sedini, on the Italian island of Sardinia, and it consists of 43 GE1.5s and GE1.5sle

wind turbines, as specified in Table 5.

Table 5. Turbine specifications

Type Rated power Cut-in wind speed Rated wind speed Rotor diameter Hub height Installed units

[MW] [m/s] [m/s] [m] [m] [-]

GE1.5s 1.5 4 13 70.5 65 36

GE1.5sle 1.5 3.5 12 77 80 7
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Figure 10. Error distributions for each turbine for all tested configurations, for the baseline FLORIS model (black dashed line), the 11-

parameter augmented model (red solid line) and the 27-parameter augmented model (red dotted line).

The wind farm is located at a rather complex terrain site, as shown in Fig. 11. Blue turbines are of type GE1.5sle, black and

red turbines are of type GE1.5s, the latter being used as sensing turbines as explained later on. Figure 12 shows a top view of

the wind farm, including the turbine identifiers.

Historical 10 min SCADA data was made available for this research for a period of 24 months, throughout the years 2015 and

2016. The recorded turbine yaw orientations exhibit sudden jumps and long term drifts. An ad-hoc algorithm was developed5

for detecting and correcting these data issues. On average, for each turbine 45% of the data points were missing, while 23%

were discarded because of low power output (< 5 kW) or rotor speed (< 1 rpm). As a result, about 33,700 data points were

available for each turbine. Regarding the missing data points, it is unknown whether the turbines were operating or just not

reporting. To avoid eliminating a large fraction of the data set, it was assumed that the turbines were indeed operational and

thus shedding wakes. This way, even if recordings of one or more turbines were missing at a specific time instance, the data10

points of the other turbines could still be used.
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Figure 11. 3D view of the Sedini wind farm with terrain elevation, as seen from Γ = 260◦.

Figure 12. Top view of the Sedini wind farm with turbine identifiers. The gray arrows indicate the X and Y axes for an ambient wind

direction Γ = 260◦.
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As no direct measurements of ambient conditions were available, the method described by Schreiber et al. (2018) was used

to identify ambient wind speed and direction. The procedure works as follows. First, the ambient wind direction is estimated

from turbine yaw orientations. Second, the ambient wind speed is estimated from the rotor effective wind speed of the free-

stream turbines, computed from the turbine power curve below rated wind speed. To this purpose, the three sensing turbines

A5-24, A5-25 and A5-26 indicated in red in Fig. 12 were used, checking that they were unwaked by using the flow model;5

the average of these speeds was attributed to the location of turbine A5-25. This way, 5,667 ambient wind conditions could be

processed for a range of wind directions Γ ∈ [184◦,320◦]. Based on the ambient wind conditions, the data of all turbines was

aggregated in two-dimensional bins: ambient wind speed (bin width of 2 m/s) and ambient wind direction (bin width of 5◦).

Figure 13 shows the scaled number of measurements in each bin between 6 and 12 m/s.

180 210 240 270 300
0

0.2

0.4

0.6

0.8

1

Figure 13. Scaled number of measurement data points (10 min mean) within each speed and direction bin.

3.2.2 Model setup10

Here again the FLORIS implementation was based on the version available online (Doekemeijer and Storm, 2019). The initial

values of both the wake and turbulence model parameters were set according to Bastankhah and Porté-Agel (2016) for (α∗,β∗),

Crespo and Hernández (1996) for (TI∗a ,T I
∗
b ,T I

∗
c ,T I

∗
d), Niayifar and Porté-Agel (2015) for (k∗a ,k

∗
b), and Gebraad et al. (2014)

for (a∗d, b
∗
d), as reported in Table 6.

Table 6. Initial FLORIS parameters for the Sedini wind farm.

α∗ β∗ k∗a k∗b a∗d b∗d TI∗a TI∗b TI∗c TI∗d

2.32 0.154 0.3837 0.0037 −0.0356 −0.01 0.73 0.8325 0.0325 −0.32

The required turbine power and thrust versus wind speed curves were provided by the turbine manufacturer. The vertical15

shear exponent of the inflow was set to αvs = 0.143 and the turbulence intensity to 14%, which represent annual average values

measured at 65 m of height by an on-site met-mast. Air density was set to the constant value ρ= 1.177 kg/m3.

The different turbine foundation heights were accounted for by accordingly increasing the tower heights, using the lowest

foundation height as reference (turbine A1-02). Indeed, power measurements of the upstream turbines show a correlation

22
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with the actual turbine hub height with respect to sea level (SL), as shown in Fig. 14. As indicated by the only approximate

correlation shown by the figure, it is clear that such simple correction might not provide satisfactory results for all wind

directions and all turbines, because complex orthographic flow effects might also play a role. Nonetheless, this approximate

correction seems to be a step in the right direction. In addition, some of these effects may be corrected by the lateral non-

uniformity terms added to the augmented model. The reference height of the sheared inflow zh (see Eq. (2)) was set to the hub5

height of the sensing turbine A5-25.
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Figure 14. Correlation between power output and hub height with respect to SL. Left subplot: power (× symbols and left y axis) and rotor

height above SL (◦ symbols and right y axis) vs. lateral turbine position for a wind direction Γ = 240◦. Right subplot: power vs. rotor height

above SL for Γ ∈ [220◦,275◦] and V∞ ∈ [8,10] m/s. All conditions are free-stream and all turbines of type GE1.5s.

3.2.3 Ranking of correction terms

As for the wind tunnel experiments, here again a first analysis was aimed at ranking the various correction terms. However,

since the turbines were operated with a conventional wind-aligned strategy, secondary steering corrections were neglected. The

ranking is based on data points in the range V ∈ [6,10] m/s, as described in greater detail in the following subsection.10

Figure 15 shows the relative increase of the cost function after optimization eliminating one set of parameters at a time. The

results clearly indicate that the non-uniform wind farm inflow speed pspeed is the most important correction. In fact, this was

to be expected, given that the Sedini wind farm is located in a rather complex terrain site. Results indicate also a non-negligible

effect of the wake deflection parameters for non-misaligned operation (ad, bd).

On the other hand, the additional model augmentation parameters (pTI,pwinddir,pacc,pshear) do not seem to contribute to a15

significant extent. Note also the slight retuning of parameters (α,β,ka,kb) and (TIa,T Ib,T Ic,T Id), which can be explained

with the fact that their initial values were taken from the literature, and therefore apply to different turbine types and sites.

Given these results, the rest of the analysis is based only on the sub-set of parameters pinflow, (pad ,pbd), (pα,pβ), (pka ,pkb),

(pTIa ,pTIb ,pTIc ,pTId). The augmentation term for non-uniform inflow speed is modeled using five nodes along the lateral

position Y located at [−2000;−1000;0;1000;2000] m and six nodes in wind direction Γ at [180;210;140;270;300;330]◦,20
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Figure 15. Relative increase of the optimization cost function for the Sedini wind farm when eliminating one parameter set at a time.

resulting in 30 nodes. The Y -coordinate axis is orthogonal to the wind direction and its origin Y = 0 m is located at the

position of wind turbine A5-25, as shown in Fig. 12.

The correction parameter definitions, together with their bounds and converged values, are reported in Table 7. Note that all

parameters were set to zero at the beginning of the identification process.

Table 7. Definition of the parameters, together with their lower and upper bounds, and initial and identified values.

i pi plb,i pub,i pinit,i popt,i Implementation

1− 30 pinflow −0.1 0.1 0 see Fig. 16 faugm,speed(Y,Z,Γ,cspeed,pspeed)

31 pα −α∗ 4 0 0.7837 α= α∗+ pα

32 pβ −β∗ 2 0 1.063 β = β∗+ pβ

33 pka −k∗a 1 0 −0.2440 ka = k∗a + pka

34 pkb −k∗b 0.1 0 0.01862 kb = k∗b + pkb

35 pad −0.5 0.5 0 −0.3169 ad = a∗d + pad

36 pbd −0.1 0.1 0 −0.02246 bd = b∗d + pbd

37 pTIa −TI∗a 1 0 −0.09577 TIa = TI∗a + pTIa

38 pTIb −1 1 0 0.3403 TIb = TI∗b + pTIb

39 pTIc −1 1 0 0.4452 TIc = TI∗c + pTIc

40 pTId −1 1 0 −0.3337 TId = TI∗d + pTId
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3.2.4 Results

To identify the 40 parameters of Table 7, only aggregated mean power measurements for wind speeds V ∈ [6,10] m/s were

used. In addition, only one third of all wind direction bins were employed, with bin centers at [192.5 : 15 : 312.5]◦, resulting in

a total of 9 measurement corridors. The remaining wind direction and speed bins were reserved for validation.

The model outputs y (cf. Eq. (A1)) were defined as5

y =
1
Pref




PWT1

...

PWT43


 , (11)

where PWTi is the power of wind turbine i and Pref = 1.11 MW a reference wind turbine value used as scaling factor. A

diagonal measurement noise covariance matrix R was used, with all diagonal terms equal to σ2 = 0.012. The threshold of the

highest acceptable variance in the orthogonal parameter estimate was set to σ2
t = 0.01, which corresponds to a relative variance

of 2%. The relative weight of each observation was set proportional to the number of measurement points within the respective10

bin. In a first iteration, 29 orthogonal parameters could be identified. In the second and third iteration only 23 and 25 orthogonal

parameters fell below the threshold, although results changed only marginally after the first iteration.

The identified optimal parameter values popt,i are included in Table 7 and, for the inflow augmentation, are also reported in

Fig. 16. The latter shows, according to the colormap, the inflow augmentation function values faugm,speed(Y,Γ,cspeed,pspeed)

in the left subplot. Each nodal point is indicated by a circle marker. The figure shows that significant variations in the inflow15

speed have been detected: for example, considering Γ = 270◦, the inflow speed at Y = +1000 m (approximately at the location

of wind turbines A3-19/20/21) is 3.5% smaller than the one measured at the reference turbines A5-24/25/26. For the same wind

direction, the speed at Y =−1000 m (approximately located at the wind turbines A4-36/37/38) is 4.8% larger. These variations

are expected to be mainly caused by terrain effects. The right subplot of Fig. 16 shows the parameter uncertainty (Cramér-Rao

bounds). The parameter at the nodal point (Y =−2000 m; Γ = 330◦) is completely unobservable, because it lies far outside20

of the wind farm perimeter (see Fig. 12). Some of the outer nodal points at Y =±2000 m do show significantly increased

uncertainties. However, the corresponding augmentation parameters (left subplot) are approximatively zero.

Figure 17 shows the power coefficient of each individual wind turbine, as indicated by the subplot title, as function of wind

direction. The power coefficient is computed as CP = P/(0.5ρAV 3), where ρ= 1.177 kg/m3 is the constant air density, A=

π(70.5/2)2 m2 a reference rotor area, and V the corresponding estimated ambient wind speed. Blue crosses indicate SCADA25

data points, the ones used for identification having been encircled. The gray shaded area indicates the standard deviation within

the binned measurements. The FLORIS (non-augmented) power estimates are shown by the black dashed lines, whereas the

augmented model results are shown using red solid lines.

Even though the baseline FLORIS power estimates already exhibit a reasonable correlation with the measurements for

many turbines and wind directions, a significant improvement is achieved by the augmented model. Note that for Γ< 210◦30

and Γ> 300◦ the number of measurement points within each bin becomes smaller (see Fig. 13), limiting the measurement

quality/trustworthiness. More specifically, the augmented model shows improvements in the modeling of the free stream turbine

25
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Figure 16. Identified inflow augmentation parameters (left subplot) and their uncertainties (right subplot). Nodal points are indicated by the

circle markers.

power, due to the effects of the wind farm inflow augmentation terms. Furthermore, the predictions of the wake-induced power

deficits are corrected, improving in many cases the deficit depth as well as the deficit location in terms of wind direction.

The same results of Fig. 17 are also presented in a more synthetic form in terms of error probability densities in Fig. 18, where

the error is defined as ε= CP,Meas.−CP,FLORIS/Augm.. Each subplot shows the results for a different wind speed range. Note

that the modeling error is reduced also for wind speed ranges that have not been used for model identification (i.e. V ∈ [6,8] m/s5

and V ∈ [10,12] m/s). The overall root mean squared error is reported within the legend, showing error reductions of 14%,

22% and 19%, respectively, highlighting the generality of the identified model and augmentation parameters.

4 Conclusions

This paper has presented a new method to calibrate and augment parametric wind farm models. The proposed approach builds

on the vast body of knowledge and experience embedded in available reduced wind farm flow models. However, recognizing10

that any such model will always have only a limited prediction accuracy, the present approach augments a baseline model

with ad-hoc extra terms designed to correct some of its presumed specific deficiencies. These additional elements of the model

are then learnt from operational data. Optionally, the baseline model parameters can also be tuned within a single integrated

process. By design, the method has been exclusively based here on SCADA power measurements; therefore, it is readily

applicable to most operational wind farms, whenever such data is available. However, the concept of model augmentation is15

very general and could clearly be used also with additional measurements.

To limit the number of free parameters and to overcome the fact that the identification problem can be over-parameterized

and hence ill-posed, a parameter transformation into an orthogonal space has been used. Thereby, only parameters that are

sufficiently visible within a given data set enter into the identification process.
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Figure 17. Power coefficient of each individual wind turbine, as indicated by the subplot title, as function of wind direction Γ for wind speeds

V ∈ [8,10] m/s. The gray shaded area indicates the standard deviation within the binned measurements. The number of measurements within

each bin is reported in Fig. 13.
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Figure 18. Error probability density functions for different wind speed ranges.

The method was first applied to a large data set obtained with scaled wind turbines operating in a boundary layer wind tunnel.

Thereby, it was shown that a correct learning of the extra modeling terms is achieved. These conclusions are made possible by

the fact that, in this case, the flow and wake characteristics are known with good accuracy. Next, the method was tested on a

real wind farm, in a realistic and highly complex situation.

Based on the results shown here, the following conclusions can be drawn:5

– Within the wind tunnel environment, a correct learning of non-uniform wind farm inflow speed and of secondary steer-

ing effects has been achieved. In particular, the latter shows a good match with detailed wake measurements in wind

misaligned conditions. It is remarkable, and very promising, that such detailed features of the solution could be inferred

purely from power operational data, even when starting from a baseline model that does not consider at all secondary

steering.10
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– The application to field data has shown that, as expected for the complex terrain site analyzed here, orographic effects

play a driving role. A marked model improvement could be observed, even in conditions where the model was used for

extrapolating outside of the training conditions. It is worth noting that, in many practical onshore applications, orographic

effects will be present, and the fact that on can learn them from operational data is very encouraging. Again, it should be

explicitly pointed out that the baseline model did not include any orographic corrections.5

– It has been shown that model tuning and the learning of extra correction terms can be achieved simultaneously. This

reduces the risk of adapting the baseline parameters beyond their reasonable limits, driven by umodeled physics.

– Although the augmented models show a much improved accuracy with respect to the baseline, some model mismatch still

remains. Although these remaining errors may often be caused by issues in the data rather than in the model, additional

improvements are thought to be possible.10

Future work will apply the proposed method to other wind farms, to increase confidence in the obtained results. From longer

and richer data sets, possibly in conjunction with meteorological reanalyses, it is presumed that yearly and seasonal variations

could be observed. The integration of CFD analyses can be used to support and confirm the identification of orographic effects.

Attention should also be paid to improved and additional forms of model corrections, including wake overlap models. Finally,

it is worth pointing out again that an improved knowledge of the flow within a wind farm finds applicability in a potentially15

large range of digitally-driven applications, including wind farm control, lifetime estimation, power forecasting, predictive

maintenance and others. Therefore, it is expected that methods of deriving high-accuracy flow predictions in wind farms will

be the subject of significant future research efforts.

Code and data availability. A MATLAB implementation of the wind farm model can be obtained by contacting the authors.

Appendix A: Identification method20

A1 Maximum Likelihood estimation of model parameters

A steady-state wind farm model can be mathematically expressed as

y = f(p,u), (A1)

where f(·, ·, ·) is the non-linear static function describing the wind farm model, which depends on free parameters p ∈ Rn.

These parameters can include both wake model parameters and/or model augmentation parameters. The model inputs u ∈ Rnu25

can include ambient wind conditions (i.e. ambient wind speed, direction, air density, turbulence intensity, etc.) and control

inputs (i.e. yaw misalignment, partialization factor, blade pitch, rotor speed, etc. of each turbine). The model outputs y ∈ Rm

represent quantities of interest for which measurements are available, in the present work typically the power output of each
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wind turbine. Experimental observations z of the simulated outputs will in general result in a residual r ∈ Rm, caused by

measurement and process noise (e.g. plant-model mismatch), so that

z = y+ r. (A2)

Note that within this classical formulation, inputs are assumed to be exactly known. A generalized formulation that assumes

also uncertain inputs can be obtained by promoting the inputs to outputs and introducing new state variables (Wang et al.,5

2020).

Given a set S = {z1,z2, ...,zN} of N independent observations, the likelihood function (Jategaonkar, 2015) can be defined

as

L(S
∣∣
p
) =

N∏

i=1

p(zi
∣∣
p
), (A3)

where p(·) is the probability of S given p. Assuming the residuals r with covariance R to be statistically independent within10

the set of measurements (i.e., E[rirj
T ] =Rδi,j , where δi,j is the Kronecker delta), the likelihood function can be written as

(Jategaonkar, 2015)

L(S
∣∣
p
) =

(
(2π)mdet(R−1)

)−N/2
exp

(
−1

2

N∑

i=1

ri
TRri

)
. (A4)

Maximizing L (or minimizing its negative logarithm), a maximum likelihood estimate of the parameters can be obtained as

pMLE = argmin
p
J(p), (A5)15

where J(p) =− ln(L(S
∣∣
p
). The measurement noise covariance matrix R can be estimated under mild hypotheses as R=

∑N
i=1 ri

Tri, yielding J(p) = det(R), leading to an iteration between a solution at given covariance and a covariance update

step (Jategaonkar, 2015). However, in this paper the measurement noise covariance matrix is estimated a priori and therefore

assumed to be known. The cost function becomes therefore

J(p) =
1
2

N∑

i=1

ri
TR−1ri. (A6)20

To ensure reasonable and physically viable solutions, parameters can be forced to stay within predefined upper (subscript

ub) and lower (subscript lb) bounds, by adding the corresponding inequality constraints plb ≤ p≤ pub to problem (A5). As

the parameter values and constraints can differ in magnitude, it is a good practice to scale all parameters such that a value of

1 corresponds to the upper bound pub and a value of −1 to the lower one plb. The optimization problem can finally be solved

numerically by a suitable algorithm, such as Sequential Quadratic Programming (SQP) (Nocedal and Wright, 2006).25

A1.1 Identifiability of parameters

The Fisher information matrix F ∈ Rn×n is defined as

F =
N∑

i=1

[∂yi
∂p

]T
R−1

[∂yi
∂p

]
, (A7)
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and describes the curvature of the likelihood function. It can be shown (Jategaonkar, 2015) that a lower bound (termed Cramér-

Rao bound) of the covariance of the estimated parameter is given by

F−1 = P ≤Var(pMLE−ptrue), (A8)

where ptrue are the true but unknown parameters. The k-th diagonal element of P is a lower bound on the variance of the

k-th estimated parameter, while the correlation between different parameters is captured by the off-diagonal terms of that same5

matrix. The correlation coefficient between two parameters i and j is defined as

Ψpi,pj
=

Pi,j√
Pi,iPj,j

, (A9)

where Pi,j denotes the i, j-th element (row, column) of P . By analyzing the estimated parameter variance, as well as the

correlation between the parameters, valuable insight into the well-posedness of the parameter identification problem can be

readily obtained.10

A1.2 Problem transformation using the SVD

When some parameters are highly correlated or have large variance, the problem is ill-posed: it might exhibit sluggish conver-

gence, or not converge at all, and small changes in the inputs may lead to large changes in the estimates. Such situations are

difficult to solve in the physical space, because parameters are typically coupled together to some degree through the model.

To untangle the parameters, one may resort to the SVD (Golub and van Loan, 2013). By this approach (Hansen, 1987; Wai-15

boer, 2007; Bottasso et al., 2014a), the original parameters are mapped into a new set of uncorrelated (orthogonal) parameters.

Since the new unknowns are uncorrelated, one can set a threshold to their variance by using the Cramér-Rao bound, and only

retain in the optimization those that are observable within the given data set.

The Fisher matrix F is first factorized as F =MTM , whereM ∈ RNm×n is defined as

M =




R−1/2 ∂y1
∂p

R−1/2 ∂y2
∂p

...

R−1/2 ∂yN

∂p



. (A10)20

Assuming a larger number of measurements than parameters (Nm> n), matrixM can be decomposed into

M =UΣV T , (A11)

where U ∈ RNm×Nm and V ∈ Rn×n are the matrices of left and right, respectively, singular vectors, while

Σ =


S

0


 , (A12)

where S ∈ Rn×n is a diagonal matrix, whose entries si are the singular values sorted in descending order.25
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By using Eq. (A11) and the factorization of F , the inverse of the Fisher information matrix can be written as

P = V S−2V T . (A13)

Note that the columns of the orthogonal matrix V are also the eigenvectors of P and s−2
i the corresponding eigenvalues.

Furthermore, P and F are symmetric and, based on the spectral theorem, diagonalizable.

The physical parameters p can now be transformed into a new set of orthogonal parameters Θ by a rotation performed with5

the right singular values:

Θ = V Tp. (A14)

For the transformed set of parameters, the Cramér-Rao bound on the variance of the estimates is the diagonal matrix S−2 ≤
Var(ΘMLE−Θtrue). Therefore, a small singular value si corresponds to a large uncertainty in the corresponding orthogonal

parameter estimation.10

To remove parameters that cannot be estimated with sufficient accuracy, matrix S can be partitioned as

S =


SID 0

0 SNID


 , (A15)

whereSID contains the identifiable singular values, i.e. those such that s−2
i < σ2

t , σt being a threshold on the highest acceptable

standard deviation in the estimate. On the other hand, matrixSNID contains singular values associated with parameters that can-

not be identified with sufficient accuracy, and are therefore discarded. Accordingly, V is also partitioned as V = [V ID,V NID],15

while the orthogonal parameters are partitioned as Θ = [ΘT
ID,Θ

T
NID]T . Finally, the physical parameters are expressed in terms

of the sole identifiable orthogonal parameters:

p≈ V IDΘID. (A16)

Given that the Fisher matrix depends on the values of the parameters p, an iterative procedure should be followed, where the

diagonalization of the problem is repeated at each update of the parameter vector.20

A1.3 Identification method with variable measurement weights

In some cases, it may be useful to increase the importance of some measurements in the parameter estimation problem. This

can be readily obtained by simply treating an observation with weight w as if it appeared w times in the observation data set

(Karampatziakis and Langford, 2011). Cost function (A6) then becomes

J(p) =
1
2

N∑

i=1

wiri
TR−1ri, (A17)25

where wi is the relative weight of observation i and
∑N
i=1wi =N . Similarly, the Fisher matrix becomes

F =
N∑

i=1

wi

[∂yi
∂p

]T
R−1

[∂yi
∂p

]
, (A18)
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and its factorization is

M =




√
w1R

−1/2 ∂y1
∂p√

w2R
−1/2 ∂y2

∂p

...
√
wNR

−1/2 ∂yN

∂p



. (A19)

The remainder of the formulation is not affected by the introduction of weights.

Appendix B: Extended wind tunnel results

Figures B1, B2 and B3 report the power outputs of WT1, WT2 and WT3, respectively, for all tested configurations. In each5

figure, clusters of three subplots represent a unique turntable position, as indicated by the title and the wind farm layout sketch

therein. The left part of each subplot shows the turbine power coefficient CP,WTi as a function of γWT1 (x-axis) and γWT2

(y-axis). All measured configurations are indicated by a small cross symbol, whereas the measurements used for parameter

identification are circled. The central part of each subplot shows the FLORIS model error εFLORIS = CP,Meas.−CP,FLORIS,

including an annotation of the root mean squared error εRMS. Similarly, the right part of each subplot shows the augmented10

model error εAugm..

For the first upstream wind turbine, WT1, the baseline FLORIS shows significant errors depending on the turntable position.

For γTT < 0◦ the model under-predicts turbine power because of the lack of uniformity of the flow, as also shown in Fig. 7. The

opposite behaviour can be seen for γTT > 0◦. The augmented model however shows significant improvements, which are due

to the inflow correction. Still some under-prediction for γTT =−11.5◦ is present, which is probably caused by an excessively15

small number of parameters in the inflow augmentation function and/or by the third wind turbine power measurements, which

are also strongly affected by lateral inflow variations.

The power of WT2, shown in Fig. B2, is only weakly affected or improved by the model corrections. In fact, in all inves-

tigated conditions, the second turbine lateral position remains almost constant, such that the inflow correction does not have

much direct effect. However, secondary steering only slightly changes the inflow direction at WT2; for example, as shown in20

Fig. 8, a 20◦ misalignment of WT1 changes the wind direction by about 1.9◦. This leads to small misalignments and thus only

very small changes in power output considering the cosine-law. In addition, secondary steering leads also to a slight lateral

deflection of the non-uniform inflow.

The power of WT3, reported in Fig. B3, shows significant improvements when using the augmentation terms. For example,

for γTT > 0◦ the baseline model under-predicts the real flow velocities —and hence the power output— at WT3, an error that25

is corrected by the augmented model. In addition, for | γWT1 |> 0, secondary steering augmentation affects the deflection of

the second turbine wake (as shown in Fig. 8), leading to further improvements.
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Figure B1. Wind turbine WT1. Each cluster of three subplots represents a unique turntable position, as indicated by the title and the wind farm

layout sketch. Left subplot: turbine power coefficient CP,WT1 as a function of γWT1 (x-axis) and γWT2 (y-axis). Middle subplot: FLORIS

model error. Right subplot: augmented model error. Cross symbols: all measured configurations. Circles: conditions used for parameter

identification.
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Figure B2. Wind turbine WT2. Each cluster of three subplots represents a unique turntable position, as indicated by the title and the wind farm

layout sketch. Left subplot: turbine power coefficient CP,WT2 as a function of γWT1 (x-axis) and γWT2 (y-axis). Middle subplot: FLORIS

model error. Right subplot: augmented model error. Cross symbols: all measured configurations. Circles: conditions used for parameter

identification.
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Figure B3. Wind turbine WT3. Each cluster of three subplots represents a unique turntable position, as indicated by the title and the wind farm

layout sketch. Left subplot: turbine power coefficient CP,WT3 as a function of γWT1 (x-axis) and γWT2 (y-axis). Middle subplot: FLORIS

model error. Right subplot: augmented model error. Cross symbols: all measured configurations. Circles: conditions used for parameter

identification.
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