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Response to 1st Reviewer 

The authors would like to thank the reviewer for the valuable comments provided. The comments 
are answered below and the changes to the paper will be highlighted in yellow, while the changes 
which common to all reviewers are highlighted in light blue. 

1. Table 1 and 2 do not give enough information. For example, ‘Data’ in Table 1 needs to 
list the specific parameters instead of just highlighting the data interval. 

Tables 1 and 2 have been modified as follows: 

 Table 1: 
 LiDAR instrumentation type 
 Type of data measured by the LiDAR 

 Table 2: 
 Met station instrumentation. 

A reference to the LiDAR instrumentation has been included in line 239: 

(https://www.zxlidars.com/wind-lidars/zx-300/, n.d.) 

The tables 1 and 2 are shown below with the modifications to the tables being highlighted in yellow. 

Table 1: Candidate Site parameters (Cordina, et al., 2017). 

Station Name Qalet Marku LiDAR Station 

LiDAR Type  ZephIR 300 
(https://www.zxlidars.com/wind-
lidars/zx-300/, n.d.) 

Cone Angle,  

LiDAR aperture height 
above the tower rooftop. 

60°  

1 𝑚 

Measurement height, 
above the LiDAR 
aperture window, m 

80𝑚  

Data Average hourly wind speed, wind 
direction, atmospheric pressure 
and relative humidity. 

Data range 1st July, 2015 – 31st December, 
2016 

Geographical 
Coordinates 

35.946252°𝑁, 14.45329°𝐸 

Average tower rooftop 
height above surrounding 
ground level 

10 𝑚 

 

Height of base of tower 
above sea level 

6 𝑚 

Table 2: Reference Site parameters (Malta International Airport). 

Station Name Luqa MIA Weather Station 
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Measuring Instruments Wind – Cup and vane 

Digital temperature probe 

Digital Barometer. 

Data Average hourly wind speed, 
wind direction, air 
temperature, atmospheric 
pressure and relative 
humidity. 

Mast height  10 𝑚 above ground 

Height of site above sea level 78 𝑚 

Geographical Coordinates 35.85657°𝑁, 14.47676°𝐸 
 

2. On line 179, ‘While MCP methodologies have been developed for wind speed, they 
cannot be used directly for predicting wind direction.’. Could you explain this? 

Nothing has been found in literature on Measurement-Corelate-Predict techniques 
which explicitly mentions prediction of wind direction at the candidate site. A 
reference on the use of vectors was found in a presentation by Bosart and Papin (Bosart 
& Papin, 2017), which showed a way of using a regression methodology to predict the 
wind direction, by breaking the wind speed vector into its respective components. 
MCP methodologies are normally used to predict the wind speed magnitude at the 
candidate site, not the direction. The methodology used creates a regression model 
using the wind velocity vector components to predict the wind vector components at 
the candidate site, hence deriving the wind direction. Bosart and Papin’s method is 
adapted, in this paper, to MCP methodologies. 

This clarification will be included in the paper at line 197 as follows. 

“While MCP methodologies have been developed for wind speed, they cannot be 
directly used for predicting wind direction. Nothing has been found in literature on 
Measurement-Corelate-Predict techniques which explicitly mentions prediction of 
wind direction at that candidate site. The use of wind speed vectors is a way of using 
a regression methodology to predict the wind direction, by breaking the wind speed 
vector into its respective components. MCP methodologies are normally used to 
predict the wind speed magnitude at the candidate site, but not the direction. Wind 
velocity may be negative (if one considers it as a vector) and the MCP methodology 
normally considers the positive value of the wind, i.e. magnitude. The methodology 
used creates a regression model using the wind velocity vector components to predict 
the wind vector components at the candidate site (Bosart & Papin, 2017).” 

 

3. On line 243, you said ‘SSTEP 1 – the various MCP methodologies are used to 
compute the MCP model. This is done using wind speed and direction data at a 
candidate and reference site for the year 2016’. However, the paper lacks the 
description of the modelling. For the regression model, how many inputs are you 
use? Are these MCP models one-step ahead prediction model? What are the other 
settings in these models? For example, how many hidden layers are there in the ANN 
and what type of hidden neurons are selected. If the modelling information is 
provided, it will be clearer and easier to understand. 

The MCP methodologies used in this paper are described by (Mifsud, et al., 2018). The 
figures reproduced below are from the reference and show a description of the ANN 
model used for the regression between the candidate and the reference site. 
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The Multiple Linear Regression (MLR), Artificial Neural Network (ANN), Decision Trees 
(DT) and Support Vector Regression (SVR) models used for the prediction of wind speed, use 
wind speed (magnitude) and wind direction (in degrees) as input, and the wind speed at the 
candidate site as the target data to train the model. The models are created using 2016 wind 
data and 2015 wind data at the reference site is fed into the model to predict the 2015 wind 
speed at the candidate site. 
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The reference paper describes the MLR, Decision Tree (DT) and the Support Vector 
Regression (SVR) models. The data and methodologies are the same for this paper. The paper 
also describes the mathematical theory of the MCP methodologies and how they are applied 
to predict the wind at the candidate site.  

MCP models are not one step ahead prediction models. 

The same model structure is used for the prediction of wind direction. The input training data 
in this case is the vector component in the North or East Direction at the candidate site and the 
output of the model is the respective component at the candidate site (for 2016). The reference 
site data for 2015 is then run through the model to predict the north and east components of 
the wind. The wind direction is then derived.  

Table 4 (below) will be introduced as a description of the models used in the MCP, and a 
description of the contents of the table will be included in line 293, as follows: 

1. STEP 1 - The various MCP methodologies are used to compute the MCP model. For wind 
speed, the models are trained using wind speed and direction data at a candidate and reference 
site for the year 2016. For the wind direction the input training data is the wind velocity vector 
component in the North or East direction at the candidate site, and the output of the model is 
the respective component at the candidate site. The models are summarised in Table 4, below. 
Table 4 describes the inputs used to train the respective models, both for wind speed and wind 
direction. It also shows the parameters of the models and the respective algorithms used to 
train the model, such as Least-Squares for MLR and the Levenberg-Marquardt algorithm for 
ANN.  

Table 4: Description of the regression methodologies used for the Measure-Correlate-Predict 
Method 

MCP 
methodology 

Wind Speed Wind Direction  

MLR Independent variable: Wind speed 
magnitude at reference site. 

Dependent variable: Wind Speed 
magnitude at candidate site. 

Independent variable: Wind velocity 
vector in North and East direction at 
reference site. 

Dependent variable: Wind velocity 
vector in North and East direction at 
candidate site. 

Methodology: Least Squares 

ANN Number of inputs: 2 - wind speed 
magnitude, wind direction at the 
reference site. 

Number of outputs: 1 - wind speed 
magnitude at candidate site. 

Number of inputs: 1 - Wind velocity 
vector in North and East direction at 
reference site. 

Number of outputs: 1 - Wind velocity 
vector in North and East direction at 
candidate site. 

Number of layers: 3 

Number of neurons in layer: 30,30,10 

Training Methodology: Levenberg-Marquardt Algorithm  

Percentage of points used for training: 70% 

Percentage of points used for verification: 15% 



5 

 

Percentage of points used for testing: 15% 

DT Number of inputs: 2 - wind speed 
magnitude, wind direction at reference 
site. 

Number of outputs: 1 - wind speed at 
candidate site. 

Number of inputs: 1 - Wind velocity 
vector in North and East direction at 
reference site. 

Number of outputs: 1 - Wind velocity 
vector in North and East direction at 
candidate site. 

Number of Trees: 200 

Minimum Number of Leafs: 5 

Methodology: Tree Bagger Ensemble 

SVR Number of inputs: 2 - Wind speed 
magnitude, wind direction at reference 
site. 

Number of outputs: 1 - Wind speed 
magnitude at candidate site. 

Number of inputs: 1 - Wind velocity 
vector in North and East direction at 
reference site. 

Number of outputs: 1 - Wind velocity 
vector in North and East direction at 
candidate site. 

Methodology: Hyperparameter optimisation,  

Kernel: Gaussian 

Solver: Sequential Minimal Optimisation 
 

4. You mentioned that the models were created using the data for the year 2016. Have 
your checked that the amount of data is enough to create a satisfactory MCP model? 

1. MCP are normally carried out using hourly wind data measured over the period of a year. This 
means that for 2016 there are 8784 data points, which is considered adequate and within the 
scope of the MCP methodology.  

Lines 58 and line 261 have been modified accordingly: 

Line 58: 

The regression is carried out using concurrent wind speed and wind direction data at the reference 
and the candidate sites. The reference site is normally the closest meteorological station e.g. 
airports, and the candidate site is the location chosen for the windfarm. When the model is created, 
hence establishing a relationship between the wind speed at both sites, the long-term wind data at 
the reference can be used to predict the long-term wind speed at the candidate site. 

Line 261: 

The ideal number of data points used to create the MCP models is thus 8784, the number of hours 
in 2016. Following analysis and filtration of the wind speed data at the reference site, 98% of the 
data was considered as suitable for the creation of the model. The data at the reference site was 
all considered as suitable. Hence, the regression model was created using the concurrent 8616 
wind speed and direction values. For the year 2015, 95.6% of the data was considered valid (the 
measurement campaign started on the 26th of June, 2015, hence there were 4368 hours of wind 
speed and direction measurement of which 4176 were valid data points). 
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Response to 2nd Reviewer 

 

The authors would like to thank the reviewer for the valuable comments provided. The comments 
are answered below and the changes to the paper will be highlighted in green, while the changes 
which are answers common to all reviewers are highlighted in light blue. 

1. Line 40: I don’t understand this statement. Why are they equivalent? 

Line 41 reworded as follows for clarity: 

As the LiDAR is sited on the roof of a coastal tower, at a height of 20m above the mean sea level,, 
the 80m measurement height would be equivalent to an offshore wind turbine (WT) hub height of 
100m above the sea surface.  

2. Line 160: meandering? 

Line 162:  

Dynamic Wake Meandering Model  

3. Line: 216: again, confusing 

Clarified in line 250 as follows: 

In this case the wind data measured by the LiDAR at a height of 80m, would be equivalent to a 
cumulative height of 100m above sea-level, which would be the hub height of the wind turbines in 
the windfarm. This is because the LiDAR is situated on the rooftop of a coastal tower at a height of 
20m above sea level, as shown in Table 7. 

4. Line 223: what was the % of data that could be used? 

Inserted the below in line 261: 

Following analysis and filtration of the wind speed data at the reference site, 98% of the data was 
considered as suitable for the creation of the model. The data at the reference site was all considered 
as suitable. Hence, the regression model was created using the concurrent 8616 wind speed and 
direction values. For the year 2015, 95.6% of the data was considered valid (the measurement 
campaign started on the 26th of June, 2015, hence there were 4368 hours of wind speed and direction 
measurement of which 4176 were valid data points).  

5. Line 236: in a row 

Line 280 changed as follows for a better clarification: 

The windfarm is made up of 50 wind turbines. There are 10 wind turbines in a row, having a cross-
wind spacing of five rotor diameters (5D). The distance between the successive rows of wind 
turbines, or the downwind spacing is eight rotor diameters (8D).  

6. Line 278: So, if I understand correctly, an MCP model is made for wind speed. Then 
for wind direction, two more MCP models are created for the wind speed components, 
which are then used to calculate the wind direction. These latter two models could of 
course also be used to calculate the magnitude of the wind speed and compared to the 
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first MCP model. Was that done? Is there an advantage of one approach versus the 
other? Please comment. 

You understand correctly. This was done, but the results obtained with the first method (3 MCP 
models), were, by far superior to the second method (2 MCP models used to calculate the 
magnitude and direction of the wind). The reason why still remains to be investigated, and these 
results are not being presented in this paper. The scope of having three models, also possibly 
allows analysis of different combinations of MCP methodologies, i.e. using MLR for wind speed 
and ANN for wind direction. This was done for a limited number of combinations and is the 
subject of further research.  

The results presented are those using 3 MCP models of the same type, and a comparison is thus 
made using four regression methodologies. 

This paper is modified to reflect this in line 502, as part of the conclusion: 

In this case, an MCP model was created for wind speed, and two more MCP models were created for 
wind speed components, which were then used to calculate the wind direction. Another possible 
method is to calculate the magnitude of the wind speed from the models used to calculate the wind 
direction. This was done, but, the results from the first method, were by far superior to those from 
the latter method. The reason why, still needs to be investigated as part of future work, and these 
results are not being presented in this paper. The advantage of having three models, also allows the 
possibility of using different combinations of MCP methodologies, i.e. using MLR for wind speed 
and ANN for wind direction. This was also performed for a limited number of combinations and is 
also the subject of further research.  

7. Line 393: More info needed on how these values were calculated. i.e. what formulas, 
etc. 

Also, would tables 5 and 6 be more informative if they were normalized by the wind 
farm capacity, or average power output of the farm? 

The residual values are being changed to normalised values, based on the average of the residuals. 
There the following paragraph is being introduced to show the formulas used to calculate the metrics. 
The formulas used to derive these metrics are inserted as follows: 

Line 18: 

The predicted power is compared to the power output generated from the actual wind and direction 
data by using the Normalised Mean Absolute Error (NMAE) and the Normalised Mean Squared 
Error (NMSE). 

Line 46: 

Thus, the NMAE, the NMSE and the percentage error in the overall energy yield are compared for 
the various methodologies and wind farm topologies. 

Line 228 

The results are compared by using the NMAE and the NMSE of the residuals, using the Eq (8) to Eq. 
(12). The residuals, 𝑒௜ are the errors between the predicted and actual output power values 
from the windfarm, 

𝑒௜ = 𝑃௜ − 𝑃௔௖௧೔
 (8) 

The formula used to calculate the NMAE is shown in Eq. (9), whereby the errors are 
normalised by dividing by the average power production over the whole period of evaluation 
(Madsen, et al., 2005): 
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𝑁𝑀𝐴𝐸 =  
∑ ⌊𝑒௜⌋ே

௜ୀଵ

∑ 𝑃௜
ே
௜ୀଵ

 (9) 

And the Normalised Mean Square Error (NMSE) is given by: 

𝑁𝑀𝑆𝐸 =  

1
𝑁 ∑ (𝑒௜)ଶே

௜ୀଵ

𝑃 ഥ ∙ 𝑃௔௖௧
തതതതത

 (10) 

where, 

𝑃ത =
1

𝑁
෍ 𝑃௜

ே

௜ୀଵ

 (11) 

and 

𝑃௔௖௧
തതതതത =

1

𝑁
෍ 𝑃௔௖௧೔

ே

௜ୀଵ

 (12) 

The percentage error in overall energy yield is given by Eq (13), where: 

𝑒௘௡௚ = ቆ
∑ 𝑃௜ − ∑ 𝑃௔௖௧೔

ே
௜ୀଵ

ே
௜ୀଵ

∑ 𝑃௔௖௧೔
ே
௜ୀଵ

ቇ ∙ 100% (13) 

The nomenclature is modified accordingly: 

Line 553:  𝑒௜  Residual, 𝑀𝑊 

Line 552: 𝑒௘௡௚  Percentage error in energy yield 

Line 550: NMSE  Normalised Mean Squared Error 

Line 545: NMAE   Normalised Mean Absolute Error 

Line 577: 𝑁   Number of data points 

Line 578: 𝑃   Predicted power output from wind farm, 𝑀𝑊 

Line 579: 𝑃௔௖௧   Actual power output from windfarm, 𝑀𝑊 

Thus tables 6 and 7 are modified as follows: 

Table 3: Summarised results for Normalised Mean Absolute Error by MCP methodology and 
windfarm capacity. 

Normalised Mean Absolute Error 

Wind 
Farm 
Capacity MLR ANN DT SVR 

250MW 0.505 0.502 0.572 0.544 
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200MW 0.502 0.499 0.565 0.539 

150MW 0.492 0.482 0.545 0.532 

100MW 0.484 0.472 0.537 0.515 

50MW 0.510 0.547 0.573 0.558 

Table 4: Summarised results for the Normalised Mean Squared Error (NMSE) of the normalised 
residuals by MCP methodology and windfarm capacity. 

Normalised Mean Squared Error 

Wind 
Farm 
Capacity MLR ANN DT SVR 

250MW 0.977 1.004 1.170 0.082 

200MW 0.956 0.979 1.123 1.052 

150MW 0.912 0.938 1.056 1.002 

100MW 0.834 0.868 0.960 0.917 

50MW 0.789 0.884 0.930 0.890 
 

8. Line 425: I am having a hard time interpreting the results. Fundamentally, I don't see 
how we should distinguish between the three metrics used - MAE, MSE, and percentage 
error. What do they each represent, and why are they not essentially equivalent?   A 
reader needs more information of how to interpret the results and why the three 
metrics are each important. 

The equations for the NMAE, NMSE and percentage error are now included in lines 227 to 235. 
Results are now normalised. 

Many references describe the use of multiple metrics to judge the quality of regression statistics 
(Rogers, et al., 2005), and it is important to employ more than one metric (Santamaria-Bonfil, et al., 
2016). The lower the value, the better the performance of the model. Hence, the model having the 
lowest NMAE and NMSE, have the best performance. NMAE and NMSE are used to quantify the 
performance of the models. While NMAE is suitable for describing uniformly distributed errors. It 
also reveals any average variance between the forecast value and the true value (Hu, et al., 2013). 
The NMAE gives the same weight to the errors, while the NMSE gives a larger weight to the larger 
errors, and avoids using the absolute value.  

The NMSE assumes that the errors are unbiased and follow a normal distribution. The percentage 
error in energy yield gives an estimate of the accuracy of the model in the long-term, as it is the 
difference of the sum of the total predicted energy generated over the period of evaluation, expressed 
as a percentage of the actual energy. 

Hence an evaluation of the three metrics is necessary to evaluate the quality of the models.  

This is inserted in the paper in line 182 as follows: 

Several metrics may be used to evaluate the accuracy of the models (Rogers, et al., 2005), and it is 
important to employ more than one metric (Santamaria-Bonfil, et al., 2016) to perform the evaluation. 
The lower the value of the metric, the better the performance of the model. In this case the NMSE 
and the NMSE were used to quantify the performance of the model. The NMAE is suitable to describe 
the errors which are uniformly distributed round the mean, revealing also the average variance 
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between the true value and the predicted value (Hu, et al., 2013). The NMAE applies the same weight 
to the individual errors.  

The NMSE is a measure of the extent of the dispersion of the errors around the mean and gives a 
higher weight to larger errors. It assumes that the errors are unbiased and follow a normal distribution 
(Santamaria-Bonfil, et al., 2016). The percentage error of the energy yield gives an estimate of the 
accuracy of the model for predicting the total energy generated by the wind farm over the period of 
evaluation. Due to the fact the each metric has disadvantages that can lead to inaccurate evaluation 
of the results it is not recommended to depend only on one measure (Shcherbakov, et al., 2013). 
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Abstract 9 

This paper investigates the uncertainties resulting from different Measure-Correlate-Predict methods 10 
to project the power and energy yield from a wind farm. The analysis is based on a case study that 11 
utilizes short-term data acquired from a LiDAR wind measurement system deployed at a coastal site in 12 
the northern part of the island of Malta and long-term measurements from the island’s international 13 
airport. The wind speed at the candidate site is measured by means of a LiDAR system. The predicted 14 
power output for a hypothetical offshore wind farm from the various MCP methodologies is compared 15 
to the actual power output obtained directly from the input of LiDAR data to establish which MCP 16 
methodology best predicts the power generated.  17 

The power output from the wind farm is predicted by inputting wind speed and direction derived from 18 
the different MCP methods into windPRO®1. The predicted power is compared to the power output 19 
generated from the actual wind and direction data by using the Normalised Mean Absolute Error 20 
(NMAE) and the Normalised Mean Squared Error (NMSE). This methodology will establish which 21 
combination of MCP methodology and wind farm configuration will have the least prediction error. 22 

The best MCP methodology which combines prediction of wind speed and wind direction, together with 23 
the topology of the wind farm, is that using Multiple Linear Regression (MLR). However, the study 24 
concludes that the other MCP methodologies cannot be discarded as it is always best to compare 25 
different combinations of MCP methodologies for wind speed and wind direction, together with different 26 
wake models and wind farm topologies. 27 

1 Introduction 28 

The Measure-Correlate-Predict (MCP) methodology introduces uncertainty due to its inherent 29 
statistical nature. Recent developments have seen the introduction of new computational regression 30 
techniques such as Artificial Neural Networks (ANN) and Machine Learning, which include Decision 31 
Trees (DT) and Support Vector Regression (SVR). In a previous study, Light Detection and Ranging 32 
(LiDAR) data was used to compare the results of the various regression methodologies at different 33 
LiDAR measurement heights (Mifsud, et al., 2018) with the reference site being Malta International 34 
Airport (MIA), Luqa, and the candidate site being a coastal watch tower at Qalet Marku on the Northern 35 
part of the island. This study uses the same wind data for the year 2016 to construct the MCP models. 36 
However, this time the prediction is carried out on both wind speed and wind direction. Wind speed 37 
and direction are then predicted for the period June – December 2015. This is done for the different 38 
MCP models. The predicted wind speed and wind direction time series are then fed into a wind farm 39 
model implemented in windPRO® Ver. 2.7 to model the overall energy yield, considering wake losses. 40 
The power output for various wind farm configurations is obtained for each methodology. As the 41 
LiDAR is sited on the roof of a coastal tower, at a height of 20m above mean sea level, the wind data 42 
measured at a height of 80m would be equivalent to a wind turbine (WT) hub height of 100m above the 43 
sea surface. 44 

 
1 https://www.emd.dk/windpro. 
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The power output in each case is compared to that obtained when the actual wind data is fed to the wind 45 
farm model. Thus, the NMAE, the NMSE and the percentage error in the overall energy yield are 46 
compared for the various methodologies and wind farm topologies. This is therefore a study about the 47 
uncertainties introduced by the various statistical methods, which is then further complicated by the 48 
windfarm layout. It is innovative due to the use of an MCP methodology to predict both the wind speed 49 
and the wind direction. The following literature review describes different MCP methodologies, four of 50 
which are then used in the prediction of wind speed and wind direction. The wake models are also 51 
described. This is followed by a description of the methodology used in the study, together with a 52 
description of the hypothetical wind farm used as a basis for this study. Finally, the results are presented 53 
and discussed. 54 

2. Literature Review 55 

The first MCP methods estimated the mean long-term annual wind speed (Carta, et al., 2013). MCP 56 
methods later made use of Simple Linear Regression (SLR) (Rogers, et al., 2005) to establish a 57 
relationship between hourly wind characteristics of the candidate and the reference sites. A Multiple 58 
Linear Regression is a regression model that involves more than one regressor variable (Montgomery, 59 
et al., 2006). The regression is carried out using concurrent wind speed and wind direction data 60 
at the reference and the candidate sites. The reference site is normally the closest 61 
meteorological station e.g. airports, and the candidate site is the location chosen for the 62 
windfarm. When the model is created, hence establishing a relationship between the wind speed 63 
at both sites, the long-term wind data at the reference can be used to predict the long-term wind 64 
speed at the candidate site. More recent models established non-linear type relationships (Clive, 2004; 65 
Carta & Velazquez, 2011) by employing statistical learning (Hastie, et al., 2009). Amongst these are 66 
algorithms such as Artificial Neural Networks (ANNs) (Bilgili, et al., 2007; Monfared, et al., 2009) and 67 
the more recent Machine Learning (ML) techniques, which include Support Vector Regression (SVR) 68 
(Oztopal, 2006; Zhao, et al., 2010; Scholkopf & Smola, 2002; Alpaydin, 2010) and Decision Trees 69 
(DTs) (James, et al., 2015; Alpaydin, 2010). 70 

A study (Carta, et al., 2013) reviewed many MCP methodologies. These included the method of ratios, 71 
first-order linear regression, higher than first-order linear methods, non-linear methods and probabilistic 72 
methods. The authors were also concerned with the uncertainties associated with MCP methodologies 73 
and argued that users of MCP methodologies have little information on which to determine the 74 
uncertainty of the methodology. One methodology to measure this uncertainty is to use the full set of 75 
data from the concurrent period to train the model and assess its quality.  76 

Another study by Rogers compared four different MCP methodologies (Rogers, et al., 2005). These 77 
included a linear regression model, the distributions of ratios of the wind speeds at the two sites, an 78 
SVR model and another method based on the ratio of the standard deviations of the two data sets. The 79 
authors concluded that SVR gave the best results. In a different study, the same authors (Rogers, et al., 80 
2005b) also analysed the uncertainties introduced with the use of MCP techniques. They concluded that 81 
linear regression methodologies could seriously underestimate uncertainties due to serial correlation of 82 
data. Another study shows that a proper assessment of uncertainty is critical for judging the feasibility 83 
and risk of a potential wind farm development, and the authors describe the risk of oversimplifying and 84 
assuming uncertainties (Lackner, et al., 2012). 85 

A hybrid MCP method (Zhang, et al., 2014) which involved adding different weights depending on the 86 
distance and elevation of the candidate site to the reference sites, was applied to the input of five MCP 87 
methodologies. The methods used consisted of the Linear Regression, Variance Ratio, Weibull scale, 88 
ANNs and SVR methods. The results were assessed in terms of metrics such as the Mean Squared Error 89 
and Mean Absolute Error. Other authors (Perea, et al., 2011) evaluated three methodologies. One 90 
method included a linear regression, which was derived from the bivariate normal joint distribution and 91 
the Weibull regression method. The other method was based on conditional probability density 92 
functions applied to the joint distributions of the reference and the candidate sites. The results from 93 
these two methodologies were in turn compared to SVR. Although the conclusion was that the SVR 94 
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method predicted all the parameters very accurately, the probability density function based on the 95 
Weibull distribution was better in terms of prediction accuracy. 96 

The ability of ANNs to recognise patterns in complex data sets means that they can also be used to 97 
correlate and predict wind speed and wind direction (Zhang, et al., 2014). A neural network contains an 98 
input layer, one or more hidden layers of neurons and an output layer. A learning process updates the 99 
weights of the interconnections and biases between the neurons in the various layers. The Levenberg-100 
Marquardt (Principe, et al., 2000) algorithm may be used for this purpose. The regression is performed 101 
by means of feedforward networks (Alpaydin, 2010) with multilayer perceptrons (MLP).  102 

Another study (Velazquez, et al., 2011) utilised wind speed and direction from various reference 103 
stations. These were introduced into the input layer of an ANN. It was concluded that when wind 104 
direction was used as an angular magnitude to the input signal, the model gave better results. Estimation 105 
errors also decreased as the number of reference stations was increased. The authors concluded that 106 
ANNs are superior to other methods for predicting long-term wind data.  107 

The use of ANNs for long-term predictions was also investigated by Bechrakis (Bechrakis, et al., 2004) 108 
using wind speed and direction measurements from just one reference station and compared these to 109 
standard MCP algorithms. This resulted in an improved prediction accuracy of 5 to 12%. Unfortunately, 110 
many models that use various reference stations use only the recorded wind speeds as input. The 111 
topologies of the ANNs used have only a single neuron in the input layer, with the output signal being 112 
the wind speed at the candidate site (Monfared, et al., 2009; Oztopal, 2006; Bilgili, et al., 2009). 113 

Data from meteorological stations possessing long measurement periods provide a large amount of 114 
potential inputs for MCP methods. Apart from wind speed and direction, inputs can also include other 115 
climatological variables such as air temperature, relative humidity and atmospheric pressure. Hence, a 116 
multivariate MCP methodology may be utilised (Patane, et al., 2011). This technique considers all the 117 
inputs and extracts the maximum amount of information at the sites. Since some input variables may 118 
be inter-correlated, or may not provide information about the target site wind characteristics, the 119 
methodology is a two-stage process. Input variables are analysed and those that contain little or 120 
redundant information about the candidate site wind characteristics are discarded, following which, a 121 
multivariate regression is performed. It was concluded from the results of the tests made that the 122 
methodology was more accurate than standard MCP methods, with the quality of the estimation of the 123 
long-term wind resource increasing by 19%. 124 

SVR is the adaptation of Support Vector Machines to the regression problem. This technique was 125 
developed by Vapnik (Vapnik, 1995; Vapnik, et al., 1998) to solve classification problems. SVR 126 
(Alpaydin, 2010) is popular within the renewable energy community, being a unique way to construct 127 
smooth and nonlinear regression approximations (Diaz, et al., 2017). The analysis of MCP models using 128 
SVR techniques shows that SVR is one of the techniques which best represents ML state-of-the-art 129 
(Diaz, et al., 2017). This is not only due to its prediction capability, but also to its property of universal 130 
approximation to any continuous function, and an efficient and stable algorithm that provides a unique 131 
solution to the estimation problem (Diaz, et al., 2017). Different hyperparameters were used to study 132 
the SVR methodology. Other studies describe how SVR may be adapted to wind speed prediction 133 
(Zhao, et al., 2010). 134 

Another recent study shows the importance of DTs in improving the regression results for MCP (Diaz, 135 
et al., 2018). The study applied five different MCP techniques to mean hourly wind speed and direction, 136 
together with air density, using the data from ten weather stations in the Canary Islands. The study 137 
showed that the models using SVR and DTs provided better results than ANNs. A DT is a hierarchical 138 
data structure which implements the ‘divide and conquer’ rule and it may also be applied to the 139 
regression problem (Hastie, et al., 2009; Alpaydin, 2010; James, et al., 2015).  140 

The use of LiDAR for wind resource assessment (Probst & Cardenas, 2010) shows a distinct advantage 141 
of this method over the traditional cup and wind vane measurements. This is demonstrated by studies 142 
carried out using different MCP methods such as SLR and ratio analysis. However, no analysis with 143 
ANNs, DTs or SVR is carried out. A more recent study (Mifsud, et al., 2018), which utilised the same 144 
data as this current study, analysed the accuracy of different MCP methodologies and their capability 145 
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according to LiDAR measurement height. The study concluded that the MCP accuracy depended on 146 
both methodology and measurement height at the candidate site. Other studies using LiDAR at the same 147 
measurement site were also carried out. These analysed the turbulent behaviour of the wind data 148 
(Cordina, et al., 2017). 149 

The issue of wake losses in a wind farm has been described by several authors and can be minimised 150 
by optimising the layout of the wind farm (Manwell, et al., 2009). A short literature review of wake 151 
models is now presented.  152 

Wake models are classified into four categories (Manwell, et al., 2009) which are: Surface roughness 153 
models (Bossanyi, et al., 1980), Semi-empirical models (Lissaman & Bates, 1977), (Vermeulen, 1980), 154 
Eddy viscosity models (Ainslie, 1985), and Navier-Stokes solutions (Crespo & Hernandez, 1986), 155 
(Crespo & Hernandez, 1993). A review  of wind turbine wake models (Sanderse, n.d.), shows the effects 156 
of reduced power production due to lower incident wind speed and the effect on the wind turbine rotors 157 
due to increased turbulence. The author presents a number of reasons on why the focus on numerical 158 
simulation is preferred to experimentation; this is mainly due to the use of Computational Fluid 159 
Dynamics (CFD). One study presents the mathematical theory behind a simple wake model and that for 160 
a multiple wake model (Gonzalez-Longatt, et al., 2012) while another study (Churchfield, 2013) 161 
describes a hierarchy of wake models ranging from the empirical to large-eddy simulation (LES). Some 162 
of the models compared include Ainslie’s Model (Ainslie, 1985), Frandsen’s model (Fransden, 2005), 163 
and Jensen’s Model (Jensen, 1983). The Dynamic Wake Meandering Model is another method which 164 
is described (Larsen, et al., 2008) and also validated (Larsen, et al., 2013) in a study carried out on the 165 
Egmond ann Zee offshore wind farm. Another study (Barthelmie, et al., 2006), compares wake model 166 
simulations for offshore wind farms, with the wake profiles being measured by Sonic Detection and 167 
Ranging (SoDAR). In this case, the models gave a wide range of predictions and it was not possible to 168 
identify a model with superior projections with respect to the measurements.  169 

In some studies, it is necessary for any wake model used to be straightforward, dependent on relatively 170 
few wake measurements and economic in terms of the necessary computing power. Despite their 171 
relative simplicity, these models tend to give results which are in reasonable agreement with the 172 
available data in the case of a single wake within a small wind farm and a simple meteorological 173 
environment. In addition, a comparison of different wake models does not suggest any particular 174 
difference in terms of accuracy, between the sophisticated and simplified models (Manwell, et al., 175 
2009).  176 

The use of wake models can also be illustrated by considering a semi-empirical model (Katić, et al, 177 
1986) that is often used for wind farm output predictions. This model attempts to characterise the energy 178 
content in the flow field whilst ignoring the details of the exact nature of the flow field, which is assumed 179 
to consist of an expanding wake with uniform velocity deficit that decreases with distance downstream 180 
(Manwell, et al., 2009). 181 

The N.Ø. Jensen (Jensen, 1983) is a simple wake model based on the assumption of a wake with a linear 182 
wake cone. The results from this model are comparable to experimental results.  183 

Several metrics may be used to evaluate the accuracy of the models (Rogers, et al., 2005), and it is 184 
important to employ more than one metric (Santamaria-Bonfil, et al., 2016) to perform the evaluation. 185 
The lower the value of the metric, the better the performance of the model. In this case the Normalised 186 
NMAE and the NMSE were used to quantify the performance of the model. The purpose of using 187 
normalised values is to provide results which are independent of wind farm sizes (Madsen, et al., 2005). 188 

The NMAE is suitable to describe the errors which are uniformly distributed round the mean, revealing 189 
also the average variance between the true value and the predicted value (Hu, et al., 2013). The NMAE 190 
applies the same weight to the individual errors. The NMSE is a measure of the extent of the dispersion 191 
of the errors around the mean and gives a higher weight to larger errors. It assumes that the errors are 192 
unbiased and follow a normal distribution (Santamaria-Bonfil, et al., 2016). The percentage error of the 193 
energy yield gives an estimate of the accuracy of the model for predicting the total energy generated by 194 
the wind farm over the period of evaluation. Due to  the fact the each metric has disadvantages that can 195 
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lead to inaccurate evaluation of the results, it is not recommended to depend only on one measure 196 
(Shcherbakov, et al., 2013). 197 

3. Theoretical Background 198 

MCP methods are based on regression techniques. Regression can be performed by using SLR. 199 
However, as mentioned above, several more powerful techniques exist amongst which are ANNs, SVR 200 
and DT. While MCP methodologies have been developed for wind speed, they cannot be directly used 201 
for predicting wind direction (Bosart & Papin, 2017). Nothing has been found in literature on MCP 202 
techniques which explicitly mentions prediction of wind direction at that candidate site. The use of wind 203 
speed vectors is a way of using a regression methodology to predict the wind direction, by breaking the 204 
wind speed vector into its respective components. MCP methodologies are normally used to predict the 205 
wind speed magnitude at the candidate site, but not the direction. Wind velocity may be negative (if 206 
one considers it as a vector) and the MCP methodology normally considers the positive value of the 207 
wind, i.e. magnitude. The methodology used creates a regression model using the wind velocity vector 208 
components to predict the wind vector components at the candidate site (Bosart & Papin, 2017). 209 

The methodology is based upon a simple relationship between the meteorological wind direction 𝜃௠௘௧ 210 
and the mathematical wind direction 𝜃௠௔௧௛  such that:  211 

𝜃௠௔௧௛ = 90 − 𝜃௠௘௧ (1) 

in which the wind speed vector 𝑽௜ can be broken down into its vector components such that  212 

u୧ = |𝑉௜| cos θ୫ୟ୲୦= |𝑉௜| cos(90 − θ୫ୣ୲) (2) 

v୧ = |𝑉௜| sin θ୫ୟ୲୦= |𝑉୧| sin(90 − θ୫ୣ୲) (3) 

in which case the values of u୧ and v୧, which may be either positive or negative depending on the 213 
direction of the wind (the value of 𝜃௠௘௧), are the wind components in the North (y) and the East (x) 214 
directions (axes). The relationship is shown in Figure 1.  215 

 216 
Figure 1: Difference between the meteorological wind direction and the mathematical wind direction and the component of 217 

the wind vector. 218 

Also, 219 

|𝑽௜| = ൫𝑢௜
ଶ + 𝑣௜

ଶ൯
ଵ
ଶ (4) 

The regression is carried out between the respective components of the wind velocity in the y and x 220 
directions, hence establishing a relationship between the components at both sites. The forecasted wind 221 
direction at the candidate site is then obtained from the forecasted wind components using the 222 
relationship in Eq. (5): 223 
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𝜃௠௘௧೔೛
= 90 − 𝑡𝑎𝑛ିଵ

𝑣௜೛

𝑢௜೛

 (5) 

The value of the angle θ୫ୣ୲೔೛
 depends on the direction of u௜೛

 and v௜೛
, as shown in Figure 2 224 

 225 
Figure 2: Calculating the value of 𝜽𝒎𝒆𝒕𝒊𝒑

 according to the value of 𝒖𝒊𝒑
 and 𝒗𝒊𝒑

. 226 

and in accordance with the relationships shown in Eq. (6): 227 

      𝑢௜೛
> 0 𝑎𝑛𝑑 𝑣௜೛

> 0    𝑁𝐸 𝑤𝑖𝑛𝑑𝑠       0° < 𝜃௠௘௧೔೛
< 90°  

 𝑢௜೛
> 0 𝑎𝑛𝑑  𝑣௜೛

< 0  𝑆𝐸  𝑤𝑖𝑛𝑑𝑠        90° < 𝜃௠௘௧೔೛
< 180°

        𝑢௜೛
< 0 𝑎𝑛𝑑 𝑣௜೛

< 0  𝑆𝑊 𝑤𝑖𝑛𝑑𝑠  180° < 𝜃௠௘௧೔೛
< 270°

       𝑢௜೛
< 0 𝑎𝑛𝑑 𝑣௜೛

> 0     𝑁𝑊𝑤𝑖𝑛𝑑𝑠    270° < 𝜃௠௘௧೔೛
< 360°

 (6) 

and Eq. (7): 228 

𝑢௜೛
= 0 𝑎𝑛𝑑 𝑣௜೛

> 0 (North Wind) 𝜃௠௘௧೔೛
= 0°

𝑢௜೛
= 0 𝑎𝑛𝑑 𝑣௜೛

< 0 (South Wind) 𝜃௠௘௧೔೛
= 180°

𝑢௜೛
> 0 𝑎𝑛𝑑 𝑣௜೛

= 0 (East Wind) 𝜃௠௘௧೔೛
= 90°

𝑢௜೛
< 0 𝑎𝑛𝑑 𝑣௜೛

= 0 (West Wind) 𝜃௠௘௧೔೛
= 270°

 (7) 

The results are compared by using the NMAE and the NMSE of the residuals, using the Eq (8) to Eq. 229 
(12). The residuals, 𝑒௜ are the errors between the predicted and the actual output power values 230 
from the windfarm,  231 

𝑒௜ = 𝑃௜ − 𝑃௔௖௧೔
 (8) 

The formula used to calculate the NMAE is shown in Eq (9), whereby the errors are normalised 232 
by dividing by the average power production over the whole period of evaluation (Madsen, et 233 
al., 2005): 234 

𝑁𝑀𝐴𝐸 =  
∑ ⌊𝑒௜⌋ே

௜ୀଵ

∑ 𝑃௜
ே
௜ୀଵ

 (9) 

And the NMSE is given by: 235 

𝑁𝑀𝑆𝐸 =  

1
𝑁 ∑ (𝑒௜)

ଶே
௜ୀଵ

𝑃 ഥ ∙ 𝑃௔௖௧
തതതതത  (10) 
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where, 236 

𝑃ത =
1

𝑁
෍ 𝑃௜

ே

௜ୀଵ

 (11) 

and 237 

𝑃௔௖௧
തതതതത =

1

𝑁
෍ 𝑃௔௖௧೔

ே

௜ୀଵ

 (12) 

The percentage error in overall energy yield is given by Eq (13), where: 238 

𝑒௘௡௚ = ቆ
∑ 𝑃௜ − ∑ 𝑃௔௖௧೔

ே
௜ୀଵ

ே
௜ୀଵ

∑ 𝑃௔௖௧೔
ே
௜ୀଵ

ቇ ∙ 100% (13) 

4. A Case Study - Site Conditions and the Modelled Offshore Windfarm 239 

4.1 The reference and candidate sites 240 

The reference site employed in this study is the Meteorological Office at Malta International Airport 241 
(MIA), Luqa, and the candidate site is data collected by a ZephIR 300 LiDAR 242 
(https://www.zxlidars.com/wind-lidars/zx-300/, n.d.) unit administered by the University of Malta’s 243 
Institute for Sustainable Energy. The unit was situated on the roof of a coastal watch tower at Qalet 244 
Marku, situated in the Northern Part of the Island of Malta (Mifsud, et al., 2018). The relative location 245 
of the two sites is shown in Figure 3, while Figure 4 shows a satellite image of the location of the coastal 246 
watch tower.  247 

248 

Figure 3: Map of Malta showing relative location of the candidate and the reference sites (Google, 249 
2019) (© Google Maps 2019). 250 
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 251 

Figure 4: Satellite imagery of the Qalet Marku coastal watch tower, located on a promontory near 252 
Bahar ic-Caghaq (Google, 2019) (© Google Maps 2019). 253 

Table 1 and Table 2 show the properties of the candidate and the reference sites respectively (Cordina, 254 
et al., 2017), (Mifsud, et al., 2018). In this case the wind data measured by the LiDAR at a height of 255 
80m, would be equivalent to a cumulative height of 100m above sea-level, which would be the hub 256 
height of the wind turbines in the windfarm. This is because the LiDAR is situated on the rooftop of a 257 
coastal tower at a height of 20m above sea level,  as shown in Table 7.  258 

Table 5: Candidate Site parameters (Cordina, et al., 2017). 259 
Station Name Qalet Marku LiDAR Station 

LiDAR Type  ZephIR 300 
(https://www.zxlidars.com/wind-
lidars/zx-300/, n.d.) 

Cone Angle,  
LiDAR aperture height above the 
tower rooftop. 

60° 
1 𝑚 

Measurement height, above the 
LiDAR aperture window, m 

80𝑚  

Data Average hourly wind speed, wind 
direction, atmospheric pressure 
and relative humidity. 

Data range 26th June, 2015 – 31st December, 
2016 

Geographical Coordinates 35.946252°𝑁, 14.45329°𝐸 
Average tower rooftop height above 
surrounding ground level 

10 𝑚 
 

Height of base of tower above sea level 6 𝑚 

Table 6: Reference Site parameters (Malta International Airport). 260 
Station Name Luqa MIA Weather Station 
Measuring Instruments Wind – Cup and vane 

Digital temperature probe 
Digital Barometer. 

Data Average hourly wind speed, wind 
direction, air temperature, 
atmospheric pressure and relative 
humidity. 

Mast height  10 𝑚 above ground 
Height of site above sea level 78 𝑚 
Geographical Coordinates 35.85657°𝑁, 14.47676°𝐸 

4.2 The Available Wind Data 261 

The measurement campaign at the candidate site started on the 1st July 2015 and ended on the 31st 262 
December 2016. Hourly wind data were available for this time period from both the reference and 263 
candidate sites. The ideal number of data points used to create the MCP models is thus 8784, i.e. the 264 
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number of hours in 2016. Following analysis and filtration of the wind speed data at the reference site, 265 
98% of the data was considered as suitable for the creation of the model. The data at the reference site 266 
was all considered as suitable. Hence, the regression model was created using the concurrent 8616 wind 267 
speed and direction values. For the year 2015, 95.6% of the data was considered valid (the measurement 268 
campaign started on the 26th of June, 2015, hence there were 4368 hours of wind speed and direction 269 
measurement of which 4176 were valid data points).  270 

The MCP analysis was carried out using both wind speed and wind direction. The data from the 271 
reference site were used as the independent data set. The models were created using the data for the 272 
year 2016, while the reference site wind data for 2015 used to create the predicted wind speed and wind 273 
direction as inputs to the windfarm model. 274 

4.3 The Wind Farm Design in windPRO® 275 

Table 7: Wind Turbine Parameters used in the study (wind-turbine-models.com, 2019). 276 
Wind Turbine Parameter  

Manufacturer RE Power (Germany) 

Rated Power 5000 𝑊 
Rotor orientation Upwind 
Number of blades 3 
Rotor Diameter 126 𝑚 

Swept Area 12469 𝑚ଶ 
Blade Type LM 
Cut in speed 3.5 𝑚𝑠ିଵ 

Rated Wind Speed 14 𝑚𝑠ିଵ 
Cut out speed (for off-shore) 30 𝑚𝑠ିଵ 

Hub-height, 𝒛 100 𝑚 

The hypothetical wind farm is located opposite the coastal watch tower of Qalet Marku [14.452498°𝐸, 277 
35.945892°𝑁]. windPRO® 2.7 was used to render an image of the wind farm onto an image of the 278 
LiDAR unit taken from the watch tower. This gives an indication as to the extent of the wind farm. This 279 
is shown in Figure 5, while Figure 6 shows the satellite imagery of the wind farm, showing a 250-MW 280 
capacity windfarm. The windfarm faces the North-West direction, which is the prevailing wind 281 
direction.  282 

The windfarm is made up of 50 wind turbines. There are 10 wind turbines in a row, having a cross-wind 283 
spacing of five rotor diameters (5D). The distance between the successive rows of wind turbines, or the 284 
downwind spacing is eight rotor diameters (8D). Thus, considering wind turbines with a rotor diameter, 285 
𝐷, of 126 𝑚 (for a 5 MW Wind Turbine), the distance between the turbines in the cross-wind direction 286 
is 630 𝑚, and the distance between successive rows of wind turbines in the downwind direction is 287 
1,008 𝑚. The wind turbine selected for use in windPRO® is the RE Power 5-MW wind turbine whose 288 
parameters are shown in Table 7. 289 

 290 
Figure 5: View of the wind farm rendered onto an image of the area and also showing the LiDAR unit.  291 
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 292 
Figure 6: Satellite imagery of the wind farm showing the location of the 50 wind turbines with respect to the coastal LiDAR 293 

station (Google, 2019) (© Google Maps 2019). 294 

5. Methodology 295 

Figure 7 shows the methodology applied in this paper. The study is divided into three steps as follows: 296 

2. STEP 1 - The various MCP methodologies are used to compute the MCP model. For wind speed, 297 
the models are trained using wind speed and direction data at a candidate and reference site for the 298 
year 2016. For the wind direction the input training data is the wind velocity vector component in 299 
the North or East direction at the candidate site, and the output of the model is the respective 300 
component at the candidate site. The models are summarised in Table 4, below. Table 4 describes 301 
the inputs used to train the respective models, both for wind speed and wind direction. It also shows 302 
the parameters of the models and the algorithms used to train the model, such as Least-Squares for 303 
MLR and the Levenberg-Marquardt algorithm for ANN. 304 

3. STEP 2 - The 2015 wind speed and wind direction are predicted using the models computed in 305 
Step 1. The predicted and actual wind speed and wind direction are used to compute the power 306 
output from the wind farm. This is done by feeding the wind speed and direction data into the 307 
windPRO® model, and,  308 

4. STEP 3 - compute and compare the MSE, NMAE and percentage error in the power. 309 

  310 
Figure 7: Applied methodology. 311 
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Table 8: Description of the regression methodologies used for the Measure-Correlate-Predict Methodology. 312 
MCP 
methodology 

Wind Speed Wind Direction  

MLR Independent variables: 2 (Wind speed 
magnitude, wind direction at the reference 
site). 
Dependent variables: Wind Speed 
magnitude at candidate site. 

Independent variable: Wind velocity 
vector in North and East direction at 
reference site. 
Dependent variable: Wind velocity vector 
in North and East direction at candidate site. 

Methodology: Least Squares 

ANN Number of inputs: 2 - Wind speed 
magnitude, wind direction at the reference 
site) 
Number of outputs: 1 - Wind speed 
magnitude at candidate site. 

Number of inputs: 1 - Wind velocity vector 
in North and East direction at reference site) 
Number of outputs: 1 - Wind velocity 
vector in North and East direction at 
candidate site. 

Number of layers: 3 
Number of neurons in layer: 30,30,10 
Training Methodology: Levenberg-Marquardt Algorithm  
Percentage of points used for training: 70% 
Percentage of points used for verification: 15% 
Percentage of points used for testing: 15% 

DT Number of inputs: 2 - wind speed 
magnitude, wind direction at reference site. 
Number of outputs: 1 - wind speed at 
candidate site. 

Number of inputs: 1 - Wind velocity vector 
in North and East direction at reference site. 
Number of outputs: 1 - Wind velocity 
vector in North and East direction at 
candidate site. 

Number of Trees: 200 
Minimum Number of Leafs: 5 
Methodology: Tree Bagger Ensemble 

SVR Number of inputs: 2 - wind speed 
magnitude, wind direction at reference site. 
Number of outputs: 1 - wind speed 
magnitude at candidate site. 

Number of inputs: 1 - Wind velocity vector 
in North and East direction at reference site. 
Number of outputs: 1 - Wind velocity 
vector in North and East direction at 
candidate site. 

Methodology: Hyperparameter optimisation,  
Kernel: Gaussian 
Solver: Sequential Minimal Optimisation 

The combinations of LiDAR measurement heights and MCP methodologies are shown in Table 9.  313 

Table 9: Summary of combinations of methodologies, LiDAR measurement heights and amount of wind turbines used in the 314 
analysis 315 

80m 
(equivalent to 
a 100m hub 

height) 

MCP Methodology 
Simple Linear 

Regression 
(SLR) 

Artificial Neural 
Networks (ANN) 

Decision Trees 
(DT) 

Support 
Vector 

Regression 
(SVR). 

Wind Speed, Wind Direction, predicted for 2015. Actual and predicted 
sequences fed into wind farm model, comparisons of wind farm power output 
made for a capacity of 250, 200, 150, 100 and 50 MW. 

Regression models were created for the MCP methodologies using the reference and candidate wind 316 
speed and direction for the year 2016. These regression models were created using SLR, ANN, DT and 317 
SVR. A model was created for both wind speed and direction.  318 

The wind speed and wind direction for 2015 were then predicted with the models by feeding the speed 319 
and direction values from the reference site from the year 2015. Thus, a sequence of predicted wind 320 
speeds and wind direction time series could be compared to the actual speed and direction measured at 321 
the candidate site for the year 2015. The models for the wind speed and the wind direction are 322 
independent from each other.  323 
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 324 
Figure 8: Application of regression methodologies to wind direction 325 

In the case of wind direction, the MCP methodologies are applied as shown in Figure 8 and Figure 9. 326 
Figure 8 shows that two regressions are carried out: one for the magnitude of the wind component in 327 
the North direction and one for the wind component in the East direction. Thus, two models are created 328 
using the wind speed and direction data of the reference and the candidate site for 2016. The two models 329 
are then used to derive the predicted wind direction for 2015 at the candidate site as shown in Figure 9, 330 
by using the wind components at the reference site for 2015 as inputs to the respective models. The 331 
values of the wind speed in the North direction and the East direction are first predicted, and the wind 332 
direction at the candidate site for 2015, 𝜃௠௘௧೛

, is then derived from the mathematical relationships given 333 

in Eq. (6) and Eq. (7). 334 

 335 
Figure 9: Predicting the wind direction 336 

The sequences of wind speed and wind directions (both actual and predicted) were fed into the wind 337 
farm model. This was done for different combinations of methodology and wind farm (250, 200, 150, 338 
100 and 50 MW) configurations. The results were compared to determine which combination of MCP 339 
methodology, and windfarm capacity would give the lowest prediction error. The prediction error for 340 
the power output from the wind farm is analysed using the Mean Squared Error (MSE), the Normalised 341 
Mean Absolute Error (NMAE) and the percentage error in the Overall Energy Yield for the period of 342 
analysis. The results are shown in the following section. 343 

6. Results 344 

A summary of the results is shown below where sequences of data for a specific period of 2015 are 345 
compared. These sequences are for wind speed, wind direction and power output. All MSE, NMAE and 346 
percentage errors in the overall energy yield are then shown in the following tables. 347 

6.1 Wind speed and wind direction with MCP methodology. 348 

6.1.1 Wind speed with MCP methodology. 349 

Figure 10 to Figure 13 show the wind speed from the period 23rd November to the 30th November 2015. 350 
The particular period is chosen because of the high availability of wind. The actual wind data are 351 
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compared with that predicted by the MLR, ANN, DT and SVR methodologies. The predicted wind 352 
values closely follow the actual wind values, for all the MCP methodologies applied.  353 

 354 

355 
Figure 10: Comparing actual wind speed and wind speed 356 
predicted by MLR methodology with wind data for 2015. 357 

 358 
Figure 11: Comparing actual wind speed and wind speed 359 
predicted by ANN methodology with wind data for 2015. 360 

361 
Figure 12: Comparing actual wind speed and wind speed 362 
predicted by ANN methodology with wind data for 2015. 363 

 364 
Figure 13: Comparing actual wind speed and wind speed 365 
predicted by SVR methodology with wind data for 2015. 366 

6.1.2 Wind direction with MCP methodology. 367 

Figure 14 to Figure 17 show the wind direction from the period 23rd November to the 30th November 368 
2015. As above, the actual wind direction at the candidate site is compared to that predicted by the 369 
MLR, ANN, DT and SVR methodologies. Again, as in the case for wind speed, there is a similarity 370 
between the actual and predicted wind direction values, in all cases.  371 
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373 
Figure 14: Comparing actual and predicted wind direction 374 
predicted by MLR methodology, with wind data for 2015. 375 

376 
Figure 15: Comparing actual and predicted wind direction 377 
predicted by ANN methodology, with wind data for 2015. 378 

 379 

380 
Figure 16: Comparing actual and predicted wind direction 381 

predicted by DT methodology, with wind data for 2015. 382 

 383 
Figure 17: Comparing actual and predicted wind direction 384 
predicted by SVR methodology, with wind data for 2015. 385 

6.2 Wind farm power output with MCP methodology, for a windfarm capacity of 386 
250MW. 387 

Figure 18 to Figure 21 compare the output power from the wind farm, which is derived from the actual 388 
wind speed and wind direction to the power output derived from the predicted wind speed and direction. 389 
This comparison is carried out for the MLR, ANN, DT and SVR methodologies. The results for a wind 390 
farm capacity of 250MW are being shown. As in the case for wind speed and direction, the predicted 391 
power output closely follows that obtained with the actual wind speed and direction.  392 
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 394 
Figure 18: Comparing actual and predicted power output 395 
from the wind farm, with wind data for 2015, actual and 396 

predicted by MLR methodology. 397 

 398 
Figure 19: Comparing actual and predicted power output 399 
from the wind farm, with wind data for 2015, actual and 400 

predicted by ANN methodology. 401 

 402 
Figure 20: Comparing actual and predicted power output 403 
from the wind farm, with wind data for 2015, actual and 404 

predicted by DT methodology. 405 

 406 
Figure 21: Comparing actual and predicted power output 407 
from the wind farm, with wind data for 2015, actual and 408 

that predicted by SVR methodology. 409 

410 

A Wind Data Analysis, carried out using windPRO®, is shown in the next section. The results presented 411 
are a Weibull distribution for wind speed and the wind rose. These charts are computed from the wind 412 
speed and direction which are predicted by using the MLR, ANN, DT and SVR MCP methodologies. 413 
Thus, the predicted wind speed and direction are compared with the results computed from the actual 414 
wind data.  415 

6.3 The Actual Wind Data for 2015 measured by the LiDAR system. 416 

Figure 22 shows the Wind Data Analysis report from windPRO® for the actual LiDAR data measured 417 
at the 80m level height (equivalent to a hub height of 100m). The images show the Weibull distribution 418 
for the wind speed and the wind rose. The reports are used to compare the properties of the actual wind 419 
measurements and the predicted wind speed and direction.  420 
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 422 
Figure 22: windPRO® wind data analysis using actual wind data measured by the LiDAR equipment at a height of 100 m. 423 

6.4 Wind speed and direction predicted using the MCP methodologies. 424 

Figure 23 to Figure 26 represent the Weibull distribution and the wind rose for the wind speed and 425 
direction predicted by the MLR, ANN, DT and SVR MCP methodologies respectively, at the hub height 426 
of 100𝑚. There exists a similarity between the Weibull plots for the actual wind data and those for the 427 
predicted wind speed, for the same measurement period. While, the wind direction predicted by the 428 
ANN and DT methodologies show a higher resemblance to that of the actual wind direction than that 429 
predicted by the MLR or SVR methodologies. Hence it is expected that the ANN and the DT 430 
methodologies would yield the least error in the predicted power output from the wind farm. 431 

 432 

 433 
 434 

Figure 23: windPRO® wind data analysis using wind data predicted by MCP applying MLR at a hub height of 100 m.435 

 436 
 437 

Figure 24: windPRO® wind data analysis using wind data predicted by MCP applying ANN at a hub height of 100 m. 438 
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 439 
440 

Figure 25: windPRO® wind data analysis using wind data predicted by MCP applying DT at a hub height of 100 m 441 

 442  443 
Figure 26: windPRO® wind data analysis using wind data predicted by MCP applying SVR at a hub height of 100 m 444 

The results for the NMAE, the NMSE and the percentage error in the overall energy yield are 445 
summarised in Table 10 to Table 12. The tables show that the MLR and ANN methodology have the 446 
best performance in NMAE, NMSE and percentage error in energy yield. The results are consistent for 447 
all wind farm capacities under consideration. ANN is better than MLR in the case of MMAE, while 448 
MLR is slightly better than ANN in the case of the 50MW wind farm capacity. MLR is superior to 449 
ANN in the case of NMSE for all wind farm capacities. However, the differences between the MLR 450 
and the ANN methodologies are minimal and both methodologies show a better performance than the 451 
DT or SVR methodologies. Especially in the case of the overall energy yield as shown in Table 12. 452 
Graphical results are also shown in Figure 27 to Figure 29.  453 

Table 10: Summarised results for Normalised Mean Absolute Error (NMAE) by MCP methodology and windfarm capacity. 454 

Normalised Mean Absolute Error 

Wind Farm 
Capacity MLR ANN DT SVR 

250MW 0.505  0.502  0.572  0.544  

200MW 0.502  0.499  0.565  0.539  

150MW 0.492  0.482  0.545  0.532  

100MW 0.484  0.472  0.537  0.515  

50MW 0.510  0.547  0.573  0.558  

Table 11: Summarised results for the Normalised Mean Squared Error (NMSE) by MCP methodology and windfarm capacity. 455 

Normalised Mean Squared Error 
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Wind Farm 
Capacity 

MLR ANN DT SVR 

250MW 0.977 1.004 1.170 1.082 

200MW 0.956 0.979 1.123 1.052 

150MW 0.912 0.938 1.056 1.002 

100MW 0.834 0.868 0.960 0.917 

50MW 0.789 0.884 0.930 0.890 

Table 12: Summarised results for percentage error in overall energy yield by MCP methodology and windfarm capacity. 456 

Percentage Error in Overall Energy Yield 

Wind Farm 
Capacity MLR ANN DT SVR 

250MW 4.63 4.54 18.83 9.44 

200MW 4.80 4.90 18.40 9.34 

150MW 4.92 5.40 17.78 9.23 

100MW 4.78 5.70 16.92 8.71 

50MW 3.65 7.03 14.73 8.23 

 457 
Figure 27: Comparison of the Normalised Mean Absolute Error for the various wind farm topologies and MCP 458 

methodology, for the 2015 energy output from the wind farm. 459 

 460 
Figure 28: Comparison of the Normalised Mean Squared Error for the various wind farm topologies and MCP 461 

methodology, for the 2015 energy output from the wind farm. 462 
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 463 
Figure 29: Comparison of the Percentage Error in Overall Energy Yield for the various wind farm topologies and MCP 464 
methodology, for the 2015 energy output from the wind farm. 465 

The ANN methodology also shows the best similarity to the actual wind speed and wind direction, as 466 
seen in Figure 24. In the case of the overall energy yield, the MLR and ANN methodologies show a 467 
significant improvement in percentage error over the DT and SVR methodologies. The ANN 468 
methodology is only better than the MLR methodology for the 250MW windfarm capacity. The MLR 469 
methodology has better results in the case of 200MW, 150MW, 100MW and 50MW wind farm 470 
capacities, with the percentage error being 3.65% at a windfarm capacity of 50MW, when compared to 471 
an error of 7.3% obtained with the ANN methodology.  472 

Thus, the metrics show that the best methodologies for predicting the output power from the wind farm 473 
is therefore that which uses the MLR methodology, closely followed by that which uses the ANN 474 
methodology.  475 

7. Conclusions 476 

The above research has combined the use of MCP methodologies for wind speed and used a different 477 
method for predicting the wind direction at a candidate site. Three of the four MCP methodologies used 478 
are based on modern statistical learning methodologies. The data was collected from a reference site 479 
which is the Island of Malta’s international airport, while the candidate site data has been collected by 480 
means of a LiDAR wind measurement system placed on the roof top of a coastal building.  481 

The wind direction at the candidate site was predicted with the various MCP methodologies by breaking 482 
down the wind velocity vector into its respective North and East direction components. The regression 483 
analysis was then carried out on the respective components at the reference and the candidate sites. The 484 
wind speed is predicted by using the magnitude of the wind speed at the respective sites for creating the 485 
regression model. 486 

The projected wind speed and direction time series were applied to a hypothetical wind farm. Thus, the 487 
error introduced by the four MCP methods could be measured. This was done by calculating the NMAE, 488 
the NMSE and the percentage error in wind farm’s energy yield. The results show that the NMAE, 489 
NMSE and the percentage error in energy yield depend on the MCP methodology and the windfarm 490 
capacity, and can be used to establish an optimal MCP methodology.  491 

In this case, the best MCP method was that which used MLR. Although other MCP methodologies gave 492 
larger errors, they cannot be totally discarded. It is always best to compare methodologies, comparing 493 
results by analysing residuals and errors and then choosing the best methodology on a case-by-case 494 
basis. In this case the results from the ANN methodology gave results which are very close to the MLR 495 
methodology, while the DT and SV methodologies gave larger errors. 496 

Unless actual wind data is available, one cannot carry out this analysis, as the uncertainty is obtained 497 
by comparing the energy from the windfarm with predicted and actual wind data. The above analysis 498 
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could be done because 18 months of data were available, rather than the normal 12 months, which is 499 
usual for a wind resource assessment which uses MCP methodologies.  500 

The above study was limited to using the same MCP methodology for both the wind speed and direction 501 
and to the N.Ø. Jansen methodology for wake losses. The layout chosen was one that ensured a 502 
recommended minimum distance between the wind turbines. Different combinations of MCP 503 
methodologies for wind speed and direction can be examined.  504 

In this case, an MCP model was created for wind speed, and two more MCP models were created for 505 
wind speed components, which were then used to calculate the wind direction. Another possible method 506 
is to calculate the magnitude of the wind speed from the models used to calculate the wind direction. 507 
This was done, but, the results from the first method, were by far superior to those from the latter 508 
method. The reason why, still needs to be investigated as part of future work, and these results are not 509 
being presented in this paper. The advantage of having three models, also allows the possibility of using 510 
different combinations of MCP methodologies, i.e. using MLR for wind speed and ANN for wind 511 
direction. This was also performed for a limited number of combinations and is also the subject of 512 
further research  513 

Another area which warrants further study, as is trying out different windfarm topologies, or selecting 514 
different wind turbines and different hub heights. It would also be of interest to study the application of 515 
different wake methodologies as a possible means of decreasing the uncertainties. 516 
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MSE   Mean Squared Error 545 
NMAE    Normalised Mean Absolute Error 546 
NMSE   Normalised Mean Squared Error 547 
SLR   Simple Linear Regression 548 
SoDAR   Sonic Detection and Ranging 549 
SVR   Support Vector Regression 550 
WT   Wind Turbine 551 
𝑉௜   Magnitude of wind speed in 𝑚𝑠ିଵ 552 
𝑒௡௢௥௠೔

   Normalised residual 553 
𝑒௘௡௚   Percentage error in energy yield 554 
𝑒௜   Residual, 𝑀𝑊 555 
𝑢௜೛

 Predicted component of wind speed vector in easterly direction at the 556 

candidate site in 𝑚𝑠ିଵ 557 
𝑢௜ೝ೐೑

 Component of wind speed vector in easterly direction at the reference site in 558 

𝑚𝑠ିଵ 559 
𝑢௜ೝ೐೑

 Component of wind speed vector in easterly direction at the reference site in 560 

𝑚𝑠ିଵ 561 
𝑢௜   Component of wind speed vector in easterly direction in 𝑚𝑠ିଵ 562 
𝑣௜೎ೌ೙

  Component of wind speed vector in northerly direction at the candidate site in 563 
𝑚𝑠ିଵ 564 

𝑣௜೛
 Predicted component of wind speed vector in northerly direction at the 565 

candidate site in 𝑚𝑠ିଵ 566 
𝑣௜ೝ೐೑

 Component of wind speed vector in northerly direction at the reference site in 567 

𝑚𝑠ିଵ 568 
𝑣௜   Component of wind speed vector in northerly direction in 𝑚𝑠ିଵ 569 
𝑧଴   surface roughness 570 
𝑽௜   Wind speed vector (speed in 𝑚𝑠ିଵ, wind direction in 𝑑𝑒𝑔) 571 
𝜃௠௔௧௛೔೛

   Predicted mathematical wind direction at the candidate site in 𝑑𝑒𝑔 572 

𝜃௠௘௧೔೛
   Predicted meteorological wind direction at the reference site in 𝑑𝑒𝑔 573 

𝜃௠௘௧೎ೌ೙
   Meteorological wind direction at the candidate site in 𝑑𝑒𝑔 574 

𝜃௠௘௧ೝ೐೑
   Meteorological wind direction at the reference site in 𝑑𝑒𝑔 575 

𝜃௠௔௧௛   Mathematical wind direction 576 
𝜃௠௘௧   Meteorological wind direction 577 
𝐷   Wind turbine diameter, 𝑚 578 
𝑁   Number of data points 579 
𝑃   Predicted power output from wind farm, 𝑀𝑊 580 
𝑃௔௖௧   Actual power output from windfarm, 𝑀𝑊 581 
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