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Abstract. The high computational demand of large-eddy simulations (LES) remains the biggest obstacle for a wider applica-

bility of the method in the field of wind energy. Recent progresses of GPU-based (Graphics Processing Unit) lattice Boltzmann

frameworks provide significant performance gains alleviating such constraints. The presented work investigates the potential

of LES of wind turbine wakes using the cumulant lattice Boltzmann method (CLBM). The wind turbine is represented by

the actuator line model (ALM). The implementation is validated and discussed by means of a code-to-code comparison to an5

established finite-volume Navier-Stokes solver. To this end, the ALM is subjected to both laminar and turbulent inflow while a

standard Smagorinsky sub-grid scale model is employed in the two numerical approaches. The resulting wake characteristics

are discussed in terms of the first- and second-order statistics as well the spectra of the turbulence kinetic energy. The near-

wake characteristics in laminar inflow are shown to match closely with differences of less than 3% in the wake deficit. Larger

discrepancies are found in the far-wake and relate to differences in the point of the laminar-turbulent transition of the wake. In10

line with other studies these differences can be attributed to the different orders of accuracy of the two methods. Consistently

better agreement is found in turbulent inflow due to the lower impact of the numerical scheme on the wake transition. In sum-

mary, the study outlines the feasibility of wind turbine simulations using the CLBM and further validates the presented set-up.

Furthermore, it highlights the computational potential of GPU-based LBM implementations for wind energy applications. For

the presented cases, near real-time performance was achieved using a single, off-the-shelf GPU on a local workstation.15

Copyright statement. TEXT

1 Introduction

Large-Eddy Simulations (LES) can provide valuable insights into the aerodynamic interaction of wind turbines. In comparison

to modelling approaches with lower fidelity, LES allow for the investigation of aerodynamic effects that are directly associated

with the transient nature of highly turbulent flows as found in the atmospheric boundary layer (ABL). Resolving the transient20

large energy-containing turbulent structures does, however, come at a high computational cost that is far beyond, for instance,

the one of Reynolds-averaged approaches (RANS; Mehta et al., 2014). Still, in recent years, LES are increasingly used in

engineering-driven contexts. Such as, for instance the investigation of fatigue loads in various operating conditions (Storey
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et al., 2016; Nebenführ and Davidson, 2017; Meng et al., 2018), the effects of turbine curtailment (Nilsson et al., 2015; Fleming

et al., 2015; Dilip and Porté-Agel, 2017) or the development and testing of farm-wide optimisation control strategies (Ciri

et al., 2017; Munters and Meyers, 2018). With such applications the computational demand of typical case studies increases

dramatically when compared to the more fundamental investigations performed in earlier years of LES of the ABL. This

increase in computational demand relates both to the size of considered domains as well as the physical time simulated.5

Examples of the former are simulations of entire offshore wind farms (Churchfield et al., 2012b; Abkar and Porté-Agel, 2013;

Nilsson et al., 2015) or large areas of complex orography (Ivanell et al., 2018; Fang et al., 2018). An extreme example of the

latter is the work by Abkar et al. (2016) investigating the wakes in a wind farm throughout two diurnal cycles.

Despite the growing capacities of modern high-performance computing (HPC) clusters, computational power remains the

biggest bottleneck for such large scale LES applications. Over the last three decades the Lattice Boltzmann Method (LBM)10

has evolved into a viable alternative to classical CFD approaches with significantly increased computational performance

(Malaspinas and Sagaut, 2014; Krüger et al., 2016). This largely relates to the strict separation of non-linear and non-local

terms allowing for excellent parallelisability (Succi, 2015). The LBM, therefore, also proves to be perfectly suitable for im-

plementations on Graphics Processing Units (GPU). Various authors documented the substantial speed-up factors of such

implementations, see, e.g., Schönherr et al. (2011), Obrecht et al. (2013) or Onodera and Idomura (2018), to name a few.15

Nevertheless, applications of the LBM in the field of ABL flows and wind energy are still rare compared to other fields of fluid

dynamics. To date, one of the few prominent applications in the wider field of atmospheric flows are wind comfort assessments

and pollution dispersion in urban canopies (e.g., King et al., 2017; Ahmad et al., 2017; Jacob and Sagaut, 2018; Lenz et al.,

2019; Merlier et al., 2018, 2019). Other related applications are wind load assessments as presented by Andre et al. (2015),

Fragner and Deiterding (2016) or Mohebbi and Rezvani (2018). In the field of wind energy though, the use of the LBM remains20

rather limited. Deiterding and Wood (2016), Khan (2018) and Zhiqiang et al. (2018) presented simulations of geometrically

resolved model-scale wind turbines. Avallone et al. (2018) and van der Velden et al. (2016) on the other hand investigated noise

emissions of blade sections. Various fundamental aspects of the LBM in the context of wind energy and particularly wind farm

simulations therefore remain untouched, yet crucial for future applications.

One method of special importance for the modelling of wind turbines in LES is the Actuator Line Model (ALM). The ALM,25

as well as other actuator-type models, couple a CFD simulation to an extension of the Blade Element Momentum (BEM)

method. Using the locally sampled flow velocity, body forces of a blade element are computed using empirically determined

lift and drag coefficients of the referring airfoil section. These are then again applied in the domain of the CFD simulation

(Sørensen and Shen, 2002; Troldborg et al., 2010). This avoids prohibitively expensive geometrically resolved simulations of

the rotor. It is therefore the only feasible way to represent wind turbines in LES on a wind farm scale today (Sanderse et al.,30

2011; Mehta et al., 2014). Again, fundamental investigations of the ALM in lattice Boltzmann frameworks are still limited,

yet crucial for future simulations of entire wind farms. Rullaud et al. (2018) presented a first conceptual study of the ALM in

this context. The presented ALM for vertical axes wind turbines was, however, limited to two dimensions, i.e. cross-sectional

planes. More recently, Asmuth et al. (2019) presented an initial fundamental investigation of the classical ALM for horizontal

axis turbines in a cumulant lattice Boltzmann framework in uniform laminar inflow. The main aspects of the study were the35
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sensitivity of the blade forces of the ALM to the spatial and temporal resolution of the bulk scheme as well as computational

performance.

The objective of this paper is to analyse the wake of a single wind turbine simulated with the ALM and the cumulant lattice

Boltzmann method (CLBM), a recently developed high-fidelity collision operator that is particularly suited for high Reynolds

number flows (Geier et al., 2015, 2017b). The main portion of the presented study is based on a code-to-code comparison5

to a standard finite volume (FV) Navier-Stokes (NS) solver. The primary motivation for this is to extend the aforementioned

validation study of this ALM implementation (Asmuth et al., 2019) to the near- and far-wake characteristics. The comparison

comprises a laminar and turbulent inflow case, respectively. Furthermore, using the same set-up, we briefly evaluate the impact

of a stabilising limiter within the collision operator on the wake characteristics.

To the authors’ knowledge, this study constitutes the first application of the CLBM to wind turbine wake simulations. More-10

over, application-oriented studies of the utilized parametrised version of this collision operator (as further outlined in Sect. 2)

are generally still limited, see Lenz et al. (2019). Therefore, a further motivation of the study is to show the general potential of

wind turbine wake simulations using the LBM and specifically the CLBM. The numerical stability of such simulations using

the LBM is not self-evident when using typical, rather coarse grid resolutions.

The remainder of the paper is organised as follows: Sect. 2 provides a brief introduction to the LBM. This includes a15

description of the underlying numerical concept, characteristics of the cumulant collision model, the use of turbulence models

in the CLBM and, lastly, details on the implementation of the ALM. Sect. 3 describes the utilised numerical frameworks and

case set-up. In Sect. 4 we present the code-to-code comparison in laminar inflow. A discussion of the results in turbulent inflow

is given in Sect. 5. The impact of the third-order cumulant limiter is outlined in Sect. 6. Sect. 7 briefly touches upon aspects of

computational performance. Lastly, final conclusions and guidelines for future studies are provided in Sect. 8.20

2 The Lattice Boltzmann Method

In the following we provide a brief description of the LBM. This comprises a description of the governing equations as well as

more specific topics relevant for the presented studies, such as sub-grid scale modelling and the implementation of the ALM.

For a more detailed description of the fundamentals, the interested reader is referred to the work by Krüger et al. (2016).

2.1 Governing Equations25

The LBM solves the kinetic Boltzmann equation, i.e. the transport equation of particle distribution functions (PDF) f in

physical and velocity space. PDFs describe the probability to encounter a particle (mass) density of velocity ξ at time t at

location x. Solving the kinetic Boltzmann equation thus requires a discretisation in both physical and velocity space. Using

a finite set of discrete velocities (referred to as velocity lattice, see, Fig. 1) and discretising in space and time one obtains the

lattice Boltzmann equation (LBE) in index notation30

fijk(t+ ∆t,x+ ∆teijk)− fijk(t,x) = Ωijk(t,x) , (1)
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Figure 1. Schematic of three-dimensional velocity lattices. Coordinate-normal planes marked in yellow. Each vector referring to a discrete

velocity eijk as given in Eq. (1). Velocities of the D3Q19 lattice (Qian et al., 1992) with 19 discrete directions given by orange vectors.

Additional velocity directions considered in the D3Q27 lattice given by red vectors.

where

eijk = (ic,jc,kc) (2)

is the particle velocity vector and i, j,k ∈ {−1,0,1}. The lattice speed c is chosen such that

c= ∆x/∆t . (3)

On uniform Cartesian grids PDFs are therefore inherently advected from their source (black dot in Fig. 1) to the neighboring5

nodes during one time step avoiding any interpolation in the advection. The collision operator Ωijk on the right-hand side

models the redistribution of f through particle collisions within the control volume. Based on kinetic theory the collision

process is modelled as a relaxation of particle distribution functions towards an equilibrium. In the classical and most simple

collision model, the single-relaxation-time model (SRT), commonly referred to as lattice Bhatnagar-Gross-Kroog (LBGK)

model (Bhatnagar et al., 1954), all PDFs are relaxed towards an equilibrium using a single constant relaxation time τ , viz.10

Ωijk(t,x) =−∆t

τ

(
fijk(t,x)− feqijk(t,x)

)
. (4)

The equilibrium distribution feqijk is given by the second-order Taylor expansion of the Maxwellian equilibrium

feqijk = wijk ρ

(
1 +

u · eijk
c2s

+
(u · eijk)2

2c4s
− u ·u

2c2s

)
, (5)

where cs is the lattice speed of sound and u and ρ the macroscopic velocity and density, respectively. The weights wijk are

specific to the velocity lattice and ensure mass and momentum conservation of the equilibrium.15

Macroscopic quantities can generally be obtained from the raw velocity moments of the PDFs

mαβγ =

1∑
i=−1

1∑
j=−1

1∑
k=−1

(ic)α(jc)β(kc)γ fijk (6)
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with α, β and γ denoting the order of the moment in the referring lattice direction and α+β+γ the total order of the moment.

Following from dimensional analysis the macroscopic mass density ρ is given by the zeroth-order momentm000. Analogously,

the momentum in x,y and z is obtained from the first-order moment in the referring coordinate directionm100,m010 andm001,

respectively. The macroscopic velocity and density required for the computation of feqijk can thus be obtained locally from the

PDFs. Furthermore, starting from a moment expansion of the LBE itself we can show via a Chapman-Enskog expansion that it5

recovers the (weakly-compressible) Navier-Stokes equations on the macroscopic level. For the sake of brevity details upon the

latter are omitted here. A comprehensive overview can be found in Krüger et al. (2016). Nevertheless, it should be noted that

τ =
1

ω
= 3ν/c2 + ∆t/2 , (7)

with ν being the kinematic viscosity and ω the relaxation rate (He and Luo, 1997; Dellar, 2001).

In summary, the simplicity of the LBM leads to a straightforward explicit algorithm. Numerically, it is realised by decom-10

posing and rearranging Eqs. (1) and (4) into two separate parts. The first becomes the collision step

f∗ijk(t,x) =

(
1− ∆t

τ

)
fijk(t,x) +

∆t

τ
feqijk(t,x) (8)

where f∗ijk is the post-collision distribution function. And, the second, is the streaming (or propagation) step

fijk(t+ ∆t,x+ ∆teijk) = f∗ijk(t,x) (9)

advecting f∗ijk to the neighbouring nodes.15

2.2 The Cumulant Collision Model

Due to poor numerical stability of the original LBGK model, various alternative approaches have been presented. These mostly

relate to the class of multiple-relaxation-time models (MRT), see for instance Lallemand and Luo (2000) and d’Humières et al.

(2002). MRT models transform the pre-collision PDFs fijk (Eq. (8)) into a velocity moment space. Each moment is then relaxed

individually towards a referring equilibrium moment meq
αβγ . The individual relaxation rates of the hydrodynamic moments (up20

to second order) remain physically motivated with the second-order relaxation rate given by Eq. (4). Relaxation rates of higher-

order moments though can be tuned freely. Subsequently, the moments are transformed back into particle distribution space

and advected following Eq. (9).

Despite significant stability improvements, several fundamental deficiencies of MRT models render the approach unsuitable

for high Reynolds number flows as required for studies of wind turbines in the ABL. Referring to the seminal paper by Geier25

et al. (2015) such are, among others, the lack of a universal formulation for optimal collisions rates, deficiencies stemming from

the rather arbitrary choice of moment space, lacking Galilean invariance and the introduction of hyper-viscosities. Deteriora-

tions of the flow field through local instabilities can be the consequence (Gehrke et al., 2017). To remedy the aforementioned

deficiencies Geier et al. (2015) suggest a universal formulation based on statistically independent observable quantities (cumu-

lants) of the PDFs, i.e., the CLMB. After performing the two-sided Laplace-transform of the pre-collision PDFs30

F (Ξ) = L(f(ξ)) =

∞∫
−∞

f(ξ)e−Ξ·ξdξ , (10)
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with Ξ = {Ξ,Υ,Z} denoting the particle velocity ξ = {ξ,υ,ζ} in wave number space, cumulants cαβγ can be obtained as

cαβγ = c−α−β−γ
∂α∂β∂γ

∂Ξα∂Υβ∂Zγ
ln(F (Ξ,Υ,Z)) . (11)

Subsequently, cumulants are relaxed towards the referring equilibrium:

c∗αβγ = ωαβγ c
eq
αβγ + (1−ωαβγ)cαβγ . (12)

Here, c∗αβγ denotes the post-collision cumulant and ωαβγ the referring relaxation rate. As shown by Geier et al. (2015), the5

statistical independence of cumulants unconditionally eliminates the MRT’s deficiencies such as the dependency of Galilean

invariance and occurence of hyper-viscosities on the choice of relaxation rates.

A simple and widely adopted choice in the CLBM is to set all relaxation rates of higher-order cumulants to one, commonly

reffered to as ALLONE cumulant. In this case, higher-order cumulants are instantly relaxed towards the referring equilibrium.

This unconditionally damps all higher-order perturbations providing an inherently stable solution and thereby an extremely10

robust numerical framework. Numerous studies have shown that the ALLONE CLBM can be readily applied to high Reynolds

number flows (see, Geier et al., 2015; Far et al., 2016; Gehrke et al., 2017; Kutscher et al., 2019; Onodera and Idomura, 2018). A

further development of the original ALLONE is the parametrised CLBM presented in Geier et al. (2017b). Based on the theory

of the so-called magic parameter (Ginzburg and Adler, 1994; Ginzburg et al., 2008) the authors derived a parametrisation to

optimise the higher-order relaxation rates. The same authors show that the parametrisation increases the convergence of the15

CLBM in diffusion to fourth order under diffusive scaling (i.e., ∆t∝∆x2). However, unconditional numerical stability is no

longer guaranteed and requires the use of a limiter as outlined in Sect. 2.4.

From a theoretical point of view the parametrised CLBM can arguably be seen as one of the most advanced collision

models today, both in terms of accuracy and stability. Nevertheless, the complexity of the collision model makes it more

computationally demanding in terms compared to SRT and MRT models. Furthermore, the CLBM is only defined on the20

D3Q27 velocity lattice as opposed to SRT and MRT models that typically employ D3Q19 lattices. Consequently, it also

requires more memory. In addition to the aforementioned theoretical considerations we therefore provide a pre-study on the

suitability of other collision models for this application in Appendix A.

2.3 Nondimensionalisation

For the sake of simplicity as well as numerical efficiency and accuracy implementations of the LBM are commonly nondi-25

mensionalised. Physical units are therefore rescaled to non-dimensional lattice units (hereafter indexed (·)LB) with cLB =

∆xLB/∆tLB = 1. Hence, we can derive scaling factors C for all relevant physical units. As the LBM generally states a

weakly compressible method, these are the Reynolds and Mach number Re and Ma, respectively. Within this study we use

the cell Reynolds number as Rec = u0 ∆x/ν, where u0 is the inflow velocity at the inlet and ∆x grid spacing. The Mach

number is consequently given by u0 and the lattice speed of sound cs: Ma = u0/cs. Starting from the spatial scaling factor we30

obtain Cx = ∆x/∆xLB = Li/ni, where Li is the length of the domain and ni the number of grid points in the referring spatial

dimension. With cLBs = c/
√

3, the reference velocity on the lattice is given by uLB0 = Ma/
√

3, yielding the velocity scaling
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factor Cu =
√

3u0/Ma. It follows that the temporal scaling factor is given by Ct = Cx/Cu, which implies a physical time

step ∆t= Ct∆t
LB that is inherently proportional to the grid spacing and Mach number. The viscosity in lattice units becomes

νLB = νCt/C
2
x. The order of magnitude of νLB thus directly depends on the choice of grid resolution and Mach number.

In this study we employ the LBM for an incompressible problem. As in the majority of applications, this implies that com-

pressibility effects are assumed to have negligible effects on the flow physics of interests. The Mach number is thus merely5

required to be small, yet, does not necessarily have to comply with the physically correct value of the problem. For incom-

pressible flows it therefore commonly reduces to a somewhat free parameter affecting numerical accuracy in the incompressible

limit (Dellar, 2003; Geier et al., 2015, 2017b), computational demand by means of the time step as well as the magnitude of

the viscosity on the lattice level.

2.4 Sub-grid Scale Modelling in the LBM10

Early on, LES approaches have been used in LBM frameworks (see, e.g., Hou et al., 1996). The most common choice are

eddy-viscosity approaches that are simply adopted from NS frameworks and incorporated by adding the eddy-viscosity νt to the

shear viscosity ν in Eq. (7). Examples thereof range from the standard Smagorinsky model (Hou et al., 1996; Krafczyk et al.,

2003) to more advanced models like the wall-adapting local eddy-viscosity model (WALE; Weickert et al., 2010), the shear-

improved Smagorinsky model (SISM; Jafari and Mohammad, 2011) as well as dynamic Smagorinsky approaches (Premnath15

et al., 2009b). Others, on the other hand, suggested LB-specific methods based on the approximate deconvolution of the LBE

itself (Sagaut, 2010; Malaspinas and Sagaut, 2011; Nathen et al., 2018).

2.4.1 Implementation of Eddy-viscosity Models

Using a standard constant Smagorinsky model, the eddy-viscosity can be determined locally using the well-known formulation

20

νt = (Cs∆)2S̄ , (13)

where Cs is the Smagorinsky constant, ∆ the filter width (here referring to the grid spacing ∆x) and S̄ the second invariant of

the filtered strain rate tensor

S̄ij =
1

2

(
∂ūi
∂xj

+
∂ūj
∂xi

)
,with S̄ =

√
2 S̄ijS̄ij . (14)

A clear advantage of the LBM over NS approaches in this context is the local availability of the strain rate tensor. Using the25

second-order moments or cumulants of the local PDFs, respectively, the components of S̄ij can be determined without finite

differencing. Further details on the determination of S̄ij in cumulant space can be found in Geier et al. (2015, 2017b). It

should be noted, though, that the strain rates in the CLBM and most MRT models are dependent on the total shear viscosity

(νtot = ν+ νt) and the bulk viscosity. As opposed to the SRT, where S̄ij is only dependent on the total shear viscosity, it

is therefore not possible to explicitly determine νt. Hence, the eddy-viscosity νt(t) can be computed either explicitly, using30

νt(t−∆t) or, iteratively. Yu et al. (2005), however, showed that the error associated with the implicitness of νt is generally
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negligible due to the typically small time steps used in the LBM. We shall therefore refrain from implicitly solving for νt, in

line with similar Smagorinsky approaches in MRT frameworks (Yu et al., 2006; Premnath et al., 2009a).

2.4.2 Stabilising Limiter in the Cumulant LBM

A crucial characteristic of the CLBM is the model’s inherent numerical stability. As opposed to many other collision models

it does not require the stabilising features of explicit turbulence models, even for under-resolved highly turbulent flows. The5

stabilising characteristic of the original ALLONE cumulant approach appears rather obvious as it unconditionally resets all

higher-order cumulants in each time step. The fourth-order accuracy of the parametrised approach, however, relies on the

temporal memory of these higher-order cumulants. Therefore, Geier et al. (2017b) suggest the use of a limiter λm that is only

applied to the relaxation of the third-order cumulants. The relaxation rates of these cumulants, subsequently referred to as ωm,

are consequently substituted by10

ωζ = ωm +
(1−ωm) |cm|
ρλm + |cm|

, (15)

where |cm| refers to the magnitude of the referring third-order cumulant. Destabilising accumulation of energy in these cumu-

lants is hereby inhibited as ωζ approaches 1 for ρλm� |cm|. Nonetheless, the order of the error introduced by the limiter lies

well below the leading error of the LBM itself. The fourth-order accuracy of the scheme is thus not affected in the asymptotic

limit. Like the ALLONE version, the parametrised CLBM therefore does not require the numerically stabilising features of an15

explicit subgrid-scale model, yet with a higher order of accuracy. In this study we shall therefore focus on the investigation of

the parametrised CLBM.

2.5 Implementation of the Actuator Line Model in Lattice Boltzmann Frameworks

The lattice Boltzmann actuator line implementation used in this study closely follows the original description in NS frameworks

as presented by Sørensen and Shen (2002). The forces acting on the rotor are determined using the local relative velocity urel20

of the referring blade elements along the actuator line. The relative velocity is computed from the sampled velocity in blade-

normal (stream-wise) and tangential direction un and uθ, respectively using

urel =
√
u2
n + (Ωr−uθ)2 , (16)

where Ω is the rotational velocity of the turbine and r the radial position of the blade element. The local blade force per unit

length then reads25

F = 0.5ρu2
rel ca (CLeL +CDeD) , (17)

with eL,D being the unit vector in the direction of the lift and drag force, respectively and ca being the chord length of the

referring airfoil section. The lift and drag coefficients CL and CD are provided from tabulated airfoil data as functions of the

local angle of attack and Reynolds number. The resulting blade forces are subsequently applied across a volume in the flow
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field by taking the convolution integral of F with a Gaussian regularisation kernel ηε, given by

ηε =
1

π3/2 ε2
e−(d/ε)2 , (18)

where ε adjusts the width of the regularisation and d is the distance from the centre of the blade element to the point in space

where the force is applied. The resulting force is applied at each grid node by simply adding the referring component of

∆t/2F to the pre-collision first-order cumulants. For the sake of completeness it should be noted that body force formulations5

generally depend on the collision model. See, for instance, Buick and Greated (2000) and Guo et al. (2008) for a description

in SRT and MRT frameworks, respectively.

Differences between ALM implementations in NS and LBM frameworks are obviously small. The latter can be expected

given that the link between the model itself and the flow solver is simply made by exchanging information of velocity and

body forces. Lastly, it is worth mentioning that the locality of all subroutines of the ALM allows for a perfect parallelisation.10

The model is therefore efficiently parallelised on the GPU, in line with the general architecture of the utlised LBM solver (see

Sect. 3.1) using Nvidia’s CUDA toolkit.

3 Numerical Set-up

In light of the code-to-code comparison the simulations in both frameworks were set-up in the most similar manner possible.

This refers to the grid, the boundary conditions as well as the implementation of the ALM. Nevertheless, certain differences15

remain unavoidable due to the inherently different numerical approaches. Further details thereupon, as well as the set-up in

general, will be given in the following.

3.1 The Lattice Boltzmann Solver ELBE

The LBM simulations are performed using the GPU-accelerated Efficient Lattice Boltzmann Environment ELBE1 (Janßen et al.,

2015) mainly developed at Hamburg University of Technology (TUHH). The toolkit comprises various collision models, allows20

for free-surface modelling (Janßen et al., 2017) as well as efficient geometry mapping (Mierke et al., 2018). The implementation

of the CLBM in ELBE was recently validated by Gehrke et al. (2017, 2020) and Banari et al. (2020).

Symmetry boundary conditions (zero gradient with no penetration) are applied at the lateral boundaries of the domain,

referring to a simple-bounce back with reversed tangential components (Krüger et al., 2016). The velocity at the inlet is

prescribed using a Bouzidi-type boundary condition (Bouzidi et al., 2001; Lallemand and Luo, 2003), i.e., a simple bounce-25

back scheme adjusted for the momentum difference due to the inlet velocity. For the outlet we chose a linear extrapolation

anti-reflecting boundary condition as described in Geier et al. (2015).

1https://www.tuhh.de/elbe
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3.2 ELLIPSYS3D

As a NS reference we consult the multi-purpose flow solver ELLIPSYS3D developed at the Technical University of Denmark

(DTU) by Michelsen (1994a, b) and Sørensen (1995). The code has been applied to numerous wind power related flow prob-

lems and served for several fundamental investigations of the ALM (Sørensen and Shen, 2002; Troldborg, 2008; Troldborg

et al., 2010; Sarlak et al., 2015a).5

The governing equations are formulated in a collocated finite-volume approach. Diffusive and convective terms are dis-

cretised using second-order central differences and a blend of third-order QUICK (10%) and fourth-order central differences

(90%), respectively. The blended scheme for the convective term was shown to provide sufficient numerical stability while

keeping numerical diffusion to a minimum (Troldborg et al., 2010; Bechmann et al., 2011). The pressure correction is solved

using the SIMPLE algorithm. Pressure decoupling is avoided using the Rhie-Chow interpolation.10

Symmetry conditions are applied at the lateral boundaries, equivalently to the LB set-up. The outlet boundary condition

prescribes a zero velocity gradient.

3.3 Case Set-up

For the evaluation of the ALM we choose one of the most prominent test cases in this context, i.e. the simulation of the NREL

5MW reference turbine (Jonkman et al., 2009). The mean inflow velocity in all presented cases is u0 = 8ms−1 while the turbine15

is operating at an optimal tip-speed ratio of λ= 7.55. With the viscosity of air ν = 1.78 · 10−5m2 s−1 the Reynolds number

with respect to the diameterD amounts to ReD = u0D/ν = 5.7·107 (withD = 126m). The rectangular computational domain

spans 6D in the cross-stream directions and 29D in the stream-wise direction. The resulting blockage ratio amounts to 2.2%

and was found to have negligible impact on the code-to-code comparison. For the sake of comparability, the grid is uniformly

spaced in the entire domain. The turbine is laterally centred 3D downstream of the inlet. A schematic of the set-up including20

the definition of coordinates is given in Fig. 2. All simulations are initially run for t0 = 4.39T , with T being one domain

6D

6D

29D

3D

3D

3D

xy

z

u0

Figure 2. Schematic of the case set-up outlining the dimensions of the computational domain, position of the turbine and definition of

coordinates.
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flow-through time. Statistics are subsequently gathered over another 17.52T . This choice is based on a prior investigation of

the convergence of the second-order statistics. Exemplary plots of the temporal development of the turbulent kinetic energy k

are given in Fig. 3

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5

(t− t0)/T

0.6

0.8

1.0

1.2

k
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Figure 3. Temporal convergence of the turbulent kinetic energy k(t) at x = {24D,0,0} normalised by the final value k(t∞) after 17.52T

averaging. The depicted results refer to the laminar and turbulent inflow cases with a spatial resolution of ∆x=D/32 as discussed in

Sects. 4 and 5, respectively.

4 Code-to-code Comparison in Uniform Inflow

As a starting point we compare the results obtained with the CLBM to the NS reference in uniform laminar inflow. The simplic-5

ity of the case eliminates various uncertainties associated with more complex, yet, possibly more realistic inflow conditions.

Also, it becomes more straightforward to analyse the effect of the numerical scheme on the downstream evolution of the wake

and particularly the onset of turbulence as recently discussed by Abkar (2018).

In both solvers we apply the constant Smagorinsky model outlined in Sect. 2.4.1 using a model-constant Cs = 0.08, similar

to previous studies of the topic (Martínez-Tossas et al., 2018; Deskos et al., 2019). The limiter in the CLBM is set to λm = 10610

and thus practically switched off. Each model is run with three different grid resolutions ∆x= {D/16,D/24,D/32}, referring

to 4.4, 14.6 and 34.6 million grid points, respectively. This choice of grid resolutions is below values found in fundamental

investigations of, for instance, the evolution of tip vortices (Ivanell et al., 2010; Sarmast et al., 2014). Yet, it lies well within

the range commonly found in wind farm simulations using the ALM where higher resolutions might be unfeasible, see, e.g.,

Porté-Agel et al. (2011), Churchfield et al. (2012a), Andersen et al. (2015) or Foti and Duraisamy (2019). Generally, the tip of15

the actuator line is required not to skip a cell in one timestep ∆t in order to ensure a continuous coupling of the ALM with

the flow field. In NS-based LES this condition dictates the choice of ∆t resulting in a Courant-Friedrichs-Lewy number with

respect to u0 of CFL = 0.132. Referring to Troldborg et al. (2010), the CFL number is thus typically lower than required by

the LES to obtain timestep independence. In LBM simulations the timestep is dictated by the Mach number as outlined in

Sect. 2.3. A preceding study has shown that the forces determined by the ALM can be significantly more sensitive to the Mach20

11



number than the bulk flow depending on the smearing width (Asmuth et al., 2019). Under consideration of this issue we chose

Ma = 0.1 referring to CFL = 0.058 for the CLBM cases. This is obviously well below the value required by the ALM, yet

inevitable due to the numerical method.

As for the ALM, the blades in all cases are discretised by 64 points. The smearing width is set to 0.078125D referring to

ε/∆x= {1.25,1.875,2.5} for the three different resolutions, respectively.5

4.1 Blade Loads

Results of the simulations for the time-averaged tangential and normal force components of all cases are given in Fig. 4.

BEM (Blade Element Momentum) computations following Hansen (2008) are provided as an additional reference. It becomes
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Figure 4. Mean tangential force Ft (left) and normal force Fn (right) along the actuator line. For the sake of visibility, markers are only

shown for every third data point. The grey dashed line marks the BEM reference by Hansen (2008).

obvious that the dependency of the blade forces on the grid resolution is small in both numerical approaches. The same holds

for the differences between the CLBM and the NS solution, even though these are found to be slightly larger than in the former10

comparison. The deviations from the BEM reference can be related to the influence of the force smearing as well as the lack of

a correction model as discussed by Meyer Forsting et al. (2019). Also, despite the relatively low values for ε/∆x in the cases

with ∆x= {D/16,D/24}, no numerical disturbances were caused by ALM in the NS simulations. Note that some authors

recommend ε/∆≥ 2 in order to avoid spurious oscillations (Jha et al., 2013; Martínez-Tossas et al., 2015). Here, instabilities
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were only found for ε/∆≤ 1. The choice of ε therefore states a compromise. On the one hand, it ensures numerical stability

for the cases with the lowest resolution. On the other hand, ε is kept reasonably low with respect to the cases with the highest

spatial resolution. Note, that unnecessarily large smearing widths would imply larger deviations from the underlying lifting line

theory and are therefore undesirable (Martínez-Tossas and Meneveau, 2019). In summary, and in line with other similar code-

to-code comparisons (Sarlak, 2014; Sarlak et al., 2015b; Martínez-Tossas et al., 2018), it can be concluded that the agreement5

in the blade forces is sufficient to facilitate a wake comparison with focus on the behaviour of the bulk scheme. Alternatively,

it could be considered to prescribe the body forces along the actuator lines for the sake of a pure wake comparison. Yet, as this

study aims for a comparison of the ALM as a whole, including the interaction of the aerodynamic model with the flow solver,

this approach is not pursued here.

4.2 Wake Characteristics10

Firstly, we compare the time-averaged cross-stream velocity profiles, given in Fig. 5. Furthermore, Fig. 6 provides a direct

comparison of the depicted velocity components of the two numerical approaches at each referring grid resolution by means

of the L2-relative error along the profile, i.e.

L2(φ) =

√∑nz

k=1 (φCLBM(zk)−φNS(zk))
2∑nz

k=1φNS(zk)2
, (19)

where φ= {ū, v̄} and nz is the amount of sample points along the profile.15

It can be seen that the two numerical approaches are in good agreement in the near-wake of the turbine. Up until x= 3D,

differences in ū amount to less than 1% while increasing to ∼ 3% at x= 9D. The differences in the tangential velocity

component v̄ are found somewhat higher with ∼ 5% for x≤ 3D increasing to ∼ 10% at x= 9D. The latter can be related to

the fact we also find higher differences in the tangential than in the normal force component as shown in Fig. 4 .

In the near-wake region discussed here, viscous effects usually only play a minor role. This shows, for instance, in a small20

wake recovery with downstream distance. Also, the rotational velocity does not change significantly. The wake is thus mostly

governed by the inviscid flow solution (Troldborg, 2008; Troldborg et al., 2010). Both the NS and the CLBM approach recover

the Euler equations at the same order of accuracy. A similar numerical behaviour in this part of the wake should therefore be

expected (assuming comparability of all other aspects like boundary conditions and the implementation of the ALM). In light

of the motivation for this comparison these results can thus be appreciated.25

Further downstream (x > 9D) differences between all compared cases increase significantly. Generally, the vortex-sheet of

the near-wake starts to meander and eventually breaks down as the wake transitions to a fully turbulent state. An impression

thereof is provided in Fig. 7, showing the downstream evolution of the wake in terms of the contour plots of the instantaneous

stream-wise velocity. After the onset of turbulence the wake starts to recover more rapidly while the turbulence slowly decays.

Differences in the velocity in the far-wake both between the two numerical approaches as well as the referring grid resolutions30

can therefore be related to different downstream positions of the points of transition.

More quantitatively, the break-down of the wake can be observed by means of a drastic increase in the turbulence intensity

Ti as depicted in Fig. 8. It shows that the turbulence intensity in all CLBM cases lies at a similar magnitude in the near-wake.
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Figure 5. Cross-stream profiles of the mean stream-wise velocity u (top) and tangential velocity v (bottom) of the CLBM compared to the

NS reference cases at different downstream positions.

At the same time it is notably higher than in the NS cases at the same downstream position. Downstream of x= 6D it can be

seen that Ti increases faster with downstream distance the higher the spatial resolution. Also, it increases earlier in the CLBM

than in the NS solutions. In addition to Fig. 8 this process is illustrated in Fig. 9 by means of the stream-wise evolution of Ti at

a radial position of r/D = 0.625. It clearly shows the faster increase of Ti at higher spatial resolutions as well as a downstream

shift of the build-up in the NS cases.5

The mechanism of the transition of wind turbine wakes has been extensively described based on ALM simulations, see,

e.g., Sarmast et al. (2014). Fundamental studies thereof do, however, mostly use higher spatial resolutions in order to resolve

distinct tip-vortices. With the resolutions and smearing width used here the wake rather resembles a vortex sheet similarly to

actuator disk simulations. To the authors’ knowledge only Martínez-Tossas et al. (2018) briefly described the transition process

of wakes of such low-resolution ALM. In their discussion of a similar code-to-code comparison the authors argue that small10

perturbations at high wave numbers eventually trigger the transition of the wake. Schemes with lower numerical diffusivity
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Figure 7. Contour plots of the instantaneous stream-wise velocity u in the central stream-wise plane at different spatial resolutions (top to

bottom) with the CLBM (left) and NS (right).

(pseudo-spectral approaches in that study) generally dampen those perturbations less than more diffusive lower-order schemes

(referring to second-order collocated finite-volume discretisations, equivalently to the NS reference used here) and thus show

a faster growth of turbulence. The same interpretation can indeed be applied to the results shown here. As described in Sect. 2,

the parametrisation of the relaxation rates results in a scheme with fourth-order accuracy in diffusion as opposed to the second-
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Figure 9. Stream-wise evolution of the turbulence intensity Ti at r/D = 0.625 in the CLBM and NS cases. For the legend, see Fig. 4.

Additional dashed lines refer to ALLONE CLBM results. These briefly illustrate the impact of the increased order of accuracy when using

the parametrised relaxation rates of the CLBM on the wake transition.

order accuracy of the NS finite-volume scheme. At this point we shall briefly comment on the second-order accurate ALLONE

CLBM mentioned earlier (Sect. 2). In fact, using this version of the CLBM shifts the transition further downstream when

compared to the parametrised CLBM, see Fig. 9. This generally corroborates the aforementioned discussion on the effect

of the numerical diffusivity. As for this case, the scheme even appears to be more diffusive than the NS solution. be aware,

however, that the diffusivity of the ALLONE CLBM also strongly depends on the Mach number (as opposed the parametrised5

approach). Nevertheless, a further analysis of the ALLONE CLBM is not the focus of this study and is omitted here for the

sake of brevity.

As a last aspect we analyse the one-point turbulence kinetic energy spectra. The spectra shown in Fig. 10 represent the

average of sixteen points in the referring cross-sectional plane at a radial position of r/D = 0.625. For additional smoothing

the Welch method was applied at each point with non-overlapping time intervals of a fifteenth of the overall sampling period.10
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Figure 10. One-point turbulent kinetic energy spectra in the near- (x= 1D, top) and far-wake (x= 12D, middle; x= 24D, bottom)

at increasing spatial resolution from left to right. Vertical dashed-dotted line marking the blade-passing frequency fB = (3u0λ)/(πD) =

0.458Hz. Mind the change of scale on the y-axis between the first and second row of subplots. For the legend, see Fig. 5.

The energy content in the near-wake (x= 1D) is expectedly small when compared to the far wake where the vortex sheet

has broken down in most of the shown cases. The energy level across most frequencies is indeed low enough to be related

to numerical noise making further interpretation unnecessary. The only distinct feature at x= 1D are notable peaks at the

blade-passing frequency fB and its higher harmonics. These are found in all presented cases, yet are generally slightly smaller

in the NS solutions. This signature at fB was recently described by Nathan et al. (2018) but using twice as many grid points5

per diameter when compared to the highest resolution shown here. It can thus be appreciated that this transient feature of the

ALM remains traceable down to resolutions of ∆x=D/16.

At x= 12D a pre-transition wake meandering can be seen. The occurrence of this feature is not as confined to a single

frequency as the aforementioned blade-passing frequency. Yet, an increased energy level in a frequency band around fm ≈
0.025Hz (and its higher harmonics) can be observed in all cases. It was illustrated in Fig. 7 that the meandering starts to occur10

at different positions downstream depending on the resolution and numerical approach. It then steadily increases until the wake

becomes fully turbulent. The amplitudes at fm therefore differs depending on how far upstream the meandering started to build

up. Also, it again shows that the meandering and subsequent transition occurs earlier in the CLBM cases. Additionally, the

signature of the blade passage is still visible in the lower-resolution CLBM cases. This is not the case for the NS reference,
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despite the smaller meandering at this downstream position. In line with the observations made earlier, this aspect might relate

to a higher numerical dissipation of the NS scheme.

Further downstream at x= 24D the wake is fully turbulent in all CLBM cases, characterised by a sub-intertial range with

a typical -5/3-slope. This is also the case for the NS solution with ∆x=D/32. Here, however, the meandering is still more

visible due to the later start of the transition of the wake. Also, when comparing both approaches at the highest spatial resolution5

(bottom right in Fig. 7) it shows that the sub-inertial range of the CLBM approach reaches to higher frequencies. In accordance

with that, it appears that the CLBM does indeed resolve smaller turbulent structures, as shown in the contour plot of the

Q-criterion (Fig. 11).

CLBM

NS

12 15 18 21 24
x/D

Figure 11. Rendering of the instantaneous contours of the Q-criterion (Q= 0.0005) in the far-wake with the CLBM and NS with ∆x=

D/32.

5 Code-to-code Comparison in Turbulent Inflow

Laminar inflow cases allow for a good comparison of fundamental numerical aspects as discussed in Sect. 4. Nevertheless, the10

case itself remains rather academic as atmospheric inflows are mostly turbulent. Furthermore, Sect. 4 has shown that a direct

comparison of the far-wake can be difficult due to the different downstream positions of the laminar-to-turbulent transition

of the wake. A turbulent inflow generally accelerates the transition while reducing the dependency of the point of transition

on the numerical diffusivity of the scheme. A complementing comparison in turbulent inflow will therefore be presented in

the following. For the sake of brevity we limit the discussion to cases with the highest spatial resolution ∆x=D/32. Apart15

from the introduction of turbulence at the inlet both numerical set-ups remain unchanged. Also note, that the mean resulting

blade loads exhibit no notable difference towards the laminar inflow case. Additional discussion beyond Sect. 4.1 is therefore

omitted.
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5.1 Synthetic Turbulence Generation at the Inlet

At the inlet we prescribe homogeneous isotropic turbulence (HIT) based on the von Kármán energy spectrum. The three-

dimensional field of velocity fluctuations is generated based on the method developed by Mann (1998) using the open-source

code TUGEN by Gilling (2009). As we are only interested in HIT the model’s shear parameter Γ is set to zero. The length scale

of the spectral velocity tensor is chosen as L= 40m = 0.317D. The mean turbulence intensity is scaled via the coefficient5

αε2/3 = 0.01. The resulting Ti of the turbulence field measures Ti = 0.028. The length of the turbulence field in the stream-wise

direction measures 24576m. Following Taylor’s frozen turbulence hypothesis the field is advected with u0. The turbulence field

is consequently recycled after 6.72 domain flow-through times. The lateral dimensions of the field are set to 1536m (referring

to 12.19D). Since we only use a cross-section of 6D×6D we ensure zero correlation of the velocity fluctuations between the

lateral boundaries of the domain. The spatial resolution of the field is 8192 grid points in the stream-wise direction and 64 grid10

points in the lateral directions. In both numerical approaches the velocity fluctuation is superimposed with the mean inflow

velocity u0 and applied at the inlet.

Fig. 12 compares the stream-wise evolution of the turbulence intensity at hub-height without ALM. At the inlet we find a
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Figure 12. Stream-wise evolution of the turbulence intensity Ti without ALM. Each data point Ti(x) refers to the spatial mean of 64 points

in the cross-stream direction z with −D ≤ z ≤D.

turbulence intensity of 2.3% in both approaches which is slightly lower than the one of the synthetic turbulence field. Such

discrepancies have been discussed earlier and are commonly counteracted by scaling a given turbulence field if a desired15

turbulence intensity is to be matched (see, e.g. Olivares-Espinosa et al., 2018; van der Laan et al., 2019). Some possible

explanations of this issue are given by Gilling and Sørensen (2011). Among others, they argue that the discrete representation

of the otherwise continuous turbulence field can lead to noticeable discontinuities when being differentiated with low-order

schemes. Directly after the inlet the NS solution shows a small increase in Ti followed by a continuous decay throughout

the entire domain. The turbulence intensity in the CLBM solution initially drops behind the inlet. However, the subsequent20

decay up until x= 12D is lower than in the NS solution. The decay rates of the two approaches seem to align only at the far

end of the domain. As a result, the turbulence intensity at the turbine position differs by ∆Ti = 0.0005 while the maximum

difference further downstream amounts to ∆Ti = 0.0027. A detailed analysis of the rather fundamental aspects related to these
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discrepancies goes beyond the scope of this paper. After all, the observed differences remain small enough not to be significant

when compared to the turbulence related to the wake flow, as shown later.

Fig. 13 depicts the spectra of the turbulent kinetic energy at the turbine position. Chiefly, it shows that the CLBM exhibits a

sub-inertial range extending to higher frequencies than the NS solution, similarly to the far-wake turbulence found in laminar

inflow (see Fig. 10).5
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Figure 13. One-point turbulent kinetic energy spectra at the turbine position (x= 0D) without ALM. The spectrum of the synthetic inlet

turbulence is given in grey. For legend, see Fig. 12.

5.2 Wake Characteristics

Analogously to Sect. 4, we firstly compare the cross-stream profiles of the mean velocity in Fig. 14. In the stream-wise velocity

component ū we find an excellent agreement of the two solutions. When compared to the laminar cases discussed before this

not only applies to the near-wake but the entire domain. The difference in ū between the cross-stream profiles of the two

approaches for x≤ 12D amounts to less than 1% in terms of the L2-relative error norm as shown in Fig. 15. While steadily10

increasing with downstream distance, the maximum discrepancy measures 1.6% at x= 24D. Be aware, that the laminar inflow

cases only exhibited similar agreements in the near-wake.

Profiles of the turbulence intensity are shown in Fig. 16. Similarly to the velocity, differences between the CLBM and NS

solutions are small. Most importantly, it can be observed that the transition of the wake is triggered at very similar downstream

positions. This also explains the significantly better agreement in the velocity. After all, most differences observed in laminar15

inflow are related to the different downstream positions of the laminar-to-turbulent transition.

In the case discussed here the transition is dominated by instabilities introduced by the ambient turbulence. As opposed

to the transition in laminar inflow, the impact of the dissipative characteristics of the numerical scheme here appears to be

subordinate, if not negligible. Without imposed turbulence, perturbations triggering the transition grow within the wake itself

starting from infinitesimal magnitudes as outlined in Sect. 4. Hence, the transition mainly depends on the growth of such20

perturbations and eventually the point where they reach a critical magnitude. Consequently, the transition is increasingly

delayed the higher this growth is dampened by the numerical dissipation. In contrast, the imposed turbulence states a finite-size

perturbation that affects the wake immediately from the rotor plane downstream independent of the numerical scheme and its
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Figure 14. Cross-stream profiles of the mean stream-wise velocity u (top) and tangential velocity v (bottom) of the CLBM and NS reference

in turbulent inflow. For the legend, see Fig. 12.
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(ū

)

Figure 15. Relative difference (L2-relative error norm) between the NS and CLBM solution in ū in turbulent inflow along velocity profiles

as given in Fig. 14.

dissipative properties. Similar observations in turbulent inflow have been discussed by Martínez-Tossas et al. (2018). Among

others, the study assessed the impact of the Smagorinsky parameter Cs on wake flows in laminar and turbulent inflow. Altering

Cs effectively also results in different overall diffusivities.
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Figure 16. Cross-stream profiles of the turbulence intensity Ti of the CLBM and NS reference in turbulent inflow. For the legend, see Fig. 12.
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Figure 17. One-point turbulent kinetic energy spectra in the near-wake (x= 1D, top), transition-region (x= 6D, middle) and far-wake

(x= 18D, bottom) in turbulent inflow. Vertical dashed-dotted line marks the blade-passing frequency fB . For the legend, see Fig. 12.

The spectra of the turbulent kinetic energy at three different downstream positions are provided in Fig. 17. As in the laminar

case, a distinct peak at the blade-passing frequency fB and its higher harmonics can be observed in both approaches in the

near-wake (x= 1D). From the velocity profiles in Fig. 14 it can be inferred that the transition of the wake occurs between
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x= 3D and x= 6D, characterised by the change from a typical near-wake to a far-wake Gaussian profile. In the spectra this

is reflected by an overall increase in the energy level across all resolved frequencies. Also, the signature of fB is no longer

visible. Moving further downstream (x= 18D) the overall turbulent kinetic energy decreases due to the continuous decay of

both ambient and far-wake turbulence. When compared to the previous position, the energy content at smaller scales increases

slightly relative to the larger scales. The latter relates to the continuous break-down of the turbulent structures of the wake along5

the energy cascade. The relative energy increase at higher frequencies appears to be more pronounced in the CLBM solution.

Again, this might relate to the higher dissipation found in the NS solver inducing an earlier cut-off in the sub-inertial range as

discussed earlier.

Lastly, we shall comment on the small differences in the ambient turbulence shown earlier. Based on the above elaborations

one might expect a more notable impact on the wake characteristics. With regards to this we refer to the study by Sørensen et al.10

(2015). Based on a more extensive investigation of the impact of ambient turbulence on the length of the near-wake the authors

present an empirical description of the problem. In summary, they find that the distance of the transition point to the turbine l is a

function of ln(Ti). Following this the relative difference in l can thus be expected to beO(1−ln(TiNS)/ln(TiCLBM)) =O(10−3)

with the given inflows, lying well within the range of the differences observed here.

6 Impact of the Third-order Cumulant Limiter15

A further aspect of the CLBM to be discussed is the impact of the limiter of the third-order cumulants described in Eq. (15).

The main motivation behind the limiter is to provide a damping of high-wave number perturbations in the CLBM in order to

ensure numerical stability. Geier et al. (2017b) showed theoretically and by means of a decaying shear-wave and Taylor-Green

vortex that the use of the limiter does not affect the asymptotic order of accuracy of the scheme. Investigations of the effects of

the limiter in more applied high-Reynolds-number cases are, however, not available to date. Geier et al. (2017a) and Lenz et al.20

(2019) presented applications of the parametrised CLBM, yet both did not touch upon the topic discussed here. Then again

Pasquali et al. (2017) state that they chose suitable values for λm manually, close to the stability limit and case-dependent.

Both the effect of λm on turbulent flows, as well as criteria to choose adequate values thus remain open questions. At the same

time, some authors refer to the parametrised CLBM and also the ALLONE as implicit LES (cf. Far et al., 2017; Lenz et al.,

2019; Nishimura et al., 2019). However, the latter is solely supported by the fact that the CLBM remains numerically stable in25

under-resolved turbulent flows without explicit turbulence models (as opposed to many other LBM collision operators). To the

authors’ knowledge, a full understanding of the dissipation behaviour associated with the limiter (or the ALLONE), especially

in under-resolved flows, is still lacking. This again, though, would be clearly required to fully replace an explicit SGS-model.

In the code-to-code comparison the limiter was practically switched off for the sake of comparison. Hence, numerical

stability was also solely provided by the Smagorinsky model. Motivated by the lack of experience with the use of the limiter30

we provide a brief investigation of the characteristics of the wake in comparison to the case with Smagorinsky model used in

Sect. 4. For the sake of brevity we only discuss a resolution of ∆x=D/32. Three values of λm are investigated ranging from

100 to 10−2. The former value is the largest possible to ensure numerical stability.
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Figure 18. Contour plots of the mean stream-wise velocity u (left) and turbulence intensity Ti (right) in the central stream-wise plane in

uniform inflow. Top: Smagorinsky model with a pratically switched-off limiter, i.e. λm = 10−6 (as described in Sect. 4). Second to last row:

no explicit turbulence model with different values of the third-order cumulant limiter.

Contour plots of the mean stream-wise velocity and turbulence intensity are shown in Fig. 18. While the mean velocity in the

region close to the turbine is almost unaffected by the choice of λm , the evolution of the turbulence intensity and ultimately

the point of transition change drastically. With λm = 100 , Ti grows significantly, closely behind the turbine. At only 3D

downstream the wake is highly turbulent. With λm = 10−1 the wake characteristics only change marginally. Increasing λm

from 10−1 to 10−2, however, delays the transition considerably. This implicitly shows that the order of magnitude of the third-5

order cumulants in crucial regions of the wake lies within this range, which can be deduced from Eq. (15). When choosing

λm = 10−2 the limiter dampens the third-order cumulants considerably when compared to the optimised relaxation rates.

Moreover, the far-wake distribution of Ti more closely resembles taht of the Smagorinsky case than with lower λm. Turbulent

perturbations of the wake do, however, grow over a longer fetch than in the Smagorinsky case, starting in the near-wake.

Moreover, it should be noted that increasing λm also increases the amplitude of small scale fluctuations in the ambient flow10

field. Among others, these are likely to be related to acoustic reflections of small scale turbulence on the domain boundaries

and/or spurious numerical oscillations. Partially, these can be seen in the Ti contour plots (Fig. 18) upstream of the turbine for

the two higher λm values. More specifically, 1D upstream of the turbine, we find Ti =O(10−4) for λm = 100. In comparison,

the CLBM case with Smagorinsky model as well as the NS reference discussed earlier exhibit a magnitude that is two and three

orders of magnitude lower, respectively. Referring to the discussions of tip-vortex stability by Ivanell et al. (2010) or Sørensen15

et al. (2015), an effect thereof on the break-down of the wake can not be ruled out. Unfortunately, most studies similar to the
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one presented here did not comment on this topic. Deskos et al. (2019), on the other hand, found that the mutual inductance of

tip-vortices can be severely disturbed if the diffusivity of the scheme is too low.

The presented case study underlines that the impact of the limiter is sufficiently large to arbitrarily tune the scheme’s dis-

sipativity over a wide range. Hence, the choice of the limiter in underresolved flows is by no means irrelevant despite the

negligible influence on the asymptotic order of accuracy. On the other hand, the limiter conceivably states a measure to achieve5

implicit LES characteristics with the CLBM. As mentioned earlier, though, this clearly requires a more systematic understand-

ing and subsequent tuning. Without the latter, the use of classical well-documented SGS-models might remain more practical.

Ultimately, they also provide numerical stability while choices for model parameters can build on well-documented experience.

7 Computational Performance

We initially outlined that the main motivation for the use of the LBM in this context is the method’s superior computational10

performance. Nevertheless, a detailed discussion is not the focus of this paper. For further details on this topic we refer to

our previous study (Asmuth et al., 2019) as well as numerous other publications, see, for instance, Schönherr et al. (2011),

Obrecht et al. (2013), Januszewski and Kostur (2014), Hong et al. (2016) or Onodera et al. (2018). In brief, we shall remark

that all simulations with the CLBM ran with an average of 1050 MNUPS (Million Node Updates Per Second). A similar

single-GPU performance on uniform grids was recently reported by Lenz et al. (2019). For the cases discussed in this study15

this refers to a wall time of 524s per domain flow-through time on a single Nvidia RTX 2080 Ti on a local workstation.

Putting this into perspective, the wall time per flow-through time of the NS case amounts to 5028s. The latter ran on 1044

CPU cores (Intel Xeon Gold 6130) and thus amounts to 1463 CPUh. A last interesting aspect to remark upon is the ratio of

simulated real time to computation time rr2c = ∆treal/∆tcomp. The topic was recently addressed in the context of urban flows

(Onodera and Idomura, 2018; Lenz et al., 2019) as well as for atmospheric boundary layer flows and wind energy applications20

(Bauweraerts and Meyers, 2019). A ratio of rr2c > 1 would enable the use of LES for real-time forecasts of, e.g., urban micro-

climates or wind farm performance and loads. For this specific LBM case we obtain rr2c = 0.902. For the NS approach we get

rr2c = 0.094. Despite this obviously only being a case study, real-time LES of wind farms with affordable hardware appears

to be possible.

8 Conclusions25

The cumulant lattice Boltzmann method was applied to simulate the wake of a single wind turbine in both laminar and turbulent

inflow. The turbine was represented by the actuator line model. The presented model was compared against a well-established

finite volume Navier-Stokes solver. It was shown that the cumulant lattice Boltzmann implementation of the actuator line model

yields comparable first- and second-order statistics of the wake. More specifically, a very good agreement of the two numerical

approaches was found in the near-wake in laminar inflow, with differences amounting to less than 3% in terms of the wake30

deficit. Larger discrepancies occurring in the far-wake were attributed to differences in the point of transition. These in turn
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could be related to the different numerical diffusivities of the schemes building onto previous similar code-to-code comparisons

(Sarlak, 2014; Sarlak et al., 2016; Martínez-Tossas et al., 2018). On the other hand, the comparison in turbulent inflow showed

an excellent agreement of the two solutions in both near- and far-wake. Here, differences in the numerical schemes were found

to be subordinate as the wake characteristics were dominated by the imposed turbulence. The latter manifested in differences

in the wake deficit of less than 1% in large parts of the domain.5

An additional case-study investigated the impact of the third-order cumulant limiter in laminar inflow. It was shown that

the choice of the limiter largely affects the dissipativity of scheme. Likewise, the tuneability of this dampening characteristic

clearly shows the potential to be used in a more systematic way and might be exploited as an implicit LES feature. Yet, this

requires further fundamental investigations in order to understand and calibrate it or even develop procedures to determine

optimal values dynamically. As of now, the use of explicit eddy-viscosity SGS-models thus appears more practical despite a10

small computational overhead.

As for future applications of the lattice Boltzmann method to more realistic wind-power-related flow cases, the following

conclusions can be drawn. First and foremost, the presented study underlines the suitability of the cumulant lattice Boltzmann

method for the simulation of highly turbulent engineering flows. The crucial advantage over other collision operators is the

superior numerical stability of the method. No other collision operator initially tested in this study was found to be sufficiently15

robust using the given grid resolutions. The tested single- and multiple-relaxation-time models therefore do not appear suitable

for LES of entire wind farms where higher spatial resolutions are not feasible and viscosities on the lattice scale consequently

small. The advantages of the parametrised cumulant clearly render it as a preferable collision model for wind turbine simula-

tions and presumably other atmospheric flows. Application-oriented studies of the model are so far limited to this work and

the recent study by Lenz et al. (2019). Further investigations of the model are therefore clearly required. This applies espe-20

cially to wall-bounded turbulent flows like atmospheric boundary layers that require the use of wall-models. When compared

to Navier-Stokes-based LES, the experience with wall-models in the LBM in general is limited to only a handful of studies

to date (Malaspinas and Sagaut, 2014; Pasquali et al., 2017; Wilhelm et al., 2018; Nishimura et al., 2019). More specifically,

simulations of wall-modelled atmospheric boundary layers employing Monin-Obukhov-type near-wall treatments have not

been reported at all to the authors’ knowledge. The latter ultimately remains a crucial step towards the simulation of wind25

farms using the LBM. Nevertheless, in summary, the presented work underlines the great potential of wind turbine simulations

using the LBM. Without suffering losses in accuracy, the computational cost can be significantly reduced when compared to

standard NS-based approaches. Considering the reported run-times, even an overcoming of the LES-crisis, i.e. the inability to

obtain overnight LES solutions for industrial applications (cf. Löhner, 2019), appears possible in the context of wind farm

simulations.30

Code and data availability. Both ELLIPSYS3D and ELBE are proprietary software and not publicly availabe. All data presented in this study

can be made available upon request.
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Figure A1. Instantaneous velocity contours (u= 0.875u0) in cross-sectional planes at different positions in the wake of the turbine.

Appendix A: Pre-study on the Stability of Collision Operators

Generally, the choice of collision operator and lattice should consider stability, accuracy, memory demand and performance.

Based on the seminal works by Geier et al. (2015, 2017b) the CLBM can undoubtedly be considered superior in terms of the

former two. Utilising a D3Q27 lattice though eventually implies an increased memory demand of about 40%. Also, the higher

complexity of the CLBM eventually renders the model computionally more expensive.5

As for this specific set-up, satisfactory stability could only be achieved using the CLBM despite the use of the Smagorinsky

model (for the referring formulations in moment space applied to the SRT and MRT models, see Yu et al. (2005, 2006)). The

SRT generally became unstable after only a few time steps. The utilised MRT model (see, Tölke et al., 2006), on the other

hand remained mostly numerically stable. Yet, unphysical oscillations in the turbulent regions of the flow led to significant

degenerations throughout the entire domain.10

In addition to stability issues, the isotropy of the D3Q19 lattice was shown to be insufficient. Fig. A1 shows three exemplary

cross-stream velocity contours at different downstream positions. At x= 3D, small deviations from the expected axisymmetric

profile can be observed for the MRT. Further downstream a more cross-like structure develops that deviates severely from an

expanding circular wake. A similar behaviour on D3Q19 lattices has been described earlier by Geller et al. (2013) and Kang

and Hassan (2013) when simulating circular jet and pipe flows, respectively. Both argue that the missing velocity vectors of the15

D3Q19 lattice cause violations of the rotional invariance of axisymmetric flows. Furthermore, White and Chong (2011) remark

that this behaviour might only be obvious when simulating simple axisymmetric flows, possibly with analytical reference

solutions. Nevertheless, deteriorations of non-axisymmeric real-world problems should also be anticipated, yet, might be harder

to examine. This observation should thus also be taken into account when simulating wind turbines in more realistic, sheared,

turbulent inflows.20

Usually, stability issues as described above can be remedied by using smaller grid spacings. As we consider the latter

unfeasible for the described applications, we refrain from further investigations thereof at this point. Moreover, White and

Chong (2011) also show that the lacking order of isotropy of the D3Q19 lattice can only partially be reduced under grid

refinement. The use of the D3Q27 lattice and the CLBM thus appears as the most suitable choice for the investigation of wind

turbine wakes. Lastly, it should be pointed out that performance differences between the investigated collision operators were25

only found to be around 15% (all simulations ran on a single Nvidia RTX 2080 Ti in single precision).
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