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Abstract. A new analytical wind turbine wake model, based on a super-Gaussian shape function, is presented. The super-

Gaussian function evolves from a nearly top-hat shape in the near wake to a Gaussian shape in the far wake, which is consistent

with observations and measurements of wind turbine wakes. Using such a shape function allows to recover the mass and mo-

mentum conservation that is violated when applying a near-wake regularization function to the expression of the maximum

velocity deficit of the Gaussian wake model. After a brief introduction of the theoretical aspects, an easy-to-implement model5

with a limited number of parameters is derived. The super-Gaussian model predictions are compared to wind tunnel measure-

ments, full-scale measurements and a large-eddy simulation, showing a good agreement and an improvement compared with

predictions based on the Gaussian model.

1 Introduction

During the design phase of a wind farm, wind turbine positions must be carefully chosen in order to maximize the power10

output and minimize the wake effects within a given geographical area. Indeed, even offshore, the area can be limited by

several constraints, such as sea bed type (presence of sand banks), national borders, fishing areas, etc. Furthermore, in a wind

farm, wind turbines may operate in the wake of upwind turbines. Wind turbine wakes are characterized by a reduction of the

wind velocity and an increase of the turbulence level. In the near wake, i.e. at a distance below four wind turbine diameters,

the decrease in wind velocity is very strong. In the far wake, at a distance greater than four wind turbine diameters, turbulent15

mixing leads to wake recovery. Thus, short separation distances between wind turbines lead to higher wake losses. In the end,

a complex optimization problem, implying a large number of evaluations of the wind farm power, must be solved to maximize

the wind energy production (or minimize wake losses) on a given site with given wind characteristics. Despite the availability

of high-fidelity methods (Churchfield et al. (2012), Joulin et al. (2019)), wind farm designs are still based on analytical wake

models, because they are computationally affordable.20

Several analytical models have been derived over the years, from the well-known work of Jensen (1983) and Katic et al.

(1987) to the most recent models proposed by Frandsen et al. (2006), or Bastankhah and Porté-Agel (2014). These models are

designed to estimate the far-wake characteristics. However, wind turbine separation distances in wind farms can be small, i.e.

below four wind turbine diameters (d0). A typical example is the Lillgrund wind farm, with a minimal separation distance of

3.3d0. Thus, analytical models should be accurate not only in the far wake, but also in the near wake.25
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In the work of Frandsen et al. (2006) and Bastankhah and Porté-Agel (2014), two closely related shortcomings have to be

alleviated: firstly, due to the choice of a Gaussian shape and from mass and momentum conservation, the maximum velocity

deficit decreases with the distance to the rotor. This is not exact in the near wake: the velocity deficit increases, reaches

a maximum value, and then decreases, due to the turbulent mixing. Secondly, it has been observed, both numerically and

experimentally, that the wake velocity profiles are not purely Gaussian, as supposed in the aforementioned model, but evolve30

downstream the wind turbine from a top-hat shape to a Gaussian shape in the far wake (see Lissaman (1979), Aubrun et al.

(2013), Sørensen et al. (2015), Bartl and Sætran (2017)). This is due to the tip vortices, that emanate from the blade tips and

break up while propagating downstream the wind turbine, leading to a mixing of the wake with the atmospheric flow and

finally to the Gaussian-shaped velocity profile. Having a correct wake shape is fundamental, since a wrong shape can lead to

erroneous power estimation for a rotor operating in full-wake or partial-wake conditions.35

Recently, Qian and Ishihara (2018) proposed a modified version of the Bastankhah and Porté-Agel model that improves

the velocity deficit prediction in the near wake. In this updated model, a corrective term is added in order to predict realistic

near-wake velocities. However, by using such a corrective term, mass and momentum conservation is violated.

Another velocity deficit distribution has been proposed by Keane et al. (2016) and Schreiber et al. (2020): their model is

derived by applying conservation of mass and momentum in the context of actuator disk theory, but assumes a distribution40

of the double-Gaussian type for the velocity deficit in the wake. Indeed, the authors consider that the near wake is better

approximated using a double-Gaussian distribution. However, other experiments by Bastankhah and Porté-Agel (2020) show

an increase of the velocity deficit at the wake center in the very near wake (< 2d0) even so they were not designed for measuring

the very near wake. It has been decided to neglect the misunderstood effect of the nacelle as it is supposed to vanish after 2d0

and to propose a generic formulation of the super-Gaussian type. This specific effect could be included as a correction added to45

the present formulation of the model. Comparisons between the proposed model and the double-Gaussian wake model are not

straightforward, since, to our best knowledge, no “generic” formulation (or calibration) of the double-Gaussian wake model

has been proposed yet (i.e. no dependence on thrust coefficient or turbulence intensity are considered in the two aforementioned

references). The double-Gaussian wake model has therefore been excluded from the present comparisons.

In the present work, it is shown that by using a super-Gaussian shape, the wake velocity profiles are more consistent with50

observations, the velocity deficit has the expected form, and mass and momentum conservation is preserved. Indeed, the super-

Gaussian function tends towards a top-hat shape for high values of the super-Gaussian order n (near-wake conditions), while

for n= 2, the traditional Gaussian shape is recovered (far-wake conditions). In the near wake, the top-hat shape can be altered

by the presence of the hub and tower wakes, or even by the non-uniform distribution of the inductions on the blade (as observed

during the Mexico and NewMexico experimental campaigns, see Boorsma et al. (2019)). These effects are neglected in the55

present work, since they tend to be rapidly dissipated (one to two diameters behind the wind turbine), and the wake rapidly

transitions towards a smooth top-hat shape before turbulent mixing takes place and leads to the well-known Gaussian shape in

the far wake.

The idea of using a super-Gaussian shape function has already been suggested in Shapiro et al. (2019). In the present work,

an alternative formulation is presented. Both mass and momentum are conserved, following the derivation of the Gaussian60
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model of Bastankhah and Porté-Agel (2014), whereas in the work of Shapiro et al. (2019), only mass conservation is enforced.

Furthermore, a new form of the near-wake correction for the velocity deficit proposed by Qian and Ishihara (2018) is presented,

and an analytical expression for the evolution of the super-Gaussian order n as a function of the downstream distance is

proposed. This expression is obtained by enforcing mass and momentum conservation, using the aforementioned near-wake

corrected velocity deficit model and assuming a linear evolution of the wake width with respect to the downstream distance.65

Finally, the model is calibrated on a wide range of thrust coefficients and turbulence intensities by using measured velocity

profiles behind an actuator disk (Aubrun et al. (2013) and Sumner et al. (2013)) and an onshore wind turbine (Doubrawa et al.

(2019)). Results of a Large Eddy Simulation (LES) are also used as a reference for the wind turbine case. Comparison with

experimental velocity profiles highlights the improvement brought by the super-Gaussian model over the Gaussian model.

2 The super-Gaussian wake model70

2.1 Model derivation

The derivation of the super-Gaussian wake model closely follows the one proposed by Bastankhah and Porté-Agel (2014). The

non-dimensional velocity deficit in the wake is expressed as the product of the maximum velocity deficit C(x̃) and a shape

function f(r̃), with x̃, σ̃ and r̃ the axial distance from the turbine, the characteristic wake width (which is the standard deviation

when n= 2) and the radial distance from the wake center, all three normalized by the wind turbine diameter, d0:75

U∞−Uw
U∞

= C(x̃)f(r̃) = C(x̃)e−r̃
n/(2σ̃2), (1)

with U∞ the wind velocity at infinity and Uw the velocity in the wake. In the rest of the document, the tilde symbol denotes a

normalization by the wind turbine diameter, d0. Furthermore, the dependence on x̃ for σ̃(x̃) and ñ(x̃) is omitted to simplify the

notations: σ̃ = σ̃(x̃) and ñ= ñ(x̃). The shape function, f(r̃), takes a form similar to a super-Gaussian function, with a squared

characteristic wake width σ̃. The characteristic wake width is directly linked to the wake width. The super-Gaussian function80

is a convenient choice for representing wakes, since for high values of the super-Gaussian order n, the function is close to

a top-hat, as observed in the near wake, while for lower values of n, the function smoothly evolves towards the well-known

Gaussian shape, as observed in the far wake. For n= 2, the super-Gaussian is actually a Gaussian function.

Typical super-Gaussian profiles are shown in Fig. 1. Depending on the characteristic wake width σ̃, the wake width at the

base can be slightly larger or thinner compared with the Gaussian counterpart (n= 2). The highest value of characteristic wake85

width (σ̃ = 0.6), for which the wake base is thinner with the super-Gaussian model, is typical of far wake and high turbulence

conditions. This case is not likely to occur, since a Gaussian shape is expected in the far wake.

The model is derived by enforcing mass and momentum conservation. Only the main results are given here. Detailed calcu-

lations can be found in Appendix A. According to Frandsen et al. (2006), applying mass and momentum conservation leads to

the following equation:90

2πρ

∞∫
0

Uw (U∞−Uw)rdr = T, (2)
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Figure 1. Super-Gaussian profiles of orders n= 2 to n= 8 for three different characteristic wake width values.

where ρ is the air density, and T is the thrust force applied by the wind turbine on the flow. This force is related to the thrust

coefficient CT , which is a manufacturer data supposed to be known, and function of the infinite wind velocity. With A0 the

rotor swept area, the thrust writes:

T =
1

2
ρCTA0U

2
∞. (3)95

As shown by Eq. (2) and (3), the thrust coefficient is a non-dimensional variable, that represents the loss of kinetic energy of

the flow due to the presence of the wind turbine. It scales the intensity of the velocity deficit in the wake. After inserting Eq.

(1) into Eq. (2), the following relation is obtained, with Γ the Gamma function:

C(x̃)2− 22/nC(x̃) +n
CT

16Γ(2/n)σ̃4/n
= 0. (4)

From Eq. (4), it is possible to derive an expression for the maximum velocity deficit:100

C(x̃) = 22/n−1−

√
24/n−2− nCT

16Γ(2/n)σ̃4/n
. (5)

The original form of C(x̃) proposed by Bastankhah and Porté-Agel is recovered (with Γ(1) = 1) when setting the super-

Gaussian order to n= 2:

C(x̃) = 1−
√

1− CT
8σ̃2

. (6)

2.2 Model implementation105

2.2.1 Root-finding approach

In the Gaussian model, there are only two unknown variables, the normalized characteristic wake width σ̃ and the maximum

velocity deficit C(x̃). The maximum velocity deficit can be obtained by using a linear evolution of the characteristic wake
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width with respect to the distance to the rotor, see Eq. (9). The linear assumption is based on the analysis of experimental and

numerical data. In the super-Gaussian formulation, another variable is introduced: the super-Gaussian order n. A first idea is110

to keep the linear assumption for the wake characteristic width, set the super-Gaussian order n to get the desired wake shape,

and calculate the maximum velocity deficit. Using such a method, an expression for n needs to be found.

Here, a different approach is used. A linear evolution of the characteristic wake width is considered. Then, the maximum

velocity deficit is calculated using the model of Bastankhah and Porté-Agel (2014), augmented with a near-wake correction

similar to the one introduced by Qian and Ishihara (2018). As already mentioned, by using a Gaussian wake model, the115

introduction of this near-wake correction violates the mass and momentum conservation. Once the super-Gaussian shape

function is introduced, mass and momentum conservation can be preserved by choosing n accordingly (i.e. using Eq. (4)).

Finally, the velocity in the wake can be computed using Eq. (1).

Explicit forms of the near-wake correction, characteristic wake width and maximum velocity deficit need to be defined. The

near-wake correction, denoted κ(x̃), takes the following form:120

κ(x̃) = cNW (1 + x̃)
pNW , (7)

with cNW and pNW two parameters of the correction. Introducing Eq. (7) in the expression of the velocity deficit proposed by

Bastankhah and Porté-Agel (2014) leads to:

C(x̃) = 1−
√

1− CT

8(σ̃+κ(x̃))
2 . (8)

To close the system, an expression of the characteristic wake width is needed. The following linear form is considered:125

σ̃ = (asTi + bs) x̃+ cs
√
β, (9)

with Ti the turbulence intensity, as, bs, cs parameters of the model and:

β =
1

2

1 +
√

1−CT√
1−CT

. (10)

Regarding the near-wake correction, Qian and Ishihara originally proposed a fitted form for cNW and pNW . Here, a new

boundary condition is introduced to determine cNW , while pNW remains a parameter. Such a procedure reduces the number of130

constants to be calibrated. According to the actuator disk theory, the velocity at the rotor plane (x/d0 = 0) is Ud = U∞(1−a),

with a the axial induction factor (see Burton et al. (2011)). The axial induction factor itself is a function of the thrust coefficient:

a=
1

2

(
1−

√
1−CT

)
. (11)

Using such a boundary condition leads to the following form:135

cNW =

√√√√ CT

8
(

1− (1− a)
2
) − cs√β. (12)
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Due to the introduction of the near-wake correction, κ(x̃), Eq. (8) does not respect the mass and momentum conservation

(Eq. (4)). This error is compensated by enlarging the wake: the super-Gaussian order n is chosen to recover the mass and

momentum conservation. Since no convenient analytical expression has been found for n a priori, this is done numerically.

The roots of Eq. (4) are computed, choosing n as the unknown variable and for given C(x̃), σ̃ and CT . Finally, the velocity in140

the wake is obtained using Eq. (1).

To sum up, the root-finding version of the super-Gaussian model is based on the following steps:

– Step 1: compute the normalized characteristic wake width using Eq. (9).

– Step 2: compute the near-wake corrected maximum velocity deficit using Eq. (8).

– Step 3: compute the super-Gaussian order n using a root-finding algorithm, applied to Eq. (4).145

– Step 4: compute the wake velocity using Eq. (1), and rescale using the infinite wind velocity.

2.2.2 Analytical approach

Numerically minimizing the mass and momentum conservation (Eq. (4)) to obtain a value for n, with C(x̃) given by Eq.

(8), would lead to a strong increase in computational time. This is a major issue when dealing with wind farm design and

optimization. An analytical expression for n is proposed here. This expression is based on curve fitting: from the results150

obtained using the root-finding algorithm, it has been noticed that the evolution of n against the downwind distance closely

resembles to an exponential curve. The following expression is used:

n≈ afebf x̃ + cf . (13)

In this work, the three parameters af , bf and cf are supposed to be constants. This is a rough approximation of the super-

Gaussian order n. It is possible to get a more precise approximation by defining the three parameters as functions of the thrust155

coefficient and turbulence intensity. However, this implies a larger number of parameters to be identified. The choice is made

here to keep a simple form of the model and to use a limited number of parameters. The three parameters are identified based

on root-finding results of Eq. (4): for a given velocity deficit (Eq. (8)), a Newton-type algorithm is used to find the value for n

that is a solution of Eq. (4) up to a certain tolerance. Since the root-finding problem is not so time-consuming, a large number

of thrust coefficients and turbulence intensities can be considered to identify the three parameters.160

The resulting analytical model is straightforward to use. Given a downstream position x̃= x/d0 and a radial position r̃ =

r/d0, a thrust coefficient CT and a turbulence intensity Ti, the following steps have to be followed:

– Step 1: compute the normalized characteristic wake width using Eq. (9).

– Step 2: compute the super-Gaussian order n using Eq. (13).

– Step 3: compute the maximum velocity deficit using Eq. (5).165

– Step 4: compute the wake velocity using Eq. (1), and rescale using the infinite wind velocity.
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3 Calibration and Validation

3.1 Model calibration

The model has been calibrated using data from two experimental campaigns, thus covering a large range of turbulence in-

tensities and thrust coefficients. The first set of data is based on Particle Image Velocimetry measurements performed in the170

wake of porous disks under homogeneous isotropic turbulence in a wind tunnel (see Aubrun et al. (2013) and Sumner et al.

(2013)). Four cases are available and will be referred to as AD-X, X being the index of the test case. Porous disks used in these

experiments are almost uniformly loaded (the disks are made of a regular metallic mesh with a larger spacing at the center):

they are in accordance with the actuator disk theory used to derive the model. The second set of data is based on LiDAR mea-

surements performed in the wake of a full-scale wind turbine. This second dataset has been used during the SWiFT benchmark,175

see Doubrawa et al. (2019). Details regarding this measurement campaign can be found in Herges et al. (2017). Two cases are

considered, corresponding to a stable and a nearly-neutral atmosphere and will be referred to as WT-S and WT-N, S and N

corresponding to the stratification (Stable or Nearly-neutral). A SOWFA (Churchfield et al. (2012)) simulation using the LES

framework has been performed for the nearly-neutral case. The thrust coefficients and turbulence intensities for the six cases

are summarized in Table 1.

Table 1. Thrust coefficients and turbulent intensities for the considered validation cases

Case AD-1 AD-2 AD-3 AD-4 WT-S WT-N

CT 0.43 0.61 0.56 0.73 0.75 0.75

Ti 5% 5% 12% 12% 3.4% 10.7%

180

Based on the aforementioned six cases, the coefficients related to the wake characteristic width and the near-wake correction

have been obtained, considering only the maximum of the velocity deficit at each available axial location downstream of the

wind turbine. The characteristic wake width is not taken into account in this first fit. The resulting set of coefficients is given in

Table 2.

Table 2. Fitted parameters: wake expansion and near wake correction

as bs cs pNW

0.17 0.005 0.20 −1

The obtained parameters are different from the one proposed by other authors, such as Niayifar and Porté-Agel (2015). This185

may be due to the introduction of the near-wake correction in the model. Additional cases should be considered to obtain a
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more robust model. It is worth noting that the parameters given in Niayifar and Porté-Agel (2015) have been obtained based

on three large eddy simulations, all of them based on the same thrust coefficient (CT = 0.8) with a wide range of turbulence

intensities (6.9% up to 13.4% according the the presented data and the simulations described in Bastankhah and Porté-Agel

(2014)). The emphasis was put on the turbulence intensity effect but not on the thrust coefficient effect, which may also explain190

the differences observed in the parameters.

Based on these new coefficients, another calibration procedure is applied to determine the coefficients required to obtain a

value for n at any given downstream location x/d0, without solving the minimization problem. To get these values, a range of

thrust coefficients from 0.10 to 0.90 and a range of turbulence intensities from 3% to 20% is chosen. The obtained coefficients

are given in Table 3.

Table 3. Fitted parameters: super-Gaussian order n

af bf cf

3.11 −0.68 2.41

195

A comparison between the proposed fit and the root-finding approach is proposed in Fig. 2. Two thrust coefficients (CT = 0.4

and CT = 0.8) and two turbulence intensities (Ti = 5% and Ti = 12%) are considered. Despite the simplicity of the proposed

expression, a reasonable agreement is observed between the proposed analytical fit and the root-finding results. The largest

deviations are found in the very near wake, at downstream distances below x̃= 2: the maximum ñ value at x̃ is largely under-

estimated.

Figure 2. Comparison of the proposed fit for the super-Gaussian order with the root-finding approach for two thrust coefficients and two

turbulence intensities.
200
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The quality of the fit obtained using these parameters is detailed in the following subsection, based on each case used for the

calibration.

3.2 Comparison with measured data and high-fidelity simulation

The first cases considered are the actuator disk cases. Comparisons between wake models and measurements under low turbu-

lence conditions are given in Fig. 3. Results based on root-finding for n (Eq. (4), labelled "super-Gaussian") and results based205

on the approximation of n (Eq. (13), labelled "super-Gaussian analytical") are given. Comparisons with the Gaussian model

(labelled "Gaussian") are also performed.

Figure 3. Normalized velocity deficit at four axial distances behind the actuator disk. Low turbulence case.

For both thrust coefficients, the maximum velocity deficit is slightly over-estimated, but the same trends are observed. Close

to the rotor (x/d0 = 2 and x/d0 = 4), the velocity gradients at the edges of the wake are very strong: the wake velocity profiles

tend towards a top-hat shape. In the near wake, the experimental trends are well followed, although the velocity gradients210

predicted by the model are not as sharp as in the measurements. At x/d0 = 6, the experimental wake profile still exhibits a

plateau near the center of the wake. The super-Gaussian model predicts a wider wake compared with the Gaussian model,

which is consistent with the measurements.
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Further downstream, at x/d0 = 8, the velocity gradients are smoother, and the wake tends towards a Gaussian shape. The

wake is not fully developed, since a plateau is still observed, especially for the lowest thrust coefficient. The super-Gaussian215

model reproduces this trend quite well.

At the lower thrust coefficient, the experimental data indicates a velocity decrease at the center of the wake, for all down-

stream positions. This is most probably due to the lower mesh density used at the center of the disk during the design of

the physical model (see Aubrun et al. (2013)). Differences between the analytical super-Gaussian model and the root-finding

model are almost negligible.220

The impact of an higher inflow turbulence, leading to a faster wake recovery, is observed in the next cases (Fig. 4).

Figure 4. Normalized velocity deficit at four axial distances behind the actuator disk. High turbulence case.

Due to the higher turbulent level, mixing with the free flow is increased, and the plateau that was observed previously is not

present, excepted at x/d0 = 2, very close to the rotor. In the near wake, at x/d0 = 2 the super-Gaussian model predicts the

wake shape very well, while the Gaussian model strongly under-estimates the wake width. Downstream, at x/d0 = 4, 6 and

8, the wake width is slightly over-estimated by the super-Gaussian model. The Gaussian model is more in agreement with the225

measurements, but differences are small. Again, differences between the analytical model and the root-finding counterpart are

very small, even negligible.
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Figure 5. Normalized velocity deficit at four axial distances behind the wind turbine. Stable case (WT-S), top, and nearly-neutral case

(WT-N), bottom.

Last, comparisons are made between the wake models and the SWiFT measurements. A stable, low turbulence case and a

nearly-neutral, higher turbulence case are presented in Fig. 5, at the top and bottom, respectively. For the nearly-neutral case,

results from a LES simulation, based on the SOWFA library (Churchfield et al. (2012)), are also included. A slight offset has230

been imposed in the y/d0 direction for all simulations, including the LES, to compensate for the wake deflection observed

in the measurements. Measurements also reveal a slight asymmetry in the wake velocity profile, that is not accounted for

in the analytical models. In terms of maximum velocity deficit, the agreement between the wake models and measurements

is good, despite a slight under-estimation of the velocity deficit at x/d0 = 2 and a slight over-estimation at x/d0 = 5 for

both stable and nearly-neutral cases. The LES results also slightly under-estimate the velocity deficit at x/d0 = 2. In terms235

of wake shapes, the super-Gaussian model predicts wider wakes than the Gaussian model, as expected, and is more in line

with the measurements. A good agreement is observed between the super-Gaussian model and the LES simulations, despite

some differences at x/d0 = 5. The LES predicts a slightly thinner wake compared with the measurements. The super-Gaussian

model clearly improves the wake shape prediction. Some differences appear between the analytical super-Gaussian model and

the root-finding version, the root-finding version being closer to the experiment. The maximum velocity deficit at x/d0 = 3, 4240

and 5 is slightly over-estimated for the stable case.
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For a more quantitative comparison, the normalized L2 error between each model and the experimental velocity deficit are

provided in Fig. 6.

Figure 6. Normalized L2 error between the wake models and measured velocity deficit for the six considered cases. Lower inflow turbulence

cases on the top line, higher inflow turbulence cases on the bottom line.

Results for the lower inflow turbulence are on the top, and higher inflow turbulence cases on the bottom of the figure. For

the wind turbine case (left plots), results are very satisfactory, since the error is lowered at all downstream positions. The245

improvement is more pronounced in the near wake: the difference between the super-Gaussian and the Gaussian models, in

terms of error, tends to diminish with the distance to the rotor. This is the case for both low inflow turbulence and high inflow

turbulence cases. The Gaussian and the super-Gaussian model being based on the same maximum velocity deficit models, the

improvement is due to the enlarged wake that is obtained using the super-Gaussian model. The wake model predictions are

improved with the super-Gaussian model up to five diameters behind the wind turbine for the WT-S and WT-N cases, which250

is a separation distance that is commonly observed in offshore or onshore wind farm layouts. This highlights the usefulness of

the super-Gaussian model for wind farm design purposes.

If the super-Gaussian model clearly improves the results for the wind turbine cases, results are less satisfactory for the

actuator disk cases under high inflow turbulence. A clear improvement is observed for the low ambient turbulence conditions:

for normalized distance to the rotor plane of two to six disk diameters, the normalized L2 error is lower with the super-Gaussian255
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model compared to the Gaussian model. Again, the impact is more pronounced in the near-wake and tends to diminish in the

far wake, which is expected, since the super-Gaussian shape function tends to the Gaussian shape in the far wake. In the far

wake, the Gaussian model has a lower error than the super-Gaussian model at x/d0 = 8 for the higher CT case. Looking at the

wake velocity profiles (Fig. 3), the higher error observed with the super-Gaussian model can be attributed to an overestimation

of the wake width. At this location, the value of the super-Gaussian order, n, is not equal to two, and the Gaussian model260

better predicts the wake shape. This is also observed for the high inflow turbulence case. For both thrust coefficients, the

super-Gaussian model lowers the error in the near-wake (x/d0 = 2), but increases the error at the other positions (i.e. in the far

wake). In order to recover the accuracy of the Gaussian model, the super-Gaussian order n should be equal to two for these

cases. A practical way to improve the super-Gaussian model is to find a better calibration for the near-wake correction, Eq.

(7) and/or the characteristic wake width, Eq. (9): since the near-wake power coefficient, pNW , has a rather low value in the265

proposed calibration, the near-wake correction has an impact in the far wake that might be over-estimated, leading to super-

Gaussian order values that are above two. This highlights the difficulty to properly calibrate analytical wake models, and the

need for more measurements and high-fidelity simulations. Nevertheless, no explanations has be found to justify the differences

observed between the wind turbine case WT-N and the actuator disk case AD-4: operating conditions are similar in terms of

thrust coefficient and turbulence intensities, but a larger wake is observed in the wind turbine case, which leads to different270

conclusions in terms of super-Gaussian model performance compared with the Gaussian model. For all the considered cases,

the normalized L2 errors for the super-Gaussian model based on the root-finding algorithm and the analytical one are very

similar. No noticeable differences are observed, excepted for the AD-2 case at x/d0 = 4, for which a slight overestimation of

the maximum velocity deficit was observed in Fig. 3.

4 Conclusions275

A super-Gaussian model for wind turbine wakes has been introduced. The model transitions from a nearly top-hat shape in

the near wake to the well-known Gaussian shape in the far wake. The super-Gaussian order, n, which determines the shape of

the wake, is deduced by finding the root of the mass and momentum conservation equation. To avoid the numerical evaluation

of the root-finding problem and save computational time, a simple analytical expression for the super-Gaussian order n has

been proposed. Comparisons with wind tunnel, Particle Image Velocimetry measurements behind a porous disk and LiDAR280

measurements in the wake of a full-scale wind turbine show a good agreement between the model and the measured data.

While the comparisons show an improvement compared with the Gaussian model, there are still large differences between

the model predictions and measurements or LES simulations, highlighting the need for a more extensive calibration of the

model. In the near wake, the model also compares well with a LES simulation. The model improves the Gaussian model by

predicting an enlarged wake, consistent with observations, even at distances down to six diameters behind the wind turbine.285

Future work should include an extensive calibration and validation of the model, considering additional turbulence intensities

and thrust coefficients. A model for the hub wake could also be integrated in the model. Comparisons at the wind farm scale

are also planned in a near future. This implies the use of a wake-added turbulence model. In the super-Gaussian model, n can
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be considered as an implicit representation of the shear layer that expands downstream the wind turbine, starting near the tip

of the blades (Sanderse (2009)). There is most probably a link to consider between the super-Gaussian model and wake-added290

turbulence models.

Code and data availability. A python implementation of the analytical super-Gaussian model as well as numerical results can be made

available upon request from the corresponding author. An implementation of this super-Gaussian model has been undertaken by the NREL

in the FLORIS solver (https://github.com/NREL/floris).

Appendix A: Detailed derivation of the super-Gaussian model295

According to Frandsen et al. (2006), the application of mass and momentum conservation leads to the following expression:

ρ

∞∫
0

Uw(U∞−Uw)dA= T. (A1)

From Eq. (3), Eq. (A1) writes:

∞∫
0

Uw(U∞−Uw)rdr =
CTU

2
∞d

2
0

16
. (A2)

Introducing the normalized radius, r̃ = r/d0, Eq. (A2) becomes:300

∞∫
0

Uw(U∞−Uw)r̃dr̃ =
CTU

2
∞

16
. (A3)

Inserting the super-Gaussian shape function and using C(x̃), the maximum velocity deficit (Eq. (1)) leads to:

∞∫
0

Uw(U∞−Uw)dÃ=

∞∫
0

U∞C(x̃)e
−
r̃n

2σ̃2 ×U∞

1−C(x̃)e
−
r̃n

2σ̃2

 r̃dr̃
= U2

∞C(x̃)

∞∫
0

e− r̃n2σ̃2 −C(x̃)e
−
r̃n

σ̃2

 r̃dr̃.
(A4)

A known form for the primitive of xecx
n

exists:∫
xecx

n

dx=−Γi(2/n,−cxn)x2

n(−cxn)2/n
, (A5)305

Γi(n,x) being the upper incomplete Gamma function. Fortunately, this form has finite limits at both infinity and positive zero.

These limits write:

lim
x→∞

(
−Γ(2/n,−cxn),x2

n(−cxn)2/n

)
= 0, lim

x→0+

(
−Γ(2/n,−cxn)x2

n(−cxn)2/n

)
=− Γ(2/n)

n(−c)2/n
, (A6)

14



with Γ(x) the Gamma function. Inserting (A6) into (A4) and choosing the correct form for c leads to the following form:

∞∫
0

Uw(U∞−Uw)dÃ=−U2
∞C(x̃)Γ(2/n)

(
C(x̃)

n
σ̃4/n− 22/n

n
σ̃4/n

)
. (A7)310

Inserting (A7) into (A3) leads to:

σ̃4/nC(x̃)2− 22/nσ̃4/nC(x̃) +n
CT

16Γ(2/n)
= 0. (A8)

Considering C(x̃) as the variable to solve for, Eq. (A8) is a quadratic expression of second degree for which solutions are

well-known. The discriminant is given by:

∆ =
(

22/nσ̃4/n
)2
− nσ̃4/nCT

4Γ(2/n)
.

(A9)315

Finally, the roots of the polynomial expression are obtained:

C(x̃) =
22/nσ̃4/n±

√
∆

2σ̃4/n
= 22/n−1±

√
24/n−2− nCT

16Γ(2/n)σ̃4/n
. (A10)

As for the Gaussian model, only solutions based on the minus sign lead to physical solutions for the velocity deficit. The

final form of the maximum velocity deficit is:

C(x̃) = 22/n−1−

√
24/n−2− nCT

16Γ(2/n)σ̃4/n
.

(A11)320
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