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Abstract. Like almost all measurement datasets, wind energy siting data are subject to data gaps that can for instance originate

from a failure of the measurement devices or data loggers. This is in particular true for offshore wind energy sites where

the harsh climate can restrict the accessibility of the measurement platform, which can also lead to much longer gaps than

onshore. In this study, we investigate the impact of data gaps, in terms of a bias in the estimation of siting parameters, and

its mitigation by correlation and filling with mesoscale model data. Investigations are performed for three offshore sites in5

Europe, considering two years of parallel measurement data at the sites, and based on typical wind energy siting statistics.

We find a mitigation of the data gaps’ impact, i.e. a reduction of the observed biases, by a factor of ten on mean wind speed,

direction and Weibull scale parameter, and a factor of three on Weibull shape parameter. With increasing gap length, the gaps’

impact increases linearly for the overall measurement period while this behaviour is more complex when investigated in terms

of seasons. This considerable reduction of the impact of the gaps found for the statistics of the measurement time series almost10

vanishes when considering long-term corrected data, for which we refer to 30 years of reanalysis data.

1 Introduction

A wind resource assessment is performed at the beginning of every wind energy project. The wind resource is estimated for

the site that is pre-selected with respect to the expected lifetime of the project, i.e. for the 20-30 years in the future during

which the wind turbines will be operated at the site (Rohrig et al., 2019). During the lifetime of a wind farm re-assessments are15

also typically done that can be based on wind turbine or further wind measurement data. Based on this estimate an expected

energy yield is derived which serves as a basis for any economic considerations of the project. Consequently, uncertainties and

a possible bias in the wind resource estimate propagate up to the financing of a wind project with the percentage uncertainty

value increasing from uncertainty in wind speed to uncertainty in wind farm production to uncertainty in the expected return

on investment. Thus, to reduce these uncertainties starting from the wind measurements is of high interest and relevance.20

A wind resource assessment is typically based on a short-term measurement on site, that is conducted several years prior to

the installation of the wind farm and has a duration in the order of a year (MEASNET, 2016; FGW e.V., 2017). The campaign

duration is in most cases a compromise between informative value – defined by the representativeness of the measurements

for the lifetime of the wind farm, i.e. those 20-30 years in the future – and the costs of the measurement campaign. In a later
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step, short-term measurements are long-term extrapolated making use of a reference data set that is either a longer multi-year

measurement in the surrounding area of the site or data from a reanalysis, sometimes downscaled with the use of a mesoscale

model, with a resolution of several (tens of) kilometers around the site (Carta et al., 2013). In case of complex terrain or

differing measurement heights, horizontal and vertical interpolation is done using numerical computational fluid dynamics

(CFD) and/or simplified engineering models (Rohrig et al., 2019).5

Almost all measured time series have data gaps due to failures of the sensors themselves, a data logger or the power supply, or

due to adverse conditions as e.g. a low aerosol concentration or unwanted fixed echoes for remote sensing devices (MEASNET,

2016). In case of offshore measurements, data gaps often further increase due to limited accessibility to the measurement

installation in particular in high wind and wave conditions that may typically last for several weeks or even prevent access

for a whole season. Additionally, many offshore wind measurements are due to their high costs not fully redundant, which is10

particularly the case for many floating lidar applications that prevail more and more in the offshore wind industry as a most

cost-efficient alternative to fixed offshore meteorological (met) masts (Gottschall et al., 2017).

Up to a certain threshold of frequency and length of data gaps, the long-term extrapolation, which in the standard procedures

involves some correlation of measured and reference data for the overlapping period, is often applied to the not fully continuous

time series. MEASNET (2016), for instance, considers a measurement as incomplete only when the availability of filtered data15

is less than 90 %. As an alternative, the time series can be “filled” before the application of the correlation analysis. Gap-filling

procedures typically use reanalysis data, e.g. from MERRA2 (Donlon et al., 2012) or ERA5 (Hersbach and Dick, 2016), often

downscaled with a mesoscale model as e.g. WRF (Skamarock et al., 2019). Such a "gap filling" is, in particular, applied when

the gap corresponds to a substantial discontinuity in a measurement time series of several days, weeks or even months, not just

a few data points that can be filled by statistical approaches or even interpolation only.20

Gap filling is a task that is not specific to the wind resource assessment application but can be of relevance for any measured

time series or collected dataset where data gaps may significantly impact the outcome of the following data analysis. In the

most general context, procedures to compensate missing values in a dataset are referred to as imputation. There are a number of

different imputation procedures that have in common that missing data is not simply ignored but instead replaced by plausible

values. Specific gap filling procedures for meteorological time series are e.g. discussed in Körner et al. (2018), Pappas et al.25

(2014) and the references herein – these include

– linear interpolation from adjacent time steps (particularly for cases where only a few data points are missing),

– autoregressive models (for longer periods of missing data and without adjacent sites as possible predictors),

– different methods of spatial interpolation (in case adjacent sites are available),

– data-driven methods like nearest-neighbour approaches, linear or multiple linear regression, look-up tables or artificial30

neural networks (Körner et al., 2018).

For the wind resource assessment application, linear regression methods are of particular interest since they are often already

used for the long-term extrapolation in the context of measure-correlate-predict (MCP) approaches (MEASNET, 2016). Often
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further dimensions are introduced by considering separate wind direction sectors or wind speed bins. Generally, MCP methods

are not limited to linear regressions (see Carta et al., 2013, for a broader overview), however, in practice they are most often

implemented in this way. This is why we concentrate on this type of procedure – both for data gap filling and long-term

extrapolation – in this contribution.

The overall scope of the study is as follows: before discussing a selected specific data gap filling approach, we investigate5

how data gaps impact the standard wind resource estimates by deriving and evaluating bias and uncertainty measures for wind

time series with artificial gaps of varying length and seasonal period of occurrence. We repeat this analysis for the time series

where the gaps are filled and, with this, study to which extent the impact of the gaps can be mitigated. The study is applied to

the statistics of the short-term dataset, defined by the period of the measurements, as well as to the final long-term estimate,

since both sets of results are relevant in the wind energy context. By deriving and comparing conclusions for three different10

offshore sites — in the German Bight, the Dutch North Sea and in the Baltic Sea — we also address the impact of the site and

possible dependencies.

The article is structured as follows: in Section 2 we describe the data basis and in Section 3 the methods for this study. Section

4 presents the results for the impact of ignored and filled gaps on the short-term and long-term wind statistics. In Section 5

we discuss our findings with the particular implications for future resource assessment studies. And, finally, in Section 6 we15

summarize the main conclusions of our study.

2 Data basis

The data basis consists of measurement data from met masts over a measuring time which is characterized by a high availability

on the basis of which the influence of measurement gaps and their filling is investigated (subsection 2.1), as well as numerical

data used for filling the gaps in the measurement data and the subsequent long-term extrapolation (subsection 2.2).20

2.1 Sites and measurement data

The analyses in this study are done independently for three different offshore met masts representing different typical sites

for offshore wind energy utilisation in Europe. Two masts are located in the North Sea (FINO3 and IJmuiden) both about

50 km offshore from the nearest coastline with large wind direction sectors where the nearest coastline is several hundreds of

kilometres upstream. The third mast (FINO2) is located in the central Southern Baltic Sea and surrounded by land within 50 km25

or less except for a small wind direction sector. The sites were chosen to represent typical European offshore wind exploration

areas with different distances to the coasts and varying atmospheric stability (see e.g. Dörenkämper, 2015; Kalverla et al.,

2019).

In Fig. 1 the positions of the three met masts are given. The frames mark the area of the innermost domains of the mesoscale

data used for the gap filling (see Section 2.2). The data of all three met masts are freely available for scientific purposes. All of30

the masts are equipped with cup or sonic anemometers and wind vanes up to a height of 100 m above the sea surface. For our

study we consider the 10-min averages of horizontal wind speed and direction data provided by these sensors. A measurement
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Figure 1. Position of the three sites (met masts) investigated in the framework of this study. The red boxes mark the sizes of the innermost

domains used for the mesoscale modelling (cf. 2.2). The background wind field represents the 30 year mean wind speed (1989-2018) at 100 m

height above the sea surface taken from the New European Wind Atlas (Hahmann et al., 2020; Dörenkämper et al., 2020). The coastline and

border data originates from the GSHHS data set (Wessel and Smith, 1996).

height close to 90 m was chosen at all three masts (see description below for more details), representing a typical hub height

of offshore wind turbines. The 24-month period from 01-07-2012 to 30-06-2014 was selected based on the combined data

availability for all three masts and other constraints such as limiting disturbance of wakes of nearby wind farms that were

erected afterwards in the vicinity to the masts some years after the commission of the respective masts.

As the aim of this study is to investigate the impact of gaps on offshore wind energy relevant wind statistics, a reference time5

series with a low amount of missing data was needed. Thus, besides the selection of the two-year period with a low amount of

gaps, further gaps were filled with measurement data from lower altitudes. To consider the wind speed dependence with height,

a speed-up factor sup is defined according to sup = WS90mean/WS[X]mean, where WS90mean is the average wind speed at

the measurement altitude of the mast closest to 90 m and WS[X]mean the average wind speed of the measurement at a lower

height, and applied to the wind speed measurement of the lower altitude. In case of gaps, the wind direction measurements10

were filled by measurements at lower heights as well but without using any scaling or offset correction. Data gaps in the

mast measurements filled by applying this pre-processing are shown in Fig. 2. A short description of the three met masts with

references to more detailed information is given in the following:

– The IJmuiden met masta is located about 85 km west of Den Helder in the Dutch part of the North Sea. The met mast

was in operation between November 2011 and March 2016 and was decomissioned afterwards. The mast was used in15

several wind energy research studies (e.g. Baas et al., 2016; Kalverla et al., 2019). It provides measurements at several
ahttps://www.windopzee.net/en/meteomast-ijmuiden-mmij/index.html
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heights and is described in more detail in Poveda et al. (2015). For the analysis in this study, the mast corrected wind

speed measurement (cup anemometers) located at 92 m height was used together with the wind direction measurement

at a height of 87 m. The availability of the wind speed measurement data at these heights is 99.5 % prior and 99.7 % after

the filling of gaps by lower measurement heights (see procedure above).

– The FINO2 met mastb is located in the central Southern Baltic Sea close to the border triangle of Denmark, Germany and5

Sweden in the German part of the Baltic Sea. In contrast to the North Sea sites, the FINO2 measurements are affected

by the surrounding lands with distances of less than 50 km for the majority of wind direction sectors. Only a narrow

northeasterly sector is dominated by a long marine fetch. FINO2 is in operation since August 2007 and the data were

studied in several wind energy related studies (e.g. Gryning et al., 2014; Dörenkämper, 2015). FINO2 provides wind

measurements at various heights between 32 m and 102 m above sea level, technically described in (FINO2, 2007). In10

this study mainly the wind speed measurements from the cup anemometers at 92 m height were used in combination with

the wind direction measurement (vane) at the same height on the boom of the opposite side of the mast. The availability

of the wind speed time series was 86.4 % prior and 95.5 % after the application of the gap filling from lower heights (see

procedure above).

– FINO3 is a met mastc located in the northern part of the German Bight about 80 km north west of the island of Sylt. Thus,15

the impact of upstream coastlines is very limited and a pure offshore climate is found in particular for the main wind

direction sectors (south to northwest). FINO3 is in operation since September 2009 and provides wind measurements

each 10 m between 32 m and 102 m above sea level as described in (FINO3, 2012). The FINO3 wind measurements were

part of several wind energy studies (Peña et al., 2015; Gryning et al., 2016). This study analyses the wind speed (cup) and

wind direction (vane) data from the measurements at 92 m respectively 101 m above mean sea level. These wind speed20

measurement data have an availability of 98.4 % prior and 98.9 % after the application of gap filling from measurements

at lower heights (see procedure above). A detailed overview of the measurements of the three FINO masts, their device

types, accuracy and boom orientations is given in the Appendix of Leiding et al. (2012). Less than a kilometer west

of the FINO3 platform, the wind farm DanTysk was constructed between February 2013 and April 2015. The erection

of turbines did not start before April 2014 and operation not before December 2014. So, the wind statistics of FINO325

considered for this study should not be impacted by wakes of DanTysk.

Wind speed and wind direction distributions for the three datasets of measurements are shown in Fig. 3. Note that the

measurement heights slightly differ for the three sites – as described above, wind speed measurements are recorded at 92

on all three masts, while wind directions are recorded at 87 m (IJmuiden), 92 m (FINO2) and 101 m (FINO3), respectively.

Derived wind statistics are summarized in Table 1. Here and for the following analysis we consider the parameters mean wind30

direction, mean wind speed, and the parameters k (Weibull shape parameter) and A (Weibull scale parameter) that are obtained

from fitting a Weibull distribution function to the wind speed distributions. The fitting procedure is implemented as a nonlinear

bhttps://www.fino2.de/en/
chttps://www.fino3.de/
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Figure 2. Data availability at the three masts after filling in the pre-processing step. The light colors indicate values that were filled by

measurements from lower heights as described above.

least-squares regression considering the complete wind speed range. All three masts represent typical mid-latitude offshore

wind climates. A shift from southwesterly to more westerly winds is found while moving from west to east, being in-line with

the typical track of cyclones when moving across central Europe (van Bebber, 1891).

Figure 3. Wind speed (left) and wind direction (right) distributions for the three 24-month datasets from the FINO3, IJmuiden and FINO2

offshore met mast sites. Derived statistics are summarized in Table 1.

2.2 Numerical data for gap filling and long-term extrapolation

The procedures applied for this study make use of regional mesoscale modelling data that are used for the gap filling, as well5

as long-term reanalysis data that are applied for long-term referencing of the wind measurements. These data sources are

described separately below.
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Table 1. Derived statistics for wind direction and wind speed distributions for the three datasets of site measurements.

Site mean wind direction [deg] mean wind speed [ms−1] Weibull parameter k [-] Weibull parameter A [ms−1]

FINO3 243.6 9.60 2.44 10.92

IJmuiden 233.4 9.88 2.19 11.24

FINO2 228.3 9.59 2.28 11.18

2.2.1 Reanalysis data

For the long-term extrapolation, the data from the ERA5 reanalysis (Hersbach et al., 2020) were used. ERA5 is the most recent

generation of reanalysis data issued by the European Centre for Medium-Range Weather Forecasts (ECMWF) since 2017. For

wind energy applications it was shown to outperform other reanalyses (e.g. Olauson, 2018; Thøgersen et al., 2017). ERA5

provides reanalyses on all important atmospheric and oceanographic parameters in an hourly resolution in time and 0.25 ◦ (≈5

30 km for the atmospheric parameters, others differ) in zonal and meridional direction globally. Currently the period of 1979-

ongoing is publicly available with a lag of a few days in time. For the long-term referencing in this study, the wind speed (zonal

and meridional components, u and v at 100 m) from the so-called surface level data of the ERA5 dataset were selected for

the period 1983-2014 to cover a climatic period of 30 years. Most recently, mesoscale model datasets with a higher resolution

in the order of a few kilometres were made available for longer periods (up to 30 years) and sometimes used for long-term10

referencing. However, as the industry at least partly still relies on classical lower resolution reanalyses, we have applied this

approach for our study. In addition, due to its comparatively high resolution ERA5 does not show major differences in the

offshore wind speed climate statistics several tens of kilometres away from the coastal discontinuity (Dörenkämper et al.,

2020).

2.2.2 Mesoscale modelling and data15

The mesoscale model data in this study are used for filling the gaps that are artificially cut into the time series. In principle any

mesoscale model data could be used such as those from the publicly available New European Wind Atlas (NEWA) (Hahmann

et al., 2020; Dörenkämper et al., 2020) or commercial products. However, these data are often not optimized for offshore wind

energy applications or only available in lower resolution in time (e.g. 30 min instead of the desired 10 min data). Consequently,

simulations were performed separately for this study applying a setup that was optimized for offshore wind applications20

(Dörenkämper et al., 2015, 2017; Gottschall et al., 2018) and capable in resolving the most important flow features in offshore

development regions.

The simulations were carried out using the Weather Research and Forecasting (WRF) model (Skamarock et al., 2019) in

its version 4.0.1 which is generally well known and commonly used in the wind energy community (e.g. Dörenkämper et al.,

2015; Hahmann et al., 2020). The mesoscale simulation setup was similar for every of the three sites, consisting of three25

domains with resolutions of 18 km, 6 km and 2 km and a domain size of 150 × 150 GP (grid points) for each domain, centred
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around the site of interest (i.e. the respective offshore met mast). Figure 4 exemplarily shows the size of the three domains for

the FINO3 site. The sizes of the innermost domains (D3) for all three sites are given in Fig. 1.

D1

D2
D3

Figure 4. Mesoscale model domain distribution around the FINO3 site. The red boxes mark the extension of the computing domains. The

coastline and border data originates from the GSHHS data set (Wessel and Smith, 1996).

Boundary conditions for the model were prescribed by the ERA5 dataset for the atmospheric variables (Hersbach and Dick,

2016; Hersbach et al., 2020) and the OSTIA dataset for the sea surface variables (Donlon et al., 2012). An instantaneous output

of the mesoscale model on 10-min intervals was chosen, being consistent with the 10-min means of the met masts.5

Table 2. Relevant parameters of the setup for the mesoscale simulations applied in this study. The references for the different schemes and

models are summarized in WRF Users Page (2020).

Parameter Setting Parameter Setting

WRF model version 4.0.1 Planetary Boundary Layer scheme MYNN level 2.5

Land-use data Modis Surface Layer scheme MYNN

Atmospheric boundary conditions ERA5 Microphysics scheme WRF Single-Moment 5-class

Sea surface conditions OSTIA Shortwave and longwave radiation RRTMG

Horizontal resolution 18 km, 6 km, 2 km Nesting one-way

Vertical resolution 60 eta-level Nudging grid nudging above level 25

Model output interval 10 min Land Surface Model Unified Noah Land Surface Model

Simulation duration 240 (+24 spin-up) hours

Table 2 shows a summary of the most important model set-up parameters and thus boundary conditions and model physics

used in this study to drive the simulations. The output data on the WRF internal (Arakawa C, sigma terrain following) grid were
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converted to earth relative quantities using the post-processing script developed and verified in the framework of the NEWA

projectd (Dörenkämper et al., 2020). The data were interpolated to the exact measurement heights from the WRF levels, and

virtual met masts were extracted at the grid point closest to the location of the met masts investigated in this study.

3 Applied procedures

The methods applied for our study are described in the following subsections and demonstrated on the basis of the FINO35

dataset.

3.1 Generation of artificial gaps

The first step of the analysis consists in generating artificial data gaps in the measured time series. This is demonstrated in Fig. 5

in the two upper plots. A data gap is defined by its length (in days or e.g. number of 10-min intervals) and its start. Fig. 5 shows

a gap of 30 d length starting on 30 September 2013 00:00:00 UTC. For the results presented in Section 4 we have considered10

gap lengths between 6 and 90 d, and start dates running through the 2-year measurement duration in equal increments. The

four for wind energy relevant statistical measures (mean wind speed and direction and Weibull shape and scale parameters)

already presented in 2.1 are derived for the incomplete time series in the same way as for the original ones but ignoring the

data in the gap. The deviations in these measures represent the impact of the gap on the wind statistics. Note that for this study

we have only considered single gaps of varying lengths. Multiple gaps are briefly discussed in Section 5.15

3.2 Gap filling procedure

The artificial gaps are filled based on a measure-correlate-predict (MCP) procedure and with the WRF data introduced in 2.2 as

input. The measured time series consist of the wind speed and direction data including the generated gap, respectively. These

data are correlated with the numerical (WRF) data for the same period. That is, for the period of the gap no data is considered

for the correlation step. The correlation defines a correction that is implemented slightly differently for the wind speed and20

direction time series, respectively:

– For the wind speed data, we – first – bin the wind speeds every 0.5 ms−1 based on the modelled data and calculate

the average measured values in every bin. Second, we fit two linear functions for the wind speed ranges [0,5) and

[5,20] ms−1. The resulting coefficients of the linear fits are then applied to correct the respective modelled wind speed

and account this way for the systematic error between measured and modelled data.25

– For the wind direction data, again first the mean deviation between measured and simulated wind direction per 10 deg

bin is derived and then used directly as offset for the correction.

Note that the choice of this approach is more or less arbitrary but motivated by current practice for similar studies and applica-

tions. No further procedural steps as e.g. sector-wise corrections are considered.
dhttps://github.com/newa-wind/Mesoscale/tree/master/postproc - last visit 13.07.2020
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Figure 5. Generation and filling of artificial gaps – here demonstrated on the basis of the FINO3 wind speed time series and for a gap of 30 d

length starting on 30 September 2013. Original time series (only an excerpt is shown) in black, incomplete time series with generated gap in

red, time series with filled gap (cf. procedure described in 3.2) in blue. Derived statistical measures (mean wind direction, mean wind speed,

and k and A parameters of fitted Weibull wind distribution) are shown for the three time series on the right side.

In addition to the correction factor – either resulting from the correction function or the bin-wise mean offset – a noise factor

is derived as standard deviation of the data per bin, and combined with a white-noise process in the prediction step. The noise

factor ensures that the generated time series does not lose its physical consistency. For the prediction of the data in the gap

period, numerical (WRF) data for this period are combined with the derived corrections. The resulting time series are inserted

to the incomplete measurement time series. Fig. 5 (bottom plot) shows the outcome of the gap-filling procedure for the FINO35

time series used for demonstration.

As already mentioned above, the procedure consisting of generating artificial gaps in the measured time series and the filling

with the outlined MCP approach, is repeated for varying start dates of the gap that has the pre-defined length (in the example

30 d). This is demonstrated in Fig. 6, where the four derived statistical measures are shown for an unchanged gap length but

systematically varying start date for the incomplete and filled time series (in red and blue). The wind statistics for the original10

time series are shown as a reference (as black lines). This example demonstrates that the impact of the generated gap varies

quite drastically depending on when the gap starts, similar patterns are observed for all four considered statistical measures,

and the gap-filling procedure is able to significantly reduce the impact in almost all cases. However, the performance of the

gap-filling procedure also depends on the start date of the gap. This can be explained by the fact that the correlation between
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measured and model data found on the basis of the existing data describes the correlation for the data of the gap differently well.

The correlation depends to a certain extent on seasonal effects, for example. To quantify the observed variations in the wind

statistics the corresponding root mean square error (RMSE) values are derived. For all four statistical measures these reduce

when the gaps are filled: for mean wind direction from 3.1 to 0.3 deg, for mean wind speed from 0.07 to 0.01 ms−1, for the

Weibull scale parameter A from 0.09 to 0.01 ms−1, and for the Weibull shape parameter k from 0.017 to 0.007. Uncertainties

Figure 6. Variation of statistical measures – (a) mean wind direction and (b) mean wind speed, (c) Weibull shape and (d) scale parameter, k

and A – depending on start date of artificial gap – here for gap length of 30 d, for incomplete time series in red and for filled time series in

blue. Wind statistics for original time series in black as reference.

5

or standard errors in the estimation of the parameters are not further considered here and in the following as they are small

compared to the reduction of the gap impact which is the focus of this study.

3.3 Long-term extrapolation

In a last step, the different time series are used as basis for a long-term extrapolation of the wind time series and statistics.

Therefore, the measured time series with or without data gap are correlated with ERA5 reanalysis data that are available for10

a long-term period of 30 years in this case. The underlying MCP procedure is very similar to the one applied for the data gap

filling in 3.2. But this time the correlation period corresponds to the total measurement period of two years in our case (for the

incomplete time series shortened by the gap length) and the prediction horizon to the complete 30 years for which the reference

data is available. The measured time series has to be resampled to 1-hour data since the ERA5 data has no higher resolution.

Otherwise, the same methods were used to derive and apply correction functions and offsets. As already pointed out above, we15

decided to use ERA5 data as long-term reference data (and not again WRF that is e.g. in the New European Wind Atlas also

available for a period of 30 years) because we believe this is a choice that still better corresponds to a typical case in a standard
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offshore wind resource assessment application, while the gap-filling is still based on the mesoscale model data as before. The

overall workflow followed in the study is summarized in Fig. 7.

Figure 7. Workflow followed in our study including the MCP approaches for the gap filling and long-term extrapolation procedures, respec-

tively.

4 Results

In this section we present in detail the results of the study expanding on the impact of gaps on the wind resources estimate

with varying start dates (4.1) as well as of varying lengths (4.2), and the impact of the gaps on the long-term wind resource5

estimate (4.3). Results are compared for the three considered sites IJmuiden (Dutch North Sea), FINO2 (Baltic Sea) and FINO3

(German Bight).

4.1 Impact of gaps with varying start dates

Fig. 8 shows how a 30-day gap impacts the four considered wind statistics (mean wind direction, mean wind speed, and the

Weibull parameters k and A) depending on the start date of the gap for all three studied sites. The results for FINO3, already10

presented in Fig. 6, are shown in grey color, the results for IJmuiden and FINO2 as dashed and dotted lines, respectively. Again,

the applied gap filling (results in blue) reduces the deviations in the measures from the reference (in black) due to the existent

gap (results in red) to a considerable degree. These reductions, quantified in terms of an RSME for the respective dataset of

results, are summarized in Table 3. For mean wind direction, mean wind speed and Weibull scale parameter A the derived

RMSE values, summarizing the deviations in the wind statistics due to the gaps with varying start dates, reduce up to a factor15

of ten. For the Weibull shape parameter k this reduction is smaller (up to a factor of three) which is explained by the nature

of this parameter. Overall, the reductions are similar for all three considered sites. Also the pattern of deviations in the wind

statistics over the two-year course are pretty similar, except those for the Weibull k parameter. Beyond that, Fig. 8 clearly shows

how the wind statistics for the two sites FINO3 and FINO2, although having a very close mean wind speed for the considered

two-year period, differ with respect to their wind speed distributions and in particular the derived Weibull scale A and shape20
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Figure 8. Variation of statistical measures – (a) mean wind direction and (b) mean wind speed, (c) Weibull shape and (d) scale parameter, A

and k, respectively – depending on start date of artificial gap, here for gap length of 30 d as in Fig. 6. Results for FINO3 (already presented

above) as solid grey lines, for IJmuiden as dashed and for FINO2 as dotted lines (again for incomplete time series in red and for filled time

series in blue, wind statistics for original time series in black).

k parameters. The third site, IJmuiden, in comparison, is characterized by both the highest mean wind speed and Weibull A

parameter and the lowest Weibull k parameter.

4.2 Impact of gaps of varying lengths

In the next step, we have repeated this analysis for different gap lengths between 6 and 90 days. Fig. 9 shows the derived RMSE

values for the four considered wind statistics (in four separate plots) and the three sites (as solid, dashed and dotted curves)5

plotted against the gap length, again for ignored and filled gaps (in red and blue), respectively. In all considered cases, the

impact of the gap (reflected by the derived RMSE) increases with gap length and is significantly reduced when applying the
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Table 3. RMSE derived for the four in this study considered statistics for gappy and gap-filled time series of wind speed and direction for

the three investigated sites.

Site RMSE (mean dir – with gap) RMSE (mean dir – gap filled) RMSE (mean wsp – with gap) RMSE (mean wsp – gap filled)

FINO3 3.1 deg 0.3 deg 0.07 ms−1 0.01 ms−1

IJmuiden 2.3 deg 0.3 deg 0.09 ms−1 0.01 ms−1

FINO2 2.2 deg 0.4 deg 0.07 ms−1 0.01 ms−1

Site RMSE (Weibull k – with gap) RMSE (Weibull k – gap filled) RMSE (Weibull A – with gap) RMSE (Weibull A – gap filled)

FINO3 0.017 0.007 0.09 ms−1 0.01 ms−1

IJmuiden 0.016 0.005 0.10 ms−1 0.01 ms−1

FINO2 0.023 0.008 0.08 ms−1 0.02 ms−1

Figure 9. Dependency of impact of data gaps, quantified as RMSE of the four statistical measures – (a) mean wind direction and (b) mean

wind speed, (c) Weibull shape and (d) scale parameter, A and k, respectively – derived for gaps with systematically varying start dates, on

the length of the data gaps. Results for FINO3 as solid lines, for IJmuiden as dashed and for FINO2 as dotted lines (again for incomplete

time series in red and for filled time series in blue).
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gap filling procedure. For the mean wind speed, just like for the Weibull A parameter, the increase is more or less linear for the

considered range up to 90 d, whereas it slightly flattens for the two other measures, mean wind direction and Weibull k.

Apart from these general agreements, the results for the three sites show some deviations. For instance, the impact of the

data gaps on the mean wind speed are largest, when these are ignored, for the IJmuiden site but can be best compensated. This

is shown by the smallest RMSE values, compared to those for the two other sites, after gap filling. This observation may be5

either explained by the performance of the used numerical model for the respective site or a statistical effect that relates to

the level of observed wind speeds. (Remember IJmuiden showed the highest measured mean wind speeds in the considered

two-year period.)

The impact of (ignored) gaps in the wind direction time series is highest for the FINO3 dataset. This can be understood

by looking again at the wind direction distributions in Fig. 1: mean wind directions are more pronounced for the FINO2 and10

IJmuiden sites, whereas the distribution for FINO3 is characterized by a kind of site maximum for north-westerly directions. A

data gap may in this case remove data that correspond to a substantial part of one of the local maxima, having a larger impact

on the overall distribution as for the case where the distribution has only one superior maximum range. After gap filling, the

RMSE values are still larger for the FINO3 dataset than for the IJmuiden data but the deviations are now much smaller. RMSE

values for FINO2 and FINO3 lie almost on top of each other.15

Figure 10. Dependency of impact of data gaps, quantified as RMSE, on the length of the data gaps and season (defined according to the gap

start date) – as in Fig. 9 but here only for (a) mean wind direction and (b) mean wind speed. Results exemplarily for FINO3.

In a further step, we have studied how the impact of data gaps varies with the season in which the data gap occurs. For

this, the "season" is defined by the start date of a gap – a gap starting in the months January to March is related to "season

1", one starting between April to June to "season 2" and so on. These seasons were selected with a shift of one month in

comparison to the classical meteorological season definition of spring, summer, autumn and winter to consider the inertia of

the heating/cooling of the sea surface that mainly drives the yearly cycle of the atmospheric stability which vice versa has an20

impact on the wind distribution.

Fig. 10 shows the results for FINO3 and the statistics mean wind speed and mean wind direction only, but they are more or

less representative also for the other cases. The plots clarify that the impact of ignored and filled gaps significantly depends on
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the assigned season whereby also the performance of the gap filling shows a certain dependency, but not always going in the

same direction. Deviations are not only observed for the levels of derived RMSE values (i.e. how big is the impact) but also

the shape of the curves (i.e. how does this change with gap length). This can be explained by the relation between gap length

and the length of a season as defined above: a gap of a greater length is more likely to occur not just in the season it is assigned

to. By this partly wrong assignment the seasonal effects are more mixed for the greater lengths.5

4.3 Impact of gaps on long-term estimate

In a final step, we derive the impact of ignored and filled gaps in the measurement data on a long-term extrapolated mean

wind speed. For this, we followed the procedure outlined in 3.3 and summarized in Fig. 7. Figure 11 shows how the mean wind

speed that is derived based on 30 years of ERA5 data and corrected according to the 2-year long measurements at the three

considered sites varies with the start date of a 30-d data gap that is cut into the measurement time series. Again the data gaps10

are either ignored (results in red) or filled by applying the introduced gap-filling procedure (results in blue). The following

conclusions can be drawn from Fig. 11:

– The long-term corrected mean wind speed is significantly different from the mean values of the 2 years of measurements

for the three considered sites. (Mean wind speed values of the used 30 years long ERA5 time series are 9.43 ms−1, 9.91

ms−1 and 9.26 ms−1 for FINO3, IJmuiden and FINO2, respectively.)15

– The impact of data gaps in the short-term measurements is visible in the long-term estimates but is rather small with

an RMSE (for ignored gaps, red curves) of 0.011 ms−1 (FINO3), 0.007 ms−1 (IJmuiden) and 0.014 ms−1 (FINO2),

respectively.

– This impact of the data gaps in the short-term measurement on the long-term estimates is not really mitigated through

the application of the gap filling procedure, corresponding RMSE values (for filled gaps, blue curves) are in the same20

range or even slightly larger with 0.015 ms−1 (FINO3), 0.008 ms−1 (IJmuiden) and 0.014 ms−1 (FINO2), respectively.

– Also the reference values (black curves) show some variability, that is due to the noise process as part of the MCP

procedure applied for the long-term extrapolation. The RMSE values reflecting these variations are equal for all three

sites with 0.003 ms−1 where the mean value is considered as reference.

5 Discussion25

Our study proposes a methodology that allows us to quantify the impact of data gaps in (measured) time series on wind

statistics. With the three studied sites, we have considered three possible reference datasets, which could be referred to for

further sites where only incomplete time series are available but no suitable reference. The reference quantification can then

be used to deduce an uncertainty associated to the inherent gaps, that e.g. could be related to the RMSE value derived for

the variations in the wind statistics for different gap start dates for a fixed gap length. Alternatively, for a more conservative30
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Figure 11. Variation of long-term corrected mean wind speed depending on start date of artificial 30-d gap in short-term measurements.

Results for FINO3 as solid lines, for IJmuiden as dashed and for FINO2 as dotted lines (again for incomplete short-term measurement time

series in red and for filled time series in blue, for measurements without gap in black as reference).

approach, the maximum deviations in the wind statistics observed in the reference study could be considered or, in case more

details are available, the identified variations for a specific season.

For our study, we have analysed the four statistical measures mean wind direction, mean wind speed, and the two Weibull

parameters k and A which are very common for siting applications – but in principle this selection has been arbitrary and can

be further extended. Another common measure frequently considered in the wind energy context is the wind power density5

(WPD), as e.g. defined in Chang (2011), which integrates the two Weibull parameters (A and k) according to

WPD =
1

2
ρA3 Γ(1 +

3

k
) (1)

with the air density ρ and the Gamma function Γ(x) =
∫∞
0
e−t · tx−1 dt.
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In Fig. 12, we show the results for WPD as for the other measures in Fig. 6. Again, it is clear to see how the gap-filling

procedure reduces the impact of the data gaps. The reduction is smaller than for the Weibull parameter A but larger than for k

with an RMSE value reducing from 21.2 to 5.0 Wm−2.

Figure 12. Variation of wind power density (WPD), as an alternative statistical measure to those shown already in Fig. 6 for the FINO3 site,

depending on start date of artificial gap – here for gap length of 30 d, for incomplete time series in red and for filled time series in blue. Wind

statistics for original time series in black as reference.

In the presented investigations, we have only considered isolated single gaps in a measured time series. But the approach

followed can be extended, in a straightforward way, to more complex scenarios including multiple gaps that may be more5

realistic or may correspond to a specific case of interest, respectively. We then would recommend the following procedure: the

present scenario would first be generalised to an extent so that the available reference study case is sufficiently informative.

If we want to evaluate the impact of a 20-day gap in February of a certain year, for instance, it may not be sufficient to study

the impact of such a gap in the reference data from another period only for the month of February. Instead the scenario may

be broadened to a 20-day gap in the winter season. For making this decision, some background knowledge of the general10

wind climate at the studied sites is required, that can be gained e.g. from (numerical) long-term datasets. A similar approach

is recommended for the consideration of multiple gaps, for which not only the lengths of the individual gaps need to be taken

into account but also their distance in time and possible correlation effects.

With carrying out the study for three different offshore sites and showing the systematic similarities and some deviations

between the results, we provided a basis for the selection of suitable reference sites and datasets. Again, some knowledge of15

the general wind climate at a site is required to evaluate whether a certain study site is suitable or not for the estimation of

an uncertainty that is then used for the evaluation of the measurements from another site. In general, however, we believe that

this transfer of observations is possible and suggest to use the available sites and datasets for this purpose. An extension of our

study to further sites, moreover, may help to better understand how the impact of data gaps on wind statistics may vary from

site to site and to take such findings into account for an even more refined estimation of the associated uncertainties.20

When looking at the mitigation of the impact of data gaps in the measured time series – explicitly, with the applied gap-filling

procedure and the use of an MCP procedure in connection with wind data from a numerical model – we have only applied one
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specific method but not further studied how the results may change with the application of other approaches. In this context, it

was important for us to have a procedure that is straightforward and easy to apply for all three sites in exactly the same way.

But we definitely also believe, that a refinement – e.g. by using more complex approaches and possibly also some fine-tuning

for the individual sites – may show an optimised performance and with this less remaining impact of the data gaps on the

wind statistics after gap-filling. We believe that a specific gap-filling approach should be an integral part of the wind resource5

assessment process that is applied by a specific consultant for a specific site as it improves the wind statistics of the measured

period and can potentially also reduce the uncertainty of the long-term assessment.

It should also be pointed out that it is possibly not the optimal approach to apply the same type of MCP procedure for

both the gap-filling and the long-term extrapolation step. Depending on whether the simulation of time series (i.e. for a point

prediction or filling gaps) or the simulation of a wind distribution or wind statistics is of interest, so-called type I or type II10

MCP methods may be the better choice (Hanslian, 2017). In short, type I MCP methods are designed to simulate time series

whereas type II methods generate wind distributions. Whichever method is selected for the specific MCP task, this method

should also be applied in the reference study to quantify the gap impact and estimate the associated uncertainty that is of high

relevance for the (here: wind energy) application in any case.

The fact that we have not optimised the MCP methods for our applications may also be the reason for the initially counter-15

intuitive observation that the gap filling procedure, applied to the short-term measurements, has no positive effect on the

long-term extrapolated results (cf. 4.3). Another reason is the relatively short gap of only one month which is still within the

availability of > 90% accepted by MEASNET. Furthermore, if we compare the deviations in Fig. 8 and 11, we see that the

fluctuations in the long-term average are in the order of magnitude of the gap-corrected values and not in that of the uncorrected

values. This means that the long-term correction already averages out the effects of the data gaps to some extent, so that the20

gap filling is no longer significant.

Finally, it must also be kept in mind that the quantified uncertainty is – when looking at the complete wind resource as-

sessment process – not the only uncertainty that is associated to the long-term extrapolation. Another substantial uncertainty

component arises from the fact that the considered short-term period for which on-site measurements are available has only

a limited representativeness for the long term. Some of this is compensated by the long-term extrapolation based on a "long"25

dataset itself but it needs to be considered that a derived correction function has always some dependency on the available

correlation period. This dependency and related variations in the results of the estimated wind statistics constitute another part

of the uncertainty associated to the long-term extrapolation, not yet taken into account, in a wind resource assessment.

6 Conclusions

As any field experiment, wind measurements that are typically carried out for site assessment studies are subject to data gaps30

due to e.g. failures of measurement devices or data loggers. In the harsh offshore wind climate, wind and wave conditions

can lead to considerable time windows of inaccessibility of the measurement platform no matter if floating, e.g. buoy, or mast

measurement. In our study we investigated the impact of these data gaps on typical statistical measures for wind energy siting
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applications such as mean wind speed and direction and the Weibull shape and scale parameters. The study was performed for

three offshore sites with meteorological mast measurements available between July 2012 and June 2014 in the southern North

Sea (FINO3 and IJmuiden) and the southern Baltic Sea (FINO2). We proposed a gap filling procedure that uses data from

mesoscale meteorological modelling and studied the benefit of the gap filling in terms of the RMSE of the siting statistics. The

study reports the following key results:5

– A gap of 30 days in the dataset leads to an RMSE on the mean wind speed of up to about 0.1 m s−1 in the mean wind

speed and the Weibull scale parameter A, an RMSE of about 0.02 on Weibull shape k and 3 deg in the mean wind

direction.

– The gap filling with mesoscale data can considerably reduce this impact up to a factor of three on the Weibull shape and

a factor of ten on the three other investigated siting parameters mean wind speed, direction and Weibull scale parameter.10

– The impact of the data gaps is monotonically and almost linearly increasing with the length of the data gap when

considering the full year wind climate and so is the reduction of the impact of the gap filling. However, when looking at

different seasons, the skill of the gap-filling differs.

– The key conclusions are similar for the three investigated sites, although the impact of gaps differ with the highest impact

on the data from the FINO3 mast that is the only mast with a prominent impact of north-westerly winds and also the15

mast that is located furthest offshore.

– The impact of the gaps on the long-term estimate, expressed here in terms of a 30 year wind climatology is very small

(around 0.01 m s−1 at all three sites) and cannot be substantially further reduced by the gap filling of the reference

measurement dataset.

Our investigation focused on three European offshore sites in the North and Baltic Sea and could in future studies be20

evaluated for other offshore exploration areas with more different wind distributions in speed and direction. We intentionally

focussed on three commonly used key wind energy siting statistics. With the tendency of a grid load based renumeration of

wind power an investigation of the impact of data gaps on daily cycles might be interesting for future investigations.

Code and data availability. The mesoscale model data are available upon request, the mesoscale model itself is publicly available via

github: https://github.com/wrf-model/WRF. The ERA5 data are available via the Copernicus Climate Data Store (CDS): https://cds.climate.25

copernicus.eu/cdsapp#!/dataset/reanalysis-era5-pressure-levels?tab=overview. The OSTIA data are available from the Copernicus Marine

Environment Monitoring Service (CMEMS): https://resources.marine.copernicus.eu/?option=com_csw&task=results. The mast data are pub-

licly available for scientific purposes via BSH and TNO.

20

https://github.com/wrf-model/WRF
https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-pressure-levels?tab=overview
https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-pressure-levels?tab=overview
https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-pressure-levels?tab=overview
https://resources.marine.copernicus.eu/?option=com_csw&task=results


Author contributions. JG performed the gap analysis and the implementation of filling and analysis procedures. MD prepared the measure-

ment and reanalysis data and conducted the mesoscale model simulations for the gap filling. Both authors discussed the results and wrote

and reviewed the manuscript.

Competing interests. The authors declare that they have no conflict of interest.

Acknowledgements. This research was partly carried out in the framework of the projects Digitale Windboje (ref. no. 03EE3024) and NEWA5

(ref. no. 0325832A) funded by the German Federal Ministry for Economic Affairs and Energy (BMWi) on the basis of a decision by the

German Bundestag with further financial support from NEWA ERA-NET Plus, topic FP7-ENERGY.2013.10.1.2, the latter only for NEWA.

The simulations were performed at the HPC Cluster EDDY, located at the University of Oldenburg (Germany) and funded by BMWi (ref.

no. 0324005). The study here was motivated by the results of two masters thesis projects: we acknowledge Bilke Engelbrecht and Christine

Martens for their very valuable pre-works. We thank BSH for providing access to the FINO2 and FINO3 data, and TNO for the data of10

IJmuiden met mast.

21



References

Baas, P., Bosveld, F. C., and Burgers, G.: The impact of atmospheric stability on the near-surface wind over sea in storm conditions, Wind

Energy, 19, 187–198, https://doi.org/10.1002/we.1825, 2016.

Carta, J. A., Velázquez, S., and Cabrera, P.: A review of measure-correlate-predict (MCP) methods used to estimate long-term wind charac-

teristics at a target site, Renew. Sustainable Energy Rev., 27, 362–400, https://doi.org/10.1016/j.rser.2013.07.004, 2013.5

Chang, T. P.: Performance comparison of six numerical methods in estimating Weibull parameters for wind energy application, Applied

Energy, 88, 272–282, https://doi.org/10.1016/j.apenergy.2010.06.018, 2011.

Donlon, C. J., Martin, M., Stark, J., Roberts-Jones, J., Fiedler, E., and Wimmer, W.: The Operational Sea Surface Temperature and Sea Ice

Analysis (OSTIA) system, Remote Sensing of Environment, 116, 140–158, https://doi.org/10.1016/j.rse.2010.10.017, 2012.

Dörenkämper, M.: An investigation of the atmospheric influence on spatial and temporal power fluctuations in offshore wind farmss, Disser-10

tation, Carl von Ossietzky Universität Oldenburg, 2015.

Dörenkämper, M., Optis, M., Monahan, A., and Steinfeld, G.: On the Offshore advection of Boundary-Layer Structures and the Influence on

Offshore Wind Conditions, Boundary-Layer Meteorol., 155, 459–482, https://doi.org/10.1007/s10546-015-0008-x, 2015.

Dörenkämper, M., Stoevesandt, B., and Heinemann, D.: Derivation of an offshore wind index for the German bight from high-resolution

mesoscale simulation data, Proceedings of DEWEK - German Offshore Wind Energy Conference, p. 5, 2017.15

Dörenkämper, M., Olsen, B. T., Witha, B., Hahmann, A. N., Davis, N. N., Barcons, J., Ezber, Y., García-Bustamante, E., González-Rouco,

J. F., Navarro, J., Sastre-Marugán, M., Sı̄le, T., Trei, W., Žagar, M., Badger, J., Gottschall, J., Sanz Rodrigo, J., and Mann, J.: The Making

of the New European Wind Atlas – Part 2: Production and Evaluation, Geosci. Model Dev., 13, 5079–5102, https://doi.org/10.5194/gmd-

13-5079-2020, 2020.

FGW e.V.: Technical Guidelines for Wind Turbines - Part 6 (TG6) Determination of Wind Potential and Energy Yield, Richtlinie, Förderge-20

sellschaft Windenergie und andere Dezentrale Energien, 2017.

FINO2: FINO2 measurement platform - Installation Protocol, Technical Report, 152 pp., Wind Consult, 2007.

FINO3: FINO3 measurement platform - Technical Note, Technical Report, 57 pp., GL - Garrad Hassan, 2012.

Gottschall, J., Gribben, B., Stein, D., and Würth, I.: Floating lidar as an advanced offshore wind speed measurement technique: current

technology status and gap analysis in regard to full maturity, WIREs Energy and Environment, 6, https://doi.org/10.1002/wene.250, 2017.25

Gottschall, J., Catalano, E., Dörenkämper, M., and Witha, B.: The NEWA Ferry Lidar Experiment: Measuring Mesoscale Winds in the

Southern Baltic Sea, Remote Sensing, 10, 1620, https://doi.org/10.3390/rs10101620, 2018.

Gryning, S.-E., Badger, J., Hahmann, A. N., and Batchvarova, E.: Current Status and Challenges in Wind Energy Assessment, in:

Weather Matters for Energy, edited by Troccoli, A., Dubus, L., and Haupt, S. E., pp. 275–293, Springer New York, New York, NY,

https://doi.org/10.1007/978-1-4614-9221-4_13, 2014.30

Gryning, S.-E., Floors, R., Peña, A., Batchvarova, E., and Brümmer, B.: Weibull Wind-Speed Distribution Parameters Derived from a Com-

bination of Wind-Lidar and Tall-Mast Measurements Over Land, Coastal and Marine Sites, Boundary-Layer Meteorology, 159, 329–348,

https://doi.org/10.1007/s10546-015-0113-x, 2016.

Hahmann, A. N., Sı̄le, T., Witha, B., Davis, N. N., Dörenkämper, M., Ezber, Y., García-Bustamante, E., González-Rouco, J. F., Navarro,

J., Olsen, B. T., and Söderberg, S.: The making of the New European Wind Atlas – Part 1: Model sensitivity, Geosci. Model Dev., 13,35

5053–5078, https://doi.org/10.5194/gmd-13-5053-2020, 2020.

Hanslian, D.: The matrix of measure-correlate-predict methods, Proceedings of ICEM 2017, 27-29 June 2017 Bari, Italy, 2017.

22

https://doi.org/10.1002/we.1825
https://doi.org/10.1016/j.rser.2013.07.004
https://doi.org/10.1016/j.apenergy.2010.06.018
https://doi.org/10.1016/j.rse.2010.10.017
https://doi.org/10.1007/s10546-015-0008-x
https://doi.org/10.5194/gmd-13-5079-2020
https://doi.org/10.5194/gmd-13-5079-2020
https://doi.org/10.5194/gmd-13-5079-2020
https://doi.org/10.1002/wene.250
https://doi.org/10.3390/rs10101620
https://doi.org/10.1007/978-1-4614-9221-4_13
https://doi.org/10.1007/s10546-015-0113-x
https://doi.org/10.5194/gmd-13-5053-2020


Hersbach, H. and Dick, D.: ERA5 reanalysis is in production, http://www.ecmwf.int/en/newsletter/147/news/era5-reanalysis-production, last

accessed: 13.07.2020, 2016.

Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A., Muñoz-Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schepers, D., and et al.:

The ERA5 global reanalysis, Quarterly Journal of the Royal Meteorological Society, p. qj.3803, https://doi.org/10.1002/qj.3803, 2020.

Kalverla, P., Steeneveld, G.-J., Ronda, R., and Holtslag, A. A.: Evaluation of three mainstream numerical weather prediction models with5

observations from meteorological mast IJmuiden at the North Sea, Wind Energy, 22, https://doi.org/10.1002/we.2267, 2019.

Körner, P., Kronenberg, R., Genzel, S., and Bernhofer, C.: Introducing Gradient Boosting as a universal gap filling tool for meteorological

time series, Meteorol. Z., 27, https://doi.org/10.1127/metz/2018/0908, 2018.

Leiding, T., Tinz, B., Gates, L., Rosenhagen, G., Herklotz, K., Senet, C., Outzen, O., Lindenthal, A., Neumann, T., Frühman, R., Wilts,

F., Bégué, F., Schwenk, P., Stein, D., Bastigkeit, Ilona nd Lange, B., Hagemann, S., Müller, S., and Schwabe, J.: Standardisierung und10

vergleichende Analyse der meteorologischen FINO-Messdaten (FINO123), Technical Report - available online, Final Report - FINOWind

Research Project, https://www.dwd.de/DE/forschung/projekte/fino_wind/fino_wind_node.html, 2012.

MEASNET: Evaluation of Site Specific Wind Conditions, Technical Report, Measurement Network of Wind Energy Institutes, http://www.

measnet.com/wp-content/uploads/2016/05/Measnet_SiteAssessment_V2.0.pdf, last accessed: 25.10.2019, 2016.

Olauson, J.: ERA5: The new champion of wind power modelling?, Renewable Energy, 126, 322–331,15

https://doi.org/10.1016/j.renene.2018.03.056, 2018.

Pappas, C., Papalexiou, S., and Koutsoyiannis, D.: A quick gap filling of missing hydrometeorological data, J. Geophys. Res. Atmos., 119,

9290–9300, https://doi.org/10.1127/metz/2018/0908, 2014.

Peña, A., Gryning, S.-E., and Floors, R.: Lidar observations of marine boundary-layer winds and heights: a preliminary study, Meteorologis-

che Zeitschrift, 24, 581–589, https://doi.org/10.1127/metz/2015/0636, 2015.20

Poveda, J. M., Wouters, D., and Nederland, S.: Wind measurements at meteorological mast IJmuiden, Tech. rep., ECN - Energy Center of

the Netherlands, https://publicaties.ecn.nl/PdfFetch.aspx?nr=ECN-E--14-058, last accessed: 25.10.2019, 2015.

Rohrig, K., Berkhout, V., Callies, D., Durstewitz, M., Faulstich, S., Hahn, B., Jung, M., Pauscher, L., Seibel, A., Shan, M., Siefert, M.,

Steffen, J., Collmann, M., Czichon, S., Dörenkämper, M., Gottschall, J., Lange, B., Ruhle, A., Sayer, F., Stoevesandt, B., and Wenske,

J.: Powering the 21st century by wind energy—Options, facts, figures, Appl. Phys. Rev., 6, 031 303, https://doi.org/10.1063/1.5089877,25

2019.

Skamarock, W., Klemp, J., Dudhia, J., Gill, D., Liu, Z., Berner, J., Wang, W., Powers, J., Duda, M. G., Barker, D., and Huang, X.-Y.: A

description of the advanced research WRF version 3, Technical Report, 162 pages NCAR/TN-556+ STR, NCAR - National Center for

Atmospheric Research, Boulder, Colorado, USA, https://doi.org/10.5065/1dfh-6p97, 2019.

Thøgersen, M., Svenningsen, L., and Sørensen, T.: ERA5–The (Not So) Long Term Reference Wind Data – years 2010-2016, 2017.30

van Bebber, W. J.: Die Zugstrassen der barometrischen Minima, Meteorol. Z., 8, 361–366, 1891.

Wessel, P. and Smith, W. H. F.: A global, self-consistent, hierarchical, high-resolution shoreline database, J. Geophys. Res. Solid Earth, 101,

8741–8743, https://doi.org/10.1029/96JB00104, 1996.

WRF Users Page: WRF Model Physics Options and References, https://www2.mmm.ucar.edu/wrf/users/phys_references.html, last accessed:

13.07.2020, 2020.35

23

http://www.ecmwf.int/en/newsletter/147/news/era5-reanalysis-production
https://doi.org/10.1002/qj.3803
https://doi.org/10.1002/we.2267
https://doi.org/10.1127/metz/2018/0908
https://www.dwd.de/DE/forschung/projekte/fino_wind/fino_wind_node.html
http://www.measnet.com/wp-content/uploads/2016/05/Measnet_SiteAssessment_V2.0.pdf
http://www.measnet.com/wp-content/uploads/2016/05/Measnet_SiteAssessment_V2.0.pdf
http://www.measnet.com/wp-content/uploads/2016/05/Measnet_SiteAssessment_V2.0.pdf
https://doi.org/10.1016/j.renene.2018.03.056
https://doi.org/10.1127/metz/2018/0908
https://doi.org/10.1127/metz/2015/0636
https://publicaties.ecn.nl/PdfFetch.aspx?nr=ECN-E--14-058
https://doi.org/10.1063/1.5089877
https://doi.org/10.5065/1dfh-6p97
https://doi.org/10.1029/96JB00104
https://www2.mmm.ucar.edu/wrf/users/phys_references.html

