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Abstract. The accuracy of the estimation of the wind resource has an enormous effect on the expected rate of return of a wind

energy project. Due to the complex nature of the weather and the wind flow over the earth’s surface, it can be very challenging to

measure and model the wind resource correctly. For a given project, the modeller is faced with a difficult choice of a wide range

of simulation tools with varying accuracies (or skill) and costs. In this work, a new method for helping wind modellers choose

the most cost-effective model for a given project is developed by applying six different Computational Fluid Dynamics tools5

to simulate the Bolund Hill experiment and studying appropriate comparison metrics in detail. This is done by firstly defining

various parameters for predicting the skill and cost scores before carrying out the simulations as well as for calculating skill

and cost scores after carrying out the simulations. Weightings are then defined for these parameters, and values assigned to

them for the six tools using a template containing pre-defined limits in a blind test. An iterative improvement process is applied

by collecting inputs from the participants of the study. This allows a graph of predicted skill score against cost score to be10

produced, enabling modellers to choose the most cost-effective model without having to carry out the simulations beforehand.

The most effective model is the one with the highest skill score for the lowest cost score, at the flattening-off part of the curve.

The results show that this new method is successful, and that it is generally possible to apply it in order to choose the most

appropriate model for a given project in advance. This is demonstrated by the good match between the shapes of the skill score

against cost score curves before and after the simulations, and by the fact that the tool at the flattening-out point of the curve15

is the same before and after carrying out the simulations. It is also shown how important it is to take into account other factors

that may affect the accuracy and costs of a wind modelling simulation as well as the quality of the aerodynamic equations and

the run-time. Several improvements to the method are being worked on, by further examining the discrepancies between the

predicted and actual cost and skill scores. Additionally, the method is being extended for calculating all wind directions and

the Annual Energy Production, as well as to include mesoscale nesting or forcing. A large number of inputs are being collected20

as part of a simulation challenge in collaboration with IEA Wind Task 31. The method has a high potential to be extended to a

wide range of other simulation applications.
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1 Introduction

In wind energy, the accuracy of the estimation of the wind resource has an enormous effect on the expected rate of return of

a project. Due to the complex nature of the weather and of the wind flow over the earth’s surface, it can be very challenging

to measure and model the wind resource correctly. For a given project, the modeller is faced with a difficult choice of a wide

range of simulation tools with varying accuracies and costs. Additionally, different tools have different functionalities - some5

calculate the entire wind climate (all wind directions) and the energy production, whereas some have to be manually set up to

extract this information. Some include mesoscale nesting or forcing, whereas others focus only on microscale features. If the

choice of model is made incorrectly, either many resources are wasted in needlessly high accuracy simulations, or the rate of

return is inaccurate and investors risk losing large amounts of money. As there are currently no guidelines or tools available to

the modeller to help with this choice, it is usually left to gut feeling – and this can be catastrophic for investors or acquirers of10

wind farms.

In order to help modellers with this choice, a collaborative project has been started at the University of Applied Sciences

Rapperswil, together with Meteotest AG, Hochschule Esslingen and Stadtwerke Tubingen. In this project, a decision tool is be-

ing developed to help modellers choose the most appropriate model for a particular wind energy related project. This involves

firstly applying various simulation tools with different fidelities, ranging from WAsP (Wind Atlas Analysis and Application15

Model), RANS-CFD (Reynolds-Averaged Navier-Stokes Computational Fluid Dynamics), DES (Detached Eddy Simulations),

and LES (Large Eddy Simulations) to LBM (Lattice Boltzmann Method) to a range of test sites, defining appropriate com-

parison metrics and developing a draft decision process. Relevant comparison metrics include factors relating to the skill or

accuracy of the model as well as those relating to its cost. In a second step, the simulation tools will be applied to a demonstra-

tion site in order to validate, demonstrate and improve the decision process.20

This new decision process will allow modellers to choose the appropriate tool for a particular site by creating a plot similar to

the one shown in Fig. 1. This shows a schematic representation of the skill score against cost score for a range of different tools,

which are represented by the individual points. The areas marked in red are the areas deemed unacceptable by the modeller,

where the skill score is too low and the cost is too high. These areas may vary depending on the expectations and requirements

of the modeller. The most effective solution is then chosen as the one with the highest skill score for the lowest cost score within25

the acceptable region, at the flattening-off part of the curve. Theoretically, it would be possible to estimate the skill and cost

scores of each model based on the simulation run time and on the deviation of the results from measurements. However, this

would not only require high quality measurement data to be available, it would require the modeller to run and compare a wide

range of simulations with all the different models. This would completely defeat the point of the exercise - which is to choose

the most appropriate model before carrying out any simulations. The main focus of the project is therefore on developing30

transfer functions, which help modellers accurately estimate the skill and cost scores of different models for a given project

before carrying out any simulations.
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Figure 1. Expected skill score against costs for an example wind energy project.

This paper presents a new method for the pragmatic choice of wind models for Wind Resource Assessment, by studying

appropriate comparison metrics for skill and cost scores using simulations carried out on the Bolund Hill experiment set-up

(Berg et al., 2011), (Bechmann et al., 2011). The paper starts with a review of previous work regarding comparison metrics in

Section 2, both in the area of CFD and in the area of wind energy, then introduces the method applied in Section 3, discusses

the results in Section 4, and finishes with the conclusions in Section 5.5

2 Previous work on comparison metrics

2.1 Computational Fluid Dynamics (CFD)

Work on the evaluation of the quality of CFD tools has previously been done in the COST Action 732 (Britter and Baklanov,

2007), with the objective of determining and improving model quality of microscale meteorological models for the prediction

of flow and dispersion processes in urban and industrial environments. The work was based on the AIAA guideline for the10

verification and validation of CFD simulations (AIAA, 1998), which consists of a framework containing the three environ-

ments: reality, computerised model and conceptual model (which contains all the relevant equations). The phrases “model

validation”, “model qualification” and “model verification” refer to the difference between reality and the computerised model,

the difference between reality and the conceptual model and to the difference between the conceptual and computerised mod-

els, respectively. The COST Action involved defining the following evaluation process: (1) Scientific evaluation process; (2)15

Verification process; (3) Provision of validation data sets; (4) Model validation process; (5) Operational evaluation process. As

part of the model validation process, a range of different metrics were defined, including: correlation coefficient, Fractional

Bias, Figure of Merit and Hit Rate. This can be evaluated using a statistical evaluation tool, comparing model predictions with
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observations (reference states). These metrics can only be used if the number of data points is high enough to allow statis-

tical analysis. For wind energy applications, ten-minute averages are usually sufficient, and therefore these metrics are not

necessarily applicable here. However, some of the general ideas have been used to develop the method in this work.

Another relevant project on CFD evaluation was the SMEDIS Project (Daish et al., 2000), which involved developing

a methodology for the scientific evaluation of dense gas dispersion models. A large part of this methodology involved a5

questionnaire that had to be filled out by the modellers, which asked them questions regarding pre-defined evaluation criteria.

These included topics such as the purpose of the model as well as the physical and chemical processes modelled. A similar

study involved the development of a guideline for the scientific evaluation CFD studies, focusing on factors such as the domain

description and the grid set-up, the input data, the turbulence closure, the equation system and solver applied, the boundary

conditions, the initial conditions and the output data, as well as various parameterisations important for microscale modelling10

(VDI, 2005).

All of these previous studies have been used as a basis for the development of the comparison metrics in this work, as

described further in Section 3. In particular, the ideas mentioned above have been combined in order to develop a pre-defined

template for participants to define individual comparison metrics.

2.2 Wind energy15

There is no published work known to the authors that specifically compares the skill and cost of wind modelling tools for

the wind energy industry. The New European Wind Atlas (NEWA) Meso-Micro Challenge for Wind Resource Assessment

as part of the IEA Wind Task 31 ”Wakebench” is the only related project known to the authors, and this aims to determine

the applicability range of meso-micro methodologies for wind resource assessment within the NEWA validation domain (IEA,

2019). It does consider the relationship between tool accuracy and cost; however, no attempt is made to predict these parameters20

in advance in order to help modellers choose the best tool for a given project. Due to these synergies, the current work

described in this paper is being carried out in collaboration with IEA Wind Task 31. Also as part of IEA Wind Task 31, a Wind

Energy Model Evaluation Protocol (WEMEP) has been developed (Rodrigo, 2019). WEMEP addresses quality assurance of

models being used for research and to drive wind energy applications. This is achieved through a framework to conduct formal

verification and validation (V&V) that ultimately determines how model credibility is built upon. It is based on the AIAA guide25

for the V&V of CFD as described in the previous section.

Additionally, some metrics do exist for the definition of complex terrain, which may be relevant to the present work. The

industry-standard linear wind field prediction tool WAsP (Wind Atlas Analysis and Application Model) is applicable for slopes

up to 30% (Bowen and Mortensen, 1996), because it is generally recognised that flow separation is likely to occur above this

value (Wood, 1995). WAsP can be used to self-calculate the extent to which the terrain violates this requirement, using the30

Ruggedness Index (RIX), defined as the fractional extent of the surrounding terrain which is steeper than 30%. The orographic

performance indicator ∆RIX is defined as the difference in the (percentage) fractions between the predicted and reference

sites. If the reference and predicted sites are equally rugged (∆RIX = 0%), the prediction errors are relatively small. As well as

this, there have been attempts to assess flow complexity objectively using streamlines and other features e.g. Pozo et al. (2017).
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However, these methods are sometimes computationally demanding or require functionality that is not available in wind energy

sector tools.

These ideas have all been considered in the development of the comparison metrics in this work, as described in the next

section.

3 Method5

Comparison metrics for cost and skill scores were investigated using results of simulations from the Bolund Hill experiment

(Berg et al., 2011), (Bechmann et al., 2011) using various wind modelling tools. This site was chosen due to the number

and quality of measurement points as well as the complexity of the terrain. As this experiment was designed to exclude

climatology effects, the present study is limited to microscale modelling of the wind. Parameters relating to geostrophic effects

and mesoscale coupling or forcing will be investigated in a later study.10

Bolund Hill is a natural hill that is 12 m high, 130 m long and 75 m wide, located in Roskilde Fjord, Denmark. It is

surrounded by water in all directions except to the east. Ten-minute average wind speed data is available from a total of 38

measurement locations on nine different meteorological masts for different wind directions. A contour map of the hill with the

meteorological masts marked is shown in Fig. 2. The blind test experiment conducted in 2009 consisted of the simulation of

four wind direction cases (270o, 255o, 239o and 90o) with prescribed boundary conditions of neutral flow (Bechmann et al.,15

2011). A more detailed description can be found in the literature, e.g. Bechmann et al. (2011), Berg et al. (2011).

Figure 2. Bolund Hill contour map with 0.25 m contour interval.

The method used in this work in order to study the applicability of comparison metrics for wind modelling in complex

terrain is shown in Fig. 3. It involved: (1) Definition of the test case; (2) Definition of parameters for comparison metrics before
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and after running simulations; (3) Definition of weightings for each parameter; (4) Scoring of each parameter for each model

applied; (5) Calculation of weighted score of each parameter for each model applied; (6) Plot and comparison of skill scores vs.

cost scores before and after running simulations; (7) Sensitivity studies. After step (6), the chosen weightings were improved

iteratively by comparing the total scores with expected values. The ultimate goal is to use the results in order to develop a

method capable of estimating the skill and cost scores of a given model for a given project without having to carry out the5

simulations beforehand.

Figure 3. Flow diagram of the method applied in this work.

The wind modelling tools that were applied in this work are described below. For each tool, the boundary conditions were

set up as required in the Bolund Hill blind test, defined by the average wind speed profile and the turbulence intensity at met

mast number M0 (Bechmann et al., 2011).

3.1 Model 1: WindNinja-COM10

WindNinja is a microscale wind modelling framework developed for operational wildland fire applications (Forthofer et al.,

2014a), (Forthofer et al., 2014b). It is specifically designed to meet the needs of emergency response personnel including

simple inputs, fast simulation times on simple hardware, and minimal training requirements. To this end, WindNinja includes

an easy-to-use graphical user interface with flexible initialisation options, a function for downloading the data required for
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model initialisation, built-in tutorials, and multiple easy-to-use output products. The inputs that are required to run the model

include a digital elevation model for the terrain, specification of the dominant vegetation in the domain, and an input wind

field. These inputs can all be downloaded from online sources using the WindNinja framework, if required. Three different

options for definition of the initial wind field are possible: (1) A domain-average wind: an average value for the entire domain

at a defined height above the ground; (2) Multiple points: information about the wind at one or more observation points; (3)5

A coarser resolution wind field from a numerical weather prediction model. The code is open source and available on GitHub

(github.com/firelab/windninja). It runs on both Windows and Linux operating systems. The core of the WindNinja framework

are the two numerical solvers available to simulate the flow field, which both assume a neutrally-stratified flow with thermal

parameterisations are available that allow some thermal effects to be approximated (e.g. non-neutral atmospheric stability and

diurnal slope winds) (Forthofer et al., 2009). The choice of solver (COM or CFD) is user-selectable at run time.The COM10

solver uses finite element techniques to minimally adjust (in a least-squares sense) the initial wind field to enforce conservation

of mass. The governing finite element equations are solved using a conjugate gradient solver with Jacobi preconditioning on a

terrain-following mesh with hexahedral cells that grow vertically with height.

In this work, the COM simulation was set up as described in Wagenbrenner et al. (2019), using WindNinja version 3.5.3. The

simulation was initialised with the domain-average initialisation option and the vegetation is specified as “grass”, which sets15

the model roughness length to 0.01 m. The thermal parameterisations were not used. The computational mesh had a horizontal

extent of 800 m long by 400 m wide by 26 m high (above sea level). The horizontal grid spacing was set to 4 m and the

near-ground cell height to 0.1 m.

3.2 Model 2: WindNinja-CFD

OpenFOAM version 2.2.0 is used for the CFD solver of WindNinja (Weller et al., 1998). Solutions to the steady-state, incom-20

pressible Reynolds-Averaged Navier-Stokes (RANS) equations are approximated using the simpleFoam solver, which is an

implementation of the semi-implicit method for pressure-linked equations (SIMPLE). The standard k-epsilon model is used

for turbulence closure. The governing equations are discretised using the finite volume method and solved on an unstructured

mesh with mainly hexahedral cells, which follows the terrain. The inlet boundary conditions are defined as recommended in

Richards and Norris (2011).25

The simulation in this work was set up as described in Wagenbrenner et al. (2019), and the domain-average initialisation

option was used. The same set-up was used as for WindNinja-COM, except the CFD solver was chosen with the standard

k-epsilon model for turbulence closure, and the computational mesh had dimensions of 800 m long by 400 m wide by 92 m

high (above sea level), with a horizontal grid spacing of 3.8 m and a near-ground cell height of 3.8 m.

3.3 Model 3: Zephy-CFD30

ZephyCFD is the CFD modelling chain of the wind resource assessment software ZephyTOOLS, which was developed by the

company ZephyScience to combine all relevant wind resource assessment tools for a wind farm project on one platform. Zephy-

TOOLS is a license-free software with highly parallelised calculations made possible by burst cloud-computing. ZephyCFD is
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based on a three-dimensional (3D) RANS solver. The non-linear transport equations for mass, momentum and energy are thus

solved considering a steady-state and isothermal incompressible fluid. The non-linear Reynolds stress tensor is modelled by

the k-epsilon dual equation closure scheme, based upon coupled transport equations for the turbulent energy density and the

turbulent dissipation rate. The meshing is done in a cylindrical domain to avoid re-meshing for each synoptic wind direction,

and uses an unstructured grid to focus on the points of interests without using an excessive amount of cells over the whole5

domain. The solver used is OpenFOAM with the SIMPLEC algorithm by default, but with the possibility for the user to change

solver parameters. Boundary conditions are based on a log-law Atmospheric Boundary Layer (ABL) profile, for which the

reference velocity, turbulent kinetic energy and inlet roughness can also be modified. Calculations are initialised on a coarser

mesh generated automatically and then relaunched on the user-defined finer mesh. This allows for faster convergence times on

the final mesh and to check for grid-independence. Global convergence is based on the standard deviation of the wind shear10

results at the worst-converging point of interest for the last 50 iterations. OpenFOAM enables ZephyCFD to perform parallised

calculations on the Cloud and to run all synoptic directions for a project simultaneously. The post-processing steps in Zephy-

CFD allow results for wind resource assessments to be obtained, as well as energy yield analysis if power curves are provided.

The spatial extrapolation of the wind properties is done by extrapolating wind measurements from met masts or lidars by the

speed-ups calculated in the CFD simulations.15

As Bolund does not have the typical dimensions of a wind farm site, the user defined mesh properties in ZephyCFD were

used for the meshing of the domain in this work. The overall domain was a cylinder of 3,800 m diameter and 1,000 m height,

with cell resolutions varying horizontally from 2 m at the points of interest to 83 m at the boundary, and vertically from 0.2 m at

ground elevation to 500 m at the top. Particularly high cell resolution was focused around the met masts and the areas identified

as having an average slope above a chosen threshold of 8o. In total the mesh was composed of 2.03 million cells. The input20

profile, defined at the boundary of the domain, was set as a log profile with user defined local roughness and reference velocity

at reference height, as well as a uniform turbulent kinetic energy and a fixed kinematic viscosity. The values were chosen based

on the profile given for the 270o case at the reference mast in the initial Bolund blind test (Bechmann et al., 2011).

3.4 Model 4: Fluent-RANS

ANSYS Fluent is a generic fluid dynamics tool for modelling the flow in industrial applications, and has capabilities for not only25

solving fluid flows, but also calculating turbulence, chemical reactions and heat flow. This ranges from furnace combustion, oil

platforms, flow over aircraft wings and simulation of bubble columns. In this work, Fluent was first set up to solve the Reynolds-

Averaged Navier-Stokes (RANS) equations. The RANS equations govern the transport of the averaged flow quantities, and can

model the whole range of turbulence fluctuations using turbulence modelling, which approximate the turbulent flow. The

approach is very popular for engineering applications because it allows reasonably accurate modelling of a wide range of flow30

phenomena, but with significantly lower computational effort than other approaches such as Large Eddy Simulations (LES). In

LES, the large-scale eddies are resolved explicitly in a time-dependent simulation using the filtered Navier-Stokes equations,

reducing the error introduced by turbulence modelling. However, the filtered Navier-Stokes equations involve removing eddies

smaller than the filter size (usually the mesh size), which does create additional unknowns that have to be approximated to
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achieve closure. This method is thought to be more accurate than RANS, because the approximations only have to be applied

to the very small scale eddies, which are less affected by the boundary conditions than large-scale eddies.

In this work, the meshing was done in Fluent Meshing using the new Mosaic Technology. This technique fills the bulk region

with octree hexes but keeps a high-quality layered poly-prism mesh in the boundary layer and conformally connects these two

meshes with general polyhedral elements. The domain dimensions following a grid dependency study were 830 m by 450 m5

by 60 m. The mesh consisted of three regions: an outer region with a large mesh size (up to 15 m) and two refinement regions

with a target mesh size of 0.5 m and 1 m. 15 boundary layer cells were used to capture near-wall effects, leading to a total cell

count of about 10 million. The SST k-omega turbulence model was applied to attain closure.

3.5 Model 5: Fluent-DES

The Detached Eddy Simulation (DES) approach is a higher-fidelity approach than RANS, but lower than LES. It involves10

applying unsteady RANS in the boundary layer and LES treatment in the other flow regions. It effectively focuses the resolving

of the turbulent eddies on the highly viscous boundary layer regions, significantly saving computational time compared to LES

but still increasing the fidelity over RANS. It can therefore be seen as a compromise between RANS and LES.

In this work, the Delayed Detached Eddy Simulation (DDES) model was applied, which ensure that RANS is preserved

even in high-aspect ratio boundary layers. The same mesh and the same base settings were used as in the Fluent-RANS model15

described in the previous section, and the results from the RANS study were used to initialise the velocity fields and turbulence

quantities. In contrast to the RANS simulation, the DES simulations were performed unsteadily with a time step of 50 ms.

In order to introduce fluctuating velocities at the inlet, the Fluent Synthetic Turbulence Generator was used assuming the

turbulence intensity given by the Bolund Hill blind test (Bechmann et al., 2011). After an additional unsteady initialisation

simulation, the wind speeds were averaged over 10 minutes. The SST k-omega turbulence model was applied to attain closure.20

3.6 Model 6: Palabos LBM/LES

The Lattice Boltzmann Method (LBM) is an alternative type of CFD for fluid simulation. Instead of solving the Navier–Stokes

equations directly, a fluid density on a lattice is simulated with streaming and collision (relaxation) processes. It uses the

immersed boundary method and therefore does not require a geometry-conforming grid. Palabos is a LBM code developed at

the University of Geneva, which has a straightforward programming interface and allows fluid flow simulations to be set up or25

the library to be extended with new models quite easily. The native programming interface in written in C++, and the library

has hardly any external dependencies (only Posix and MPI), making it easy to deploy on different platforms. However, the

lack of graphical user interface means that the tool takes some getting used to and requires programming in order to get run

simulations. Palabos can be downloaded and used for free under the terms of an open-source AGPLv3 license.

The generation of the orthogonal mesh is fully automated in Palabos. The surface mesh is provided in stereo-lithography30

format (STL) and Palabos then converts the surface description of the domain into a volume description. In this work, the

mesh was created with a constant cell size of 0.5 m, resulting in a total cell count of approximately 40 million nodes. Three

different mesh sizes were tested in a separate study (Schubiger et al., In Review). The dimensions of the most effective mesh
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chosen for this study was 40 m by 250 m by 525 m. The domain boundaries consisted of Bounce Back nodes. As there is no

way to describe different roughness lengths in Palabos yet, the water surface was modelled with a zero gradient for tangential

velocity components (free-slip). In addition, a simple velocity fluctuation model was implemented by synthetically creating the

fluctuations based on the value of the turbulence intensity of the Bolund blind test, in order to generate turbulence at the inlet. A

standard Smagorinksy Sub-Grid Scale model was used to capture sub-grid-scale motions. The Palabos framework offers more5

sophisticated LES and boundary models; however, the basic models were used here for simplicity. The possibilities of these

advanced models promises even more accurate solutions then obtained with this simple approach. More details of the Palabos

simulations can be found in Schubiger et al. (In Review).

4 Results

4.1 Definition of test case10

As mentioned in the previous section, the prescribed flow field from the Bolund Hill blind test experiment was used in this

work. Only one wind direction was chosen for simplicity, because the focus was on the development of the parameters for the

comparison metrics. The 270o wind direction was chosen in this case due to the high availability of simulation data in this wind

direction.

4.2 Parameter definition15

4.2.1 Scores before carrying out simulations (predicted scores)

The skill score of each model can be estimated before running the simulations by considering the parameters that are expected

to affect the accuracy of the results. These were divided into factors regarding the model (mathematical model, time step,

simulation length, grid quality, degree of turbulence and terrain approximation), the input data (terrain complexity, surface

roughness complexity, atmospheric stability, quality of measurement data, quality of terrain data, quality of surface data and20

quality of atmospheric data) and other parameters (skill of user, robustness of model and accuracy of validation). These factors

were quantified for each model by providing the modellers with a tabular template in which pre-defined lower and upper limits

were given, and then converting these to percentage values assuming linear behaviour between the limits. The lower and upper

limits were pre-defined by the authors, and are expected to be improved and tuned as the project progresses and more data is

collected. The input data is included in this quantification in order to allow comparisons between different sites on the same25

plot in the future, although in this work, the values remained the same for each model.

In order to demonstrate the type of parameters and the quantification method used, details are shown in Table 1 for the

model parameters only. This shows, for example, that grid quality is scored by asking the questions ”How well are the software

recommendations regarding orthogonal quality, skewness and aspect ratio fulfilled?”, ”Has grid independency been proven via

a grid study?” and ”Are the estimated y+ values within the software recommendations of the applied boundary layer model?”.30

A full list can be found in the publicly-available template (Barber, 2019).
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Table 1. Parameters for estimating the skill score before running simulations - model parameters only.

Parameter Value(s) to quantify Name Quantification method

Model

Mathematical model Underlying aerodynamic equations MA Estimate using pre-defined values or linear interpolation

between them

Underlying thermodynamic equations MTH Estimate using pre-defined values or linear interpolation

between them

Time step Size of time step (for unsteady simu-

lations)

MT Estimate using pre-defined values or linear interpolation

between them

Simulation length Length of simulation period (for un-

steady simulations)

ML Estimate using pre-defined values or linear interpolation

between them

Grid quality Grid quality MGQ How well are the software recommendations regarding

orthogonal quality, skewness and aspect ratio fulfilled?

Quality of grid independency MGI Has grid independency been proven via a grid study?

Boundary layer resolution MGB Are the estimated y+ values within the software recom-

mendations of the applied boundary layer model?

Degree of turbulence Reynolds number MR Estimate approximate Re to check if laminar or turbu-

lent (if relevant), calculate based on flow velocity and

distance to met mast of interest

Terrain approximation Ability of 3D grid to adapt to terrain MTA How well can the grid adapt to the terrain (visually check

that the geometry is properly captured)?

Next, each skill score parameter was given a weighting according to the expected relative impact of the parameter on the

overall skill score. Again, these values were defined by the authors and are expected to be improved during the course of the

project. The weightings for skill score before the simulations used in this study are shown in Fig. 4. It can be seen that a large

weighting is given to the quality of the aerodynamic model; however, other important parameters include the average deviation

from the measurements of a validation study (if existing), as well as other parameters such as the size of the time step, the grid5

quality and the Reynolds number. The remainder of the values can be found in the template (Barber, 2019).

The skill scores assigned to each parameter for each model were multiplied by the weightings and divided by 100 to give

a percentage weighted score. All these percentage weighted scores were then added together and divided by the sum of the

weightings to give an overall score as a percentage. In order to demonstrate the pre-defined limits and the assigned scores

and weightings, details are shown in Table 2 for the model parameters only, with scores given for Model 6 as an example. It10

can be seen that this model has a very high weighted score for the parameter defining the underlying aerodynamic equations,

MA, due to the fact that it uses LES. Other high scores include the below 1 s time step size and the high level of fulfillment
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Table 2. Quantification of parameters for estimating the skill score before running simulations - example for Model 6.

Name Pre-defined values Absolute

score

Score

in %

Weighting in

%

Weighted

score

Model

MA Linear or conservation of mass model = 2%, RANS =

40-60% depending on numerical model, LES = 90%

LES 90 100 90

MTH None = 0%, temperature modelling = 40%, coriolis force

= 40%, both = 80%

None 0 0 0

MT 1 hour = 10%, 10 minutes = 50%, 1 minute = 80%, 1

second = 100% (steady-state = 100%)

1 s 100 20 20

ML 1 minute = 20%, 10 minutes = 40%, 1 hour = 60%, 1

day = 100% (steady-state = 100%)

10 min 40 20 8

MGQ Not at all = 0%, partly = 40%, mostly = 60%, fully =

100%

Fully 100 20 20

MGI No = 0%, yes with minor problems = 50%, yes = 100% Partly 20 20 4

MGB Not at all = 0%, partly = 40% mostly = 60%, fully =

100%, not relevant = 100%

Partly 10 20 10

MR Above 100,000 / laminar = 0%, below 100,000 / turbu-

lent = 100%, not relevant = 100%

Turbulent 100 10 10

MTA Not at all = 0%, partly = 40% mostly = 60%, fully =

100%, not relevant = 100%

Mostly 60 10 6

of the software recommendations regarding orthogonal quality, skewness and aspect ratio of the grid. Particularly low scores

include the fact that grid independency has not been fully proven via a grid study (different grid dimensions were not tested for

this model, see Schubiger et al. (In Review) for more details), that the estimated y+ values are only partly within the software

recommendations of the applied boundary layer model, and that the user is not experienced with the software (value not shown

in Table 2).5

The cost score of each model can be estimated before running the simulations by considering the factors that are expected to

affect the costs. As shown in Table 3, these consist of investment and staff costs related to the software (per project), the time to

learn and training costs (per project), the expected simulation set-up effort, the cost of the expected simulation run-time and the

expected post-processing effort. In order to be able to compare the results between projects, the same staff costs ($80/hour) and

the same number of projects per year (12) are assumed for each model. The absolute cost values for each model were added10

up and the total was scaled linearly between $0 (0%) and the most expensive model in the study (100%). The absolute scores

for Model 6 are shown in Table 3 as an example (the model with the highest predicted cost score). Although the software is
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Figure 4. Weightings assigned to skill score parameters in this study.

free, the expected simulation set-up time is very high, because the interface is not designed specifically for this wind energy

application and a large amount of work is required to set the simulations up. This is expected to decrease the more experience

the user has with the software.

4.2.2 Scores after carrying out simulations (actual scores)

The skill score of each model can be calculated after running the simulations by comparing simulated data to measured data5

for the same input conditions. Many factors related to wind modelling are important for the eventual Annual Energy Production

(AEP) calculation; however the four key values for wind energy wind modelling applications have been identified as (1) Wind

velocity magnitude; (2) Wind direction (or all three components of wind velocity); (3) Turbulence intensity; (4) Shear factor. In

this work, only the wind velocity magnitude has been considered for quantifying the skill score after running the simulations.

The simulated wind speed magnitudes for four measurement positions at met masts along the 270o line from Fig. 2 are10

plotted against the measured values for each model in Fig. 5, with the coefficient of determination, R2, marked on each plot.
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Table 3. Parameters for estimating the costs before running simulations, example for Model 6

Parameter Value(s) to quantify Name Absolute score ($)

Software costs Investment costs plus support/license

costs per year, divided by number of

projects

CI 0

Time to learn and training costs Staff costs invested in learning x hourly

rate + training costs, divided by total num-

ber of projects carried out by staff member

CT (15 days x 8.4 hr./day x $80/hr.)/(12

projects per year) = $840

Expected simulation set-up effort Staff costs to set up simulations (per

project)

CS 6 days x 8.4 hr./day x $80/hr. = $4,032

Expected simulation run-time Costs for running one simulation (use the

final set-up that creates the results entered

in this table)

CR 4 days x 8.4 hr./day x $0.04/core x 120

cores. = $161

Expected post-processing effort Staff costs to post process results (per

project)

CPP 3 days x 8.4 hr./day x $80/hr.= $2,016

These four points were chosen in order to ensure comparability, as they were the only four points for which all the measurement

results were available. In general, the models all perform reasonably. The details of the flow are examined further in Schubiger

et al. (In Review) for Model 4, Model 5 and Model 6. To calculate the skill score for each model, the Root Mean Square

Error between the simulations and the measurements at these four measurement positions was calculated for the wind velocity

magnitude. These values were then scaled linearly to a percentage value using upper limits of 3 m/s, and a lower limit of zero.5

The upper limit resulted in an absolute score of 0%, as a high error results in a low skill score.

The actual cost score of each model after running the simulations was defined by recording the actual investment and staff

costs related to the software, the time to learn and training costs, the simulation set-up effort, the cost of the simulation run-time

and the post-processing effort. As for the cost score before, the absolute costs for each model were added up and the total was

scaled linearly between $0 (0%) and the most expensive model in the study (100%).10

4.3 Resulting scores

After definition of these parameters, their values were collected for each tool by providing the modellers with a tabular template

containing detailed instructions and descriptions of each parameter (Barber, 2019). In this template, full descriptions of all

the parameters as well as their upper and lower limits can be found. Although this process involved iterative improvements

following inputs from the participants, it remained a blind test and the modellers were not able to tune their results to improve15

them.
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Figure 5. Correlations of measured and simulated wind speeds for each model for four measurement points.

The resulting skill and cost scores for all the models, both before and after the simulations, are shown in Fig. 6. It can

be seen that Model 2 would probably be chosen as the the most cost-effective model, both before and after carrying out the

simulations (given by the flattening-off point of the curve). This shows that the current method is successfully able to help

modellers choose the most effective model for this test case, without having to carry out the simulations before deciding.

Examining first the predicted results before the simulations were carried out (the black diamonds), the expected shape5

introduced in Fig. 1 can be seen in Fig. 6, with each model number marked. There is an initial increase in cost and skill scores,

followed by a flattening-off. Model 1 is very quick and easy to apply, giving it a low expected cost score, but is expected to

be the least accurate model due to its simple conservation of mass approach, giving it a low expected skill score. It is mainly

the highly-weighted parameter aerodynamic equations that is responsible for the very low skill score, and the short set-up and

post-processing time that results in the low cost score. Models 2 and 3 are expected to perform very similarly, because they10

both apply the CFD RANS method and both involve a similar user-friendly, application-specific set-up, with higher expected

skill and cost scores than Model 1. Model 4 is expected to have a similar skill score to Model 2 and 3, due to the same CFD

RANS method. However, this model is a general tool for industrial applications and has not been designed specifically for

this application. Therefore the set-up and post-processing times are expected to be much higher, giving it a higher expected

cost score than Model 2 and Model 3. Model 5 is expected to have a slightly higher skill score than Model 4, due to the15

DES approach; however, the run-time is expected to be much higher and therefore the expected cost score is significantly

higher. Although Model 6 is using a more accurate LES model and the expected skill score is very high, its more efficient LBM
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Figure 6. Results of skill and cost scores for all models before and after the simulations.

approach results in a lower expected cost score than Model 4 and Model 5. However, this time saving is expected to be partially

offset by the high simulation set-up time due to the fact that the software is not designed specifically for this application and

is new to the user in this case, and therefore the expected cost score is not as low as the RANS models. The cost score of

Model 6 does, however, have the potential to be reduced significantly by the development of an application-specific module in

the future, or after gaining more experience with the model. In general, it is interesting to note how low the importance of the5

simulation run time is, compared to the other costs. This is examined further in Section 4.5.

Now looking at the calculated results after the simulations were carried out (hollow diamonds), the same overall shape can

be seen very clearly, although not all the absolute values are the same as the predicted values. As for the predicted scores,

Model 2 would probably be chosen as the most cost-effective model. The closer together the numbers are on Fig. 6 the better

the prediction of the scores. Some of the values have been predicted very well, such as the cost and skill scores of Model 3,10

the skill score of Model 2 and the cost scores of Model 1 and Model 5. Others have not been predicted as well, including the

skill scores of Model 1 and Model 4 as well as the cost scores of Model 4 and Model 6. A direct comparison of the cost and

skill scores before and after the simulations is shown in Fig. 7. It can be seen that the prediction of the cost scores is much

better than the prediction of the skill scores in general. This is due to the complex nature of the skill score prediction method,

which requires further investigation with far more data points. This is currently being done via a public simulation challenge15

in collaboration with IEA Wind Task 31 (www.iet.hsr.ch/windenergy).
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Figure 7. Direct comparison of skill and cost scores before and after the simulations.

4.4 Choice of most cost-effective model

As mentioned in the previous section, Model 2 has been identified as the most cost-effective tool for this application, both

before and after carrying out the simulations. This shows that this novel method of predicting the skill and cost scores of a

range of models for a given project in order to help modellers choose the best model for their needs works effectively. Model

2 is a RANS CFD model developed specifically for wind modelling applications, and has the most suitable combination of5

modelling accuracy and quick set-up time for this application. Model 3 would also be a very good choice for this application,

reaching good accuracy and reasonably low costs. It is important to note that this choice of the most cost-effective model is

highly dependent on the type of problem being solved. For example, for projects in which the detailed simulation of flow

separation and thermal effects are important, the expected improvement in skill score of LES models compared to RANS

CFD models could very possibly outweigh the cost score savings of the RANS models. Additionally, the choice of most cost-10

effective model is highly dependent upon the experience of individual modellers as well as on the availability of validation and

grid independency studies. This method should therefore be applied by the modeller for each individual wind energy project.

Furthermore, the modeller may need to apply further constraints that could be added to the plot of skill against cost score as in

Fig. 1, which may then affect the decision process. Further work is being carried out on the suitability of this new method for

other project types, such as terrain complexity and atmospheric stability, as well as for calculating all wind directions and the15

AEP and including mesoscale nesting or forcing. A large number of inputs will be collected as part of a simulation challenge

in collaboration with IEA Wind Task 31.

17

https://doi.org/10.5194/wes-2019-95
Preprint. Discussion started: 20 January 2020
c© Author(s) 2020. CC BY 4.0 License.



4.5 Further analysis

In order to further examine this new method, the scores predicted in this work were compared to a simplified prediction method

using only the parameter aerodynamic equations for the skill score and only the relative run time costs for the cost score. The

results are shown in Fig. 8, which compares skill against cost scores before carrying out the simulations for the new (current)

method and for the simplified method for each model. With the simplified method (hollow triangles), it is not possible to find a5

pattern in the results or choose the most cost-effective model. This highlights the danger of predicting the skill score of a model

only using simplified assumptions such as the accuracy of the aerodynamic equations and quantifying the cost score only using

the run time. There are far more other parameters that are important for assessing the skilland cost scores of a model.

Figure 8. Comparison of prediction before the simulations for the current method and for a simplified method only using the aerodynamic

equations run time.

For example, the distribution of the actual costs for each model are shown in Fig. 9. This shows that the simulation run time

costs (shown in light grey) are tiny in comparison to the simulation set-up and post-processing effort for all of the models.10

Additionally, the relative expense of the Fluent software in terms of the license costs as well as the set-up time are clear to see

(Model 4 and Model 5).

Finally, in order to obtain a further understanding for how the results may change on altering the weightings of the parame-

ters, a sensitivity study was carried out, in which the weightings of the four most strongly weighted skill score parameters were

altered systematically in order to give a total of three weightings per parameter. The effect of these weightings are shown in15

Fig. 10. The magnitude and direction of the change in the parameter due to the change in weighting is dependent on the value

of the score given to each parameter for each model as well as on the relative importance of the parameter to the overall score,
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Figure 9. Distribution of the relative costs for each model.

and therefore is different for each parameter and model. For example, for the parameter aerodynamic equations, reducing the

weighting increases the skill scores of Model 1, 2 and 3, but decreases the skill scores of Model 4, 5 and 6. This is because

the score given to Model 1, 2 and 3 is relatively low, and therefore reducing the weighting increases the relative importance of

the other parameters and increases the overall score, which represents an average of all weighted scores. As the score given to

Model 4, 5 and 6 is relatively high (above 50%), reducing the weighting of this parameter decreases the overall skill score as5

its importance reduces. It can also be seen that the magnitude of the change in skill score is much higher for Model 1 than for

the other models. This is because the lower the weighting, the less the very low score causes an overall score reduction, and the

higher the score becomes. Furthermore, as expected, changes to the weighting of the parameter aerodynamic equations also

have a larger effect on the overall shape of the graph as the other parameters do. Further work is undergoing on the refinement

of this weighting procedure.10

It should be further noted that this new method has a high potential to be extended to a wide range of other research and

industry simulation applications, including in the automotive and aerospace areas, for which many different tools are available

and the choice of the most cost-effective tool is also highly challenging.

5 Conclusions

In this work, a new method for helping wind modellers choose the most cost-effective model for a given project was developed15

by applying six different Computational Fluid Dynamics tools to simulate the Bolund Hill experiment and studying appropriate

comparison metrics in detail.

This was done by firstly defining various parameters for predicting the skill and cost scores before carrying out the sim-

ulations as well as for calculating skill and cost scores after carrying out the simulations. Weightings were then defined for
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Figure 10. Effect of changing weightings of the four most strongly-weighted parameters on the skill score vs. cost score curve.

these parameters, and values assigned to them for the six tools using a template containing pre-defined limits in a blind test.

An iterative improvement process was applied by collecting inputs from the participants of the study. This allowed a graph

of predicted skill score against cost score to be produced, enabling modellers to choose the most cost-effective model without

having to carry out the simulations beforehand. The most effective model is the one with the highest skill score for the lowest

cost score, at the flattening-off part of the curve.5

The results showed that this new method is successful, and that it is generally possible to apply it in order to choose the most

appropriate model for a given project in advance. This was demonstrated by the good match between the shapes of the skill

score against cost score curves before and after the simulations, and by the fact that the tool at the flattening-out point of the

curve is the same before and after carrying out the simulations.

It was also shown how important it is to take into account other factors that may affect the accuracy and costs of a wind10

modelling simulation as well as the quality of the aerodynamic equations and the run-time.

Several improvements to the method are being worked on, by further examining the discrepancies between the predicted

and actual cost and skill scores. Additionally, the method is being extended for calculating all wind directions and the Annual
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Energy Production, as well as to include mesoscale nesting or forcing. A large number of inputs are being collected as part of

a simulation challenge in collaboration with IEA Wind Task 31.

The method has a high potential to be extended to a wide range of other simulation applications.
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