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Abstract. This work investigated the effects of changing the skewing angle of a magnet coil on starting torque in a permanent 

magnet generator (PMSG) fitted in a low speed vertical wind turbine. The optimal skew angle of the magnet-coil was found 

to be 15-0 (degrees), generating 1.22 (N-m) starting torque and 295.40 (W) compared with a skew angle of 0-0 (degrees). This 

skew angle reduced starting torque and power by 5.43% and 1.96%, respectively. A Savonius and H-Darrieus stacked turbine 

blade operated at a wind speed of 1.90 m/s and 1.31 N-m torque. This blade was used in a fully operational vertical wind 20 

turbine, was connected to the PMSG that can cut-in speed of 2.1 m/s. It was concluded that a 15-0 (degree) skewing angle 

magnet-coil can be applied to a low speed vertical wind turbine.      

Introduction  

 

Wind energy is a relatively inexpensive renewable energy resource, which can be widely distributed. In particular, 25 

due to the available space and wind currents, ocean environmental conditions provide a suitable location to harness wind 

energy. In Europe, offshore wind energy is continuously being developed, with net offshore wind energy power capacity (2649 

MW) and cumulative offshore wind capacity (approx. 18,499MW) reported to have increased in 2018 (Walsh, 2019). 
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Bloomberg New Energy Finance have suggested that the global offshore wind market will approach a cumulative capacity of 

115GW, with a 16% annual growth rate from 2017 to 2030 (Jiang et al., 2020). Therefore, the development of cost effective 30 

megawatt wind turbines are likely to become more popular across Europe and Asia, with costs likely to be reduced via two 

methods. In utilizing future offshore wind energy, the vertical axis wind turbine (VAWT) is expected to perform better than 

the horizontal axis wind turbine (HAWT). This is because the VAWT has a lower center of gravity and simple mechanical 

structure, which is easy to fabricate, and requires low maintenance. Moreover, the VAWT has a high potential to be scaled to 

a number of different sizes (Paquette and Barone, 2012).  35 

In order to meet commercialization requirements, VAWT technology is constantly improving. Due to its unique 

rotating motion, the hardness of the VAWT blade provides the greatest amount of wind power on the upwind half 

circumference, however it provides a lower power coefficient compared with HAWT (Liu et al., 2019). This has led to several 

investigators exploring ways to improve the power output of isolated wind turbines by optimising and developing variable 

pitch technology or air-foils. The power coefficient can be improved by harnessing more wind energy via auxiliary devices, 40 

such as deflectors and diffusers (Takao et al., 2009;Wong et al., 2018;Malipeddi and Chatterjee, 2012). The design of new 

guide vane geometry for a VAWT has been shown to improve power with high tip speed ratios (Takao et al., 2009). The 

diffuser structure around a VAWT allows for an increased power coefficient and more energy from wind turbines positioned 

adjacent to each other (a wind turbine array) providing a new approach to improve the power output of VAWT’s (Dabiri, 

2011).       45 

   The electrical generator is the main device of wind turbine technology, and assists with providing higher efficiency. 

Presently, more than 90% of wind power plants have an electrical power range between 0.1 – 20 kW, and are often used in 

permanent magnet synchronous generators (PMSG) (Soderlund et al., 1996). As these wind power plant generators are driven 

directly from the shaft of wind turbine using no reduction gear (Haring et al., 2003), low speed generators can sufficiently 

provide a large number of poles on the rotor, with a relatively small pole pitch (Cistelecan et al., 2007). However, there are a 50 

number of technological problems related to stator generator production, and the automatically generated process of the three-

phase (m=3) fabricated winding insertion. Therefore, the application of generators, which use windings with a number of poles 

on poles and phase q=1, can be limited. The relationship between pole pair number p and gear teeth number Z1 is defined in 

Equation (1) (Germar et al., 2012).  

 Z1=2pmq       (1)                        55 

Where m is number of phases, and q is number of teeth on the pole and phase. When the phase is q=1, the system needs 6 teeth 

divisions to enable the winding to settle down on one rotor’s polar branch. The increased attention to the winding possessing 

sufficient length, with overlapping frontal connections, has led to an increase in growth, with an increase in copper 

consumption and eddy current losses. This is a disadvantage, has it has led to a synchronous generator with non-overlapping 

concentration windings for wind power (Saavedra et al., 2014;Levin et al., 2012;Magnussen and Sadarangani, 2003). Based 60 

on the PMSG generator producing high starting torque values, and a dependency of the torque to be related to the rotor’s 

rotation angle (Bakiev et al., 2018). The skewing ways of a permanent magnet machine can improve starting torque, by 
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affecting the torque and air-gap flux shape. However, the starting torque can also be reduced when the electrical power is 

decreased (Lateb et al., 2006), leading to a compromise with the skewing technique when it is applied to small wind turbines.     

 This study investigated the angle of skewing magnet-coils for reducing starting torque and electrical power in a 65 

PMSG. The optimal angle of the skewing magnet-coil was applied to a vertical wind turbine to validate the operation of a low 

speed vertical wind turbine at 2 m/s.         

Experiments 

 

In order to conduct the experiments of this investigation, a suitable test environment was arranged, including obtaining 70 

a laboratory machine. The acrylic plate was automatically changed to adjust the skewing angle to support the magnets and 

coils at 0-0, 0-5, 0-10, 0-15, 5-0, 5-5, 5-10, 5-15, 10-0, 10-5, 10-10, 10-15, 15-0, 15-5, 15-10, 15-15 degrees, respectively; as 

shown in Figure 1. The testing station was conducted in two parts, firstly, the controller and PMSG were used for the 3 phase 

inverter (1.5 kW/220 Vac, Input: 220 Vac, Output: 380 Vac, Jaden) in order to vary the speeds of 3 hp motors (0.78 kW, VEB 

elektromotorenwerk). The PMSG was then conducted with 12 magnets (NdFeB), which were used to skew the angles (sizes 75 

was 100x20x5 mm: 251 mT) that were installed onto the acrylic disc (size: 400x10 mm) for the rotor section. The 9 coils (size 

was 100x70x12 cm) and air core (2x3.5x2 cm) were installed onto the acrylic disc (size: 400x10 mm) for the stator section, 

and the PMSG was used with a 2 mm air-gap (Figure 2 and Table 1). Secondly, the measurement instruments included a 

torque meter (BCM sensor technologies, Model: 1811, Cap: 500 Nm, Accuracy (torque): 0.5% fs, Supply: 15 Vdc, Max: 

speed 7000 rpm, Load current < 10mA), and a power measurement, using a 3 phase Power & Harmonic Analyzer (Chauvin 80 

Arnoux: CA8331). The PMSG output was connected to a 3 phase switch and variable 300 W resistance load. 

 

Table 1. The PMSG parameters 

Constructive elements value Unit 

Number of phase  3 - 

Number of pole (P) 12 - 

Number of stator slots 9 - 

Flux density of NbFeB Magnet 251 mT 

Magnet length  100x20x12 mm 

Coil length  100x70x12 mm 

Number of coils 2700 N/Phase 

Rotor outer diameter 400 mm 

Stator outer diameter 400 mm 

Air gap 3 mm 
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Figure 1: (a) the acrylic plate for automatically skewing the angle of the magnets; (b) the acrylic plate can automatically skew the angle of 85 

the coils; (c) the 12 magnets installed on the acrylic disc for the rotor section; (d) 9 coils installed on the acrylic disc for the stator section. 

 

Figure 2: (a) Diagram showing the measurement of the Permanent Magnet Synchronous Generator (PMSG) connected to the motor driver 

and electrical load; (b) the PMSG experimental testing station.  

 90 
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Results and discussion  

 

Fig 3 (a) shows the comparison of the output torque with the skewing angle magnets-coils under no-load conditions. 

The trends fluctuated, with torque ranging between 0.05-0.30 N-m. The skewing angle of the magnets-coils could not exactly 95 

indicate a reduced torque. Fig 3 (b) shows the comparison of the output torque with the skewing angle magnets-coils under on 

load conditions. The trends indicated that the transient torque was related to the time duration and the skewing angle of the 

magnets-coils. The starting torque was increased from 0.20 to 1.4 N-m over 2.5 seconds, however after 4 seconds, the generated 

torque remained constant, with the behavior of each trend dependent on the skewing angle of the magnets-coils. The PMSG 

was connected to the electrical load that fabricated the induction of power between the magnets and coils. It was found that 100 

the trends between on load and no load were different, with the PMSG generating power induction between the magnets and 

coils when operated with no load. The electricity transferred from coils (stator) without load has previously been shown to 

fluctuate the signal (Bülow et al., 2012). In addition, the starting torque partly depends on the load, which breaks the torque 

produced on the rotor’s rotation angle (Ose-Zala et al., 2014). These starting torques could be fabricated over 2.5 seconds.  

 105 

 

Figure 3: The behavior of PMSG based on starting torque (a) the transient starting torque of PMSG no-load conditions, (b) the transient 

starting torque of PMSG with 300W electrical load. 
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 110 

Figure 4: The relationship between starting torque (N-m) and skewing angle magnet-coil (degree) which compared maximum starting torque 

and electrical power. 

 

Fig 4 shows comparison values between the starting torque and power when changing the skewing angle magnet-

coils in the PMSG generator. In the control condition, it was determined that the skewing angle magnet-coil at 0-0 generated 115 

1.29 N-m and 301.3 W compared with other conditions. The skewing angle magnet-coil at 0-5, 0-10, 0-15, 5-0, 5-5, 5-10, 5-

15 degrees provided similar starting torque and power values to 0-0 degrees. In contrast, the skewing angle of the magnet-coil 

at 10-0, 10-5, 10-10, 10-15, 15-0, 15-5, 15-10 and 15-15 degrees indicated that 10-0 degree produced a higher starting torque 

(1.37 N-m) and power (317.2 W), respectively, with both parameters gently decreasing until 15-15 degree. In particular, 

starting torque at a skewing angle of 15-0 (1.22 N-m), 15-5 (1.16 N-m), 15-10 (1.17 N-m) and 15-15 degrees (1.14 N-m), were 120 

lower than the 0-0 degree condition. These conditions are applicable to a wind turbine.  

The starting torque (Tstarting) can be fabricated by estimating the energy in the air-gap by stepping the rotor. The energy 

changed in the PMSG generator and iron is minimal when compared to the air (Eom et al., 2001).  

𝑇𝑠𝑡𝑎𝑟𝑡𝑖𝑛𝑔(𝜃) ≈  −
𝜕𝑊𝑎𝑖𝑟−𝑔𝑎𝑝(𝜃)

𝜕𝜃
= −

1

2
∅𝑔

2 𝑑𝑅

𝑑𝜃
           (1) 

Where Wair-gap () is energy within the air-gap, g is the air flux between magnet and coil,  is rotor angular position in electrical 125 

degrees and R is the air-gap reluctance. Eq (1) can be expressed in component form for a radial flux permanent magnets 

(RFPM) generator (Eom et al., 2001), the g  is the main factor that affected to the skewing angle magnet-coil. Eq (2) can be 

expressed in the air flux from the magnet to coil (Wirtayasa et al., 2017).      

               ∅𝑔 =
2

𝜋
𝐵𝑚𝑔

𝜋

2𝑝
(𝑅𝑜𝑢𝑡

2 − 𝑅𝑖𝑛
2 )                                                       (2) 

Where Bmg is flux density from magnet, 2P is the number of poles, Rin and Rout are the radial radius of the permanent magnet 130 

at the inner and outer diameter. Therefore, the skewing angle magnet-coil can be affected from the area of g , Rin and Rout by 

increasing or decreasing the starting torque (Tstarting) in the PMSG; as shown in Fig 5. Additionally, the skewing angle magnet-

https://doi.org/10.5194/wes-2020-101
Preprint. Discussion started: 25 November 2020
c© Author(s) 2020. CC BY 4.0 License.



7 

 

coil is also affected by the electrical power (Pout) of the PMSG, causing a change in the voltage (rms) value of the EEMF in the 

PMSG; as shown in Eq (3-4-5). 

   𝑘𝑤1 = 𝑘𝑑1𝑘𝑝1𝑘𝑠𝑛1            (3) 135 

               𝐸𝐸𝑀𝐹 = 𝜋√2𝑓𝑁1𝑘𝑤1∅𝑔                                                               (4) 

                   𝑃𝑜𝑢𝑡 =
𝐸𝐸𝑀𝐹

2

(𝑅𝑚+𝑅𝐿)2+𝑋𝑠
2 𝑅𝐿                                                              (5) 

  

Where kw1 is the winding factor of the coil, kd1 is the distribution factor, ksn1 is the skew factor, f is frequency, N1 is 

the number of armature turns in one phase, Rm is the armature resistance, RL is load resistance, and XS is the synchronous 140 

reactance. Based on Eq (3) is represented that the kw1 is affected from the shape and winding of the coil. While ksn1 is the main 

factor, which changed starting torque and power when skewing the angle magnet-coil.         

 

 

Figure 5: The skewing angle magnet-coil affected the air flux between the magnet and coil and radial radius of the permanent 145 

magnet at the (Rin) inner and (Rout) outer diameter.  

 

 (Suppachai et al., 2019 ) reported that the Savonius and H-Darrieus blade, which are stacked together, can operate at 

10kWwind turbine; as shown in Figure 6. Table 1 shows the characteristics under these conditions for selecting the optimal 

skewing angle of the magnet-coil condition, and the properties of the blade are shown in Figure 7. In order to initiate the first 150 

turn of the wind turbine, it was determined that the torque of the blade must be higher than the starting torque from the PMSG 

generator, with the wind turbine requiring to cut-in at approximately 2 m/s condition. The blade can be focused to a wind 

speed of 1.90 m/s and 1.31 N-m to be matched with the starting torque of the PMSG generator. The skewing angle magnet is 

easier to fabricate compared with skewing angle coil for the PMSG generator (Bianchi and Bolognani, 2002). However, since 

the PMSG generator requires a high power with a reduced starting torque, an optimal skewing angle magnet-coil of 15-0 155 

degrees enables the production of 1.22 N-m and 295.40 W, to reduce starting torque (5.43%) and power (1.96%), respectively. 

https://doi.org/10.5194/wes-2020-101
Preprint. Discussion started: 25 November 2020
c© Author(s) 2020. CC BY 4.0 License.



8 

 

The connection of the blade and PMSG generator, which allows the wind turbine to cut-in at low speed wind, Jcut-in (equivalent 

inertia) is shown in Eq (6) (Belmili et al., 2017;Hsieh et al., 2009).  

             JCut-in = Tblade - Tstarting      (6)    

 160 

Where Tblade is torque from the blade of the turbine (Table 2). The cut-in of this vertical wind turbine cannot start 

turning at 1.90 m/s wind speed due to the systems combined force of Tstarting. Hence, the real operation of this vertical wind 

turbine system can be cut-in at 2.1 m/s.        

  

Table 2: The comparison of parameters between the PMSG generator and Savonius and H-Darrieus blade, which were stacked together for 165 

selected the skewing angle magnet-coil condition.   

PMSG generator As shown 

in Figure 2 

Parameters 

Starting Torque (N-m) 

 

Skewing angle 

magnet-coil 

(Degree) 

Electrical 

Power (W) 

% Reduced 

starting torque 

% Reduced 

power 

1.29 0-0 301.30 - - 

1.22 15-0 295.40 5.43 1.96 

1.16 15-5 290.20 10.08 3.68 

1.17 15-10 286.10 9.30 5.04 

1.14 15-15 284.00 11.63 5.74 

Blade of Savonius and H-

Darrieus stacked together 

as shown in Figure 6 (a) 

and Figure 7 

Parameters 

Torque (N-m) Wind Speed 

(m/s) 

- - - 

0.22 1.52 - - - 

0.46 1.60 - - - 

0.98   1.75 - - - 

1.31 1.90 - - - 

    

                Figure 8 shows the comparison of the 0-0 and 15-0 degrees skewing angle magnet-coil conditions, based on the 

relationship of the power and rotation speed. The skewing angle magnet-coil at 15-0 degrees was selected for using in the 

PMSG generator. The results indicated that 15-0 degrees could gently decrease power by 1.50% power at 25-650 rpm 170 

compared with the 0-0 degrees condition.  
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Figure 6: The 300 W (per turbine) vertical wind turbine installed at Rajjaprabha dam, Thailand (a) the blade of the vertical wind turbine (b) 

the stator of the PMSG generator (c) the rotor of the PMSG generator used in the skewing angle magnet-coil at 15-0 degree (d). 10kW wind 

tree combined with a 32 wind turbine (Suppachai et al., 2019 ).      

 180 

 

 

Figure 7: The relationship between the torque and wind speed of of the Savonius and H-Darrieus stacked blade, which is represented in 

Figure 6 (a) (Suppachai et al., 2019 ).    
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 185 

 

 

 

Figure 8: The comparison of the 0-0 and 15-0 degree skewing angle magnet-coil conditions based on the relationship of power and 

rotation speed. 190 

Conclusion   

The low speed vertical wind turbine requires a novel blade and electrical generator design for a cut-in at 2 m/s. The 

Savonius and H-Darrieus stacked blade can be operated at a wind speed of 1.90 m/s and torque of 1.31 N-m under no-load. 

Despite the PMSG electrical generator being used, it was able to generate a high starting torque that is not typically found in 

a low speed wind turbine. The connection of the skewing angle magnet-coil at 15-0 degree with the blade was shown to cut-195 

in at 2.1 m/s in a fully operation vertical wind turbine. However, the skewing angle magnet-coil at 15-0 degree is also reduced 

average power by 1.50% at 25-650 rpm. Therefore, the low speed vertical wind turbine requires a newly designed blade for 

high and low starting torque PMSG generators.  
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