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Abstract 8 

This paper investigates the uncertainties resulting from different Measure-Correlate-Predict methods 9 
to project the power and energy yield from a wind farm. The analysis is based on a case study that 10 
utilizes short-term data acquired from a LiDAR wind measurement system deployed at a coastal site in 11 
the northern part of the island of Malta and long-term measurements from the island’s international 12 
airport. The wind speed at the candidate site is measured by means of a LiDAR system. The predicted 13 
power output for a hypothetical offshore wind farm from the various MCP methodologies is compared 14 
to the actual power output obtained directly from the input of LiDAR data to establish which MCP 15 
methodology best predicts the power generated.  16 

The power output from the wind farm is predicted by inputting wind speed and direction derived from 17 
the different MCP methods into windPRO®1. The predicted power is compared to the power output 18 
generated from the actual wind and direction data by using the Mean Squared Error (MSE) and the 19 
Mean Absolute Error (MAE) measures. This methodology will establish which combination of MCP 20 
methodology and wind farm configuration will have the least prediction error. 21 

The best MCP methodology which combines prediction of wind speed and wind direction, together with 22 
the topology of the wind farm, is that using Artificial Neural Networks. However, the study concludes 23 
that the other MCP methodologies cannot be discarded as it is always best to compare different 24 
combinations of MCP methodologies for wind speed and wind direction, together with different wake 25 
models and wind farm topologies. 26 

1 Introduction 27 

The Measure-Correlate-Predict (MCP) methodology introduces uncertainty due to its inherent 28 
statistical nature. Recent developments have seen the introduction of new computational regression 29 
techniques such as Artificial Neural Networks (ANN) and Machine Learning, which include Decision 30 
Trees (DT) and Support Vector Regression (SVR). In a previous study, Light Detection and Ranging 31 
(LiDAR) data was used to compare the results of the various regression methodologies at different 32 
LiDAR measurement heights (Mifsud, et al., 2018) with the reference site being Malta International 33 
Airport (MIA), Luqa, and the candidate site being a coastal watch tower at Qalet Marku on the Northern 34 
part of the island. This study uses the same wind data for the year 2016 to construct the MCP models. 35 
However, this time the prediction is carried out on both wind speed and wind direction. Wind speed 36 
and direction are then predicted for the period June – December 2015. This is done for the different 37 
MCP models. The predicted wind speed and wind direction time series are then fed into a wind farm 38 
model implemented in windPRO® Ver. 2.7 to model the overall energy yield, considering wake losses. 39 
The power output for various wind farm configurations is obtained for each methodology. The LiDAR 40 
measurements at 80𝑚 are used, since this would be equivalent to a wind turbine (WT) hub height of 41 
100m.  42 

The power output in each case is compared to that obtained when the actual wind data is fed to the wind 43 
farm model. Thus residuals, the Mean Squared Error (MSE), the Mean Absolute Error (MAE) and the 44 
percentage error in the overall energy yield are compared for the various methodologies and wind farm 45 

 
1 https://www.emd.dk/windpro. 
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topologies. This is therefore a study about the uncertainties introduced by the various statistical 46 
methods, which is then further complicated by the windfarm layout. It is innovative due to the use of 47 
an MCP methodology to predict both the wind speed and the wind direction. The following literature 48 
review describes different MCP methodologies, four of which are then used in the prediction of wind 49 
speed and wind direction. The wake models are also described. This is followed by a description of the 50 
methodology used in the study, together with a description of the hypothetical wind farm used as a basis 51 
for this study. Finally, the results are presented and discussed. 52 

2. Literature Review 53 

The first MCP methods estimated the mean long-term annual wind speed (Carta, et al., 2013). MCP 54 
methods later made use of Simple Linear Regression (SLR) (Rogers, et al., 2005) to establish a 55 
relationship between hourly wind characteristics of the candidate and the reference sites. More recent 56 
models established non-linear type relationships (Clive, 2004; Carta & Velazquez, 2011) by employing 57 
statistical learning (Hastie, et al., 2009). Amongst these are algorithms such as Artificial Neural 58 
Networks (ANNs) (Bilgili, et al., 2007; Monfared, et al., 2009) and the more recent Machine Learning 59 
(ML) techniques, which include Support Vector Regression (SVR) (Oztopal, 2006; Zhao, et al., 2010; 60 
Scholkopf & Smola, 2002; Alpaydin, 2010) and Decision Trees (DTs) (James, et al., 2015; Alpaydin, 61 
2010). 62 

A study (Carta, et al., 2013) reviewed many MCP methodologies. These included the method of ratios, 63 
first-order linear regression, higher than first-order linear methods, non-linear methods and probabilistic 64 
methods. The authors were also concerned with the uncertainties associated with MCP methodologies 65 
and argued that users of MCP methodologies have little information on which to determine the 66 
uncertainty of the methodology. One methodology to measure this uncertainty is to use the full set of 67 
data from the concurrent period to train the model and assess its quality.  68 

Another study by Rogers compared four different MCP methodologies (Rogers, et al., 2005). These 69 
included a linear regression model, the distributions of ratios of the wind speeds at the two sites, an 70 
SVR model and another method based on the ratio of the standard deviations of the two data sets. The 71 
authors concluded that SVR gave the best results. In a different study, the same authors (Rogers, et al., 72 
2005b) also analysed the uncertainties introduced with the use of MCP techniques. They concluded that 73 
linear regression methodologies could seriously underestimate uncertainties due to serial correlation of 74 
data. Another study shows that a proper assessment of uncertainty is critical for judging the feasibility 75 
and risk of a potential wind farm development, and the authors describe the risk of oversimplifying and 76 
assuming uncertainties (Lackner, et al., 2012). 77 

A hybrid MCP method (Zhang, et al., 2014) which involved adding different weights depending on the 78 
distance and elevation of the candidate site to the reference sites, was applied to the input of five MCP 79 
methodologies. The methods used consisted of the Linear Regression, Variance Ratio, Weibull scale, 80 
ANNs and SVR methods. The results were assessed in terms of metrics such as the MSE and MAE. 81 
Other authors (Perea, et al., 2011) evaluated three methodologies. One method included a linear 82 
regression, which was derived from the bivariate normal joint distribution and the Weibull regression 83 
method. The other method was based on conditional probability density functions applied to the joint 84 
distributions of the reference and the candidate sites. The results from these two methodologies were in 85 
turn compared to SVR. Although the conclusion was that the SVR method predicted all the parameters 86 
very accurately, the probability density function based on the Weibull distribution was better in terms 87 
of prediction accuracy. 88 

The ability of ANNs to recognise patterns in complex data sets means that they can also be used to 89 
correlate and predict wind speed and wind direction (Zhang, et al., 2014). A neural network contains an 90 
input layer, one or more hidden layers of neurons and an output layer. A learning process updates the 91 
weights of the interconnections and biases between the neurons in the various layers. The Levenberg-92 
Marquardt (Principe, et al., 2000) algorithm may be used for this purpose. The regression is performed 93 
by means of feedforward networks (Alpaydin, 2010) with multilayer perceptrons (MLP).  94 

Another study (Velazquez, et al., 2011) utilised wind speed and direction from various reference 95 
stations. These were introduced into the input layer of an ANN. It was concluded that when wind 96 
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direction was used as an angular magnitude to the input signal, the model gave better results. Estimation 97 
errors also decreased as the number of reference stations was increased. The authors concluded that 98 
ANNs are superior to other methods for predicting long-term wind data.  99 

The use of ANNs for long-term predictions was also investigated by Bechrakis (Bechrakis, et al., 2004) 100 
using wind speed and direction measurements from just one reference station and compared these to 101 
standard MCP algorithms. This resulted in an improved prediction accuracy of 5 to 12%. Unfortunately, 102 
many models that use various reference stations use only the recorded wind speeds as input. The 103 
topologies of the ANNs used have only a single neuron in the input layer, with the output signal being 104 
the wind speed at the candidate site (Monfared, et al., 2009; Oztopal, 2006; Bilgili, et al., 2009). 105 

Data from meteorological stations possessing long measurement periods provide a large amount of 106 
potential inputs for MCP methods. Apart from wind speed and direction, inputs can also include other 107 
climatological variables such as air temperature, relative humidity and atmospheric pressure. Hence, a 108 
multivariate MCP methodology may be utilised (Patane, et al., 2011). This technique considers all the 109 
inputs and extracts the maximum amount of information at the sites. Since some input variables may 110 
be inter-correlated, or may not provide information about the target site wind characteristics, the 111 
methodology is a two-stage process. Input variables are analysed and those that contain little or 112 
redundant information about the candidate site wind characteristics are discarded, following which, a 113 
multivariate regression is performed. It was concluded from the results of the tests made that the 114 
methodology was more accurate than standard MCP methods, with the quality of the estimation of the 115 
long-term wind resource increasing by 19%. 116 

SVR is the adaptation of Support Vector Machines to the regression problem. This technique was 117 
developed by Vapnik (Vapnik, 1995; Vapnik, et al., 1998) to solve classification problems. SVR 118 
(Alpaydin, 2010) is popular within the renewable energy community, being a unique way to construct 119 
smooth and nonlinear regression approximations (Diaz, et al., 2017). The analysis of MCP models using 120 
SVR techniques shows that SVR is one of the techniques which best represents ML state-of-the-art 121 
(Diaz, et al., 2017). This is not only due to its prediction capability, but also to its property of universal 122 
approximation to any continuous function, and an efficient and stable algorithm that provides a unique 123 
solution to the estimation problem (Diaz, et al., 2017). Different hyperparameters were used to study 124 
the SVR methodology. Other studies describe how SVR may be adapted to wind speed prediction 125 
(Zhao, et al., 2010). 126 

Another recent study shows the importance of DTs in improving the regression results for MCP (Diaz, 127 
et al., 2018). The study applied five different MCP techniques to mean hourly wind speed and direction, 128 
together with air density, using the data from ten weather stations in the Canary Islands. The study 129 
showed that the models using SVR and DTs provided better results than ANNs. A DT is a hierarchical 130 
data structure which implements the ‘divide and conquer’ rule and it may also be applied to the 131 
regression problem (Hastie, et al., 2009; Alpaydin, 2010; James, et al., 2015).  132 

The use of LiDAR for wind resource assessment (Probst & Cardenas, 2010) shows a distinct advantage 133 
of this method over the traditional cup and wind vane measurements. This is demonstrated by studies 134 
carried out using different MCP methods such as SLR and ratio analysis. However, no analysis with 135 
ANNs, DTs or SVR is carried out. A more recent study (Mifsud, et al., 2018), which utilised the same 136 
data as this current study, analysed the accuracy of different MCP methodologies and their capability 137 
according to LiDAR measurement height. The study concluded that the MCP accuracy depended on 138 
both methodology and measurement height at the candidate site. Other studies using LiDAR at the same 139 
measurement site were also carried out. These analysed the turbulent behaviour of the wind data 140 
(Cordina, et al., 2017). 141 

The issue of wake losses in a wind farm has been described by several authors and can be minimised 142 
by optimising the layout of the wind farm (Manwell, et al., 2009). A short literature review of wake 143 
models is now presented.  144 

Wake models are classified into four categories (Manwell, et al., 2009) which are: Surface roughness 145 
models (Bossanyi, et al., 1980), Semi-empirical models (Lissaman & Bates, 1977), (Vermeulen, 1980), 146 
Eddy viscosity models (Ainslie, 1985), and Navier-Stokes solutions (Crespo & Hernandez, 1986), 147 
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(Crespo & Hernandez, 1993). A review  of wind turbine wake models (Sanderse, n.d.), shows the effects 148 
of reduced power production due to lower incident wind speed and the effect on the wind turbine rotors 149 
due to increased turbulence. The author presents a number of reasons on why the focus on numerical 150 
simulation is preferred to experimentation; this is mainly due to the use of Computational Fluid 151 
Dynamics (CFD). One study presents the mathematical theory behind a simple wake model and that for 152 
a multiple wake model (Gonzalez-Longatt, et al., 2012) while another study (Churchfield, 2013) 153 
describes a hierarchy of wake models ranging from the empirical to large-eddy simulation (LES). Some 154 
of the models compared include Ainslie’s Model (Ainslie, 1985), Frandsen’s model (Fransden, 2005), 155 
and Jensen’s Model (Jensen, 1983). The Dynamic Wake Meander model is another method which is 156 
described (Larsen, et al., 2008) and also validated (Larsen, et al., 2013) in a study carried out on the 157 
Egmond ann Zee offshore wind farm. Another study (Barthelmie, et al., 2006), compares wake model 158 
simulations for offshore wind farms, with the wake profiles being measured by Sonic Detection and 159 
Ranging (SoDAR). In this case, the models gave a wide range of predictions and it was not possible to 160 
identify a model with superior projections with respect to the measurements.  161 

In some studies, it is necessary for any wake model used to be straightforward, dependent on relatively 162 
few wake measurements and economic in terms of the necessary computing power. Despite their 163 
relative simplicity, these models tend to give results which are in reasonable agreement with the 164 
available data in the case of a single wake within a small wind farm and a simple meteorological 165 
environment. In addition, a comparison of different wake models does not suggest any particular 166 
difference in terms of accuracy, between the sophisticated and simplified models (Manwell, et al., 167 
2009).  168 

The use of wake models can also be illustrated by considering a semi-empirical model (Katić, et al, 169 
1986) that is often used for wind farm output predictions. This model attempts to characterise the energy 170 
content in the flow field whilst ignoring the details of the exact nature of the flow field, which is assumed 171 
to consist of an expanding wake with uniform velocity deficit that decreases with distance downstream 172 
(Manwell, et al., 2009). 173 

The N.Ø. Jensen (Jensen, 1983) is a simple wake model based on the assumption of a wake with a linear 174 
wake cone. The results from this model are comparable to experimental results.   175 

3. Theoretical Background 176 

MCP methods are based on regression techniques. Regression can be performed by using SLR. 177 
However, as mentioned above, several more powerful techniques exist amongst which are ANNs, SVR 178 
and DT. While MCP methodologies have been developed for wind speed, they cannot be directly used 179 
for predicting wind direction. Therefore, a method for predicting the wind direction is developed below. 180 
This methodology is based upon a simple relationship (Bosart & Papin, 2017) between the 181 
meteorological wind direction 𝜃௧ and the mathematical wind direction 𝜃௧   such that:  182 

𝜃௧ = 90 − 𝜃௧ (1) 

in which the wind speed vector 𝑽 can be broken down into its vector components such that  183 

u୧ = |𝑉| cos θ୫ୟ୲୦= |𝑉| cos(90 − θ୫ୣ୲) (2) 

v୧ = |𝑉| sin θ୫ୟ୲୦= |𝑉୧| sin(90 − θ୫ୣ୲) (3) 

in which case the values of u୧ and v୧, which may be either positive or negative depending on the 184 
direction of the wind (the value of 𝜃௧), are the wind components in the North (y) and the East (x) 185 
directions (axes). The relationship is shown in Figure 1.  186 
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 187 
Figure 1: Difference between the meteorological wind direction and the mathematical wind direction and the component of 188 

the wind vector. 189 

Also, 190 

|𝑽| = ൫𝑢
ଶ + 𝑣

ଶ൯
ଵ
ଶ (4) 

The regression is carried out between the respective components of the wind velocity in the y and x 191 
directions, hence establishing a relationship between the components at both sites. The forecasted wind 192 
direction at the candidate site is then obtained from the forecasted wind components using the 193 
relationship in Eq. (5): 194 

𝜃௧
= 90 − 𝑡𝑎𝑛ିଵ

𝑣

𝑢

 (5) 

The value of the angle θ୫ୣ୲
 depends on the direction of u

 and v
, as shown in Figure 2 195 

 196 
Figure 2: Calculating the value of 𝜽𝒎𝒆𝒕𝒊𝒑

 according to the value of 𝒖𝒊𝒑
 and 𝒗𝒊𝒑

. 197 

and in accordance with the relationships shown in Eq. (6): 198 

      𝑢
> 0 𝑎𝑛𝑑 𝑣

> 0    𝑁𝐸 𝑤𝑖𝑛𝑑𝑠       0° < 𝜃௧
< 90°  

 𝑢
> 0 𝑎𝑛𝑑  𝑣

< 0  𝑆𝐸  𝑤𝑖𝑛𝑑𝑠        90° < 𝜃௧
< 180°

        𝑢
< 0 𝑎𝑛𝑑 𝑣

< 0  𝑆𝑊 𝑤𝑖𝑛𝑑𝑠  180° < 𝜃௧
< 270°

       𝑢
< 0 𝑎𝑛𝑑 𝑣

> 0     𝑁𝑊𝑤𝑖𝑛𝑑𝑠    270° < 𝜃௧
< 360°

 (6) 

and Eq. (7): 199 

https://doi.org/10.5194/wes-2019-92
Preprint. Discussion started: 2 December 2019
c© Author(s) 2019. CC BY 4.0 License.



6 

 

𝑢
= 0 𝑎𝑛𝑑 𝑣

> 0 (North Wind) 𝜃௧
= 0°

𝑢
= 0 𝑎𝑛𝑑 𝑣

< 0 (South Wind) 𝜃௧
= 180°

𝑢
> 0 𝑎𝑛𝑑 𝑣

= 0 (East Wind) 𝜃௧
= 90°

𝑢
< 0 𝑎𝑛𝑑 𝑣

= 0 (West Wind) 𝜃௧
= 270°

 (7) 

4. A Case Study - Site Conditions and the Modelled Offshore Windfarm 200 

4.1 The reference and candidate sites 201 

The reference site employed in this study is the Meteorological Office at Malta International Airport 202 
(MIA), Luqa, and the candidate site is data collected by a ZephIR 300 LiDAR unit administered by the 203 
University’s Institute for Sustainable Energy. The unit was situated on the roof of a coastal watch tower 204 
at Qalet Marku, situated in the Northern Part of the Island of Malta (Mifsud, et al., 2018). The relative 205 
location of the two sites is shown in Figure 3, while Figure 4 shows a satellite image of the location of 206 
the coastal watch tower.  207 

208 

Figure 3: Map of Malta showing relative location of the candidate and the reference sites (Google, 209 
2019) (© Google Maps 2019). 210 

 211 

Figure 4: Satellite imagery of the Qalet Marku coastal watch tower, located on a promontory near 212 
Bahar ic-Caghaq (Google, 2019) (© Google Maps 2019). 213 

Table 1 and Table 2 show the properties of the candidate and the reference sites respectively (Cordina, 214 
et al., 2017), (Mifsud, et al., 2018). In this case the wind data measured by the LiDAR at a height of 215 
80m, would be equivalent to a cumulative height of 100m above sea-level, which would be the hub 216 
height of the wind turbines in the windfarm as shown in Table 3. 217 
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Table 1: Candidate Site parameters (Cordina, et al., 2017). 218 
Station Name Qalet Marku LiDAR 

Station 
Cone Angle, LiDAR aperture 
height above the tower rooftop. 

60°, 1 𝑚 

Measurement height, above the 
aperture window, m 

80𝑚  

Data Hourly data 
Data range 1st July, 2015 – 31st 

December, 2016 
Geographical Coordinates 35.946252°𝑁, 

14.45329°𝐸 
Average tower rooftop height 
above surrounding ground level 

10 𝑚 
 

Height of base of tower above sea 
level 

6 𝑚 

 219 

Table 2: Reference Site parameters (Malta International Airport). 220 
Station Name Luqa MIA Weather 

Station 
Data Average hourly wind 

speed data, wind 
direction, air temperature, 
atmospheric pressure and 
relative humidity. 

Mast height  10 𝑚 above ground 
Height of site above sea level 78 𝑚 
Geographical Coordinates 35.85657°𝑁, 

14.47676°𝐸 

4.2 The Available Wind Data 221 

The measurement campaign at the candidate site started on the 1st July 2015 and ended on the 31st 222 
December 2016. Hourly wind data were available for this time period from both the reference and 223 
candidate sites. The MCP analysis was carried out using both wind speed and wind direction. The data 224 
from the reference site were used as the independent data set. The models were created using the data 225 
for the year 2016, while the reference site wind data for 2015 used to create the predicted wind speed 226 
and wind direction as inputs to the windfarm model. 227 

4.3 The Wind Farm Design in windPRO® 228 

Table 3: Wind Turbine Parameters used in the study (wind-turbine-models.com, 2019). 229 
Wind Turbine Parameter  

Manufacturer RE Power (Germany) 

Rated Power 5000 𝑊 
Rotor orientation Upwind 
Number of blades 3 
Rotor Diameter 126 𝑚 

Swept Area 12469 𝑚ଶ 
Blade Type LM 
Cut in speed 3.5 𝑚𝑠ିଵ 

Rated Wind Speed 14 𝑚𝑠ିଵ 
Cut out speed (for off-shore) 30 𝑚𝑠ିଵ 

Hub-height, 𝒛 100 𝑚 

The hypothetical wind farm is located opposite the coastal watch tower of Qalet Marku [14.452498°𝐸, 230 
35.945892°𝑁]. windPRO® 2.7 was used to render an image of the wind farm onto an image of the 231 
LiDAR unit taken from the watch tower. This gives an indication as to the extent of the wind farm. This 232 
is shown in Figure 5, while Figure 6 shows the satellite imagery of the wind farm, showing a 250-MW 233 
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capacity windfarm. The windfarm faces the North-West direction, which is the prevailing wind 234 
direction.  235 

The wind turbines are located at a distance of five rotor diameters (5D) from each other while the 236 
distance between the rows of the wind turbines is eight diameters (8D). Hence, considering wind 237 
turbines with a rotor diameter, 𝐷, of 126 𝑚 (for a 5 MW Wind Turbine), the distance between the 238 
turbines in the cross-wind direction is 630 𝑚, and the distance between successive rows of wind 239 
turbines in the downwind direction is 1,008 𝑚. The wind turbine selected for use in windPRO® is the 240 
RE Power 5-MW wind turbine whose parameters are shown in Table 3. 241 

 242 
Figure 5: View of the wind farm rendered onto an image of the area and also showing the LiDAR unit.  243 

 244 
Figure 6: Satellite imagery of the wind farm showing the location of the 50 wind turbines with respect to the coastal LiDAR 245 

station (Google, 2019) (© Google Maps 2019). 246 

5. Methodology 247 

Figure 7 shows the methodology applied in this paper: 248 
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 249 

 250 
Figure 7: Applied methodology. 251 

The study is divided into three steps as follows: 252 

1. STEP 1 - The various MCP methodologies are used to compute the MCP model. This is done using 253 
wind speed and direction data at a candidate and reference site for the year 2016.  254 

2. STEP 2 - The 2015 wind speed and wind direction are predicted using the models computed in 255 
Step 1. The predicted and actual wind speed and wind direction are used to compute the power 256 
output from the wind farm. This is done by feeding the wind speed and direction data into the 257 
windPRO® model, and,  258 

3. STEP 3 - compute and compare the MSE, MAE and percentage error in the power. 259 

The combinations of LiDAR measurement heights and MCP methodologies are shown in Table 4.  260 

Table 4: Summary of combinations of methodologies, LiDAR measurement heights and amount of wind turbines used in the 261 
analysis 262 

80m 
(equivalent to 
a 100m hub 

height) 

MCP Methodology 
Simple Linear 

Regression 
(SLR) 

Artificial Neural 
Networks (ANN) 

Decision Trees 
(DT) 

Support 
Vector 

Regression 
(SVR). 

Wind Speed, Wind Direction, predicted for 2015. Actual and predicted 
sequences fed into wind farm model, comparisons of wind farm power output 
made for a capacity of 250, 200, 150, 100 and 50 MW. 

Regression models were created for the MCP methodologies using the reference and candidate wind 263 
speed and direction for the year 2016. These regression models were created using SLR, ANN, DT and 264 
SVR. A model was created for both wind speed and direction.  265 

The wind speed and wind direction for 2015 were then predicted with the models by feeding the speed 266 
and direction values from the reference site from the year 2015. Thus, a sequence of predicted wind 267 
speeds and wind direction time series could be compared to the actual speed and direction measured at 268 
the candidate site for the year 2015. The models for the wind speed and the wind direction are 269 
independent from each other.  270 
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 271 
Figure 8: Application of regression methodologies to wind direction 272 

In the case of wind direction, the MCP methodologies are applied as shown in Figure 8 and Figure 9. 273 
Figure 8 shows that two regressions are carried out: one for the magnitude of the wind component in 274 
the North direction and one for the wind component in the East direction. Thus, two models are created 275 
using the wind speed and direction data of the reference and the candidate site for 2016. The two models 276 
are then used to derive the predicted wind direction for 2015 at the candidate site as shown in Figure 9, 277 
by using the wind components at the reference site for 2015 as inputs to the respective models. The 278 
values of the wind speed in the North direction and the East direction are first predicted, and the wind 279 
direction at the candidate site for 2015, 𝜃௧

, is then derived from the mathematical relationships given 280 

in Eq. (6) and Eq. (7). 281 

 282 
Figure 9: Predicting the wind direction 283 

The sequences of wind speed and wind directions (both actual and predicted) were fed into the wind 284 
farm model. This was done for different combinations of methodology and wind farm (250, 200, 150, 285 
100 and 50 MW) configurations. The results were compared to determine which combination of MCP 286 
methodology, and windfarm capacity would give the lowest prediction error. The prediction error for 287 
the power output from the wind farm is analysed using the Mean Squared Error (MSE), the Mean 288 
Absolute Error (MAE) and the percentage error in the Overall Energy Yield for the period of analysis. 289 
The results are shown in the following section. 290 

6. Results 291 

A summary of the results is shown below where sequences of data for a specific period of 2015 are 292 
compared. These sequences are for wind speed, wind direction and power output. All MSE, MAE and 293 
percentage errors in the overall energy yield are then shown in the following tables. 294 

6.1 Wind speed and wind direction with MCP methodology. 295 

6.1.1 Wind speed with MCP methodology. 296 

Figure 10 to Figure 13 show the wind speed from the period 23rd November to the 30th November 2015. 297 
The particular period is chosen because of the high availability of wind. The actual wind data are 298 
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compared with that predicted by the MLR, ANN, DT and SVR methodologies. The predicted wind 299 
values closely follow the actual wind values, for all the MCP methodologies applied.  300 

 301 

302 
Figure 10: Comparing actual wind speed and wind speed 303 
predicted by MLR methodology with wind data for 2015. 304 

 305 
Figure 11: Comparing actual wind speed and wind speed 306 
predicted by ANN methodology with wind data for 2015. 307 

308 
Figure 12: Comparing actual wind speed and wind speed 309 
predicted by ANN methodology with wind data for 2015. 310 

 311 
Figure 13: Comparing actual wind speed and wind speed 312 
predicted by SVR methodology with wind data for 2015. 313 

6.1.2 Wind direction with MCP methodology. 314 

Figure 14 to Figure 17 show the wind direction from the period 23rd November to the 30th November 315 
2015. As above, the actual wind direction at the candidate site is compared to that predicted by the 316 
MLR, ANN, DT and SVR methodologies. Again, as in the case for wind speed, there is a similarity 317 
between the actual and predicted wind direction values, in all cases.  318 
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320 
Figure 14: Comparing actual and predicted wind direction 321 
predicted by MLR methodology, with wind data for 2015. 322 

323 
Figure 15: Comparing actual and predicted wind direction 324 
predicted by ANN methodology, with wind data for 2015. 325 

 326 

327 
Figure 16: Comparing actual and predicted wind direction 328 

predicted by DT methodology, with wind data for 2015. 329 

 330 
Figure 17: Comparing actual and predicted wind direction 331 
predicted by SVR methodology, with wind data for 2015. 332 

6.2 Wind farm power output with MCP methodology, for a windfarm capacity of 333 
250MW. 334 

Figure 18 to Figure 21 compare the output power from the wind farm, which is derived from the actual 335 
wind speed and wind direction to the power output derived from the predicted wind speed and direction. 336 
This comparison is carried out for the MLR, ANN, DT and SVR methodologies. The results for a wind 337 
farm capacity of 250MW are being shown. As in the case for wind speed and direction, the predicted 338 
power output closely follows that obtained with the actual wind speed and direction.  339 
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 341 
Figure 18: Comparing actual and predicted power output 342 
from the wind farm, with wind data for 2015, actual and 343 

predicted by MLR methodology. 344 

 345 
Figure 19: Comparing actual and predicted power output 346 
from the wind farm, with wind data for 2015, actual and 347 

predicted by ANN methodology. 348 

 349 
Figure 20: Comparing actual and predicted power output 350 
from the wind farm, with wind data for 2015, actual and 351 

predicted by DT methodology. 352 

 353 
Figure 21: Comparing actual and predicted power output 354 
from the wind farm, with wind data for 2015, actual and 355 

that predicted by SVR methodology. 356 

357 

A Wind Data Analysis, carried out using windPRO®, is shown in the next section. The results presented 358 
are a Weibull distribution for wind speed and the wind rose. These charts are computed from the wind 359 
speed and direction which are predicted by using the MLR, ANN, DT and SVR MCP methodologies. 360 
Thus, the predicted wind speed and direction are compared with the results computed from the actual 361 
wind data.  362 

6.3 The Actual Wind Data for 2015 measured by the LiDAR system. 363 

Figure 22 shows the Wind Data Analysis report from windPRO® for the actual LiDAR data measured 364 
at the 80m level height (equivalent to a hub height of 100m). The images show the Weibull distribution 365 
for the wind speed and the wind rose. The reports are used to compare the properties of the actual wind 366 
measurements and the predicted wind speed and direction.  367 
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 369 
Figure 22: windPRO® wind data analysis using actual wind data measured by the LiDAR equipment at a height of 100 m. 370 

6.4 Wind speed and direction predicted using the MCP methodologies. 371 

Figure 23 to Figure 26 represent the Weibull distribution and the wind rose for the wind speed and 372 
direction predicted by the MLR, ANN, DT and SVR MCP methodologies respectively, at the hub height 373 
of 100𝑚. There exists a similarity between the Weibull plots for the actual wind data and those for the 374 
predicted wind speed, for the same measurement period. While, the wind direction predicted by the 375 
ANN and DT methodologies show a higher resemblance to that of the actual wind direction than that 376 
predicted by the MLR or SVR methodologies. Hence it is expected that the ANN and the DT 377 
methodologies would yield the least error in the predicted power output from the wind farm. 378 

 379 

 380 
 381 

Figure 23: windPRO® wind data analysis using wind data predicted by MCP applying MLR at a hub height of 100 m.382 

 383 
 384 

Figure 24: windPRO® wind data analysis using wind data predicted by MCP applying ANN at a hub height of 100 m. 385 
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 386 
387 

Figure 25: windPRO® wind data analysis using wind data predicted by MCP applying DT at a hub height of 100 m 388 

 389  390 
Figure 26: windPRO® wind data analysis using wind data predicted by MCP applying SVR at a hub height of 100 m 391 

The results for the MAE, the MSE and the percentage error in the Overall Energy Yield are summarised 392 
in Table 5 to Table 7. The tables show that the DT and ANN methodology have the best performance 393 
in MAE and MSE. While MLR and ANN have the best performance in percentage error in energy yield. 394 
The results are consistent for all wind farm capacities under consideration, with the error decreasing 395 
with decreasing wind farm capacity. The decrease in error is expected, as in this case the uncertainty 396 
due to the wake losses is reduced, when the wind blows from the prevailing direction, especially in the 397 
case of the lower wind farm capacities. 398 

Table 5: Summarised results for Mean Absolute Error by MCP methodology and windfarm capacity. 399 

Mean Absolute Error [kW] 

Wind Farm 
Capacity MLR ANN DT SVR 
250MW 10,999 10,850 10,590 11,197 
200MW 8,944 8,801 8,608 9,108 
150MW 6,851 6,733 6,598 6,979 
100MW 4,687 4,612 4,525 4,764 
50MW 2,455 2,397 2,364 2,462 

 400 

  401 
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Table 6: Summarised results for the Mean Squared Error by MCP methodology and windfarm capacity. 402 

Mean Squared Error [MW]2  

Wind Farm 
Capacity MLR ANN DT SVR 
250MW 491.07 479.96 476.34 499.51 
200MW 320.69 311.75 308.23 326.09 
150MW 184.12 178.96 176.00 187.29 
100MW 82.77 81.19 79.27 84.53 
50MW 21.33 20.95 20.65 21.40 

 403 

Table 7: Summarised results for percentage error in overall energy yield by MCP methodology and windfarm capacity. 404 

Percentage Error in Overall Energy Yield 

Wind Farm 
Capacity MLR ANN DT SVR 
250MW 4.63 4.54 18.83 9.44 
200MW 4.80 4.90 18.40 9.34 
150MW 4.92 5.40 17.78 9.23 
100MW 4.78 5.70 16.92 8.71 
50MW 3.65 7.03 14.73 8.23 

 405 

Results are also shown in Figure 27 to Figure 29, which show a slight superiority of the DT 406 
methodology in terms of MAE and MSE, and a net superiority of the MLR and ANN methodologies in 407 
the percentage error of the overall energy yield. 408 

  409 
Figure 27: Comparison of the Mean Absolute Error for the various wind farm topologies and MCP methodology, for the 410 

2015 energy output from the wind farm. 411 
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 412 
Figure 28: Comparison of the Mean Standard Error for the various wind farm topologies and MCP methodology, for the 413 

2015 energy output from the wind farm. 414 

 415 
Figure 29: Comparison of the Percentage Error in Overall Energy Yield for the various wind farm topologies and MCP 416 
methodology, for the 2015 energy output from the wind farm. 417 

When considering the MAE and the MSE, the differences between the DT and the ANN methodologies 418 
are minimal and the DT performs better. However, the ANN methodology shows a much better 419 
performance than the DT methodology, in the percentage error in the energy yield from the wind farm. 420 
The ANN methodology also shows the best similarity to the actual wind speed and wind direction, as 421 
seen in Figure 24. Although the MLR methodology shows a significant improvement in percentage 422 
error, it is only slightly better than the ANN methodology, for the 250MW and 200MW windfarm 423 
capacity. The MLR methodology has better results in the case of 150MW, 100MW and 50MW wind 424 
farm capacities, with the percentage error being 3.65% at a windfarm capacity of 50MW, when 425 
compared to an error of 7.3% obtained with the ANN methodology. The MLR methodology is inferior 426 
to the ANN or DT methodologies, in the case of MAE and MSE. Thus, it may be concluded that the 427 
ANN approach is the best MCP methodology for predicting the energy yield for the offshore windfarm. 428 
The SVR methodology has the worst overall performance. 429 

7. Conclusions 430 

The above research has combined the use of MCP methodologies for wind speed and used a different 431 
method for predicting the wind direction at a candidate site. Three of the four MCP methodologies used 432 
are based on modern statistical learning methodologies. The data was collected from a reference site 433 
which is the Island of Malta’s international airport, while the candidate site data has been collected by 434 
means of a LiDAR wind measurement system placed on the roof top of a coastal building.  435 

The wind direction at the candidate site was predicted with the various MCP methodologies by breaking 436 
down the wind velocity vector into its respective North and East direction components. The regression 437 
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analysis was then carried out on the respective components at the reference and the candidate sites. The 438 
wind speed is predicted by using the magnitude of the wind speed at the respective sites for creating the 439 
regression model. 440 

The projected wind speed and direction time series were applied to a hypothetical wind farm. Thus, the 441 
error introduced by the four MCP methods could be measured. This was done by calculating the MSE, 442 
the MAE and the percentage error in wind farm’s energy yield. The results show that the MSE, MAE 443 
and the percentage error in energy yield depend on the MCP methodology and the windfarm capacity.  444 

In this case, the best MCP method was that which used Artificial Neural Networks. Although other 445 
MCP methodologies gave larger errors, they cannot be totally discarded. It is always best to compare 446 
methodologies, comparing results by analysing residuals and errors and then choosing the best 447 
methodology on a case-by-case basis.  448 

Unless actual wind data is available, one cannot carry out this analysis, as the uncertainty is obtained 449 
by comparing the energy from the windfarm with predicted and actual wind data. The above analysis 450 
could be done because 18 months of data were available, rather than the normal 12 months, which is 451 
usual for a wind resource assessment which uses MCP methodologies.  452 

The above study was limited to using the same MCP methodology for both the wind speed and direction 453 
and to the N.Ø. Jansen methodology for wake losses. The layout chosen was one that ensured a 454 
recommended minimum distance between the wind turbines. Different combinations of MCP 455 
methodologies for wind speed and direction can be examined. For example, the combination of the 456 
ANN methodology to predict wind speed and SVR for wind direction or vice-versa. This is an area 457 
which warrants further study, as is trying out different windfarm topologies, or selecting different wind 458 
turbines. It would also be of interest to study the application of different wake methodologies as a 459 
possible means of decreasing the uncertainties. 460 
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LSE   Large Eddy Simulation 484 
MIA   Malta International Airport 485 
MAE    Mean Absolute Error 486 
MCP    Measure-Correlate-Predict 487 
MLP   Multilayer Perceptron 488 
MSE   Mean Squared Error 489 
SLR   Simple Linear Regression 490 
SoDAR   Sonic Detection and Ranging 491 
SVR   Support Vector Regression 492 
WT   Wind Turbine 493 

494 
𝑉   Magnitude of wind speed in 𝑚𝑠ିଵ 495 
𝑢

 Predicted component of wind speed vector in easterly direction at the 496 

candidate site in 𝑚𝑠ିଵ 497 
𝑢ೝ

 Component of wind speed vector in easterly direction at the reference site in 498 

𝑚𝑠ିଵ 499 
𝑢ೝ

 Component of wind speed vector in easterly direction at the reference site in 500 

𝑚𝑠ିଵ 501 
𝑢   Component of wind speed vector in easterly direction in 𝑚𝑠ିଵ 502 
𝑣ೌ

  Component of wind speed vector in northerly direction at the candidate site in 503 
𝑚𝑠ିଵ 504 

𝑣
 Predicted component of wind speed vector in northerly direction at the 505 

candidate site in 𝑚𝑠ିଵ 506 
𝑣ೝ

 Component of wind speed vector in northerly direction at the reference site in 507 

𝑚𝑠ିଵ 508 
𝑣   Component of wind speed vector in northerly direction in 𝑚𝑠ିଵ 509 
𝑧   surface roughness 510 
𝑽   Wind speed vector (speed in 𝑚𝑠ିଵ, wind direction in 𝑑𝑒𝑔) 511 
𝜃௧

   Predicted mathematical wind direction at the candidate site in 𝑑𝑒𝑔 512 

𝜃௧
   Predicted meteorological wind direction at the reference site in 𝑑𝑒𝑔 513 

𝜃௧ೌ
   Meteorological wind direction at the candidate site in 𝑑𝑒𝑔 514 

𝜃௧ೝ
   Meteorological wind direction at the reference site in 𝑑𝑒𝑔 515 

𝜃௧   Mathematical wind direction 516 
𝜃௧   Meteorological wind direction 517 
𝐷   Wind turbine diameter, 𝑚 518 

 519 
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